高三文科数学《参数方程》练习题

合集下载

(含答案)-《参数方程》练习题

(含答案)-《参数方程》练习题

《参数方程》练习题一.选择题:1.直线l 的参数方程为()x a t t y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( ) A .1t B .12t C1 D1 2.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心3.直线112()2x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3,4.曲线的参数方程为321x t y t =+⎧⎨=-⎩(t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、直线5.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则PF 等于( )A .2B .3C .4D .56.直线003sin 201cos 20x t y t ⎧=-⎨=+⎩ (t 为参数)的倾斜角是 ( ) A.200 B.700 C.1100 D.1600 7.实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( ) A 、27 B 、4 C 、29 D 、5 二、填空题: 7.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为_____8.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为___________。

9.直线cos sin x t y t θθ=⎧⎨=⎩(t 为参数)与圆42cos 2sin x y αα=+⎧⎨=⎩(α为参数)相切,则θ=_______________。

10.设曲线C 的参数方程为2x=t y=t⎧⎨⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为__ _____.三、解答题:11.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。

高三参数方程测试题(含答案)

高三参数方程测试题(含答案)

参数方程1. 椭圆{y =4sinθx=3cosθ(θ为参数)的离心率为( )A. √74B. √73C. √72D. √752. 直线{x =−tcos20°y =3+tsin20°(t 为参数)的倾斜角是( )A. 20∘B. 70∘C. 110∘D. 160∘3. 过点(0,2)且与直线{x =2+ty =1+√3t(t 为参数)互相垂直的直线方程为( )A. {x =√3t y =2+tB. {x =−√3t y =2+t (t 为参数)C. {x =−√3t y =2−tD. {x =2−√3t y =t4. 若直线的参数方程为{x =1+3ty =2−√3t(t 为参数),则直线的倾斜角为( )A. 30∘B. 60∘C. 120∘D. 150∘ 5. 曲线C :{x =2cosθy =3sinθ(θ为参数)上的点到其焦点的距离的最小值为( )A. √5−3B. √5−2C. 3−√5D. 16. 已知圆的参数方程为{x =−1+√2cosθy =√2sinθ(θ为参数),则圆心到直线y =x +3的距离为( ) A. 1 B. √2 C. 2 D. 2√2 7. 参数方程{y =3sinθx=4cosθ(θ为参数)表示的曲线是( )A. 以(±√7,0)为焦点的椭圆B. 以(±4,0)为焦点的椭圆C. 离心率为√75的椭圆 D. 离心率为35的椭圆8. 圆{x =2cosθy =2sinθ+2的圆心坐标是( )A. (0,2)B. (2,0)C. (0,−2)D. (−2,0)9. 设直线l :{x =1+12t y =√32t(t 为参数),曲线C 1:{y =sinθx=cosθ(θ为参数),直线l 与曲线C 1交于A ,B 两点,则|AB |=( )A. 2B. 1C. 12D. 1310. 已知圆x 2+y 2-2x =0的圆心为C ,直线{x =−1+√22ty =3−√22t,(t 为参数)与该圆相交于A ,B 两点,则△ABC 的面积为______.11. 设P ,Q 分别为直线{y =6−2t x=t (t 为参数)和曲线C :{x =1+√5cosθy =−2+√5sinθ(θ为参数)的点,则|PQ |的最小值为______.12. 已知直线C 1:{y =tsinαx=1+tcosα(t 为参数),C 2:{y =sinθx=cosθ(θ为参数),当α=π3时,则C 1与C 2的交点坐标为______.13. 在平面直角坐标系xOy 中,已知直线l 的参数方程为{x =1+12ty =√32t(t 为参数),椭圆C 的参数方程为{x =cosθy =2sinθ(θ为参数),设直线l 与椭圆C 相交于A ,B两点,求线段AB 的长.14. 已知曲线C:{x =4cosφy =3sinφ(φ为参数).(Ⅰ)将C 的参数方程化为普通方程;(Ⅱ)若点P (x ,y )是曲线C 上的动点,求x +y 的取值范围.15. 在平面直角坐标系xOy 中,直线l :{x =1+35t y =45t(t 为参数),与曲线C :{x =4k 2y =4k (k 为参数)交于A ,B 两点,求线段AB 的长.答案和解析1.【答案】A【解析】解:∵(θ为参数),∴()2+()2=cos2θ+sin2θ=1,即+=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其离心率e==.故选:A.将椭圆的参数方程转化为普通方程,即可求其离心率.本题考查椭圆的参数方程,考查椭圆的性质,属于简单题.2.【答案】D【解析】【分析】消去参数,求出直线的斜率,利用斜率和倾斜角之间的关系进行求解即可.本题主要考查参数方程的应用,消去参数求出直线的普通方程是解决本题的关键.【解答】解:消去参数得直线的普通方程为==-cot20°,即-(y-3)cot20°=x,即y=-tan20°x+3,则直线的斜率k=tanα=-tan20°=tan(180°-20°)=tan160°,即倾斜角为160°,故选:D3.【答案】B【解析】解:把直线(t为参数)消去参数,化为普通方程为y=x+1-2,故已知直线的斜率为,故所求直线的斜率为-,倾斜角为,故要求的直线的参数方程为(t为参数),故选:B.把直线(t为参数)消去参数,化为普通方程,可得已知直线的斜率为,故所求直线的斜率为-,倾斜角为,从而求得要求的直线的参数方程.本题主要考查把参数方程化为普通方程,两条直线垂直的性质,求直线的参数方程,属于基础题.4.【答案】D【解析】解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.5.【答案】C【解析】解:曲线C:(θ为参数),即+=1,∴a=3,b=2,c==,它上的点到其焦点的距离的最小值为a-c=3-,故选:C.把参数方程化为普通方程,求出a、c的值,再根据椭圆上的点到其焦点的距离的最小值为a-c,得出结论.本题主要考查椭圆的参数方程,椭圆的方程,把参数方程化为普通方程,属于基础题.6.【答案】B【解析】解:圆的参数方程为(θ为参数),普通方程为(x+1)2+y2=2,圆心到直线y=x+3的距离为d==,故选B.参数方程化为普通方程,即可求出圆心到直线y=x+3的距离.本题考查参数方程化为普通方程,考查点到直线距离公式的运用,属于基础题.7.【答案】A【解析】解:根据题意,曲线的参数方程,则其普通方程为+=1,为椭圆;依次分析选项:对于A:椭圆+=1的焦点坐标为(±,0),A正确;对于B、由A可得,B错误;对于C、椭圆+=1中,a=4,c=,其离心率e==,C错误;对于D、由C可得,D错误;故选:A.根据题意,将曲线的方程变形为普通方程,依次分析选项,综合即可得答案.本题考查参数方程与普通方程的互化,关键是掌握参数方程转化为普通方程的方法.8.【答案】A解:∵圆,利用同角三角函数的基本关系消去参数θ,化为直角直角坐标方程为x2+(y-2)2=4,故圆心坐标为(0,2),故选A.把圆的参数方程利用同角三角函数的基本关系消去参数θ,化为直角直角坐标方程为x2+(y-2)2=4,从而求得圆心坐标.本题主要考查把参数方程化为普通方程的方法,同角三角函数的基本关系,圆的标准方程,属于基础题.9.【答案】B【解析】解:由曲线C1:(θ为参数),化为x2+y2=1,直线l:(t为参数),消去参数化为y=(x-1),即=0.∴圆心C1(0,0)到直线l的距离d==.∴|AB|=2==1.故选:B.由曲线C1:(θ为参数),利用cos2θ+sin2θ=1即可化为直角坐标方程.直线l:(t为参数),消去参数化为=0.求出圆心C1(0,0)到直线l的距离d,利用|AB|=2即可得出.本题考查了参数方程化为普通方程、直线与圆的相交弦长问题、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.10.【答案】12【分析】本题考查了直线与圆的位置关系应用问题,也考查了参数方程应用问题,是基础题.把圆的方程化为标准方程,写出圆心与半径;直线的参数方程化为普通方程,求出圆心到直线的距离,计算弦长|AB|,利用三角形面积公式求出△ABC的面积.【解答】解:圆x2+y2-2x=0化为标准方程是(x-1)2+y2=1,圆心为C(1,0),半径r=1,直线化为普通方程是x+y-2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为.11.【答案】√55【解析】解:由题意,曲线C:,消去参数θ:可得曲线C的普通方程为:(x-1)2+(y+2)2=5.直线(t为参数),消去参数t,可得直线的普通方程为:2x+y-6=0.由曲线C的普通方程为:(x-1)2+(y+2)2=5.可知圆心为(1,-2),半径r=.那么:圆心到直线的距离d==可得|PQ|的最小值为:d-r==;故答案为:将直线(t 为参数)和曲线C :(θ为参数)化为普通方程,利用圆心到直线的距离d 减去半径r ,可得|PQ|的最小值.本题主要考查了参数方程化为普通方程,以及利用平面几何知识解决最值问题.12.【答案】(1,0),(12,-√32) 【解析】解:(Ⅰ)当α=时,C 1的普通方程为y=(x-1),C 2的普通方程为x 2+y 2=1.联立方程组,解得C 1与C 2的交点为(1,0),(,-).故答案为(1,0),(,-).先消去参数将曲线C 1与C 2的参数方程化成普通方程,再联立方程组求出交点坐标即可.本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,比较基础.13.【答案】解:由{x =1+12t①y =√32t②,由②得t =√3, 代入①并整理得,√3x −y −√3=0. 由{x =cosθy =2sinθ,得{x =cosθy 2=sinθ,两式平方相加得x 2+y 24=1.联立{√3x −y −√3=0x 2+y 24=1,解得{x =1y =0或{x =−17y =−8√37. ∴|AB |=17)8√37)=167.【解析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.14.【答案】解:(Ⅰ)∵C:{x =4cosφy =3sinφ(φ为参数),∴曲线C 的普通方程为x 216+y 29=1.(Ⅱ)∵x +y =4cosθ+3sinθ=5sin (φ+θ)(tanφ=43). ∴当sin (φ+θ)=1时,x +y 取得最大值5,当sin (φ+θ)=-1时,x +y 取得最小值-5. ∴x +y 的取值范围是[-5,5]. 【解析】(Ⅰ)根据平方和等于1消去参数得到普通方程;(Ⅱ)把参数方程代入x+y 得到关于θ的三角函数,根据三角函数的性质求出最值.本题考查了参数方程与普通方程的转化,参数方程的应用,属于基础题. 15.【答案】解:(方法一)直线l 的参数方程化为普通方程得4x -3y =4,将曲线C 的参数方程化为普通方程得y 2=4x .联立方程组{4x −3y =4y 2=4x 解得 {x =4y =4,或{x =14y =−1 所以A (4,4),B (14,-1). 所以AB ═254.(方法二)将曲线C 的参数方程化为普通方程得y 2=4x .直线l 的参数方程代入抛物线C 的方程得 (45t )2=4(1+35t ),即4t 2-15t -25=0, 所以 t 1+t 2=154,t 1t 2=-254.所以AB =|t 1-t 2|=√(t 1+t 2)2−4t 1t 2=254. 【解析】方法一:直线l 的参数方程化为普通方程得4x-3y=4,将曲线C 的参数方程化为普通方程得y 2=4x .联立求出交点坐标,利用两点之间的距离公式即可得出. 方法二:将曲线C 的参数方程化为普通方程得y 2=4x . 直线l 的参数方程代入抛物线C 的方程得4t 2-15t-25=0,利用AB=|t 1-t 2|=即可得出.本题考查了参数方程化为普通方程及其应用,考查了推理能力与计算能力,属于基础题.。

