二元函数极限证明
用极限证明二元函数可微
用极限证明二元函数可微在微积分的学习中,大家或许经常听到“可微”这个词,但是对于“可微”的判定方法,却不是那么容易掌握。
本文将从极限的角度来深入解析二元函数可微的证明方法,详细阐述极限证明二元函数可微的方法,帮助读者更好地掌握这种判定方法。
首先,我们需要了解一下什么是二元函数可微。
在高等数学中,我们可以将二元函数看做是一个自变量有两个分量,因变量是一个实数的数学表达式。
那么一个二元函数在某个点处可微,表示它在该点处的微分存在。
如果一个函数在某点处可微,那么该函数在该点处一定连续。
接下来我们就要深入到证明二元函数可微的极限方法中来。
假设二元函数是 $f(x,y)$,点 $(x_0, y_0)$ 是定义域的一个点,那么函数在这个点处可微的条件是:$$ \lim_{\Delta x \rightarrow 0} (f(x_0 +\Delta x, y_0) - f(x_0, y_0)) = A \Delta x $$ $$ \lim_{\Delta y \rightarrow 0} (f(x_0, y_0 + \Delta y) - f(x_0, y_0)) = B \Delta y $$其中 $A$ 和 $B$ 都是常数。
上面的定义可以表示为:$$ f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0,y_0) + A\Delta x + B\Delta y + \alpha \Delta x +\beta \Delta y $$其中 $\alpha \rightarrow 0$,$\beta \rightarrow 0$。
这个式子里,前三项是用定义式推导而来的,它们表示 $f(x_0 + \Delta x, y_0 + \Delta y)$ 在 $(x_0,y_0)$ 处的值。
而后面的两项分别是 $\Delta x$ 和$\Delta y$ 乘以接近 0 的无穷小量,表示一阶偏导数对像 $(x_0, y_0)$ 那样的点斜率计算的误差。
二元函数极限证明
二元函数极限证明题目:二元函数极限的证明引言:在微积分中,函数极限是一个重要的概念。
在实际问题中,许多函数都是多元函数,即变量的个数大于一。
而二元函数是一种常见的多元函数形式,它包含两个自变量和一个因变量。
本文将对二元函数极限进行详细的讨论和证明。
一、二元函数极限的定义设函数 f(x, y) 在点 P(x0, y0) 的某邻域内有定义,若对于任意给定的正数ε,总存在正数δ,使得当点 P(x, y) 满足不等式 0 < \sqrt {(x-x_0 )^2 + (y-y_0 )^2} < δ时,有 |f(x,y)-A|<ε 成立,则称函数 f(x, y) 在点 P(x0, y0) 处的极限为 A,记作lim_(x,y)→(x0,y0) f(x,y)=A二、二元函数极限的性质与一元函数极限类似,二元函数极限也具有以下性质:1. 二元函数极限的唯一性:若极限存在,则极限唯一;2. 夹逼准则:若函数 f(x,y) 在点 P(x0, y0) 的某邻域内有定义,并且存在函数 h(x,y) 和 g(x,y),满足h(x,y)≤f(x,y)≤g(x,y) 在点P(x0, y0) 的某邻域内成立,并且lim_(x,y)→(x0,y0)h(x,y)=lim_(x,y)→(x0,y0) g(x,y)=A,则必有lim_(x,y)→(x0,y0) f(x,y)=A;3. 四则运算法则:若函数 f(x,y) 和 g(x,y) 分别在点 P(x0, y0) 的某邻域内有定义,并且lim_(x,y)→(x0,y0) f(x,y)=A、lim_(x,y)→(x0,y0) g(x,y)=B,则有lim_(x,y)→(x0,y0) (f(x,y)+g(x,y))=A+B,lim_(x,y)→(x0,y0) (f(x,y)-g(x,y))=A-B,lim_(x,y)→(x0,y0) f(x,y)g(x,y)=AB 和lim_(x,y)→(x0,y0) f(x,y)/g(x,y)=A/B (B≠0);4. 复合函数极限:若函数 f(x,y) 在点 P(x0, y0) 的某邻域内有定义,并且lim_(u,v)→(x0,y0) g(u,v)=P(x0, y0),lim_(x,y)→(u,v)f(x,y)=L,则lim_(x,y)→(x0,y0) f(g(x,y))=L。
证明二元函数极限不存在的方法与技巧
219理论研究证明二元函数极限不存在的方法与技巧杨万娟,杨子艳,木绍良(云南大学旅游文化学院 信息学院,云南 丽江 674100)摘 要:本文主要解决在证明二元函数极限不存在的问题时选择特殊路径的方法和技巧。
关键词:二元函数极限;无穷小量;无穷小量的阶;特殊路径DOI:10.16640/ki.37-1222/t.2019.19.1961 二元函数极限概念分析 二元函数的极限存在,是指点沿任意路径无限接近某一点时,函数总是无限接近某一固定的数A 。
此时称A 为二元函数在时的极限,记作。
定理(1)设函数在内有定义,则;(2)设函数在有定义,且,则。
由定理可知,在求二元函数极限时,通过选择特殊的路径可转化为一元函数极限问题,所以,当沿着不同的路径趋于时(即当时,沿着不同的趋近于)函数趋于不同的值,那么就可以断定此函数的极限不存在。
但是找到特殊路径对学生来说不是一件容易的事,因此很有必要探究该问题。
本文对常见的两种类型作了讨论,其思路为:考虑分母中的最高次幂与分子中的最低次幂保持一致,通过化解可知极限是否与有关,若与有关,则可知极限不存在。
2 证明二元函数极限不存在时找特殊路径的方法2.1 类型一:证明(,)(0,0)lim a bm mx y x y x y →±极限不存在时找特殊路径的方法 (1)当且时,令; (2)当时,令。
例1 证明233(,)(0,0)limx y x yx y →−极限不存在。
证明:,故令, 显然,当k 不同时,31k k −便不同,所以极限233(,)(0,0)lim x y x yx y →−不存在。
例2 证明极限(,)(0,0)lim +x y xyx y→不存在。
证明:,故令,, 显然,当k 不同时,1k−便不同,所以极限(,)(0,0)lim +x y xyx y →不存在。
2.2 类型二:证明(,)(0,0)+lima b x y x y x y→±极限不存在时找特殊路径的方法 (1)当时,令; (2)当时,令。
求二元函数极限的几种方法二元函数极限定理
