153第1课时分式方程及其解法
八年级数学上册15.3分式方程第1课时分式方程及其解法说课稿(新版)新人教版
八年级数学上册 15.3 分式方程第1课时分式方程及其解法说课稿(新版)新人教版一. 教材分析八年级数学上册15.3分式方程是新人教版教材中的一节重要内容。
本节内容主要介绍了分式方程的概念及其解法。
在此之前,学生已经学习了分式的基本性质和运算,为本节内容的学习奠定了基础。
本节内容的学习,不仅有助于学生巩固分式的相关知识,还能提高他们解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。
但是,他们在解决实际问题时,还存在着一定的困难。
因此,在教学过程中,我们需要关注学生的个体差异,针对不同层次的学生进行教学,使他们在原有基础上得到提高。
三. 说教学目标1.知识与技能:使学生掌握分式方程的概念,了解分式方程的解法,能运用分式方程解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决分式方程的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 说教学重难点1.重点:分式方程的概念及其解法。
2.难点:分式方程在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究分式方程的解法。
2.利用多媒体课件,为学生提供丰富的学习资源,提高课堂效果。
3.学生进行小组讨论,培养他们的合作意识。
4.通过课后练习,巩固所学知识。
六. 说教学过程1.导入新课:以生活实例引入分式方程的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究分式方程的解法,培养学生独立解决问题的能力。
3.合作交流:学生进行小组讨论,分享各自的解题心得,互相学习,共同进步。
4.课堂讲解:对分式方程的解法进行讲解,重点讲解实际问题中的运用。
5.练习巩固:布置课后练习,让学生巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,突出重点。
主要包括以下内容:1.分式方程的概念2.分式方程的解法3.分式方程在实际问题中的应用八. 说教学评价1.课堂表现:关注学生在课堂上的参与程度、思维品质和合作意识。
初中八年级数学课件 15.3 第1课时 分式方程及其解法
知识要 点
“去分母法”解分式方程的步 骤
1.在方程的两边都乘以最简公分母,约去分母,
化成整式方程.
2.解这个整式方程.
3.把整式方程的解代入最简公分母,如果最简公
第十五章 分 式
15.3 分式方程
第1课时 分式方程及其解法
学习目 标
1.解分式方程的基本思路和解法.(重点)
2.理解分式方程时可能无解的原因.(难点)
导入新课
情境引 入
一艘轮船在静水中的最大航速为30千米/ 时,它沿江以最大航速顺流航行90千米所用 时间,与以最大航速逆流航行60千米所用时 间解相:等设,江江水水的的流流速速为为x千多米少/?时.
分母的值不为0,则整式方程的解是原分式方程
的简解记,为否:则“须一舍化去二。解三检验”. 4.写出原方程的根.
典例精 析
23 例1 解方程x 3 x .
解: 方程两边乘x(x-3),得
2x=3x-9.
解得 x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
例2
x 解方程x 1
90 60 ① 30+x 30 x
方程各分母最简公分母是: 解:(方3程0+①x)两(边30同-x乘) (30+x)(30-x),得
90(30-x)=60(30+x), x=6是原分
解得 x=6.
式方程的解 吗?
检验:将x=6代入原分式方程中5 ,左边= =右 边,因此x=6是原分式方程的解.2
90 60 . 30+x 30 x
人教版八年级上册数学15.3.1探究分式方程的解法课件(共18张PPT)
二、学情分析
三、教法、学法分析:
学法:本节课主要指导学生采用了自主探 索、合作探究、练习巩固、总结反思四大教学 环节,使学生积极主动地参与到学习活动中, 让学生的主体地位得到充分的发挥。
教法:我采用问题做载体,通过讨论、交流、 归纳、辨析、评价、质疑等活动实现互动。
的解,而整式方程
x+5=10 的解 x=5 却不
却不是分式方程
1 x-5
=
10 x2 -25
的解?
基本思路 将分式方程化为整式方程一般步骤: (1)去分母; (2)解整式方程; (3)检验.
注意: 由于去分母后解得的整式方程的解不一定是原分式 方程的解,所以需要检验.