高考文科数学复习题含解析参数方程

高考文科数学复习题含解析参数方程

突破点一 参数方程[基本知识]1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数). [基本能力]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+t (t 为参数)所表示的图形是直线.( )(2)直线y =x 与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为1.( )答案:(1)√ (2)× 二、填空题1.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)2.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.答案:1853.参数方程⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数)化为普通方程为________________________.解析:∵x =2t 21+t 2,y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x .又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2), ∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[全析考法]考法一 参数方程与普通方程的互化[例1] 将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). [解] (1)两式相除,得k =y2x, 将其代入x =3k1+k 2,得x =3·y 2x 1+⎝⎛⎭⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 故所求的普通方程为y 2=2-x ,x ∈[0,2].[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. 考法二 参数方程的应用[例2] (2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. [解] (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2. [方法技巧]1.直线参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.若M 1,M 2是l上的两点,其对应参数分别为t 1,t 2,则(1)|M 1M 2|=|t 1-t 2|.(2)若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=⎪⎪⎪⎪t 1+t 22.(3)若M 0为线段M 1M 2的中点,则t 1+t 2=0. 2.圆和圆锥曲线参数方程的应用有关圆或圆锥曲线上的动点距离的最大值、最小值以及取值范围的问题,通常利用它们的参数方程转化为三角函数的最大值、最小值求解.[集训冲关]1.[考法一]求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α,得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.2.[考法二]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =2+t sin 3π4(t 为参数),即⎩⎨⎧x =-1-22t ,y =2+22t (t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.突破点二 参数方程与极坐标方程的综合问题[典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.[方法技巧]处理参数方程与极坐标方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[针对训练]1.(2019·贵阳模拟)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4= 2. (1)写出C 的普通方程,并用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(α为直线的倾斜角,t 为参数)的形式写出直线l 的一个参数方程;(2)l 与C 是否相交?若相交,求出两交点的距离,若不相交,请说明理由. 解:(1)C 的普通方程为x 24+y 2=1,由ρcos ⎝⎛⎭⎫θ+π4=2得x -y -2=0, 则直线l 的倾斜角为π4,又直线l 过点(2,0),得直线l 的一个参数方程为⎩⎨⎧x =2+22t ,y =22t(t 为参数).(2)将l 的参数方程代入C 的普通方程得 5t 2+42t =0,解得t 1=0,t 2=-425, 显然l 与C 有两个交点,分别记为A ,B ,且|AB |=|t 1-t 2|=425. 2.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+t cos φ,y =3+t sin φ⎝⎛⎭⎫t 为参数,φ∈⎣⎡⎦⎤0,π3,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的圆心C 的极坐标为⎝⎛⎭⎫2,π3,半径为2,直线l 与圆C 交于M ,N 两点. (1)求圆C 的极坐标方程;(2)当φ变化时,求弦长|MN |的取值范围.解:(1)由已知,得圆心C 的直角坐标为(1,3),圆的半径为2, ∴圆C 的直角坐标方程为(x -1)2+(y -3)2=4, 即x 2+y 2-2x -23y =0,∵x =ρcos θ,y =ρsin θ,∴ρ2-2ρcos θ-23ρsin θ=0, 故圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫π3-θ. (2)由(1)知,圆C 的直角坐标方程为x 2+y 2-2x -23y =0, 将直线的参数方程代入圆的直角坐标方程得,(2+t cos φ)2+(3+t sin φ)2-2(2+t cos φ)-23(3+t sin φ)=0,整理得,t 2+2t cos φ-3=0,设M ,N 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2cos φ,t 1·t 2=-3,∴|MN |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=4cos 2φ+12. ∵φ∈⎣⎡⎦⎤0,π3,∴cos φ∈⎣⎡⎦⎤12,1,∴|MN |∈[13,4]. 故弦长|MN |的取值范围为[13,4].[课时跟踪检测]1.(2018·河南息县第一高级中学段测)已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos α,y =m +sin α(α为参数),直线l 的参数方程为⎩⎨⎧x =1+55t ,y =4+255t (t 为参数).(1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于P ,Q 两点,且|PQ |=455,求实数m 的值.解:(1)由⎩⎪⎨⎪⎧x =cos α,y =m +sin α(α为参数)得曲线C 的普通方程为x 2+(y -m )2=1.由x =1+55t ,得55t =x -1,代入y =4+255t ,得y =4+2(x -1),所以直线l 的普通方程为2x -y +2=0.(2)圆心(0,m )到直线l 的距离为d =|-m +2|5,由勾股定理得⎝ ⎛⎭⎪⎫|-m +2|52+⎝⎛⎭⎫2552=1,解得m =3或m =1.2.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为 d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.3.(2019·成都模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+12t ,y =2+32t (t为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ+4sin θ=ρ.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 在直角坐标系中的坐标为(2,2),若直线l 与曲线C 相交于不同的两点A ,B ,求|MA |·|MB |的值.解:(1)由⎩⎨⎧x =2+12t .y =2+32t ,消去参数t 可得y =3(x -2)+2,∴直线l 的普通方程为3x -y +2-23=0. ∵ρsin 2θ+4sin θ=ρ,∴ρ2sin 2θ+4ρsin θ=ρ2. ∵ρsin θ=y ,ρ2=x 2+y 2,∴曲线C 的直角坐标方程为x 2=4y .(2)将⎩⎨⎧x =2+12t ,y =2+32t 代入抛物线方程x 2=4y 中,可得⎝⎛⎭⎫2+12t 2=4⎝⎛⎭⎫2+32t , 即t 2+(8-83)t -16=0.∵Δ>0,且点M 在直线l 上,∴此方程的两个实数根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2, ∴t 1t 2=-16, ∴|MA |·|MB |=|t 1t 2|=16.4.(2019·贵州联考)以极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的单位长度相同,已知曲线C 的极坐标方程为ρ=4cos θsin 2θ,过点M (2,-2)且倾斜角为α的直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的直角坐标方程,并用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(α为直线的倾斜角,t 为参数)的形式写出直线l 的参数方程;(2)若M 是线段AB 的中点,求α的值. 解:(1)由ρ=4cos θsin 2θ得ρsin 2θ=4cos θ,∴ρ2sin 2θ=4ρcos θ,即y 2=4x (x ≠0), ∴曲线C 的直角坐标方程为y 2=4x (x ≠0);直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =-2+t sin α(t 为参数,0≤α<π).(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =-2+t sin α代入y 2=4x (x ≠0)得(sin 2α)t 2-4(sin α+cos α)t -4=0, ∴t 1+t 2=4(sin α+cos α)sin 2α=0,∴α=3π4.5.(2019·洛阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t ,y =m +t (t 为参数,m ∈R),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2=33-2cos 2θ(0≤θ≤π).(1)写出曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知点P 是曲线C 2上一点,若点P 到曲线C 1的最小距离为22,求m 的值. 解:(1)由曲线C 1的参数方程消去参数t ,可得C 1的普通方程为x -y +m =0. 由曲线C 2的极坐标方程得3ρ2-2ρ2cos 2θ=3,θ∈[0,π], ∴曲线C 2的直角坐标方程为x 23+y 2=1(0≤y ≤1).(2)设曲线C 2上任意一点P 的坐标为(3cos α,sin α),α∈[0,π], 则点P 到曲线C 1的距离d =|3cos α-sin α+m |2=⎪⎪⎪⎪2cos ⎝⎛⎭⎫α+π6+m 2.∵α∈[0,π],∴cos ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-1,32,2cos ⎝⎛⎭⎫α+π6∈[-2,3]. 由点P 到曲线C 1的最小距离为22得,若m +3<0,则m +3=-4,即m =-4-3; 若m -2>0,则m -2=4,即m =6; 若m -2≤0,m +3≥0,即-3≤m ≤2时,⎪⎪⎪⎪2cos ⎝⎛⎭⎫α+π6+m min =0,不合题意,舍去. 综上,m =-4-3或m =6.6.(2019·广州花都区模拟)已知直线l :⎩⎨⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)由已知得l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1解得l 与C 1的交点为A (1,0),B ⎝⎛⎭⎫12,-32,则|AB |=1.(2)由题意,得C 2的参数方程为⎩⎨⎧x =12cos θ,y =32sin θ(θ为参数),故点P 的坐标为⎝⎛⎭⎫12cos θ,32sin θ, 从而点P 到直线l 的距离是d =⎪⎪⎪⎪32cos θ-32sin θ-32=34⎣⎡⎦⎤2sin ⎝⎛⎭⎫θ-π4+2, 当sin ⎝⎛⎭⎫θ-π4=-1时,d 取得最小值,且最小值为23-64. 7.(2019·辽宁五校联考)极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同.已知曲线C 的极坐标方程为ρ=2sin θ,θ∈[0,2π].(1)求曲线C 的直角坐标方程;(2)在曲线C 上求一点D ,使它到直线l :⎩⎨⎧x =3t +3,y =-3t +2(t 为参数)的距离最短,写出D 点的直角坐标.解:(1)由ρ=2sin θ可得ρ2=2ρsin θ,∴曲线C 的直角坐标方程为x 2+y 2-2y =0. (2)直线l 的参数方程为⎩⎨⎧x =3t +3,y =-3t +2(t 为参数), 消去t 得l 的普通方程为y =-3x +5,由(1)得曲线C 的圆心为(0,1),半径为1,又点(0,1)到直线l 的距离为|1-5|1+3=2>1, 所以曲线C 与l 相离.设D (x 0,y 0),且点D 到直线l :y =-3x +5的距离最短,则曲线C 在点D 处的切线与直线l :y =-3x +5平行,∴y 0-1x 0·(-3)=-1, 又x 20+(y 0-1)2=1,∴x 0=-32(舍去)或x 0=32,∴y 0=32, ∴点D 的直角坐标为⎝⎛⎭⎫32,32. 8.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点. 当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2. l 与⊙O 交于两点需满足21+k2<1, 解得k <-1或k >1,即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B 2,且t A ,t B 满足t 2-22t sin α+1=0. 于是t A +t B =22sin α,t P =2sin α. 又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α, 所以点P 的轨迹的参数方程是⎩⎨⎧ x =22sin 2α,y =-22-22cos 2α ⎝⎛⎭⎫α为参数,π4<α<3π4.。

(完整word版)高三文科数学《参数方程》练习题(word文档良心出品)

(完整word版)高三文科数学《参数方程》练习题(word文档良心出品)