1 / 151.二元函数极限概念分析定义1 设函数f 在2D R ⊂上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<,则称f 在D 上当0P P →时,以A 为极限,记0lim ()P P P Df P A →∈=.上述极限又称为二重极限.2.二元函数极限的求法2.1 利用二元函数的连续性命题 若函数(,)f x y 在点00(,)x y 处连续,则0000(,)(,)lim(,)(,)x y x y f x y f x y →=.例1 求2(,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2(,)2f x y x xy =+在点(1,2)处连续,所以122122lim (,)lim(2)12125.x y x y f x y x xy →→→→=+=+⨯⨯=例2 求极限()()221,1,21limy x y x +→.解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即()()221,1,21limy x y x +→=31.2 / 152.2 利用恒等变形法将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求00x y →→解: 00x y →→00x y →→=0x y →→=001.4x y →→==-例4 ()()22220,0,321)31)(21(lim yx y x y x +-++→.解:原式()()())()(),0,02211lim231x y xy →=+()(22,0,0limx y →=+11022=+=.2.3 利用等价无穷小代换一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的等价无穷小((,)0)u x y→,有sin(,)(,)u x y u x y;2(,)1cos(,)2u x yu x y-;[]ln1(,)(,)u x y u x y+;tan(,)(,)u x y u x y;arcsin(,)(,)u x y u x y;arctan(,)(,)u x y u x y(,)1u x yn;(,)1(,)u x ye u x y-;同一元函数一样,等价无穷小代换只能在乘法和除法中应用.例5求xy→→解: 当x→,0y→时,有0x y+→11()2x y+,所以1()2lim1.2xyxyx yx y→→→→+=+=这个例子也可以用恒等变形法计算,如:1.2xyxyxy→→→→→→===3 / 154 / 152.4 利用两个重要极限(,)0sin (,)lim 1(,)u x y u x y u x y →=,[]1(,)(,)0lim 1(,)u x y u x y u x y e →+= 它们分别是一元函数中两个重要极限的推广.例6 求极限 21lim(1)x x yx y axy+→∞→+.解: 先把已知极限化为22()11lim(1)lim (1)x x xy x y xy x yx x y ay a xy xy ++→∞→∞→→⎡⎤+=+⎢⎥⎣⎦,而 211limlim ,()(1)x x y a y a x y xy x y ay x→∞→∞→→==++ 当 ,x y a →∞→时1,0xy xy →∞→,所以 1lim(1).xy x y ae xy →∞→+=故原式=2()11lim (1).x xy x y xy xy a axy e +→∞→⎡⎤+⎢⎥⎣⎦=例7 求 0sin()limx y axy x →→极限.解: 因为sin()sin().xy xy y x xy=,当0,x y a →→时,0xy →,所以 sin()1xy xy→,再利用极限四则运算可得: 000sin()sin()sin()limlim .lim .lim .x x y a xy y a y axy xy xy y y a x xy xy →→→→→→===·1=a .这个例子也可以用等价无穷小代换计算,如: 当 0x →,y a →时,0xy → ,sin()xy xy .5 / 15所以, 00sin()limlim lim .x x y a y a y axy xyy a x x →→→→→===2.5 利用无穷小量与有界量的乘积仍为无穷小量的结论例8 求0011)sin cos x y y x y →→解: 因为00)0x y y →→= 是无穷小量, 11sin cos 1x y ≤ 是有界量 ,故可知,0011)sin cos 0.x y y x y →→=例9 求 22232(3)(2)lim (3)(2)x y x y x y →→---+-解 原式=2232(3)(2)lim(3)(3)(2)x y x y x x y →→--⋅--+-因为 222222(3)(2)(3)(2)1(3)(2)22(3)(2)x y x y x y x y ---+-≤=-+-⎡⎤-+-⎣⎦ 是有界量,又 32lim(3)0x y x →→-= 是无穷小量,所以 , 22232(3)(2)lim0(3)(2)x y x y x y →→--=-+- . 虽然这个方法计算实际问题上不那么多用,但计算对无穷小量与有界量的乘积形式的极限的最简单方法之一 .2.6利用变量替换法通过变量替换可以将某些二元函数的极限转化为一元函数的极限来计算,6 / 15从而使二元函数的极限变得简单.但利用时一定要满足下面的定理。
二元函数极限的求法和极限不存在的判断
x→y0
分析:通过观察极限中的二元函数知分子是分母的高阶无穷小,
故极限应为 0。定义证明:坌ε>0,因为
x4+y4 x2+y2
-0
≤
x4 x2+y2
+
y4 x2+y2
姨 ≤x2+y2, 故 要 使
x4+y4 x2+y2
-0
<ε 只 要 取 δ =
ε 4
,则
x4+y4 x2+y2
-0
≤
x4 x2+y2
x2y2ln(x2+y2)
x2y2 x2+y2
x2+y2ln(x2+y2)
(x,y)→(0,0)
(x,y)→(0,0)
(x,y)→(0,0)
由于
0≤
x2y2 x2+y2
≤
(x2+y2)2 x2+y2
≤x2+y2→0,令 x2+y2=t 则
x2y2
lim (x2+y2)ln(x2+y2)=lim tlnt=0,故 lim (x2+y2) =e0=1。
科技信息
高校理科研究
二元函数极限的求法和极限不存在的判断
山东政法学院 唐新华
[摘 要]极限方法是研究函数最主要的方法之一,函数极限是高等数学中的重点、难点内容。文章通过具体例子给出了求二元函数 极限的几种方法和二重极限不存在的判断方法。 [关键词]二元函数 极限 二重极限
引言
二元函数极限定义[1] 设函数 z=f(x,y)在点 P0(x0,y0)的某空心邻域有
=e
x→∞
x
16.2二元函数的极限
有 : (x2 xy y2) 7 7 14
故 lim (x2 xy y2 ) 7 ( x, y)(2,1)
例
2.用“
”定义验证极限lim x0
xy 2 x2 y2
0.
