初中数学:《公式法解一元二次方程》练习(含答案)

合集下载

人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)

人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)

一元二次方程的解法 公式法 因式分解法一、选择题1. 方程x 2+x ﹣12=0的两个根为( )A .x 1=﹣2,x 2=6B .x 1=﹣6,x 2=2C .x 1=﹣3,x 2=4D .x 1=﹣4,x 2=32.整式x+1与整式x-4的积为x 2-3x-4,则一元二次方程x 2-3x-4=0的根是( ).A .x 1=-1,x 2=-4B .x 1=-1,x 2=4C .x 1=1,x 2=4D .x 1=1,x 2=-43.如果x 2+x -1=0,那么代数式3227x x +-的值为( )A .6B .8C .-6D .-84.若最新x 的一元二次方程(m -1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.若代数式(2)(1)||1x x x ---的值为零,则x 的取值是( ). A .x =2或x =1 B .x =2且x =1C .x =2D .x =-16.一个等腰三角形的两条边长分别是方程x 2-7x+10=0的两根,则该等腰三角形周长是( ).A .12B .9C .13D .12或9二、填空题7.已知实数x 满足4x 2-4x+1=0,则代数式122x x +的值为________. 8.已知y =x 2+x-6,当x =________时,y 的值是24.9.若方程2x mx n ++可以分解成(x-3)与(x+4)的积的形式,则m =________,n =________.10.若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如2※6=4×2×6=48.(1)则3※5的值为 ;(2)则x ※x+2※x-2※4=0中x 的值为 ;(3)若无论x 是什么数,总有a ※x =x ,则a 的值为 .11.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y+4=0 ①,解得y 1=1,y 2=4.当y=1时,x 2=1,∴x=±1;当y=4时,x 2=4,∴x=±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)方程(x 2+x )2﹣4(x 2+x )﹣12=0的解为 .12.三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x +60=0的一个实数根,则该三角形的面积是 .三、解答题13. 用公式法解下列方程:2(1)210x ax --=; (2)22222(1)()ab x a x b x a b +=+> .14.用适当方法解下列方程:(1)(2x-3)2=25 (2)x 2-4x+2=0 (3)x 2-5x-6=015.(1)利用求根公式计算,结合①②③你能得出什么猜想?①方程x 2+2x+1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.②方程x 2-3x-1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.③方程3x 2+4x-7=0的根为x 1=_______,x 2=________,x 1+x 2=________,x 1·x 2=________.(2)利用求根公式计算:一元二次方程ax 2+bx+c =0(a ≠0,且b 2-4ac ≥0)的两根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.(3)利用上面的结论解决下面的问题:设x 1、x 2是方程2x 2+3x-1=0的两个根,根据上面的结论,求下列各式的值:①1211x x +; ②2212x x +.答案与解析一、选择题1.【答案】D【解析】x 2+x ﹣12=(x +4)(x ﹣3)=0,则x +4=0,或x ﹣3=0,解得:x 1=﹣4,x 2=3.故选D .2.【答案】B ;【解析】∵ 234(1(4)x x x x --=+-,∴ 2340x x --=的根是11x =-,24x =.3.【答案】C .【解析】∵ 210x x +-=,∴ 21x x +=.∴ 32322222277()77176x x x x x x x x x x x +-=++-=++-=+-=-=-.4.【答案】B ;【解析】由常数项为0可得m 2-3m+2=0,∴ (m -1)(m -2)=0,即m -1=0或m -2=0, ∴ m =1或m =2,而一元二次方程的二次项系数m -1≠0,∴ m ≠1,即m =2.5.【答案】C ;【解析】(2)(1)0x x --=且||1x ≠,∴ 2x =.6.【答案】A ;【解析】x 2-7x+10=0,x 1=2,x 2=5,此等腰三角形的三边只能是5,5,2,其周长为12.二、填空题7.【答案】2;【解析】用因式分解法解方程24410x x -+=得原方程有两个等根,即1212x x ==, 所以121122x x+=+=. 8.【答案】5或-6;【解析】此题把y 的值代入得到最新x 的一元二次方程,解之即可.如:根据题意,得2624x x +-=,整理得2300x x +-=,解得15x =,26x =-. 9.【答案】 1 ; -12 ;【解析】22(3)(4)12x mx n x x x x ++=-+=+-,∴ m =1,n =-12.10.【答案】(1)60;(2) 12x =,24x =-;(3) 14a =. 【解析】(1)3※5=4×3×5=60;(2)∵ x ※x +2※2x -※4=24(28)0x x +-=,∴ 12x =,24x =-; (3)∵ a ※4x ax ==x ,4(41)0ax x a x -=-=,∴ 只有410a -=,等式才能对任何x 值都成立.∴ 14a =. 11.【答案】(1) 换元; 降次; (2) x 1=﹣3,x 2=2.【解析】解:(1)换元,降次(2)设x 2+x=y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x=6,得x 1=﹣3,x 2=2.由x 2+x=﹣2,得方程x 2+x+2=0,b 2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.12.【答案】24或8.【解析】解:∵x 2﹣16x +60=0,∴(x ﹣6)(x ﹣10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①:AB=AC=6,BC=8,AD 是高,∴BD=4,AD==2,∴S △ABC =BC•AD=×8×2=8; 当x=10时,如图②,AC=6,BC=8,AB=10,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°,S △ABC =BC•A C=×8×6=24.∴该三角形的面积是:24或8.故答案为:24或8.三、解答题13.【答案与解析】(1)∵1,2,1,a b a c ==-=-∴2224(2)41(1)440b ac a a -=--⨯⨯-=+> ∴2224412a a x a a ±+==±+ ∴22121, 1.x a a x a a =++=-+(2)222(1)ab x a x b x +=+,即222()0abx a b x ab -++=,令A =ab ,B =22()a b -+,C =ab .∵ 22222224()4()0B AC a b ab ab a b ⎡⎤-=-+-•=-⎣⎦>, ∴ 222224()2B B AC a b a b x ab-±-+±-==, ∴ 222221222a b a b a a x ab ab b++-===, 222222()222a b a b b b x ab ab a+--===, ∴ 1a x b =,2b x a=. 14.【答案与解析】解:(1)直接开平方得:2x-3=±5,∴2x-3= 5或2x-3=-5∴x 1= 4,x 2= -1(2)∵a=1,b=-4,c=2,∴△=b 2-4ac=16-8=8.∴ 42x ±=± ∴12=2=2.x x +(3)分解因式得:(x-6)(x+1)=0∴ x-6= 0或 x+1=0∴x 1= 6,x 2= -1.15.【答案与解析】(1)两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数.① -1 ; -1 ; -2 ; 1.② 32 ;32; 3 ;-1. ③ 73- ; 1 ; 43- ; 73- . ;;b a - ;c a. (3)1232x x +=-,1212x x =-. ①1212123112312x x x x x x -++===-. ②22212121291913()2214244x x x x x x ⎛⎫+=+-=-⨯-=+= ⎪⎝⎭.1、最困难的事就是认识自己。