李锐璇 参数方程练习题1.在极坐标系中,点)6,2(π到直线1)6sin(=-πθρ的距离是_______. 2.若直线的参数方程为12()23x t t y t=+⎧⎨=-⎩为参数,则直线的斜率为 .3.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为________.4.圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是 . 5.已知曲线1C 的极坐标方程为θρcos 6=,曲线2C 的极坐标方程为4πθ=()R ∈ρ,曲线1C 、曲线2C 的交点为B A 、,则弦AB 长为 .6.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为4πθ=(ρ∈R),它与曲线⎩⎨⎧+=+=ααsin 22cos 21y x (α为参数)相交于两点A 和B ,则AB = .7.已知在平面直角坐标系xoy 中圆C 的参数方程为:33cos 13sin x y θθ⎧=+⎪⎨=+⎪⎩,(θ为参数),以OX 为极轴建立极坐标系,直线极坐标方程为:,0)6cos(=+πθρ 则圆C 截直线所得弦长为 . 8.已知圆M :x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 . 9.极坐标方程为是所表示的曲线的离心率12cos 2=θρ10..在直角坐标系中,曲线C 1的参数方程为θθθ(sin 1cos 2⎩⎨⎧+=+=y x 为参数),若以坐标原点o 为极点、x 轴正半轴为极轴建立极坐标系'则曲线0)3sin(:2=+πθp C 上的点到曲线1C ,上的点的最短距离为 .11.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知圆的极坐标方程为θρsin 8=,则该圆的圆心到直线⎩⎨⎧-==t y t x 2(t 为参数)的距离是_________. 12.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的参数方程为1x t y t ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的极坐标方程为34sin 2=⎪⎭⎫ ⎝⎛-πθρ,则1C 与2C 交点在直角坐标系中的坐标为___________.13.在极坐标系中,圆=4sin ρθ的圆心到直线()6R πθρ=∈的距离是 .14.在直角坐标系xoy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知射线4πθ=与曲线21(1)x t y t =+⎧⎨=-⎩(t 为参数)相交于A 、B 两点,则线段AB 的中点的直角坐标为 15.。

参数方程(练习带答案)

参数方程(练习带答案)

参数方程一.解答题(共23小题)1.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.2.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4.(1)若l的参数方程中的时,得到M点,求M的极坐标和曲线C直角坐标方程;(2)若点P(0,2),l和曲线C交于A,B两点,求.3.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=﹣2sinθ.(1)求C1的极坐标方程与C2的直角坐标方程;(2))若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.4.在直角坐标系xOy中,直线l的参数方程为为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A、B,求的最小值.5.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.6.已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)若直线l的参数方程为,其中t为参数,求直线l被曲线C截得的弦长.7.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.8.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.9.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为(t为参数),P点的极坐标为(2,π),曲线C的极坐标方程为ρcos2θ=sinθ.(Ⅰ)试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点坐标;(Ⅱ)设直线l与曲线C相交于两点A,B,点M为AB的中点,求|PM|的值.10.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.11.在平面直角坐标系中,直线l的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(Ⅰ)写出直线l和曲线C的普通方程;(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.12.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.13.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.14.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.15.在平面直角坐标系xOy 中,已知C 1:(θ为参数),将C 1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C 2以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cosθ+sinθ)=4(1)试写出曲线C 1的极坐标方程与曲线C 2的参数方程;(2)在曲线C 2上求一点P ,使点P 到直线l 的距离最小,并求此最小值.16.选修4﹣4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴建立平面直角 坐标系,直线l 的参数方程为(t 为参数).(Ⅰ)写出直线l 与曲线C 的直角坐标系下的方程; (Ⅱ)设曲线C 经过伸缩变换得到曲线C′设曲线C′上任一点为M (x ,y ),求的取值范围.17.在直角坐标系xOy 中,直线l 的参数方程为,以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出直线l 的普通方程及圆C 的直角坐标方程;(2)点P 是直线l 上的,求点P 的坐标,使P 到圆心C 的距离最小.18.已知直线C 1:(t 为参数),圆C 2:(α为参数)(Ⅰ)若直线C 1经过点(2,3),求直线C 1的普通方程;若圆C 2经过点(2,2),求圆C 2的普通方程;(Ⅱ)点P 是圆C 2上一个动点,若|OP|的最大值为4,求t 的值.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 1的参数方程为(α为参数),曲线C 2的极坐标方程为ρ2(sin 2θ+4cos 2θ)=4. (1)求曲线C 1与曲线C 2的普通方程;(2)若A 为曲线C 1上任意一点,B 为曲线C 2上任意一点,求|AB|的最小值.20.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=2cosθ.(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明它表示什么曲线; (Ⅱ)若P 是直线l 上的一点,Q 是曲线C 上的一点,当|PQ|取得最小值时,求P 的直角坐标.21.已知曲线C:9x2+4y2=36,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程;(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.22.在直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin ()=2.(Ⅰ)分别将曲线C的参数方程和直线l的极坐标方程转化为直角坐标系下的普通方程;(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P的坐标为(﹣2,2),求|PB|+|AB|的最小值.参数方程参考答案与试题解析一.解答题(共23小题)1.(2017•惠州模拟)已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.2.(2017•达州模拟)在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4.(1)若l的参数方程中的时,得到M点,求M的极坐标和曲线C直角坐标方程;(2)若点P(0,2),l和曲线C交于A,B两点,求.【分析】(1)利用极坐标与直角坐标互化的方法得到结论;(2)利用参数的几何意义,求.(1)l的参数方程中的时,M(﹣1,1),极坐标为,【解答】解:曲线C的极坐标方程为ρ=4,曲线C的直角坐标方程:x2+y2=16…(5分)(2)由得,…(10分)3.(2017•湖北模拟)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C的参数方程为1,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=﹣2sinθ.(1)求C1的极坐标方程与C2的直角坐标方程;(2))若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM|•|PN|的取值范围.【分析】(1)求出C1的普通方程,即可求C1的极坐标方程,利用极坐标方程与直角坐标方程的互化方法得出C2的直角坐标方程;(2)直线l的参数方程为:(t为参数),代入C2的直角坐标方程得(x0+tcosα)2+(y+tsinα+1)2=1,由直线参数方程中t的几何意义可知|PM|•|PN|=|1+2y|,即可求|PM|•|PN|的取值范围.【解答】解:(1)消去参数可得x2+y2=1,因为α∈[0,π),所以﹣1≤x≤1,0≤y≤1,所以曲线C1是x2+y2=1在x轴上方的部分,所以曲线C1的极坐标方程为ρ=1(0≤θ≤π).…(2分)曲线C2的直角坐标方程为x2+(y+1)2=1…(5分)(2)设P(x0,y),则0≤y≤1,直线l的倾斜角为α,则直线l的参数方程为:(t为参数).…(7分)代入C2的直角坐标方程得(x+tcosα)2+(y+tsinα+1)2=1,由直线参数方程中t的几何意义可知|PM|•|PN|=|1+2y|,因为0≤y≤1,所以|PM|•|PN|=∈[1,3]…(10分)4.(2017•泸州模拟)在直角坐标系xOy中,直线l的参数方程为为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A、B,求的最小值.【分析】(1)利用极坐标与直角坐标的互化方法,求圆C的直角坐标方程;(2)利用参数的几何意义,求的最小值.【解答】解:(1)圆C的方程为ρ=6sinθ,可化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9;(2)直线l的参数方程为为参数),代入x2+(y﹣3)2=9,可得t2+2(cosα﹣sinα)t﹣7=0,∴t1+t2=﹣2(cosα﹣sinα),t1t2=﹣7,∴===≥,∴的最小值为.5.(2016•延安校级二模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.【分析】(1)首先,对于曲线C:根据极坐标与直角坐标变换公式,方程ρsin2θ=2acosθ(a>0),两边同乘以ρ,化成直角坐标方程,对于直线l:消去参数t即可得到普通方程;(2)首先,联立方程组,消去y整理,然后,设点M,N分别对应参数t1,t2,从而,得到|PM|=|t1|,|PN|=|t2|,|MN|=|t1﹣t2|,然胡,结合一元二次方程根与系数的关系,建立含有a的关系式,求解a的取值.【解答】解:(1)∵,方程ρsin2θ=2acosθ(a>0),两边同乘以ρ,∴曲线C的直角坐标方程为y2=2ax(a>0);直线l的普通方程为x﹣y﹣2=0.(2)联立方程组,消去y并整理,得t2﹣2(4+a)t+8(4+a)=0 (*)△=8a(4+a)>0.设点M,N分别对应参数t1,t2,恰为上述方程的根.则|PM|=|t1|,|PN|=|t2|,|MN|=|t1﹣t2|.由题设得(t1﹣t2)2=|t1t2|,即(t1+t2)2﹣4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0,则有(4+a)2﹣5(4+a)=0,得a=1,或a=﹣4.∵a>0,∴a=1.6.(2016•陕西校级模拟)已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)若直线l的参数方程为,其中t为参数,求直线l被曲线C截得的弦长.【分析】(1)先消去参数,求出曲线的普通方程,然后利用普通方程和极坐标方程之间的关系进行转化求解即可.(2)直线方程的极坐标为,代入曲线C的极坐标方程求出ρ即可.【解答】解(1)∵曲线C的参数方程为(α为参数),∴曲线C的普通方程为,将代入并化简得:,即曲线C的极坐标方程为;(2)将代入得弦长为.7.(2016•开封四模)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.【分析】(Ⅰ)把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;(Ⅱ)把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值.