y0
证明: 0,要使:
xy 2 x2 y2
0
x
2
xy
y
2
y
0
1 2
y0
取 2 0, 当(xx, y)0U ,((y0,00),)(方时),
则称函数 z f (x, y)在点P0 (x0, y0 )存在极限,且
称 A为函数 z f (x, y)当 x x0, y y0 时的极
限(全面极限),记为 lim f (x, y) A x x0 y y0
或 lim f (x, y) A,或 lim f (P) A
x, y x0 , y0
x0
sin( x x2
2 y) y2
.
y0
解
lim
x0
sin( x x2
2 y) y2
y0
lim
x0
sin( x2 x2 y
y)
x2 y x2 y2
,
y0
其中
lim
x0
sin( x
x2 2y
y
)
y0
u x2 y sin u
lim 1, u0 u
x2 y x2 y2
1x 2
x0 0,
lim
f
(P)
A.
PE
推论 1.设 E1 D , P0 是 E1 的聚点。若极限
lim f (P)不存在,则极限 lim f (P)也不存在 .
PP0
PP0
二元函数求极限的洛必达法则解析
二元函数求极限的洛必达法则解析洛必达法则是一种用于求解二元函数极限的有效方法。
在这个方法中,我们可以将函数表示为两个单变量函数的比值,并通过对这些函数应用洛必达法则来求解极限。
下面将对洛必达法则进行详细解析。
在进行洛必达法则的求解之前,我们首先需要确定极限函数的形式,即将函数表示为两个单变量函数的比值。
设函数为f(x)和g(x),则极限函数的形式可以表示为lim(x→a) f(x)/g(x)。
在这种情况下,如果f(x)和g(x)在x=a的附近连续并满足一定的条件,那么可以将其化简为lim(x→a) f'(x)/g'(x)。
为了使用洛必达法则,我们需要满足以下条件:1. 两个函数在x=a的附近连续;2. 在x=a附近,g(x)不等于0且g'(x)也不等于0;3. 当x趋近于a时,函数f(x)和g(x)的极限存在。
在满足这些条件的前提下,我们可以按照以下步骤使用洛必达法则求解极限:Step 1: 计算f'(x)和g'(x)的极限。
这些极限可以通过直接求导或应用其他求导规则来计算。
Step 2: 计算lim(x→a) f'(x)/g'(x)。
如果这个极限存在,那么它就是lim(x→a) f(x)/g(x)的极限。
Step 3: 如果极限lim(x→a) f'(x)/g'(x)不存在,那么重复Step 1和Step 2,直到找到一个极限。
通过洛必达法则,我们可以更容易地求解二元函数的极限。
这个方法不仅可以简化计算过程,还可以提供更准确的结果。
然而,需要注意的是,洛必达法则并不适用于所有情况。
有些函数无法通过洛必达法则求解其极限,因此在使用该方法时需要注意。
总结起来,洛必达法则是一种用于求解二元函数极限的有效方法。
通过将函数表示为两个单变量函数的比值,并应用洛必达法则,我们可以简化计算过程并获得更准确的结果。
然而,需要注意的是,洛必达法则并不适用于所有情况,因此在使用该方法时需要谨慎。
二元函数极限证明
二元函数极限证明)in1y?ysin1x, 求在点( 0 , 0 )的两个累次极限 .二重极限与累次极限的关系:(1)两个累次极限可以相等也可以不相等,所以计算累次极限时一定要注意不能随意改变它们的次序。
例函数 f(x,y)?x?y?x?yx?y22的两个累次极限是 y?yyx?xx22limlimx?y?x?yx?yx?y?x?yx?yy?0x?0?limy?0?lim(y?1)??1y?0?lim(x?1)?1x?0limlimx?0y?0?limx?0(2)两个累次极限即使都存在而且相等,也不能保证二重极限存在例f(x,y)?xyx?yxyx?y,两个累次极限都存在limlimy?0x?0?0,limlimxyx?yx?0y?0?0但二重极限却不存在,事实上若点p(x,)沿直线 y?kx趋于原点时,kxf(x,y)?x?(kx)?k1?k二重极限存在也不能保证累次极限存在二重极限存在时,两个累次极限可以不存在.例函数 f(x,y)?xsin1y?ysin1x由|f(x,y)| ? |x|?|y|?0 ,( x ,y)?(0,0).可见二重极限存在 ,但1xlimsinx?0和limsiny?01y不存在,从而两个累次极限不存在。
(4)二重极限极限lim(x,y)?(x0,y0)f(x,y)和累次极限limlimf(x,y)(或另一次序)都存x?x0y?y0在 , 则必相等.( 证 )(5)累次极限与二重极限的关系若累次极限和二重极限都存在,则它们必相等第三篇:二元函数极限的研究二元函数极限的研究作者:郑露遥指导教师:杨翠摘要函数的极限是高等数学重要的内容,二元函数的极限是一元函数极限的基础上发展起来的,本文讨论了二元函数极限的定义、二元函数极限存在或不存在的判定方法、求二元函数极限的方法、简单讨论二元函数极限与一元函数极限的关系以及二元函数极限复杂的原因、最后讨论二重极限与累次极限的关系。
第二节二元函数的极限
lim
x0 ykx
f (x, y)
lim
x0
x2
kx2 (1 k
2
)
1
k k
2
当 k 不同时, 极限也不同、 因此, f (x, y) 在 (0, 0)
得极限不存在 、
请考察当X = (x, y)沿 x 轴, 沿 y 轴趋于(0, 0) 得情形、
沿 x 轴, y = 0、 函数极限
lim
x0
f
(x,
二元函数得极限运算举例
例 求 lim( x2 2 y2 3xy).
x0
y1
解 lim( x2 2 y2 3xy) lim( x2 ) lim(2 y2 ) lim(3xy)
x0
x0
x0
x0
y1
y1
y1
y1
lim( x2 ) 2lim( y2 ) 3(lim x)(lim y)
x0
x0
x0 x0
记作 lim f (P) A, 或 P P0
lim f (x, y) A,
x x0 y y0
也可记作 f (P) A (P P0), 或,
f (x, y) A (x x0, y y0 )
注 定义中要求X0就是定义域D得聚点, 这就是
为了保证 P0得任意近傍总有点P使得f (P)存在, 进
都收敛、
上述定理及其推论相当于数列极限得子列定理 与一元函数得海涅归结原则
注意: P P0 是指 P 以任何方式趋于P0 .