学以致用,巩固提高Fra bibliotek例 解下列方程:
练习 下列式子中,属于分式方程的
是
,属于整式方程的是
号).
(1)x 3
+
x-1 =1; 2
(2)1-2x
=4 1-x2
;
(3)1 + 2 =1; (4)1 >5.
3x x2
x
(填序
问题:如何解 90 = 60 呢?
30+v 30-v
思考: (1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把 每一个分母都约去呢? (4)这样做的依据是什么?
(1)x2-3
=
3 x
;
(2)xx-1 -1=(x-1)(3 x+2).
练习 解下列方程:
(1) 1 2x
=
2; x+3
(2)x2-1
=
4. x2 -1
人教版八年级上册数学15.3分式方程第1课时分式方程及其解法课件
(4) 5 1 0 x2 x x2 x
(4)方程两边乘 x(x+1)(x-1),得5(x-1)-(x+1) =0.
解得:x = 3 .
2
检验:当 x =
3
时, x(x+1)(x-1) ≠ 0.
2
所以 x = 3 是原分式方程的解.
2
5.解关于x 的方程 a b 1( b ≠ 1). xa
分式方程和整式方程的区别与联系
区别 联系
分式方程
整式方程
分母中含有未知数
分母中不含未知数
分式方程可以转化为整式方程
< 针对训练 > 下列方程哪些是分式方程?
① x1 5 ② 1 4
3
x x1
④
x π
2x
1
π是常数, 不是未知数
⑤ x2 4
x
③ x2 1
x
知识点2 分式方程的解法
如何解分式方程
(1) 1 2 2x x 3
(2) x 2x 1 x 1 3x 3
(2)方程两边乘 3(x+1),得3x = 2x + 3(x+1).
解得:x = 3 .
检验:当
x
2
=
3
时,3(x+1) ≠ 0.
2
所以 x = 3 是原分式方程的解.
2
4. 解下列方程:
【选自教材P152 练习】
(3) 2 4 x 1 x2 1
2 x 1
2 1
x x
1
两边同乘
(x-1),约去分母后,得( D )
A.2-(2-x)=1
B.2+(2-x)=1
C.2-(2-x)=x-1 D.2+(2-x)=(x-1)
15.3 第1课时 分式方程及其解法人教版八年级上册数学 15.3 第1课时 分式方程及其解法教案1
15.3分式方程第1课时分式方程及其解法1.了解分式方程的概念.(重点)2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用.(重点)3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点)一、情境导入1.什么是方程?2.什么是一元一次方程?3.解一元一次方程的一般步骤是什么?我们今天将学习另外一种方程——分式方程.二、合作探究探究点一:分式方程的概念下列关于x的方程中,是分式方程的是( )A.3+x2=2+x5B.2x-17=x2C.xπ+1=2-x3D.12+x=1-2x解析:A中方程分母不含未知数,故不是分式方程;B中方程分母不含未知数,故不是分式方程;C中方程分母不含表示未知数的字母,π是常数;D中方程分母含未知数x,故是分式方程.故选D.方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).探究点二:分式方程的解法【类型一】解分式方程解方程:(1)5x=7x-2;(2)1x-2=1-x2-x-3.解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x(x-2),得5(x-2)=7x,5x-10=7x,2x=-10,解得x=-5,检验:把x=-5代入最简公分母,得x(x-2)≠0,∴x=-5是原方程的解;(2)方程两边同乘最简公分母(x-2),得1=x-1-3(x-2),解得x=2,检验:把x=2代入最简公分母,得x-2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a -1,∵关于x 的方程2x +ax -1=1的解是正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点三:分式方程的增根 【类型一】求分式方程的增根若方程3x -2=a x +4x (x -2)有增根,则增根可能为( )A .0B .2C .0或2D .1解析:∵最简公分母是x (x -2),方程有增根,则x (x -2)=0,∴x =0或x =2.去分母得3x =a (x -2)+4,当x =0时,2a =4,a =2;当x =2时,6=4不成立,∴增根只能为x =0,故选A.方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x 的分式方程2x -3=1-mx -3有增根,则m 的值为( ) A .-3 B .-2 C .