【解答】解:(Ⅰ)曲线C的极坐标方程ρsin2θ=acosθ(a>0),可化为ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0);(2分)直线l的参数方程为(t为参数),消去参数t,化为普通方程是y=x﹣2;(4分)(Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得;设A、B两点对应的参数分别为t1,t2,则;(6分)∵|PA|•|PB|=|AB|2,∴t1•t2=,∴=+4t1•t2=5t1•t2,(9分)即;解得:a=2或a=﹣8(不合题意,应舍去);∴a的值为2.(12分)8.(2016•福建模拟)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【分析】解法一:(Ⅰ)由参数方程消去参数α,得椭圆的普通方程,由极坐标方程,通过两角和与差的三角函数转化求解出普通方程即可求出直线l的倾斜角.(Ⅱ)设出直线l的参数方程,代入椭圆方程并化简,设A,B两点对应的参数分别为t1,t2,利用参数的几何意义求解即可.解法二:(Ⅰ)同解法一.(Ⅱ)利用直线l的普通方程与椭圆的方程联立,设A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可.【解答】解法一:(Ⅰ)由消去参数α,得,即C的普通方程为.(2分)由,得ρsinθ﹣ρcosθ=2,…(*)(3分)将代入(*),化简得y=x+2,(4分)所以直线l的倾斜角为.(5分)(Ⅱ)由(Ⅰ)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),(7分)代入并化简,得.(8分).设A,B两点对应的参数分别为t1,t2,则,所以t1<0,t2<0,(9分)所以.(10分)解法二:(Ⅰ)同解法一.(5分)(Ⅱ)直线l的普通方程为y=x+2.由消去y得10x2+36x+27=0,(7分)于是△=362﹣4×10×27=216>0.设A(x1,y1),B(x2,y2),则,,所以x1<0,x2<0,(8分)故.(10分)9.(2016•平顶山二模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为(t为参数),P点的极坐标为(2,π),曲线C的极坐标方程为ρcos2θ=sinθ.(Ⅰ)试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点坐标;(Ⅱ)设直线l与曲线C相交于两点A,B,点M为AB的中点,求|PM|的值.【分析】(Ⅰ)把x=ρcosθ,y=ρsinθ代入曲线C的方程ρcos2θ=sinθ,可得曲线C的直角坐标方程.(Ⅱ)设点A,B,M对应的参数为t1,t2,t,由题意可知.把直线l的参数方程代入抛物线的直角坐标方程,利用韦达定理求得t1+t2的值,可得|PM|=|t|的值.【解答】解:(Ⅰ)把x=ρcosθ,y=ρsinθ代入ρcos2θ=sinθ,可得曲线C 的直角坐标方程为x2=y,它是开口向上的抛物线,焦点坐标为.(Ⅱ)点P的直角坐标为(﹣2,0),它在直线l上,在直线l的参数方程中,设点A,B,M对应的参数为t1,t2,t,由题意可知.把直线l的参数方程代入抛物线的直角坐标方程,得.因为,所以.10.(2016•汕头模拟)已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.【分析】(1)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x﹣1)代入下式消去参数t即可;(2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值.【解答】解:(1)直线l的参数方程为为参数).由上式化简成t=2(x﹣1)代入下式得根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分)(2)∵代入C得∴(5分)设椭圆的参数方程为参数)(7分)则(9分)则的最小值为﹣4.(10分)11.(2017•自贡模拟)在平面直角坐标系中,直线l的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(Ⅰ)写出直线l和曲线C的普通方程;(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.(Ⅰ)消去参数t即可得到直线l的普通方程;利用x=ρcosθ,y=ρsinθ【分析】将曲线C转化为普通方程;(Ⅱ)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.【解答】解:(Ⅰ)直线l:(其中t为参数),消去参数t得普通方程y=x﹣4.由ρ=4cosθ得ρ2=4ρcosθ.由x=ρcosθ,y=ρsinθ以及x2+y2=ρ2,得y2+(x﹣2)2=4;(Ⅱ)由y2+(x﹣2)2=4得圆心坐标为(2,0),半径R=2,则圆心到直线的距离为:d==3,而点P在圆上,即O′P+PQ=d(Q为圆心到直线l的垂足),所以点P到直线l的距离最小值为3﹣2.12.(2014•新课标Ⅰ)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P 到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.13.(2016•太原三模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.14.(2016•衡阳三模)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.【分析】本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2)利用点到直线的距离公式,求出P 到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.【解答】解:(1)∵,∴x﹣y=1.∴直线的极坐标方程为:ρcosθ﹣ρsinθ=1.即,即.∵,∴,∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ即曲线C的普通方程为y=x2.(2)设P(x0,y),,∴P到直线的距离:.∴当时,,∴此时,∴当P点为时,P到直线的距离最小,最小值为.15.(2016•衡水校级二模)在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.【分析】(1)把C1消去参数化为普通方程为 x2+y2=1,再化为极坐标方程.根据函数图象的伸缩变换规律可得曲线C2的普通方程,再化为极参数方程.(2)先求得直线l的直角坐标方程,设点P(cosθ,2sinθ),求得点P到直线的距离为d=,故当sin(θ+)=1时,即θ=2kπ+,k∈z时,点P到直线l的距离的最小值,从而求得P的坐标以及此最小值【解答】解:(1)把C1:(θ为参数),消去参数化为普通方程为 x2+y2=1,故曲线C1:的极坐标方程为ρ=1.再根据函数图象的伸缩变换规律可得曲线C2的普通方程为+=1,即+=1.故曲线C2的极参数方程为(θ为参数).(2)直线l:ρ(cosθ+sinθ)=4,即x+y﹣4=0,设点P(cosθ,2sinθ),则点P到直线的距离为d==,故当sin(θ+)=1时,d取得最小值,此时,θ=2kπ+,k∈z,点P(1,),故曲线C上有一点P(1,)满足到直线l的距离的最小值为﹣.216.(2016•晋中模拟)选修4﹣4:坐标系与参数方程已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)写出直线l与曲线C的直角坐标系下的方程;(Ⅱ)设曲线C经过伸缩变换得到曲线C′设曲线C′上任一点为M(x,y),求的取值范围.【分析】(I)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x﹣1)代入下式消去参数t即可;(II)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可.【解答】解:(Ⅰ)直线l的普通方程x+y﹣2﹣1=0曲线C的直角坐标方程x2+y2=4;…(4分)(Ⅱ)曲线C经过伸缩变换得到曲线C'的方程为,则点M参数方程为,代入x+y得,x+y=•2cosθ+=2sin=4sin()∈[﹣4,4]∴x+y的取值范围是[﹣4,4]…(10分)17.(2016•池州一模)在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.【分析】(1)由已知得t=x﹣3,从而y=,由此能求出直线l的普通方程;由,得,由此能求出圆C的直角坐标方程.(2)圆C圆心坐标C(0,),设P(3+t,),由此利用两点间距离公式能求出点P的坐标,使P到圆心C 的距离最小.【解答】解:(1)∵在直角坐标系xOy中,直线l的参数方程为,∴t=x﹣3,∴y=,整理得直线l的普通方程为=0,∵,∴,∴,∴圆C的直角坐标方程为:.(2)圆C:的圆心坐标C(0,).∵点P在直线l:=0上,设P(3+t,),则|PC|==,∴t=0时,|PC|最小,此时P(3,0).18.(2016•龙岩二模)已知直线C1:(t为参数),圆C2:(α为参数)(Ⅰ)若直线C1经过点(2,3),求直线C1的普通方程;若圆C2经过点(2,2),求圆C2的普通方程;(Ⅱ)点P是圆C2上一个动点,若|OP|的最大值为4,求t的值.【分析】(I)直线C1:(t为参数),消去参数t化为普通方程:y=(x﹣1)tanα+2,把点(2,3)代入,解得tanα,即可得出直线C1的普通方程.由圆C2:(α为参数),利用cos2α+sin2α=1消去参数α化为普通方程,把点(2,2)代入解得t2,即可得出圆C2的普通方程.(II)由题意可得:|OP|max =|OC2|+|t|,代入解得t即可得出.【解答】解:(I)直线C1:(t为参数),消去参数t化为普通方程:y=(x﹣1)tanα+2,∵直线C1经过点(2,3),∴3=tanα+2,解得tanα=1.∴直线C1的普通方程为y=x+1.圆C2:(α为参数),化为普通方程:(x﹣1)2+(y﹣2)2=t2,∵圆C2经过点(2,2),∴t2=1,∴圆C2的普通方程为:(x﹣1)2+(y﹣2)2=1.圆心C2=(1,2),半径r=1.(II)由题意可得:|OP|max =|OC2|+|t|,∴4=+|t|,解得t=±(4﹣).19.(2016•河南三模)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.(1)求曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.【分析】(1)曲线C1的参数方程为(α为参数),利用cos2α+sin2α=1可得普通方程.曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4,利用y=ρsinθ,x=ρcosθ即可化为直角坐标方程.(2)设B(cosβ,2sinβ),则|BC1|==,利用三角函数的单调性与值域、二次函数的单调性即可得出.【解答】解:(1)曲线C1的参数方程为(α为参数),利用cos2α+sin2α=1可得:x2+(y﹣1)2=.圆心C(0,1).曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4,可得直角标准方程:y2+4x2=4,即+y2=4.(2)设B(cosβ,2sinβ),则|BC1|==≥,当sin时取等号.∴|AB|的最小值=﹣.20.(2016•武昌区模拟)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明它表示什么曲线;(Ⅱ)若P是直线l上的一点,Q是曲线C上的一点,当|PQ|取得最小值时,求P的直角坐标.【分析】(Ⅰ)由ρ=2cosθ,得ρ2=2ρcosθ,利用ρ2=x2+y2,x=ρcosθ,即可得到直角坐标方程.(II)由题设条件知,|PQ|+|QC|≥|PC|,当且仅当P,Q,C三点共线时,等号成立,即|PQ|≥|PC|﹣,可得:|PQ|min =|PC|min﹣.设P(﹣t,﹣5+t),又C(,0),利用两点之间的距离公式、二次函数的单调性即可得出.【解答】解:(Ⅰ)由ρ=2cosθ,得ρ2=2ρcosθ,从而有x2+y2=2x,∴(x﹣)2+y2=3.∴曲线C是圆心为(,0),半径为的圆.(Ⅱ)由题设条件知,|PQ|+|QC|≥|PC|,当且仅当P,Q,C三点共线时,等号成立,即|PQ|≥|PC|﹣,∴|PQ|min =|PC|min﹣.设P(﹣t,﹣5+t),又C(,0),则|PC|===.当t=1时,|PC|取得最小值,从而|PQ|也取得最小值,此时,点P的直角坐标为(﹣,﹣).21.(2016•黔东南州模拟)已知曲线C:9x2+4y2=36,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程;(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【分析】(I)曲线C:9x2+4y2=36,化为=1,利用cos2θ+sin2θ=1可得参数方程.直线l:(t为参数),即,即可化为普通方程.(II)点P(2cosθ,3sinθ)到直线l的距离d==∈,利用|PA|==2d即可得出.【解答】解:(I)曲线C:9x2+4y2=36,化为=1,可得参数方程:(θ∈[0,2π)).直线l:(t为参数),即,化为:2x+y﹣6=0.(II)点P(2cosθ,3sinθ)到直线l的距离d==∈,|PA|==2d∈.∴|PA|的最大值与最小值分别为,.22.(2016•重庆模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin()=2.(Ⅰ)分别将曲线C的参数方程和直线l的极坐标方程转化为直角坐标系下的普通方程;(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P的坐标为(﹣2,2),求|PB|+|AB|的最小值.【分析】(1)消参数,根据cos2α+cos2α=1得出曲线C的普通方程,利用极坐标与直角坐标的对应关系得到直线l的普通方程;(2)求出P关于直线l的对称点P′,则|PB|+|AB|的最小值为P′到圆心的距离减去曲线C的半径.【解答】解:(1)∵,∴,∴(x﹣1)2+y2=1.∴曲线C的普通方程是:(x﹣1)2+y2=1.∵ρsin()=2,∴ρsinθ+ρcosθ=2,即ρsinθ+ρcosθ=4.∴直线l的直角坐标方程为x+y﹣4=0.(2)设点P关于直线l的对称点为P′(x,y),则,解得P′。