一 lim f ( x) A,
元 x x0 0
lim f ( x) A.
中 lim f ( x) A,
x x0
x x0 0
多 元
二元函数求极限的极值与拐点判断
二元函数求极限的极值与拐点判断在数学中,二元函数是指由两个变量组成的函数,即f(x,y)。
求二元函数的极限、极值和拐点是解析几何中的重要问题之一。
本文将讨论二元函数求极限的极值与拐点判断的方法。
一、二元函数的极限对于二元函数f(x,y),当点P(x0,y0)沿着不同的路径趋向于(x0,y0)时,如果存在一个确定的实数L,使得对于任意给定的正数ε>0,总存在正数δ>0,使得当0<√[(x-x0)²+(y-y0)²]<δ时,有|f(x,y)-L|<ε,那么L就是f(x,y)在点P(x0,y0)的极限。
二、二元函数的极值判断1. 求极值的必要条件:首先,求二元函数的极值需要满足以下必要条件,即函数在极值点处存在一阶偏导数,并且这些偏导数等于零。
2. 求极值的充分条件:其次,可以通过求解二元函数的二阶偏导数来判断极值的类型。
- 若二阶偏导数的判别式Δ=fxx·fyy-(fxy)²>0,并且fxx>0,则函数在该点处取极小值;- 若Δ>0,并且fxx<0,则函数在该点处取极大值;- 若Δ<0,则函数在该点处没有极值;- 若Δ=0,情况可能比较复杂,需要进一步分析。
三、二元函数的拐点判断拐点是指函数曲线从凸向上转为凹向上,或从凹向上转为凸向上的点。
求二元函数的拐点需要满足以下条件:1. 求拐点的必要条件:函数处于拐点,意味着函数的二阶导数存在。
因此,首先需要求解二元函数的二阶偏导数。
2. 求拐点的充分条件:通过求解二元函数的二阶偏导数可以判断函数的凸凹性。
- 若fxx·fyy-(fxy)²>0,并且fxx>0,则函数在该点处为凸向上;- 若fxx·fyy-(fxy)²>0,并且fxx<0,则函数在该点处为凹向上;- 若fxx·fyy-(fxy)²<0,则函数在该点处存在拐点。
高等数学第16章第2节二元函数的极限
§2 二元函数的极限一 二元函数的极限定义1 设f 为定义在⊂D R 2二元函数,0P 为的D 一个聚点,A 是一个确定的实数。
若对任给正数ε,总存在某正数δ,使得当()D P U P o δ;0∈时,都 有(),ε<-A P f则称f 在.D .上.当0P P →时,以A 为极限,记作 ().lim 0A P f D P P P =∈→ ()1 在对于D P ∈不致产生误解时,也可简单地写作().lim A P f PP =→ ()'1 当0,P P 分别用坐标()()00,,,y x y x 表示时,()'1也常写作().,lim )(),(0,0A y x f y x y x =→ ()"1 例1 依定义验证.7)(lim 22)1,2(),(=++→y xy x y x证 因为722-++y xy x)1(2)4(22-+-+-=y xy x )1)(1()1(2)2()2)(2(-++-+-+-+=y y y y x x x.3122+-+++-≤y y y x x先限制在点(2,1)的1=δ方邻域(){}11,12,<-<-y x y x内讨论,于是有,541413<+-≤+-=+y y y5)1()2(2+-+-=++y x y x.7512<+-+-≤y x所以1527722-+-≤-++y x y xy x ).12(7-+-<y x设ε为任给的正数,取)14,1min(εδ=,则当)1,2(),(,1,2≠<-<-y x y x δδ时, 就有 .27722εδ<∙<-++y xy x □例2 设 ⎪⎩⎪⎨⎧=≠+-=),0,0(),(,0),0,0(),(,),(2222y x y x y x y x xy y x f证明 .000=→)y ,x (f lim ),()y ,x ( 证 对函数的自变量作极坐标变换.sin ,cos ϕϕrl y r x ==。
二元函数极限证明
二元函数极限证明引言:在高等数学的学科体系中,函数极限是一个比较基础的概念,也是之后各种函数分析的前提和基础。
在数学的学习过程中,函数极限一章通常是教材中比较抽象和难懂的一章,而对于二元函数极限来说,则更是难度加倍。
对于很多学生而言,这一部分知识点都充满了困难和挑战。
为此,本文将从相关理论和具体例子两个方面出发,介绍二元函数极限的证明方法和注意事项,希望能够帮助读者更好地理解该知识点。
一、相关理论1.二元函数极限定义:如果函数f(x,y)当(x,y)趋于(a,b)的时候,任意一个数ε都可以任意小(大于零),并存在一个数δ,使得当|(x-a,y-b)|<δ时,有|f(x,y)- L|<ε,则称函数f(x,y)在点(a,b)处极限为L这一定义十分抽象,但是含义简单。
在这里,定义的关键点在于“任意小”,“存在一个数δ”。
也就是说在我们后续证明二元函数极限时,需要构造一个足够小的δ,来保证ε的任意性。
2.二元函数极限的充要条件:类比于一元函数的充要条件,如果一个二元函数f(x,y)在点(a,b)的某个去心邻域内有定义,那么二元函数f(x,y)在点(a,b)处极限存在的充要条件是,当以任一曲线及其任一方向靠近点(a,b)时,函数f(x,y)都应近似于同一个数L。
需要注意的是,充分必要条件的证明过程非常的困难和严谨。
需要对相关的曲线及方向进行证明。
因此,在求一元函数极限时,往往能够根据已有结论进行计算,而在二元函数极限时,往往要求出达到极限的曲线方程和方向,再进行计算。
二、具体例子接下来,我们将通过若干个具体例子,来阐述二元函数极限的证明方法和注意事项。
1.问题:证明在平面上原点处,函数f(x,y)=|x|+|y|没有极限。
证明过程:为了证明函数在原点处没有极限,我们需要构造出一些值趋于(0,0),但是函数值不能趋于任何有限值的数列,即证明其与所有可能的数的差或者比值都趋于无限或不存在。
假设x=m/n, y=n/m且都在Q1区域,那么|f(x,y)-0|=|m/n+n/m|=|m^2-n^2|/mn。
利用洛必达法则求解二元函数的极限
利用洛必达法则求解二元函数的极限在高等数学中,洛必达法则是一种常用的求解极限的方法。
它可以用于求解二元函数的极限。