九年级数学: 《公式法》练习(含答案)

九年级数学: 《公式法》练习(含答案)

《解一元二次方程》课下作业 第2课时 公式法积累●整合1、用公式法解方程4x 2-12x=3得( )A .x=263±-B .x=263±C .x=2323±-D .x=2323±2、不解方程,判别方程5x 2-7x+5=0的根的情况是() A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3、关于x 的方程x 2-mx+m -3=0( )A .一定有两个不相等的实数根B .没有实数根C .一定有两个相等的实数根D .以上说法都不正确4、已知x 2+3x+5=9,则代数式3x 2+9x -2的值为( )A .4B .6C .8D .105、在下列方程中,有实数根的是( )A .m 2+2m -3=0B .5+m = -6C .m 2-2m+3=0D .1-m m =11-m 6、已知方程3x 2+4x=0,下列说法正确的是( )A .只有一个根B .只有一个根x=0C .有两个根,x 1=0,x 2= -34 D .有两个根,x 1=0,x 2= 34 7、已知a 、b 、c 是△ABC 的三条边,则方程cx 2+(a+b )x+4c =0的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法确定8、三角形两边长分别是8和6,第三边的长是一元二次方程x 2-16x+60=0的一个实数根,则该三角形的面积是( )A .24B .24或58C . 48D .58拓展●应用9、在一元二次方程ax 2+bx+c=0中,若a 与c 异号,则方程的根的情况是10、若关于x 的方程x 2-(m+2)x+m=0的 根的判别式b 2-4ac=5,则m=11、关于x 的一元二次方程kx 2-6x+1=0有两个不相等的实数根,则k 的取值范围是12、已知一元二次方程x 2-(4k -2)x+4k 2=0有两个不相等的实数根,则k 的最大整数值为13、中国民歌不仅脍炙人口,而且还有许多教育意义,有一首《牧童王小良》的民歌还包含着一个数学问题:牧童王小良,放牧一群羊,问他羊几只,请你仔细想。