-1 D .3解析:方程两边同乘以x -3,得2=x -3-m ①.∵原方程有增根,∴x -3=0,即x =3.把x =3代入①,得m =-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x 的分式方程2x -2+mx x 2-4=3x +2无解,求m 的值. 解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x +2)(x -2)得2(x +2)+mx =3(x -2),即(m -1)x =-10.①当m -1=0时,此方程无解,此时m =1;②方程有增根,则x =2或x =-2,当x =2时,代入(m -1)x =-10得(m -1)×2=-10,m =-4;当x =-2时,代入(m -1)x =-10得(m -1)×(-2)=-10,解得m =6,∴m 的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计分式方程及其解法1.分式方程的概念; 2.分式方程的解法;3.产生增根的条件.这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。
2024-2025学年人教版中学数学八年级(上)教案第十五15.3分式方程(第1课时)
15.3 分式方程15.3 分式方程(第1课时)教学目标1.理解分式方程的意义,了解解分式方程的基本思路和方法,理解解分式方程时可能无解的原因,会解分式方程.2.经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,感悟数学的转化思想,培养学生的应用意识.教学重点难点重点:解分式方程的基本思路和方法. 难点:理解分式方程可能无解的原因.教学过程导入新课导入一:西天取经路上,唐僧给徒弟们出了一道数学题目:某项工程要在规定的期限内完成,甲卫队单独做正好能够按期完成,乙卫队单独做则需要延期3天完成.现在这两个队合作2天后,再由乙卫队单独做,也正好按期完成.如果设规定的期限是x 天,工程总量为1,如何列方程呢?三个徒弟都给出了自己的答案:孙悟空:2x +3x x +=1;猪八戒:2x +23x +=1;沙和尚:1123x x ⎛⎫+ ⎪+⎝⎭+23x x -+=1.师傅表扬徒弟积极动脑,并说道:有一个徒弟的结论是错误的.你知道谁的错了吗?请同学们分析一下,解决这个问题所列出的方程还是整式方程吗?该如何解呢?导入二:某公司打字员小刚为了提高打字速度,决定到某电脑培训班培训,半个月后,打字速度相当于原来的3倍.现在打80字所用的时间比原来少用100秒,则小刚现在每分钟能打多少个字?如果设小刚现在每分钟打x 个字,你能列出方程吗?你列出的这个方程和我们学过的一元一次方程有什么不同?你会解这个方程吗?快跟我来学习本节吧,学了本节后问题就迎刃而解了.学生思考讨论,教师引入课题.引导学生分析:设小刚现在每分钟打x 个字,则小刚原来每分钟打3x个字,根据“现在打80字所用的时间比原来少用100秒”可以建立方程为803x -80x =10060. 导入三:教师提出问题,引入课题(出示多媒体课件) 活动一:教学反思问题:一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用的时间与以最大航速逆流航行60 km所用的时间相等,江水的流速为多少?分析:设江水的流速是v km/h.填空:(1)轮船顺流航行速度为(30+v)km/h,逆流航行速度为(30-v)km/h;(2)顺流航行90 km所用时间为9030v+h;(3)逆流航行60 km所用时间为6030v-h;(4)根据题意可列方程为9030v+=6030v-.在学生完成填空的过程中,教师应关注学生能否把实际问题转化成数学问题,能否找到相等关系列出方程,对于基础较差的学生应加以指导.探究新知活动二:1.议一议:方程9030v+=6030v-的特征.教师提出问题,学生思考、讨论后全班进行交流.学生归纳出:该方程的特征是分母中含有未知数.教师板演出分式方程的定义:分母中含有未知数的方程叫分式方程.2.想一想:方程x+13(x+1)=16是不是分式方程?如何区分分式方程和整式方程?学生交流讨论,教师点拨归纳:上式不是分式方程.主要是看分母中是否含有未知数,含未知数的是分式方程,不含未知数的是整式方程.3.做一做:在方程①73x-=8+152x-,②1626x-=x,③281x-=81xx+-,④x-112x-=0中,是分式方程的有()A.①和②B.②和③C.③和④D.①和④由学生代表回答:C.4.解一解:解方程24x+-236x-=1.由一位学生代表板演,其余学生独立完成,教师和学生一起得出答案. 解:方程两边同时乘12,得3(x+2)-2(2x-3)=12,去括号,得3x+6-4x+6=12,合并同类项,得-x=0,系数化为1,得 x=0.5.讨论:怎样解方程9030v+=6030v-?学生分小组讨论,让学生讨论后得出:通过去分母.