本文将介绍洛必达法则的基本概念以及应用方法,并结合实例进行详细解析。
一、洛必达法则的基本概念洛必达法则是由法国数学家洛必达(L'Hospital)在17世纪提出的一种极限计算法则。
它适用于计算形如$\frac{0}{0}$或$\frac{\infty}{\infty}$的极限。
其基本思想是将极限转化为函数的导数的极限。
二、洛必达法则的应用方法根据洛必达法则,若要计算二元函数$\frac{f(x)}{g(x)}$在$x=a$处的极限,当 $\lim \limits_{x \to a}f(x) = 0$且$\lim \limits_{x \to a}g(x) =0$,或者 $\lim \limits_{x \to a}f(x) = \infty$且$\lim \limits_{x \to a}g(x) = \infty$时,可以进行以下步骤:1. 求出$f(x)$在$x=a$处的导数$f'(x)$和$g(x)$在$x=a$处的导数$g'(x)$;2. 计算$\lim \limits_{x \to a}\frac{f'(x)}{g'(x)}$;3. 若存在极限$\lim \limits_{x \to a}\frac{f'(x)}{g'(x)}$,则$\lim\limits_{x \to a}\frac{f(x)}{g(x)}=\lim \limits_{x \to a}\frac{f'(x)}{g'(x)}$。
三、实例解析现以二元函数$\frac{x^2-1}{x-1}$为例来说明洛必达法则的应用方法。
首先,我们计算$f(x)$和$g(x)$在$x=1$处的导数:$$f'(x)=\frac{d}{dx}(x^2-1)=2x$$$$g'(x)=\frac{d}{dx}(x-1)=1$$然后,我们计算$\lim \limits_{x \to 1}\frac{f'(x)}{g'(x)}$:$$\lim \limits_{x \to 1}\frac{f'(x)}{g'(x)}=\lim \limits_{x \to1}\frac{2x}{1}=2$$由洛必达法则的推导,我们知道在$x=1$处的极限$\lim \limits_{x \to 1}\frac{x^2-1}{x-1}$等于$\lim \limits_{x \to 1}\frac{2x}{1}$,即极限为2。
二元函数求极限的通用方法与技巧
二元函数求极限的通用方法与技巧在数学中,我们经常会遇到二元函数求极限的问题。
二元函数是指含有两个自变量的函数,而求极限则是要求在某个点上函数的值趋于无穷或趋于某个确定的值。
本文将介绍二元函数求极限的通用方法与技巧,帮助读者更好地理解和解决这类问题。
一、基本性质首先,我们需要了解二元函数求极限的基本性质。
对于二元函数f(x, y),如果在点P(a, b)的某个邻域内,f(x, y)的值趋于L,则称L为f(x, y)在点P(a, b)处的极限,记作lim[f(x, y)] = L, (x, y)→(a, b)。
二、分别求限法对于一些特殊的二元函数,我们可以通过将其中一个自变量固定,然后求另一个自变量趋于某个确定的常数,从而得到二元函数的极限。
1. 水平线法对于形如f(x, y) = F(x)的二元函数,我们可以先将其中一个变量固定,对另一个变量求极限。
例如,对于f(x, y) = x^2 + y,我们可以将y固定为某个常数c,然后对x进行求极限,即求lim[x^2 + c]。
通过求解这个一元函数的极限,我们可以得到f(x, y)的极限。
2. 垂直线法类似的,当二元函数f(x, y)中含有一个x和一个y的系数,且此系数仅与其中一个变量相关时,我们可以先固定一个自变量,再对另一个自变量进行求极限。
例如,对于f(x, y) = (x^2 + 2xy)/(3x),我们可以将x固定为某个常数c,然后对y进行求极限,即求lim[(c^2 +2cy)/(3c)]。
三、使用一元函数的性质除了分别求限法外,我们还可以使用一元函数的性质来求解二元函数的极限。
1. 夹逼定理对于形如g(x, y) ≤ f(x, y) ≤ h(x, y)的二元函数,如果lim[g(x, y)] =lim[h(x, y)] = L,那么我们可以推断lim[f(x, y)] = L。
2. 代数运算法则对于一组二元函数f(x, y)和g(x, y),如果lim[f(x, y)] = L1,lim[g(x, y)] = L2,则我们可以利用代数运算法则求解f(x, y)和g(x, y)的和、差、乘积和商的极限。
利用泰勒展开求解二元函数的极限
利用泰勒展开求解二元函数的极限为了求解二元函数的极限,我们可以利用泰勒展开的方法来逼近极限值。
泰勒展开可以将一个函数在某一点附近进行近似表示,对于二元函数来说,我们需要进行二元泰勒展开。
下面将详细介绍如何利用泰勒展开求解二元函数的极限。
首先,我们考虑一个二元函数f(x, y)的极限求解问题。
假设该函数在点(x0, y0)附近具有连续的二阶偏导数。
那么我们可以将f(x, y)在(x0, y0)附近作泰勒展开,展开到二阶。
二元函数f(x, y)的泰勒展开式为:f(x, y) = f(x0, y0) + [(x-x0)∂f/∂x + (y-y0)∂f/∂y]∣∣(x0, y0) + 1/2![(x-x0)∂²f/∂x² + 2(x-x0)(y-y0)∂²f/∂x∂y + (y-y0)∂²f/∂y²]∣∣(x0, y0) + O(||(x-x0, y-y0)||³)其中,∂f/∂x和∂f/∂y分别表示f(x, y)对x和y的偏导数,∂²f/∂x²、∂²f/∂y²和∂²f/∂x∂y分别表示f(x, y)的二阶偏导数,O(||(x-x0, y-y0)||³) 表示高阶无穷小。
通过泰勒展开,我们可以将f(x, y)在(x0, y0)附近的值近似表示为一个二次多项式。
这样,我们可以通过计算该多项式在极限点 (x, y) 处的极限值,来逼近f(x, y)在(x0, y0)处的极限值。
举个例子来说明如何利用泰勒展开求解二元函数的极限。
假设我们要求解以下二元函数的极限:lim (x, y)→(0, 0) [x^2 + 2xy + y^2]首先,我们计算该函数在(0, 0)附近的泰勒展开式。