公式法解一元二次方程专项练习106题(有答案过程)ok

公式法解一元二次方程专项练习106题(有答案过程)ok

公式法解一元二次方程专项练习106题(有答案)1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=07. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=017.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=019.2x2+x﹣2=020.3x2+6x﹣4=021.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.33. 5x2﹣3x=x+1134.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=0 42. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=0 45.x2﹣4x﹣8=0 46.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x ﹣=0.52.x 2x+1=053.2x2﹣9x+8=0;54. x2﹣6x+1=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=1 58.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;64. y2﹣3y+1=0;65. x2+3=2x .66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,75. x2﹣4x=4;76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;86. y2﹣4y=1;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=0 90 . 5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=0 94.3x2﹣4x﹣1=0 95.3x2+2(x﹣1)=0,96.97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,∴x1=,x2=5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=10.x2﹣1=4x.原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,即x1=,x2=﹣21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x﹣1)(x+2)=11x﹣4.3x2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x===,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∵△=b2﹣4ac=(﹣4)2﹣4×5×(﹣1)=36>0,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,∴次方程无解.42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.整理得,3x2+2x﹣2=0,∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x ﹣=0.∵关于x的一元二次方程2x2+x ﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x 2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y2=;65. x2+3=2x .移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8 ∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2 b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 . 5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x2+2(x﹣1)=0,整理得:3x2+2x﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b2﹣4ac=25+8=33,∴x===.即x1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x2+5x+3=0,解得:x==,即:x1=,x2=;。

九年级数学解一元二次方程专项练习试题(带答案解析)[40道]

九年级数学解一元二次方程专项练习试题(带答案解析)[40道]

解一元二次方程专项练习题(带答案)1、用配方法解以下方程:(1)x2+12 x+25=0(3)x2-6x=112、用配方法解以下方程:(1)6x2-7x+1=0(3)4x2-3x=523、用公式法解以下方程:(1) 2x 2-9x+8=0(3)16x2+8x=34、运用公式法解以下方程:(1)5x 2+ 2x-1= 0(2)x2+4x=10(4)x2-2 x-4=0(2)5x2-18=9x(4)5x2=4-2x(2)9x2+6x+1=0(4)2x2-4x-1=0(2)x2+6 x+9=7( 3)5x+ 2=3x 2(4)( x- 2)(3x-5)=15、用分解因式法解以下方程:( 1)9x2+6x+1=0(2)3x( x-1)=2-2x( 3)(2x+3)2=4(2 x+3)(4)2(x-3)2=x2-96、用适合方法解以下方程:(1)(3 x)2 x2 5 (2)x2 2 3x 3 0( 3)(3x 11)( x 2) 2 ;(4) x(x 1) 1 ( x 1)( x 2)3 47、解以下对于x 的方程 :(1) x2+2x- 2=0(2)3x2+4x- 7=(3) (x+3)( x-1)=5(4)(x- 2 )2+4 2 x=08、解以下方程( 12 分)( 1)用开平方法解方程:( x 1)2 4 (2)用配方法解方程: x2—4x+1=0( 3)用公式法解方程:3x2+5(2 x+1)=0(4)用因式分解法解方程:3(x- 5)2=2(5 - x)9、用适合方法解以下方程:( 1)x( x-14)=0(2)x2+12x+27=0( 3)x2=x+56(4)x(5x+4)=5x+4( 5)4x2-45=31x(6)-3x2+22 x-24=0( 7)( x+8)( x+1)=-12(8)(3x+2)( x+3)=x+14解一元二次方程专项练习题答案1、【答案】(1)-611;(2)-214;(3) 3 2 5;(4)1 52、【答案】x =, x =1(2)x=3,x=-6(1)11 2 1 26 5( 3)x1=4,x2=-13(4)x=-121 4 53、【答案】( 1)x=917 ( 2)x1=x2=-14 3( 3)x1=1,x2=-3( 4)x=264 4 24、【答案】(1)x1= 1 6, x2 1 6 (2). x1=- 3+ 7 ,x2=- 3-7 5 5() x =2 , x =-1( 4)x=11133 1 2635、【答案】( 1)x1=x2=-1(2)x1=1,x2=-2 3 3( 3)x=-3, x =1(4)x =3 , x =91 2 1 22 26、【答案】(1)x1=1,x2=2 ( 2)x1=x2=- 3( 3)x1 5, x2 4;( 4)x1 2, x23 37、【答案】(1)x=- 1± 3 ;7 (2) x1=1, x2=-3(3)x1=2, x2=- 4; 1=x2=- 28、【答案】解:( 1)x13, x21 ( 2)x123, x2 23( 3)x1510 , x2 5 10 ( 4)x15, x2 13 。