(完整)高中数学参数方程大题(带答案)

(完整)高中数学参数方程大题(带答案)

参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.专题:计算题;压轴题;转化思想.分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆;(2)把t的值代入曲线C1的参数方程得点P的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出Q的坐标,利用中点坐标公式表示出M的坐标,利用点到直线的距离公式表示出M到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.分析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用x=ρcosθ,y=ρsinθ即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,解答:解(1)∵P点的极坐标为,∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.点评:本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:直线与圆.分析:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.点评:本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得d的最小值,以及此时的α的值,从而求得点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.考点:简单曲线的极坐标方程.专题:计算题.分析:(I)先利用三角函数的和角公式展开圆C的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而得到圆心C的直角坐标.(II)欲求切线长的最小值,转化为求直线l上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线C1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q的轨迹C2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:压轴题;直线与圆.分析:(I)先将圆C1,直线C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),从而直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,从而构造关于a,b的方程组,解得a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.点评:本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:(I)由⊙C的极坐标方程为ρ=2sinθ.化为ρ2=2,把代入即可得出;.(II)设P,又C.利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.考点:简单曲线的极坐标方程.专题:计算题.分析:(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得曲线C2及曲线C1的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:计算题.分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值,最后列出关于r的方程即可求出r值.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.。

高考文科数学一轮复习分层练习选修-参数方程

高考文科数学一轮复习分层练习选修-参数方程

[基础题组练]1.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数,α为直线的倾斜角). (1)写出直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 有唯一的公共点,求角α的大小. 解:(1)当α=π2时,直线l 的普通方程为x =-1;当α≠π2时,直线l 的普通方程为y =(x +1)tan α.由ρ=2cos θ,得ρ2=2ρcos θ, 所以x 2+y 2=2x ,即为曲线C 的直角坐标方程.(2)把x =-1+t cos α,y =t sin α代入x 2+y 2=2x ,整理得t 2-4t cos α+3=0. 由Δ=16cos 2α-12=0,得cos 2α=34,所以cos α=32或cos α=-32, 故直线l 的倾斜角α为π6或5π6.2.以极点为原点,以极轴为x 轴正半轴建立平面直角坐标系,已知曲线C 的极坐标方程为ρ=10,曲线C ′的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α,(α为参数).(1)判断两曲线C 和C ′的位置关系;(2)若直线l 与曲线C 和C ′均相切,求直线l 的极坐标方程. 解:(1)由ρ=10得曲线C 的直角坐标方程为x 2+y 2=100,由⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α得曲线C ′的普通方程为(x -3)2+(y +4)2=25. 曲线C 表示以(0,0)为圆心,10为半径的圆; 曲线C ′表示以(3,-4)为圆心,5为半径的圆.因为两圆心间的距离5等于两圆半径的差,所以圆C 和圆C ′的位置关系是内切.(2)由(1)建立方程组⎩⎪⎨⎪⎧x 2+y 2=100,(x -3)2+(y +4)2=25,解得⎩⎪⎨⎪⎧x =6,y =-8,可知两圆的切点坐标为(6,-8),且公切线的斜率为34,所以直线l 的直角坐标方程为y +8=34(x -6),即3x -4y -50=0,所以极坐标方程为3ρcos θ-4ρsin θ-50=0.3.(2020·成都市第二次诊断性检测)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,α为倾斜角),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4+2cos β,y =2sin β(β为参数,β∈[0,π]).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线C 的普通方程和直线l 的极坐标方程; (2)若直线l 与曲线C 恰有一个公共点P ,求点P 的极坐标.解:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =4+2cos βy =2sin β,得(x -4)2+y 2=4.因为β∈[0,π],所以曲线C 的普通方程为(x -4)2+y 2=4(y ≥0).因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,α为倾斜角),所以直线l 的倾斜角为α,且过原点O (极点). 所以直线l 的极坐标方程为θ=α,ρ∈R . (2)由(1)可知,曲线C 为半圆弧.若直线l 与曲线C 恰有一个公共点P ,则直线l 与半圆弧相切. 设P (ρ,θ)(ρ>0).由题意,得sin θ=24=12,故θ=π6.而ρ2+22=42,所以ρ=2 3. 所以点P 的极坐标为⎝⎛⎭⎫23,π6. 4.(2020·陕西铜川模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+35t ,y =1+45t(t为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=21+sin 2θ,点P 的极坐标为⎝⎛⎭⎫2,π4. (1)求曲线C 的直角坐标方程和点P 的直角坐标;(2)设l 与C 交于A ,B 两点,线段AB 的中点为M ,求|PM |. 解:(1)由ρ2=21+sin 2θ得ρ2+ρ2sin 2θ=2,①将ρ2=x 2+y 2,y =ρsin θ代入①并整理得,曲线C 的直角坐标方程为x 22+y 2=1.设点P 的直角坐标为(x ,y ),因为点P 的极坐标为⎝⎛⎭⎫2,π4, 所以x =ρcos θ=2cos π4=1,y =ρsin θ=2sin π4=1.所以点P 的直角坐标为(1,1).(2)将⎩⎨⎧x =1+35t ,y =1+45t 代入x 22+y 2=1,并整理得41t 2+110t +25=0,Δ=1102-4×41×25=8 000>0,故可设方程的两根分别为t 1,t 2,则t 1,t 2为A ,B 对应的参数,且t 1+t 2=-11041.依题意,点M 对应的参数为t 1+t 22, 所以|PM |=⎪⎪⎪⎪t 1+t 22=5541.5.(2020·河南省六校联考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =7-t ,y =-2+t (t为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42sin ⎝⎛⎭⎫θ+π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设曲线C 与直线l 的交点为A ,B ,Q 是曲线C 上的动点,求△ABQ 面积的最大值.解:(1)由⎩⎪⎨⎪⎧x =7-t ,y =-2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42sin ⎝⎛⎭⎫θ+π4=4sin θ+4cos θ,得ρ2=4ρsin θ+4ρcos θ, 化为直角坐标方程为x 2+y 2=4x +4y ,所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(2)由(1)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过点P (3,2),可知点P 在圆内.将直线l 的参数方程化为⎩⎨⎧x =7-22t y =-2+22t ,代入圆的直角坐标方程,得t 2-92t +33=0.设A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=92,t 1t 2=33, 所以|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=30. 又圆心(2,2)到直线l 的距离d =|2+2-5|2=22,所以△ABQ 面积的最大值为12×30×⎝⎛⎭⎫22+22=5152. 6.(2020·吉林第三次调研测试)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =1-22t ,y =1+22t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫2,π4,求1|P A |+1|PB |的值. 解:(1)曲线C 1的参数方程为⎩⎨⎧x =1-22t ,y =1+22t ,(t 为参数),两式相加消去t 可得普通方程为x +y -2=0.由ρcos θ=x ,ρsin θ=y ,曲线C 2的极坐标方程为ρsin 2θ=4cos θ,可得曲线C 2的直角坐标方程为y 2=4x .(2)把曲线C 1的参数方程⎩⎨⎧x =1-22t ,y =1+22t (t 为参数)代入y 2=4x ,得t 2+62t -6=0,设t 1,t 2是A ,B 对应的参数,则t 1+t 1=-62,t 1·t 2=-6, 所以1|P A |+1|PB |=|P A |+|PB ||P A |·|PB |=|t 1-t 2||t 1·t 2|=(t 1+t 2)2-4t 1·t 2|t 1·t 2|=966=263.[综合题组练]1.(2020·辽宁大连第一次(3月)双基测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α⎝⎛⎭⎫t 为参数且t >0,α∈⎝⎛⎭⎫0,π2,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos β,y =1+sin β⎝⎛⎭⎫β为参数,且β∈⎝⎛⎭⎫-π2,π2,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为ρ=1+cos θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,曲线C 4的极坐标方程为ρcos θ=1. (1)求C 3与C 4的交点到极点的距离;(2)设C 1与C 2交于P 点,C 1与C 3交于Q 点,当α在⎝⎛⎭⎫0,π2上变化时,求|OP |+|OQ |的最大值.解:(1)联立⎩⎪⎨⎪⎧ρ=1+cos θ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,ρcos θ=1得ρ2-ρ-1=0,解得ρ=1+52,即交点到极点的距离为1+52.(2)曲线C 1的极坐标方程为θ=α⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π2,ρ>0, 曲线C 2的极坐标方程为ρ=2sin θ,θ∈⎝⎛⎭⎫0,π2,联立C 1,C 2的极坐标方程得ρ=2sin α,α∈⎝⎛⎭⎫0,π2, 即|OP |=2sin α,α∈⎝⎛⎭⎫0,π2, 曲线C 1与曲线C 3的极坐标方程联立得ρ=1+cos α,α∈⎝⎛⎭⎫0,π2, 即|OQ |=1+cos α,α∈⎝⎛⎭⎫0,π2, 所以|OP |+|OQ |=1+2sin α+cos α=1+5sin(α+φ),其中φ的终边经过点(2,1), 当α+φ=π2+2k π,k ∈Z 时,|OP |+|OQ |取得最大值,为1+ 5.2.(2020·原创冲刺卷二)在直角坐标系xOy 中,直线C 1:x +y =4,曲线C 2:⎩⎨⎧x =2cos αy =3sin α(α为参数).在同一平面直角坐标系中,曲线C 2上的点经过坐标变换⎩⎨⎧x ′=12x +1,y ′=33y ,得到曲线C 3,以原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线C 1的极坐标方程和曲线C 3的极坐标方程;(2)若射线l :θ=α(ρ>0)分别交C 1与C 3于A ,B 两点,求|OB ||OA |的取值范围.解:(1)由C 1:x +y =4,得直线C 1的极坐标方程为ρcos θ+ρsin θ=4,由曲线C 2的参数方程得其普通方程为x 24+y 23=1,由⎩⎨⎧x ′=12x +1,y ′=33y可得⎩⎨⎧x =2(x ′-1),y =3y ′,将其代入x 24+y 23=1,可得(x ′-1)2+y ′2=1,所以曲线C 3的极坐标方程为ρ=2cos θ. (2)设A (ρ1,α),B (ρ2,α),则-π4<α<π2,由题可得ρ1=4cos α+sin α,ρ2=2cos α,所以|OB ||OA |=ρ2ρ1=14×2cos α(cos α+sin α)=14(cos 2α+sin 2α+1)=14⎣⎡⎦⎤2cos ⎝⎛⎭⎫2α-π4+1, 因为-π4<α<π2,所以-22<cos ⎝⎛⎭⎫2α-π4≤1, 所以0<14⎣⎡⎦⎤2cos ⎝⎛⎭⎫2α-π4+1≤14(2+1). 所以|OB ||OA |的取值范围是⎝⎛⎦⎤0,14(2+1).。

(完整版)高中数学参数方程大题(带答案)

(完整版)高中数学参数方程大题(带答案)