f(x, y) = f(0, 0) + [x∂f/∂x + y∂f/∂y]∣∣(0, 0) + 1/2![x∂²f/∂x² +2xy∂²f/∂x∂y + y∂²f/∂y²]∣∣(0, 0) + O(||(x, y)||³)将函数带入上述泰勒展开式中,化简得到:f(x, y) = x^2 + 2xy + y^2接下来,我们将极限点(x, y)取为(0, 0),即求解以下极限:lim (x, y)→(0, 0) [x^2 + 2xy + y^2]将(x, y)代入之前求得的二次多项式,得到:lim (x, y)→(0, 0) [x^2 + 2xy + y^2] = f(0, 0) = 0所以,利用泰勒展开,求解二元函数lim (x, y)→(0, 0) [x^2 + 2xy +y^2]的极限为0。
二元函数的极限ppt
一、二元函数的极限 二、累次极限
回忆一元函数的极限. 设 y = f (x),
所谓 lim f (x) A, 表示
x x0
y
当 x 不论是从 x0的左边 A
还是从x0的右边无限接 近于x0时, 对应的函数 值无限接近于数 A. 如图
f (x)
0 x x0 x x x0
y = f (x) f (x)
x, y y.
进一步, 若 lim y A 存在, 则称 f x, y 先对 x x x0
y y0
后对 y y y0 的累次极限存在, 记为
lim lim f x, y A.
y y0 xx0
类似定义先对 y 后对 x 的累次极限
lim lim f x, 买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
PP0
PP0
PD
当 P 和 P0 分别用坐标 x, y 和
o
y
x0, y0 表示时, 也可以写作 lim f x, y A.
x, y x0 , y0
xD
P0
上面二元函数极限的定义也称为极限的 定义. 注意与一元函数极限的 定义的区别.
例1 用“ ”定义验证极限
lim x2 xy y2 7.
P0
推论2 设 E1, E2 D, P0 是它们的聚点,
E1
若存在极限 lim f P A 和 lim f P B,
证明二元函数极限不存在的方法与技巧
证明二元函数极限不存在的方法与技巧作者:杨万娟杨子艳木绍良来源:《山东工业技术》2019年第19期摘要:本文主要解决在证明二元函数极限不存在的问题时选择特殊路径的方法和技巧。
关键词:二元函数极限;无穷小量;无穷小量的阶;特殊路径DOI:10.16640/ki.37-1222/t.2019.19.1961 二元函数极限概念分析二元函数的极限存在,是指点沿任意路径无限接近某一点时,函数总是无限接近某一固定的数。
此时称为二元函数在时的极限,记作。
定理(1)设函数在内有定义,则;(2)设函数在有定义,且,则。
由定理可知,在求二元函数极限时,通过选择特殊的路径可转化为一元函数极限问题,所以,当沿着不同的路径趋于时(即当时,沿着不同的趋近于)函数趋于不同的值,那么就可以断定此函数的极限不存在。
但是找到特殊路径对学生来说不是一件容易的事,因此很有必要探究该问题。
本文对常见的两种类型作了讨论,其思路为:考虑分母中的最高次幂与分子中的最低次幂保持一致,通过化解可知极限是否与有关,若与有关,则可知极限不存在。
2 证明二元函数极限不存在时找特殊路径的方法2.1 类型一:证明极限不存在时找特殊路径的方法2.2 类型二:证明极限不存在时找特殊路径的方法参考文献:[1]李丽红.二元函数极限的一种简便求法[J].数学学习与研究,2018(04):2.[2]薛秋.二元函数极限求解的部分讨论[J].数学学习与研究,2017(19):8.[3]张天德.高等数学辅导及习题精解[M].浙江教育出版社,2018(01):159.[4]彭乃馳.微积分[M].中国人民大学出版社,2016(02):127+147.[5]刘丽娜.二元函数极限多种求解方法探析[J].天津中德职业技术学院学报,2015(04):81-82.。
二元函数极限证明
二元函数极限证明二元函数极限是非常重要的数学概念,它在微积分、数学分析、数学物理等领域中都有着广泛的应用。
本文将探讨二元函数极限的定义、性质和证明方法等内容。
一、二元函数极限的定义二元函数极限是指当二元函数f(x,y)在点(x0,y0)处充分接近某一数L时,称f(x,y)以(x0,y0)为极限的极限为L。
其数学表达式为:lim f(x,y) = L (x,y) → (x0,y0)其中,x和y是自变量,f(x,y)是因变量,(x0,y0)是指自变量趋向的目标点,L是指当自变量趋向(x0,y0)时,因变量接近的目标数。
二、二元函数极限的性质1. 二元函数极限不存在的情况二元函数极限可能不存在,如果在(x0,y0)处存在不同的极限,或者不存在以(x0,y0)为中心的去心邻域,那么二元函数极限就不存在。
2. 二元函数极限存在的情况若二元函数在点(x0,y0)的某去心邻域内有定义,并且存在常数L,使得对于任意给定的正实数ε,总存在正实数δ,使得当点(x,y)满足0<d((x,y),(x0,y0))<δ时,就有|f(x,y)-L|<ε,那么就称L是二元函数f(x,y)在点(x0,y0)处的极限。
3. 二元函数极限等价于一元函数极限对于二元函数f(x,y),可以将一个自变量看成定值,将另一个自变量看成另一个自变量的函数,则可以将二元函数极限转化为一元函数极限。
4. 二元函数极限具有唯一性如果二元函数在点(x0,y0)处存在极限,那么它的极限是唯一的。
三、二元函数极限的证明方法1. 利用定义证明根据极限的定义,可以利用ε-δ语言对二元函数的极限进行证明。
具体地,可以先假设在(x0,y0)处存在一个数L,然后对于任意给定的ε>0,都可找到一个正实数δ>0,使得当点(x,y)满足0<d((x,y),(x0,y0))<δ时,有|f(x,y)-L|<ε。
最后证明这个数列L确实满足该条件,即证得二元函数在点(x0,y0)处的极限存在。
二元函数的极限
1 , 当 0 x2 y2 1 时,就有
2M
2M
2x2 3y2 1 , M
即
1 2x2 3y2 M.