教师继续问:怎么去分母?学生继续讨论得出:方程两边同乘各分式的最简公分母.(教师可帮助学生回忆最简公分母的定义)请学生代表板演,其余学生独立完成,教师点拨,对学习有困难的学生给予一定的帮助.解:方程的两边同乘(30+v)(30-v),得90(30-v)=60(30+v).解得v=6.(教师提醒学生注意检验)检验:将v=6代入原方程中,左边=右边,因此v=6是原分式方程的解.由以上可知,江水的流速为6 km/h.6.试一试:解方程15x-=21025x-.教师引导学生观察两个分母,x2-25能分解因式,这个方程的最简公分母是(x+5)(x-5).师生共同解这个分式方程,教师板书:解:方程的两边同乘(x+5)(x-5),得x+5=10,解得x=5.检验:将x=5代入原方程中,发现这时分母x-5和x2-25的值都为0.相应的分式是无意义的.因此,这个分式方程无解.7.再议一议:为什么分式方程有时会无解?学生先独立思考问题,然后提出自己的看法并在小组内讨论.在学生讨论期间,教师应到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验.师生合作达成共识:明确因为x=5使原方程没有意义,因此x=5不是原分式方程的根,所以原方程无解(提示:方程的解也可称为方程的根).①增根:将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的根(或解),这种根通常称为增根.②解分式方程时必须进行检验.③为什么会产生增根呢?对于原分式方程来说,方程中各分式的分母的值均不为零,但方程变形后得到的整式方程则没有这个要求,如果所得的整式方程的某个根使原分式方程中至少一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,那么它就不适合原方程,即是原方程的增根.④怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.8.你能结合解法,归纳出解分式方程的基本步骤吗?学生独立思考后,请学生代表回答,老师帮忙总结出解分式方程的一般步骤:(1)去分母(方程两边同乘最简公分母,化为整式方程).(2)解这个整式方程.(3)检验.把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,须舍去.可简单记作:一化、二解、三检验.新知应用例1 解方程:23x -=3x. 由学生在练习本上独立完成,同时找两名学生板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.解:方程两边同乘x (x-3),得 2x =3(x-3). 解得x =9.检验:将x =9代入x (x-3)得x (x-3)=54≠0, 因此x =9是分式方程的解.例2 解方程:1xx --1=3(1)(2)x x -+.由学生在练习本上独立完成,同时找两名学生板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.解:方程两边同乘(x+2)(x-1),得 x (x+2)-(x+2)(x-1)=3. 解得x =1.检验:当x =1时,(x+2)(x-1)=0,所以x =1不是原分式方程的解,原分式方程无解.解完例题后,教师和学生共同总结解分式方程需要注意的问题. 总结:1.解分式方程的过程,实质上是将方程的两边乘同一个整式,把分式方程转化为整式方程来解的过程,所乘的整式通常是方程中出现的各分式的最简公分母.2.解分式方程时必须进行检验,检验时,可将转化成的整式方程的根代入所乘的整式(即最简公分母)中,看它的值是否为零,如果为零,即为增根,应舍去.3.一个未知数的值是分式方程的增根应具备两个条件:一是该值应是去分母后所得到的整式方程的根,二是该值应使最简公分母的值为零.课堂练习(见导学案“当堂达标”) 参考答案1.D2.B3.D4.C5.B6.A7.解:(1)方程变形为13x ++23x -=2129x -. 两边同时乘(x 2-9),得x-3+2x+6=12, 解得x =3,经检验x =3是原方程的增根, 故原方程无解.(2)原方程去分母,得2+3(x-2)=-(1-x ), 解得x =32.经检验x=32是原分式方程的解,所以原分式方程的解为x=32.(3)方程两边乘x(x2-1),得5x-2=3x,解得x=1,经检验x=1是原方程的增根,故原方程无解.8.a<5且a≠3解析:去分母得1-(a-2)=x-2,整理得x=5-a.因为分式方程的解为正数,所以5-a>0,解得a<5.又因为x≠2,所以5-a≠2,即a≠3.所以a的取值范围是a<5且a≠3.课堂小结今天我们学习了:1.什么是分式方程.2.解分式方程的基本思路和一般步骤是什么.解分式方程应该注意什么问题.布置作业教材154页习题15.3第1题.板书设计。
人教部编版八年级数学上册 15.3.1 分式方程的解法
90(30-
v)=60(30+v).