hingsintheirbeingadforso参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题. 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l的极坐标方程为:,ti m e an dAl h ei r be i ng ar e g o o d f o rs o ∴,∴x ﹣y+1=0.(2)根据曲线C 的参数方程为:(α为参数).得(x ﹣2)2+y 2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C 上的点到直线l 的距离的最大值=.点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C 1:(t 为参数),C 2:(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t=,Q 为C 2上的动点,求PQ 中点M 到直线C 3:(t 为参数)距离的最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.专题:计算题;压轴题;转化思想.分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C 1表示一个圆;曲线C 2表示一个椭圆;(2)把t 的值代入曲线C 1的参数方程得点P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C 2的参数方程设出Q 的坐标,利用中点坐标公式表示出M 的坐标,利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C 1:(t 为参数)化为普通方程得:(x+4)2+(y ﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C 2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x 轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C 1的参数方程得:P (﹣4,4),把直线C 3:(t 为参数)化为普通方程得:x ﹣2y ﹣7=0,Al l thi n gs in th e i r be i n g ar eg o o d f o rs o 所以M 到直线的距离d==,(其中sin α=,cos α=)从而当cos θ=,sin θ=﹣时,d 取得最小值.点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为,直线l 的参数方程为(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB 面积的最大值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入即可得出.(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入可得:圆C 的普通方程为x 2+y 2﹣2x+2y=0,即(x ﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l 的参数方程(t 为参数),把t=x 代入y=﹣1+2t 可得直线l 的普通方程:,∴圆心到直线l 的距离,∴|AB|=2==,点P 直线AB 距离的最大值为,.点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、andAllthibeingaregoodforso 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.分析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;ai n th ei r be i ng ar e g oo d f o rs o(2)可设圆的参数方程为:(θ为参数),则设M (,),则x+y==sin (),由于θ∈R ,则x+y 的最大值为1.点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C 的极坐标方程为.(Ⅰ)写出点P 的直角坐标及曲线C 的普通方程;(Ⅱ)若Q 为C 上的动点,求PQ 中点M 到直线l :(t 为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用x=ρcos θ,y=ρsin θ即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,解答:解 (1)∵P 点的极坐标为,∴=3,=.∴点P 的直角坐标把ρ2=x 2+y 2,y=ρsin θ代入可得,即∴曲线C 的直角坐标方程为.(2)曲线C 的参数方程为(θ为参数),直线l 的普通方程为x ﹣2y ﹣7=0设,则线段PQ 的中点.那么点M 到直线l 的距离.l l thi n gs in th e i r be i n g a r e g o o df o rs o ∴点M 到直线l 的最小距离为.点评:本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.考点:简单曲线的极坐标方程;直线与圆的位置关系.专题:直线与圆.分析:(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简即可得到此圆的极坐标方程.(II )由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程.(II )如图所示,由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.l l t h i n gs i n t h ei r b e i n g a r eg oo 点评:本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系xoy 中,曲线C 1的参数方程为(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+)=4.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcos θ、y=ρsin θ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y ﹣8=0的距离为,可得d 的最小值,以及此时的α的值,从而求得点P的坐标.解答:解:(1)由曲线C 1:,可得,两式两边平方相加得:,即曲线C 1的普通方程为:.由曲线C 2:得:,即ρsin θ+ρcos θ=8,所以x+y ﹣8=0,即曲线C 2的直角坐标方程为:x+y ﹣8=0.(2)由(1)知椭圆C 1与直线C 2无公共点,椭圆上的点到直线x+y ﹣8=0的距离为,∴当时,d 的最小值为,此时点P 的坐标为.点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l 的参数方程是(t 为参数),圆C 的极坐标方程为ρ=2cos (θ+).(Ⅰ)求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.e an d A l l t h h ei r be i ng a r e g o o d f o r s 分析:(I )先利用三角函数的和角公式展开圆C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程,从而得到圆心C 的直角坐标.(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I )∵,∴,∴圆C 的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II )∵直线l 的普通方程为,圆心C 到直线l 距离是,∴直线l 上的点向圆C 引的切线长的最小值是(10分)点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.11.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t 为参数),曲线C 1的方程为ρ(ρ﹣4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.(1)求点Q 的轨迹C 2的直角坐标方程;(2)直线l 与直线C 2交于A ,B 两点,若|AB|≥2,求实数a 的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线C 1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹C 2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:(1)根据题意,得曲线C 1的直角坐标方程为:x 2+y 2﹣4y=12,设点P (x ′,y ′),Q (x ,y ),根据中点坐标公式,得,代入x 2+y 2﹣4y=12,得点Q 的轨迹C 2的直角坐标方程为:(x ﹣3)2+(y ﹣1)2=4,(2)直线l 的普通方程为:y=ax ,根据题意,得,ti m e a n dAl lr b e i n g a r e g o o d f o rs o 解得实数a 的取值范围为:[0,].点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ()=2.(Ⅰ)求C 1与C 2交点的极坐标;(Ⅱ)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 的参数方程为(t ∈R 为参数),求a ,b 的值.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:压轴题;直线与圆.分析:(I )先将圆C 1,直线C 2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3),从而直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,从而构造关于a ,b 的方程组,解得a ,b 的值.解答:解:(I )圆C 1,直线C 2的直角坐标方程分别为 x 2+(y ﹣2)2=4,x+y ﹣4=0,解得或,∴C 1与C 2交点的极坐标为(4,).(2,).(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3),故直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,ti mn dAl l thi n gs i n t h ei r be i n g ar es o 解得a=﹣1,b=2.点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.13.在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ(Ⅰ)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(Ⅱ)若曲线C 与直线相交于不同的两点M 、N ,求|PM|+|PN|的取值范围.解答:解:(I )直线l 的参数方程为(t 为参数).曲线C 的极坐标方程ρ=4cos θ可化为ρ2=4ρcos θ.把x=ρcos θ,y=ρsin θ代入曲线C 的极坐标方程可得x 2+y 2=4x ,即(x ﹣2)2+y 2=4.(II )把直线l 的参数方程为(t 为参数)代入圆的方程可得:t 2+4(sin α+cos α)t+4=0.∵曲线C 与直线相交于不同的两点M 、N ,∴△=16(sin α+cos α)2﹣16>0,∴sin αcos α>0,又α∈[0,π),∴.又t 1+t 2=﹣4(sin α+cos α),t 1t 2=4.∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.点评:本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题. 14.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.e an dn gs in th ei r b e i n g a r e g o (II )设P ,又C .利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.解答:解:(I )由⊙C 的极坐标方程为ρ=2sin θ.∴ρ2=2,化为x 2+y 2=,配方为=3.(II )设P ,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P (3,0).点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.15.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B 两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB 的长度.考点:简单曲线的极坐标方程.专题:计算题.分析:(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得曲线C 2及曲线C 1的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的长度.解答:解:(Ⅰ)曲线C 2:(p ∈R )表示直线y=x ,曲线C 1:ρ=6cos θ,即ρ2=6ρcos θ所以x 2+y 2=6x 即(x ﹣3)2+y 2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB 的长度.点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为ρsin (θ+)=,圆C 的参数方程为,(θ为参数,r >0)(Ⅰ)求圆心C 的极坐标;(Ⅱ)当r 为何值时,圆C 上的点到直线l 的最大距离为3.eandAllthingsintheirbeoodforsom 专题:计算题.分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值,最后列出关于r的方程即可求出r值.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,t a dA h i n 可知圆圆的极坐标方程为解,),)解法一:由,,的公共弦的参数方程为的公共弦的参数方程为)代入从而的公共弦的参数方程为。

高中数学参数方程大题(带答案)

高中数学参数方程大题(带答案)

高中数学参数方程大题(带答案)Ⅰ)写出曲线C1、C2的参数方程;Ⅱ)求曲线C1、C2的交点坐标.考点:参数方程的应用.专题:坐标系和参数方程.分析:(Ⅰ)由于C1、C2都是圆的参数方程,可以直接写出;Ⅱ)将C1、C2的参数方程代入,解方程组即可求得交点坐标.解答:解:(Ⅰ)由于C1、C2都是圆的参数方程,因此C1.(t为参数)C2.(θ为参数)Ⅱ)将C1、C2的参数方程代入,得到方程组:解得交点坐标为:点评:本题考查了参数方程的应用,需要掌握圆的参数方程的写法,以及解方程组的方法,难度中等。

r=2\cos\theta$,可以得到圆心的极坐标为$(2.\frac{\pi}{2})$;Ⅱ)把直线的参数方程化为普通方程得$y=x-2$,代入圆的极坐标方程可以得到圆心到直线的距离$d=\frac{2\sqrt{2}}{2}=\sqrt{2}$,再利用弦长公式可以得到$|AB|=2\sqrt{2}$。

由于$P$是圆$C$上的任意一点,所以$AB$是圆$C$的直径,所以$\triangle PAB$是直角三角形,面积为$\frac{1}{2}\times 2\sqrt{2}\times 2=2\sqrt{2}$。

所以$\triangle PAB$的最大面积为$2\sqrt{2}$。

点评:此题考查学生对极坐标系和参数方程的理解和应用,需要灵活运用点到直线的距离公式和弦长公式求解。

1.经过化简,得到圆C的普通方程为(x-1)^2 + (y+1)^2 = 2,圆心坐标为(1,-1),极坐标为(√2.135°)。

直线l的参数方程化为普通方程y = -1 + 2x,因此点P到直线l的距离为|2/√5|。

根据弦长公式和三角形面积计算公式,点P到线段AB的距离最大值为2/√5,最小值为0.此题考查了参数方程、极坐标、点到直线距离公式、弦长公式和三角形面积计算公式,属于中档题。