这就证得结果.
二元函数极限的四则法则与一元函数极限相仿, 特 别把 f ( x, y) 看作点函数 f (P) 时, 相应的证法也相
同, 这里不再一一叙述.
前页 后页 返回
二、累次极限
下也是有联系的.
定理16.6 若 f (x, y) 的重极限 lim f ( x, y) 与 ( x , y )( x0 , y0 )
累次极限 lim lim f ( x, y) 都存在, 则两者必定相等. x x0 y y0
证设 lim f ( x, y) A,
( x , y )( x0 , y0 )
一个聚点, A 是一实数. 若 0, 0, 使得当
P U (P0; ) D 时, 都有 | f (P) A | ,
则称 f 在 D 上当 P P0 时以 A 为极限, 记作 lim f (P) A.
P P0 P D
在对 P D 不致产生误解时, 也可简单地写作
前页 后页 返回
lim f (P) A.
4
( x, y) (0, 0)
下述定理及其推论相当于一元函数极限的海涅归
结原则(而且证明方法也相类似).
定理16.5 lim f (P) A 的充要条件是:对于 D 的 P P0 PD
任一子集 E,只要 P0 仍是 E 的聚点,就有
lim f (P) A .
P P0 PE
前页 后页 返回
推论1
的一个聚点. 若 M 0, 0, 使得 P( x, y)U (P0; ) D, 都有 f ( x, y) M ,
利用柯西中值定理求解二元函数的极限
利用柯西中值定理求解二元函数的极限在数学的研究和应用中,求解函数的极限是一项基本而重要的任务。
柯西中值定理(Cauchy's Mean Value Theorem)是一种常用的方法,用于求解二元函数的极限。
本文将介绍柯西中值定理的原理和应用,并通过具体的例子来演示如何利用柯西中值定理求解二元函数的极限。
柯西中值定理是由法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)在19世纪初提出的。
该定理描述了如果一个函数在一个闭区间上连续,在该区间的内部可微分,那么在该区间内,函数在两个点之间某个点的导数等于函数在两个端点处的差值与两个端点之间的距离的商。
具体而言,对于二维平面上的函数f(x, y),如果存在一个闭区间[a,b]×[c, d],其中a < b,c < d,且在该区间内,函数f(x, y)满足以下条件:1. 函数f(x, y)在闭区间内连续;2. 函数f(x, y)在闭区间内可微分;那么对于闭区间内的任意两点(A, B),其中A的坐标为(a, c),B的坐标为(b, d),在A和B之间至少存在一点M,其坐标为(x0, y0),满足以下等式:f(b, d) - f(a, c) = [∂f/∂x(x0, y0)] * (b - a) + [∂f/∂y(x0, y0)] * (d - c)从这个等式可以推导出以下结论:1. 如果二元函数f(x, y)在闭区间内的偏导数存在且连续,那么存在至少一个点M,使得函数在该点处的导数等于函数在闭区间两个端点处的斜率;2. 如果二元函数f(x, y)在闭区间内的偏导数不仅存在且连续,而且在该闭区间上连续,则通过柯西中值定理可以求得一个确切的点M;现在,我们通过一个具体的例子来演示如何利用柯西中值定理求解二元函数的极限。
例子:假设有一个二元函数f(x, y) = (xy^2)/(x^2 + y^2),我们希望求解函数f(x, y)在点(0, 0)处的极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典合同二元函数极限证明姓名:XXX 日期:XX年X月X日二元函数极限证明目录第一篇:二元函数极限证明第二篇:二元函数的极限第三篇:二元函数极限的研究第四篇:二元函数的极限与连续第五篇:函数极限的证明正文第一篇:二元函数极限证明二元函数极限证明设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。
此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。
我们必须注意有以下几种情形:’(1)两个二次极限都不存在而二重极限仍有可能存在(2)两个二次极限存在而不相等(3)两个二次极限存在且相等,但二重极限仍可能不存在2函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0)根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ)第 2 页共 26 页又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)|证毕3首先,我的方法不正规,其次,正确不正确有待考察。
1,y以y=x^2-x的路径趋于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。
2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。
4f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)显然有y->0,f->(x^2/|x|)*sin(1/x)存在当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在而当x->0,y->0时由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2所以|f|<=|x|+|y|所以显然当x->0,y->0时,f的极限就为0这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的正无穷或负无穷或无穷,我想这个就可以了就我这个我就线了好久了第 3 页共 26 页5(一)时函数的极限:以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有例7验证例8验证(类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=§2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等第 4 页共 26 页式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性(不等式性质):th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有) 註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:6.