解这个整式方程,得 v=6.
所以江水的流度为 6 千米/时.
[概括]上述解分式方程的过程,实质上是将方程的两边乘
以同一个整式,约去分母,把分式方程转化为整式方程来 解201.9/9所/17 乘的整式通常取方程中出现的各分式的最简公分母. 6
解分式方程去分母时,方程两边要乘同一个含未知数的式
子(最简公分母).方程①两边乘(30+v)(30-v),得到整式方
程,它的解v=6.当v=6时,(30+v)(30-v)≠0,这就是说, 感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进 行维权,按照传播下载次数进行十倍的索取赔偿!
去分母时,①两边乘了同一个不为0的式子,因此所得整式
方程的解与①的解相同.
方程②两边乘(x-5)(x+5),得到整式方程,它的解x=5.
当x=5时,(x-5)(x+5)=0,这就是说,去分母时,②两边
乘了同一个等于0的式子,这时所得整式方程的解使②出现
分母为0的现象,因此这样的解不是②的解.
2019/9/17
行维权,按照传播下载次数进行十倍的索取赔偿!
解得 x=9. 检验:当 x=9 时,x(x-3)≠0.
所以,原分式方程的解为 x=9.
2019/9/17
11
例 3( 教 材 例 2)
解
方
程
x x-1
-
1
=
3 (x-1)(x+2).
感谢您下载包图网平台上提供的PPT作品,为了您和包图网以及原创作者的利益,请勿复制、传播、销售,否则将承担法律责任!包图网将对作品进 行维权,按照传播下载次数进行十倍的索取赔偿!
人教版数学八年级上册15.3分式方程及其解法(教案)
5.数据分析:通过分析和解决分式方程问题,培养学生对数据的敏感度,学会从数据中提炼信息,进行合理推断。
6.数学思维:激发学生的数学思维,培养他们在面对复杂数学问题时,能够运用所学知识进行创新思考和问题解决。
3.重点难点解析:在讲授过程中,我会特别强调分式方程的定义和求解方法这两个重点。对于难点部分,如去分母法、代入法等,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式方程的基本原理。
-数学运算的准确性:在进行分式方程的运算时,学生可能因运算不当而得出错误答案。
-突破方法:强调运算规则,提供针对性练习,及时纠正错误,提高运算准确性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式方程及其解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要按比例分配或求解问题的情况?”比如购物打折、按人数分配食物等。这个问题与我们将要学习的分式方程密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式方程的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版八年级上册数学15.3.1分式方程的解法课件(共39张PPT)
解:两边同乘(20+v)(20-v) ,得
100(20 v) 6( 0 20 v)
解得: v 5 检验: 将v=5代入分式方程,
左边=4=右边, ∴ v=5是原分式方程的解。
x 1 (5)• x 2
1
(6)•x 1 y
(7)•x 2 1
解分式方程:
1
10
x 5 x 2 25
分式方程有意义的条件是___X_≠_±_.5
解:方程两边同乘以最简公分母(x-5)(x+5),得:
x+5=10 解得: x=5
整式方程有意义的条件是 ___任__意_.实数 当x=5时,(x-5)(x+5)=____0_
方程两边同乘以 x(x+1)(x-1) ,
得到整式方程 5(x-1)-(x+1)=0 程
不解方程,将下列分式方程转化成整式方程
3 -1= x 1 x2 2x 方程两边同乘以 (x-2) ,
得到整式方程 3-(x-2)=-(1-x) 程
解分式方程容易犯的错误有:
(1)找最简公分母应先因式分解
(2)去分母时,原方程的整式部分漏乘.