2.椭圆的参数方程为x = 3cosθ,y = 2sinθ,直线的极坐标方程为ρ = 2/√5cos(θ - 45°)。

高考文科数学【极坐标与参数方程】规范练

高考文科数学【极坐标与参数方程】规范练

5 【极坐标与参数方程】规范练对应学生用书P1451.(满分10分)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =1+t cos α,y =t sin α(t 是参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=13,求直线的倾斜角α的值.解析 (1)由ρ=4cos θ,得ρ2=4ρcos θ. 因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=4x , 即曲线C 的直角坐标方程为(x -2)2+y 2=4.(4分) (2)将⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α代入圆的方程(x -2)2+y 2=4,得(t cos α-1)2+(t sin α)2=4, 化简得t 2-2t cos α-3=0.(6分)设A ,B 两点对应的参数分别为t 1,t 2, 由根与系数的关系,得⎩⎪⎨⎪⎧t 1+t 2=2cos α,t 1t 2=-3,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=13,(8分)故4cos 2α=1,解得cos α=±12.(9分)因为直线的倾斜角α∈[0,π),所以α=π3或2π3.(10分)2.(满分10分)已知平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =1+5cos α,y =2+5sin α(α为参数),直线l 1:x =0,直线l 2:x -y =0,以原点为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 和直线l 1,l 2的极坐标方程;(2)若直线l 1与曲线C 交于O ,A 两点,直线l 2与曲线C 交于O ,B 两点,求|AB |.解析 (1)依题意知,曲线C :(x -1)2+(y -2)2=5,即x 2-2x +y 2-4y =0, 将x =ρcos θ,y =ρsin θ代入上式,得ρ=2cos θ+4sin θ. 因为直线l 1:x =0,直线l 2:x -y =0, 故直线l 1,l 2的极坐标方程为l 1:θ=π2(ρ∈R ), l 2:θ=π4(ρ∈R ).(5分)(2)设A ,B 两点对应的极径分别为ρ1,ρ2, 在ρ=2cos θ+4sin θ中,令θ=π2,得ρ1=2cos π2+4sin π2=4, 令θ=π4,得ρ2=2cos π4+4sin π4=32, 因为π2-π4=π4, 所以|AB |=ρ21+ρ22-2ρ1ρ2cos π4=10.(10分) 3.(满分10分)在平面直角坐标系中,以原点为极点,以x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 1的极坐标方程为ρ=2cos θ.(1)若曲线C 2的参数方程为⎩⎨⎧ x =t cos α,y =1+t sin α(α为参数),求曲线C 1的直角坐标方程和曲线C 2的普通方程;(2)若曲线C 2的参数方程为⎩⎨⎧x =t cos α,y =1+t sin α(t 为参数),A (0,1),且曲线C 1与曲线C 2的交点分别为P ,Q ,求1|AP |+1|AQ |的取值范围.解析 (1)∵ρ=2cos θ,∴ρ2=2ρcos θ, 又∵ρ2=x 2+y 2,ρcos θ=x ,∴曲线C 1的直角坐标方程为x 2+y 2-2x =0, 曲线C 2的普通方程为x 2+(y -1)2=t 2.(4分)(2)将C 2的参数方程⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数)代入C 1的方程x 2+y 2-2x =0,得t 2+(2sin α-2cos α)t +1=0.∵Δ=(2sin α-2cos α)2-4=8sin 2⎝ ⎛⎭⎪⎫α-π4-4>0,∴⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4∈⎝ ⎛⎦⎥⎤22,1, ∴sin ⎝ ⎛⎭⎪⎫α-π4∈⎣⎢⎡⎭⎪⎫-1,-22∪⎝ ⎛⎦⎥⎤22,1.(6分) t 1+t 2=-(2sin α-2cos α)=-22sin ⎝ ⎛⎭⎪⎫α-π4, t 1t 2=1>0,(7分)∵t 1t 2=1>0,∴t 1,t 2同号,∴|t 1|+|t 2|=|t 1+t 2|.(8分) 由点A 在曲线C 2上,根据t 的几何意义,可得 1|P A |+1|AQ |=1|t 1|+1|t 2|=|t 1|+|t 2||t 1||t 2| =|t 1|+|t 2||t 1t 2|=|t 1+t 2|1=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4∈(2,2 2 ].∴1|P A |+1|AQ |∈(2,2 2 ].(10分)4.(满分10分)在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为ρ(sin θ+3cos θ)= 3.(1)求C 的极坐标方程;(2)射线OM :θ=θ1⎝ ⎛⎭⎪⎫π6≤θ1≤π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求|OP |·|OQ |的取值范围.解析 (1)圆C 的普通方程是(x -2)2+y 2=4, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=4cos θ.(4分) (2)设P (ρ1,θ1),则有ρ1=4cos θ1,(5分) 设Q (ρ2,θ1),且直线l 的极坐标方程是 ρ(sin θ+3cos θ)=3, 则有ρ2=3sin θ1+3cos θ1,(7分)所以|OP |·|OQ |=ρ1ρ2=43cos θ1sin θ1+3cos θ1=433+tan θ1⎝ ⎛⎭⎪⎫π6≤θ1≤π3,(9分) 所以2≤|OP |·|OQ |≤3.即|OP |·|OQ |的取值范围是[2,3].(10分)5.(满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos θ,y =2sin θ(θ为参数),点M 为曲线C 1上的动点,动点P 满足OP →=aOM →(a >0且a ≠1),点P 的轨迹为曲线C 2.(1)求曲线C 2的方程,并说明C 2是什么曲线;(2)在以坐标原点为极点,以x 轴的正半轴为极轴的极坐标系中,A 点的极坐标为⎝ ⎛⎭⎪⎫2,π3,射线θ=α与C 2的异于极点的交点为B ,已知△AOB 面积的最大值为4+23,求a 的值.解析 (1)设P (x ,y ),M (x 0,y 0), 由OP →=aOM →,得⎩⎪⎨⎪⎧x =ax 0,y =ay 0.∴⎩⎪⎨⎪⎧x 0=xa ,y 0=y a .∵点M 在C 1上, ∴⎩⎪⎨⎪⎧xa =2+2cos θ,y a =2sin θ,即⎩⎪⎨⎪⎧x =2a +2a cos θ,y =2a sin θ(θ为参数), 消去参数θ,得(x -2a )2+y 2=4a 2(a >0且a ≠1). ∴曲线C 2是以(2a,0)为圆心,以2a 为半径的圆.(5分) (2)解法一:A 点的直角坐标为(1,3), ∴直线OA 的普通方程为y =3x ,即3x -y =0. 设B 点坐标为(2a +2a cos α,2a sin α), 则B 点到直线3x -y =0的距离 d =a |23cos α-2sin α+23|2=a ⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π6+3.∴当α=-π6时,d max =(3+2)a .∴S △AOB 的最大值为12×2×(3+2)a =4+23, ∴a =2.(10分)解法二:将x =ρcos θ,y =ρsin θ代入(x -2a )2+y 2=4a 2,并整理得ρ=4a cos θ,令θ=α,得ρ=4a cos α.∴B (4a cos α,α).∴S △AOB =12|OA |·|OB |·sin ∠AOB=4a cos α⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3=a |2sin αcos α-23cos 2α|=a |sin2α-3cos2α-3|=a ⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2α-π3-3,∴当α=-π12时,S △AOB 取得最大值(2+3)a , 依题意知(2+3)a =4+23,∴a =2.(10分)6.(满分10分)在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎪⎨⎪⎧x =a +2t2,y =1+2t 2(t 为参数,a ∈R ).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.解析(1)∵曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a +2t2,y =1+2t 2(t 为参数,a ∈R ),∴曲线C 1的普通方程为x -y -a +1=0.(2分) ∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, 又ρcos θ=x ,ρ2=x 2+y 2, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(4分) (2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎪⎨⎪⎧y 2=4x ,x =a +2t 2,y =1+2t 2,得t 2-22t +2-8a =0.Δ=(-22)2-4(2-8a )>0,即a >0, ∴⎩⎪⎨⎪⎧t 1+t 2=22,t 1·t 2=2-8a ,(6分) 根据参数方程中参数的几何意义可知|P A |=|t 1|,|PB |=|t 2|, ∴由|P A |=2|PB |得t 1=2t 2或t 1=-2t 2, ∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=22,t 1·t 2=2t 22=2-8a ,解得a =136>0,符合题意,(8分)当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=22,t 1·t 2=-2t 22=2-8a ,解得a =94>0,符合题意. 综上所述,a =136或a =94.(10分)。

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析

高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线(为参数)的普通方程为___________.【答案】【解析】联立消可得,故填.【考点】参数方程2.直线与直线为参数)的交点到原点O的距离是()A.1B.C.2D.2【答案】C【解析】将直线化普通方程为.解得两直线交点为,此交点到原点的距离为.故C正确.【考点】1参数方程和普通方程间的互化;2两点间的距离公式.3.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

【答案】【解析】由参数方程知: 曲线C1与C2的普通方程分别为,,所以解方程组可得交点坐标为.【考点】本题考查直线与圆的参数方程与普通方程的互化,以及它们交点坐标的求解.4.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程5.如图,以过原点的直线的倾斜角为参数,则圆的参数方程为 .【答案】(为参数)【解析】x2+y2-x=0圆的半径为,圆心为C(,0).连接CP,则∠PCx=2所以P点的坐标为:(为参数)6.在极坐标系中,圆上的点到直线的距离的最小值为________.【答案】1【解析】圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.【考点】直角坐标与极坐标、距离公式.7.已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.【答案】(1);(2).【解析】本题主要考查参数方程与普通方程的互化、中点坐标公式等基础知识,考查学生的转化能力、分析能力、计算能力.第一问,将曲线C的坐标直接代入中,得到曲线的参数方程,再利用参数方程与普通方程的互化公式,将其转化为普通方程;第二问,设出P、A点坐标,利用中点坐标公式,得出,由于点A在曲线上,所以将得到的代入到曲线中,得到的关系,即为中点的轨迹方程.试题解析:(1)将代入,得的参数方程为∴曲线的普通方程为. 5分(2)设,,又,且中点为所以有:又点在曲线上,∴代入的普通方程得∴动点的轨迹方程为. 10分【考点】参数方程与普通方程的互化、中点坐标公式.8.若直线的参数方程为,(t为参数),求直线的斜率.【答案】-【解析】k=.∴直线的斜率为-.9.将参数方程化为普通方程,并说明它表示的图形.【答案】y=1-2x2,抛物线的一部分.【解析】由可得即+x2=1,化简得y=1-2x2.又-1≤x2=sin2θ≤1,则-1≤x≤1,则普通方程为y=1-2x2,在时此函数图象为抛物线的一部分.10.已知点P(x,y)是圆x2+y2=2y上的动点.(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.【答案】(1)-+1≤2x+y≤+1.(2)a≥-1【解析】(1)设圆的参数方程为2x+y=2cosθ+sinθ+1=sin(θ+φ)+1,∴-+1≤2x+y≤+1.(2)x+y+a=cosθ+sinθ+1+a≥0,∴a≥-(cosθ+sinθ)-1=-sin-1,∴a≥-1.11.在椭圆=1上找一点,使这一点到直线x-2y-12=0的距离最小.【答案】(2,-3)【解析】设椭圆的参数方程为,d=,当cos=1时,dmin=,此时所求点为(2,-3)12.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.13.已知点P是曲线为参数,上一点,O为原点.若直线OP的倾斜角为,则点的直角坐标为.【答案】【解析】不妨设点(),则由两点斜率的计算公式得,由题知(),则,故填【考点】参数方程倾斜角14.在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.(1)求动点P的轨迹方程;(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)x2+2y2=2(2)存在点P为(0,±1)【解析】(1)设点P的坐标为(x,y).由题意知=|2-x|,化简,得x2+2y2=2,所以动点P的轨迹方程为x2+2y2=2.(2)设直线FP的方程为x=ty+1,点P(x1,y1),Q(x2,y2),因为△AQN∽△APM,所以有PM=3QN,由已知得PF=3QF,所以有y1=-3y2,①由得(t2+2)y2+2ty-1=0,Δ=4t2+4(t2+2)=8>0y 1+y2=-②,y1·y2=-③,由①②③得t=-1,y1=1,y2=-或t=1,y1=-1,y2=,所以存在点P为(0,±1).15.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.16.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.17.已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.【答案】(1);(2)【解析】(1)写出过点P(2,0)的直线方程的参数方程,联立抛物线的方程得到一个含参数t 二次方程.通过韦达定理即定点到中点的距离可得故填.(2)弦长公式|AB|=|t2-t1|再根据韦达定理可得故填.本题主要知识点是定点到弦所在线段中点的距离.弦长公式.这两个知识点都是参数方程中的长测知识点.特别是到中点的距离的计算要理解清楚.试题解析:(1)∵直线l过点P(2,0),斜率为设直线的倾斜角为α,tanα=sinα=cosα=∴直线l的参数方程为 (t为参数)(*) 1分∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y2=2x中,整理得8t2-15t-50=0,且Δ=152+4×8×50>0,设这个一元二次方程的两个根为t1、t2,由根与系数的关系,得t1+t2=t1t2= 3分由M为线段AB的中点,根据t的几何意义,得 4分(2)|AB|=|t2-t1|= 7分【考点】1.直线的参数方程的表示.2.定点到中的距离公式.3.弦长公式.18.在直角坐标系xOy中,过椭圆(为参数)的右焦点,斜率为的直线方程为【答案】【解析】由,即,所以右焦点坐标为(4,0).又斜率为,故易得所求直线方程为.即.【考点】参数方程、直线的点斜式方程19.已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为.(Ⅰ)求曲线直角坐标方程;(Ⅱ)若曲线、交于A、B两点,定点,求的值.【答案】(Ⅰ)曲线直角坐标方程为;(Ⅱ).【解析】(Ⅰ)由已知,两边都乘以,得,结合即可求得曲线的直角坐标方程(普通方程);(Ⅱ)由已知条件,把的参数方程为参数)代入,得由韦达定理可得:,进一步可计算出的值.试题解析:(Ⅰ)由已知,得,.3分(Ⅱ)把的参数方程代入,得.5分.7分【考点】直线的参数方程与极坐标方程.20.(坐标系与参数方程选做题)在极坐标系中,圆的圆心到直线的距离是 .【答案】.【解析】化圆的方程为直角坐标方程为,化为标准方程为,圆心坐标为,直线的直角坐标方程为,它的一般方程为,故圆的圆心到直线的距离是.【考点】1.极坐标方程与直角坐标方程之间的转化;2.点到直线的距离21.(坐标系与参数方程选做题)圆的极坐标方程为,则圆的圆心的极坐标是.【答案】【解析】圆的圆心为,半径为的圆的极坐标方程为.因为,所以此圆的圆心坐标为.【考点】圆的极坐标方程22.在平面直角坐标系中,过椭圆的右焦点,且与直线(为参数)平行的直线截椭圆所得弦长为.【答案】【解析】椭圆的普通方程为,则右焦点为(1,0);直线的普通方程为,过(1,0)与直线平行的直线为,由得,所以所求的弦长为.【考点】1.参数方程与普通方程的互化;2.两点间的距离公式和弦长公式.23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.25.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为()(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程【答案】(Ⅰ)、;(Ⅱ)或【解析】(Ⅰ) 利用参数方程化普通方程、极坐标方程化直角坐标方程来求;(Ⅱ)利用点到直线的距离来求试题解析:(Ⅰ)曲线的普通方程为:; 2分由得,∴曲线的直角坐标方程为: 4分(或:曲线的直角坐标方程为: )(Ⅱ)曲线:与轴负半轴的交点坐标为,又直线的参数方程为:,∴,得,即直线的参数方程为:得直线的普通方程为:, 6分设与直线平行且与曲线相切的直线方程为: 7分∵曲线是圆心为,半径为的圆,得,解得或 9分故所求切线方程为:或 10分【考点】参数方程化普通方程、极坐标方程转化为直角坐标方程,考查学生分析问题、解决问题的能力26.已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交?若相交,请求出公共弦长,若不相交,请说明理由.【答案】(1),;(2)相交,两圆的相交弦长为.【解析】本题考查坐标系与参数方程、极坐标与直角坐标方程的互化,考查学生的转化能力和计算能力.第一问,利用互化公式将参数方程化为普通方程,将极坐标方程化为直角坐标方程;第二问,通过数形结合,利用几何性质求相交弦长.试题解析:(1)由(为参数),得,由,得,即,整理得,. 5分(2)由于圆表示圆心为原点,半径为2的圆,圆表示圆心为,半径为2的圆,又圆的圆心在圆上,由几何性质易知,两圆的相交弦长为. 10分【考点】1.参数方程与普通方程的互化;2.极坐标方程与直角坐标方程的互化;3.相交弦问题.27.在直角坐标系中,已知曲线的参数方程是(是参数),若以为极点,轴的正半轴为极轴,则曲线的极坐标方程可写为________________.【答案】或【解析】曲线的标准方程为,令,得到极坐标方程为,也可转化为.【考点】圆的参数方程和极坐标方程.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.30.(坐标系与参数方程)在平面直角坐标系xOy中,直线的参数方程是(t为参数)。