四则运算性质:(只证“+”和“”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)第 5 页共 26 页例2例3註:关于的有理分式当时的极限.例4例5例6例7第二篇:二元函数的极限§2 二元函数的极限(一) 教学目的:掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系.(二) 教学内容:二元函数的极限的定义;累次极限.基本要求:(1)掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系,熟悉判别极限存在性的基本方法.(2) 较高要求:掌握重极限与累次极限的区别与联系,能用来处理极限存在性问题.(三) 教学建议:(1) 要求学生弄清一元函数极限与多元函数极限的联系与区别,教会他们求多元函数极限的方法.(2) 对较好学生讲清重极限与累次极限的区别与联系,通过举例介绍判别极限存在性的较完整的方法.一二元函数的极限先回忆一下一元函数的极限: limf(x)?a 的“???” 定义(c31):x?x00设函数f(x)在x0的某一空心邻域u(x0,?1)内由定义,如果对第 6 页共 26 页???0,当 x?u(x0,?),即 |x?x0|?? 时,都有|f(x)?a|??,???0,???1,则称x?x0时,函数f(x)的极限是 a.类似的,我们也可以定义二元函数的极限如下:设二元函数f(x,y)为定义在d?r2上的二元函数,在点p0(x0,y0)为d的一个聚点,a是一个确定的常数,如果对 ???0,???0,使得当p(x,y)?u(p0,?)?d 时,0都有 |f(p)?a|??,则称f在d上当 p?p0时,以a为极限。
记作p?p0p?dlimf(p)?a也可简写为limf(p)?a或p?p0(x,y)?(x0,y0)2limf(x,y)?a 例1用定义验证2lim(x,y)?(2,1)2(x?xy?y)?7 222证明:|x?xy?y?7|?|x?x?6?xy?x?y?1|?|x?3||x?2|?|x?y?1||y?1|限制在(2,1)的邻域 {(x,y)||x?2|?1,|y?1|?1}|x?3|?6,|x?y?1|?6取 ??min{1,?/6},则有|x?xy?y|??由二元函数极限定义lim(x,y)?(2,1)(x?xy?y)?7第 7 页共 26 页22?x?y,(x,y)?(0,0)?xy22例2 f(x,y)??x?y,?0,(x,y)?(0,0)?证明lim(x,y)?(0,0)f(x,y)?0x?yx?y2222证|f(x,y)|?|xy所以lim(x,y)?(0,0)|?|xy|lim(x,y)?(0,0)|f(x,y)|?lim(x,y)?(0,0)|xy|?0|f(x,y)|?0对于二元函数的极限的定义,要注意下面一点:第 8 页共 26 页limf(p)?a 是指: p(x,y)以任何方式趋于p0(x0,y0),包括沿任何直线,沿任何曲线趋于p0(x0,y0) 时,f(x,y)必须趋于同一确定的常数。
对于一元函数,x 仅需沿x轴从x0的左右两个方向趋于x0,但是对于二元函数,p趋于p0的路线有无穷多条,只要有两条路线,p趋于p0时,函数f(x,y)的值趋于不同的常数,二元函数在p0点极限就不存在。
?1,0?y?x2例1 二元函数f(x,y)???0,rest请看图像(x62),尽管p(x,y)沿任何直线趋于原点时f(x,y)都趋于零,但也不能说该函数在原点的极限就是零,因为当p(x,y)沿抛物线y?kx,0?k?1时, f(x,y)的值趋于1而不趋于零,所以极限不存在。
(考虑沿直线y?kx的方向极限 ).?x2y例2设函数f(x,y)??x2?y2?0,?(x.,y)?(0,0)(x,y)?(0,0)求证limf(x,y)?0x?0y?0证明因为|f(x,y)?0|?x|y|x?yx|y|x第 9 页共 26 页所以,当 (x,y)?(0,0)时, f(x,y)?0。
请看它的图像,不管p(x,y)沿任何方向趋于原点,f(x,y)的值都趋于零。
通常为证明极限limf(p)不存在,可证明沿某个方向的极限不存在 , 或证明沿某两p?p0个方向的极限不相等, 或证明方向极限与方向有关 .但应注意 ,沿任何方向的极限存在且相等 ?? 全面极限存在. 例3 设函数(x,y)?(0,0)(x,y)?(0,0)?xy,?22f(x,y)??x?y?0,?证明函数 f(x,y)在原点处极限不存在。
证明尽管 p(x,y)沿x轴和y轴趋于原点时 (f(x,y)的值都趋于零,但沿直线y?mx 趋于原点时x?mxx?(mx)f(x,y)??mx22(1?m)xm1?m第 10 页共 26 页沿斜率不同的直线趋于原点时极限不一样,请看它的图象, 例1沿任何路线趋于原点时,极限都是0,但例2沿不同的路线趋于原点时,函数趋于不同的值,所以其极限不存在。
例4非正常极限极限lim(x,y)?(x0,y0)判别函数f(x,y)?xy?1?1x?y在原点是否存在极限.f(x,y)???的定义:12x?3y例1设函数f(x,y)?证明limf(x,y)??x?0y?0证|12x?3y13(x?y)只要取??16m|x?0|??,|y?0|??时,都有12x?3y16?2213(x?y)??m12x?3y请看它的图象,因此是无穷大量。
例2求下列极限: i)limxyx?y22;ii)(x,y)?(0,0)(x,y)?(3,0)limsinxyyiii)(x,y)?(0,0)limxy?1?1xy;iv)(x,y)?(0,0)limln(1?x?y)x?y22二.累次极限: 累次极限前面讲了p(x,y)以任何方式趋于p0(x0,y0)时的极限,我们称它为二重极限,对于两个自变量x,y依一定次序趋于x0,y0时 f(x,y)的极限,称为累次极限。
对于二元函数f(x,y)在p0(x0,y0)的累次极限由两个limlimf(x,y)和limlimf(x,y)y?y0x?x0x?x0y?y0例1f(x,y)?xyx?yx?yx?y222, 求在点( 0 , 0 )的两个累次极限.22例2 f(x,y)?, 求在点( 0 , 0 )的两个累次极限 .例3 f(x,y)?xs(请你支持:..)in1y?ysin1x, 求在点( 0 , 0 )的两个累次极限 .二重极限与累次极限的关系:(1)两个累次极限可以相等也可以不相等,所以计算累次极限时一定要注意不能随意改变它们的次序。