例2:k为何值时,方程
x
k
2
3
1 x 2 产x 生增根?
解:方程两边都乘以x-2,约去分母,得
k+3(x-2)=x-1
把x=2代入以上方程得: K=1
所以当k=1时,方程
x
k
2
3
1 x 2 产x生增根。
例3:
k为何值时,分式方程 有增根?
x k x 0 x 1 x 1 x 1
解: 方程两边都乘以(x-1)(x+1),得
C.4个
八年级数学上册 15.3分式方程第1课时分式方程及其解法课件2_1-5
这个整式方程的解是不是原 分式的解呢?
怎样检验?
检验方法: 将整式方程的解代入最简公分母,如果最简公分母的值不为0,则
整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
知识要点
“去分母法”解分式方程的步骤 1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.把整式方程的解代入最简公分母,如果最简公分母的值不为0, 则整式方程的解是原分式方程的解,否则须舍去。 4.写出原方程的根.
解得
x=1.
检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是原分式方程的解.
所以,原分式方程无解.
用框图的方式总结为: 分式方程 整式方程
x =a
x =a是分式 方程的解
x =a 否 最简公分母是
否为零?
去分母 解整式方程 检验
是 x =a不是分式 方程的解
村庄南面,一弯自东向西的清漳河,以持久的坚韧和不懈,硬生生在山谷间冲刷出一条平坦且狭长的河谷。此时,她是多么珍惜那一会儿爬出管道井中的自由时光啊!可以举目远望,看到深远的蓝天,飘浮的白云,不远处高耸的烟囱和从烟 囱中冒出的几股子烟雾。所以柬埔寨人无比地崇拜蛇,被奉为吉祥、平安、力量和守护的象征,成为高棉族的图腾。
安卓app下载 /
白海洋的姥姥家、舅舅家也都在同一街道居住,我们基本上都见了面,还去了他们的奶奶和姥姥家,舅舅家做客。是《中国国家地理》评选的中国最美的十大森林之一。,没想到,回家的路上,曾遭遇死神先后两次向我所得整式方程的解有可能使原方程
简记为:“一化二解三检验”.
典例精析
例1 解方程
2 3. x3 x
八年级数学上册 15.3分式方程第1课时分式方程及其解法课件2_1-5
解得
x=1.
检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是原分式方程的解.
所以,原分式方程无解.
用框图的方式总结为: 分式方程 整式方程
x =a
x =a是分式 方程的解
x =a 否 最简公分母是
否为零?
去分母 解整式方程 检验
是 x =a不是分式 方程的解
简记为:“一化二解三检验”.
典例精析
例1 解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
=3x-9.
解得 x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
例2 解方程
x 1
3
.
x 1
( x 1)( x 2)
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
远离了金戈铁马,鼓角铮铮,这层峦叠嶂中连绵不断的孤城绝塞,给予人太多的想象和震撼。连过年压岁钱,我们一起磕头,发给大哥一块,却只给我五毛。”在去卧佛寺的途中,小伦墩前面开道,在短短的一小时内,发生的三件事,彻底 让我见识了它的神奇(《奇妙的偶遇》一文有详细记录)。
急需本科文凭
的分母为0,所以分式方程的解必须检验.
这个整式方程的解是不是原 分式的解呢?
怎样检验?
检验方法: 将整式方程的解代入最简公分母,如果最简公分母的值不为0,则
整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
知识要点
“去分母法”解分式方程的步骤 1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.把整式方程的解代入最简公分母,如果最简公分母的值不为0, 则整式方程的解是原分式方程的解,否则须舍去。 4.写出原方程的根.