高三数学 【文】一轮题型专练:参数方程(含答案)

高三数学 【文】一轮题型专练:参数方程(含答案)

第2节参数方程【选题明细表】一、填空题1. (20xx年高考广东卷)已知曲线C的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.解析:由ρ=2cos θ知ρ2=2ρcos θ,因此曲线C的直角坐标方程为x2+y2=2x,即(x-1)2+y2=1,故曲线C的参数方程为(φ为参数).答案:(φ为参数)2.(20xx年高考陕西卷)圆锥曲线(t为参数)的焦点坐标是.解析:由消去参数t得x=,即y2=4x,则焦点坐标为(1,0).答案:(1,0)3.(20xx陕西师大附中高三第四次模拟)直线l1:(t为参数)与圆C2:(θ为参数)的位置关系是.解析:直线l1的普通方程为xsin α-ycos α-sin α=0,圆C2的普通方程为x2+y2=1,圆心到直线的距离为d=<1,因此直线l1与圆C2相交.答案:相交4.(20xx年高考江西卷)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.解析:由参数方程得曲线在直角坐标系下的方程为y=x2.由公式得曲线C的极坐标方程为ρcos2θ=sin θ.答案:ρcos2θ=sin θ5.(20xx年高考北京卷)直线(t为参数)与曲线(α为参数)的交点个数为.解析:由已知得直线的普通方程为x+y-1=0,曲线的普通方程为x2+y2=9,表示以原点为圆心,半径为3的圆,而直线x+y-1=0过点(1,0),且点(1,0)显然在圆x2+y2=9内,∴直线与曲线一定有2个交点.答案:26.(20xx年高考湖南卷)在直角坐标系xOy中,已知曲线C1:(t 为参数)与曲线C2:(θ为参数,a>0)有一个公共点在x轴上,则a= .解析:曲线C1的普通方程为2x+y=3,与x轴的交点为;曲线C2的普通方程为+=1,与x轴的交点为(a,0)和(-a,0),由题意可得a=.答案:7.已知抛物线C1的参数方程为(t为参数),圆C2的极坐标方程为ρ=r(r>0),若斜率为1的直线经过抛物线C1的焦点,且与圆C2相切,则r= .解析:抛物线C1的普通方程为y2=8x,其焦点坐标是(2,0),过该点且斜率为1的直线方程是y=x-2,即x-y-2=0.圆ρ=r的圆心是极点、半径为r,直线x-y-2=0与该圆相切,则r==.答案:8.(20xx深圳市期末检测)已知曲线C的极坐标方程为ρ=6sin θ,直线l的参数方程为(t为参数),则直线l与曲线C相交所得弦长为.解析:曲线C的直角坐标方程为x2+y2=6y,即x2+(y-3)2=9,圆心C(0,3),半径r=3.直线l的普通方程为x-2y+1=0.所以点C到l的距离d==.故所求弦长为2=2=4.答案:49.(20xx湖南十二校联考)设极点与坐标原点重合,极轴与x轴正半轴重合,已知直线l的极坐标方程为ρsinθ-=a,a∈R.圆C的参数方程是(θ为参数),若圆C关于直线l对称,则a= .解析:圆C的圆心坐标为(2,2),其极坐标为4,,由题意知点4,在直线l上,于是4sin-=a,即a=-2.答案:-210.若直线l的极坐标方程为ρcos=3,圆C:(θ为参数)上的点到直线l的距离为d,则d的最大值为.解析:∵ρcosθ-=3,∴ρcos θ+ρsin θ=6,∴直线l的直角坐标方程为x+y=6.由圆C的参数方程知圆C的圆心为C(0,0),半径r=1.圆心C(0,0)到直线l的距离为=3.+1.∴d答案:3+111.(20xx年高考天津卷)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .解析:∵y=2pt,∴y2=4p2t2.又∵t2=,∴y2=4p2×=2px(p>0).∵|EF|=|MF|,|MF|=|ME|, ∴△EMF 是等边三角形, 过点F 作FA ⊥ME 交ME 于A, 则A 为ME 的中点,且x A =.∴x M +x E =2x A (其中,x A 、x M 、x E 分别为点A 、M 、E 的横坐标), ∴3+=2×,∴p=2.答案:212.(20xx 年高考湖北卷)在直角坐标系xOy 中,椭圆C 的参数方程为(φ为参数,a>b>0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin θ+=m(m 为非零常数)与ρ=b.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 解析:将椭圆C 的参数方程(φ为参数,a>b>0)化为普通方程为+=1(a>b>0).又直线l 的极坐标方程为ρsin θ+=m(m 为非零常数),即ρsin θ·+cos θ·=m, 则该直线的直角坐标方程为y+x-m=0. 圆的极坐标方程为ρ=b,其直角坐标方程为x2+y2=b2.∵直线与圆O相切,∴=b,|m|= b.又∵直线l经过椭圆C的焦点,∴|m|=c.∴c=b,c2=2b2.∵a2=b2+c2=3b2,∴e2==.∴e=.答案:二、解答题13.(20xx年高考新课标全国卷Ⅱ)已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M 为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M的轨迹的参数方程为(α为参数,0<α<2π).(2)M点到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.14.(20xx河北省衡水中学高三模拟)已知圆C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=2cosθ+.(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;(2)圆C1、C2是否相交,若相交,请求出公共弦的长,若不相交请说明理由.解:(1)由得x2+y2=1,∵ρ=2cosθ+=cos θ-sin θ,∴ρ2=ρcos θ-ρsin θ.∴x2+y2-x+y=0,即x-2+y+2=1.(2)圆心距d==1<2,得两圆相交,设两交点为A、B, 由得A(1,0),B-,-,∴|AB|==.即公共弦的长为.15.(20xx年高考辽宁卷)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcosθ-=2.(1)求C1与C2交点的极坐标;(2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解:(1)圆C1的直角坐标方程为x2+(y-2)2=4,直线C2的直角坐标方程为x+y-4=0.解得C2交点的极坐标为4,,2,.所以C(注:极坐标系下点的表示不唯一.)(2)由(1)可得,P点与Q点的直角坐标分别为(0,2),(1,3).故直线PQ的直角坐标方程为x-y+2=0,由直线PQ的参数方程可得y=x-+1.所以解得a=-1,b=2.16.(20xx年高考福建卷)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,,直线l的极坐标方程为ρcosθ-=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.解:(1)由点A,在直线ρcosθ-=a上,可得a=.所以直线l的极坐标方程可化为ρcos θ+ρsin θ=2,从而直线l的直角坐标方程为x+y-2=0.(2)由已知得圆C的直角坐标方程为(x-1)2+y2=1,所以圆C的圆心为(1,0),半径r=1,因为圆心C到直线l的距离d==<1,所以直线与圆C相交.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李锐璇 参数方程练习题
1.在极坐标系中,点)6,2(π到直线1)6sin(=-π
θρ的距离是_______. 2.若直线的参数方程为12()23x t t y t
=+⎧⎨=-⎩为参数,则直线的斜率为 .
3.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩
(t 为参数)平行,则常数a 的值为________.
4.圆锥曲线2
2x t y t ⎧=⎨=⎩
(t 为参数)的焦点坐标是 . 5.已知曲线1C 的极坐标方程为θρcos 6=,曲线2C 的极坐标方程为4π
θ=()R ∈ρ,曲线
1C 、曲线2C 的交点为B A 、,则弦AB 长为 .
6.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为4π
θ=(ρ∈R),它与曲线⎩⎨⎧+=+=α
αsin 22cos 21y x (α为参数)相交
于两点A 和B ,则AB = .
7.已知在平面直角坐标系xoy 中圆C 的参数方程为:
33cos 13sin x y θθ
⎧=+⎪⎨=+⎪⎩,(θ为参数),以OX 为极轴建立极坐标系,直线极坐标方程为:,0)6
cos(=+πθρ 则圆C 截直线所得弦长为 . 8.已知圆M :x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨
=+⎩(t 为参数)的距离为 . 9.极坐标方程为是所表示的曲线的离心率12cos 2=θρ
10..在直角坐标系中,曲线C 1的参数方程为θθθ(sin 1cos 2⎩
⎨⎧+=+=y x 为参数),若以坐标原点o 为极点、x 轴正半轴为极轴建立极坐标系'则曲线0)3sin(:2=+
πθp C 上的点到曲线1C ,
上的点的最短距离为 .
11.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知圆的极坐标方程为θρsin 8=,则该圆的圆心到直线⎩
⎨⎧-==t y t x 2(t 为参数)的距离是_________. 12.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的参数方程为1
x t y t ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的极坐标方程为34sin 2=⎪⎭⎫ ⎝⎛-πθρ,则1C 与2C 交点在直角坐标系中的坐标为___________.
13.在极坐标系中,圆=4sin ρθ的圆心到直线()6R π
θρ=∈的距离是 .
14.在直角坐标系xoy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知射线

θ=与曲线21(1)x t y t =+⎧⎨=-⎩(t 为参数)相交于A 、B 两点,则线段AB 的中点的直角坐标为 15.。

相关文档
最新文档