初中数学例题:公式法解一元二次方程

初中数学例题:公式法解一元二次方程

初中数学例题:公式法解一元二次方程1.用公式法解下列方程.(1) x 2+3x+1=0; (2); (3) 2x 2+3x-1=0.【答案与解析】(1) a=1,b=3,c=1∴x==. ∴x 1=,x 2=.(2)原方程化为一般形式,得.∵,,,∴.∴,即,. (3) ∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0. 2241x x =-22410x x -+=2a =4b =-1c =224(4)42180b ac -=--⨯⨯=>1x ==±11x =21x =24b ac -24b ac -【答案】解:∵a=1,b=﹣3,c=﹣2;∵b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∵x==,∵x1=,x2=.2.用公式法解下列方程:(1)(2014•武汉模拟)2x2+x=2; (2)(2014秋•开县期末)3x2﹣6x﹣2=0;(3)(2015•黄陂区校级模拟)x2﹣3x﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】解:(1)∵2x2+x﹣2=0,∵a=2,b=1,c=﹣2,∵x===,∵x1=,x2=.(2)∵a=3,b=﹣6,c=﹣2,∵b2﹣4ac=36+24=60>0,∵x=,∵x1=,x2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x== , 解得 x 1=,x 2=. 【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: ;【答案】解:移项,得.∵ ,,,,∴ , ∴ ,. 240b ac -≥2221x x +=22210x x +-=2a =2b =1c =-224242(1)120b ac -=-⨯⨯-=>21222x -±-==⨯112x -=212x -+=。

公式法解一元二次方程专项小练习(附详细答案)

公式法解一元二次方程专项小练习(附详细答案)

公式法解一元二次方程(后附详细答案)一、 一元二次方程一般形式ax 2+bx+c=0,根的判别式∆为b 2-4ac1. 当b 2-4ac >0时,方程ax 2+bx+c=0有两个不相等的实数根,aac b b x a ac b b 24,24x 2221---=-+-= 2. 当b 2-4ac =0时,方程ax 2+bx+c=0有两个相等的实数根, ab x 2x 21-== 3. 当b 2-4ac <0时,方程ax 2+bx+c=0没有实数根二 、填空1、一元二次方程x 2+3x+1=0的根的判别式的值为: 。

2、已知关于x 的一元二次方程5x 2+mx+1=0的根的判别式的值为16,则m 的值为: 。

3、一元二次方程x(x+4)+3=0的根的情况是 。

4、如果关于x 的一元二次方程kx 2-3x+2=0有两个实数根,那么k 的取值范围是: 。

三、用公式法解下列方程:1、x 2-3x+1=02、-3x 2-5x+1=03、(x-3)(x+1)-3=0四、已知关于x 的一元二次方程x 2+(k+1)x+2k-2=0,(1)求证:此方程总有两个实数根。

(2)若此方程有一个根大于0且小于1,求k 的取值范围。

公式法解一元二次方程(附详细答案)二、 一元二次方程一般形式ax 2+bx+c=0,根的判别式∆为b 2-4ac4. 当b 2-4ac >0时,方程ax 2+bx+c=0有两个不相等的实数根,aac b b x a ac b b 24,24x 2221---=-+-= 5. 当b 2-4ac =0时,方程ax 2+bx+c=0有两个相等的实数根,ab x 2x 21-== 6. 当b 2-4ac <0时,方程ax 2+bx+c=0没有实数根二 、填空1、一元二次方程x 2+3x+1=0的根的判别式的值为: 5 。

2、已知关于x 的一元二次方程5x 2+mx+1=0的根的判别式的值为16,则m 的值为: ±6 。

《公式法》练习(有答案)

《公式法》练习(有答案)

初中精品试卷2.2 一元二次方程的解法公式法一、填空题1.配方法解一元二次方程的基本思路是:(1)先将方程配方(2)如果方程左右两边均为非负数则两边同时开平方, 化为两个 __________(3)再解这两个 __________22.用配方法解一元二次方程 ax +bx+c=0(a ≠ 0)时:移项得 ________配方得 __________即( x+__________)2=__________当_________时,原方程化为两个一元一次方程 __________和 __________∴ x 1=_________,x 2=____________3.利用求根公式解一元二次方程时,首先要把方程化为__________,确定__________的值,当__________时,把 a,b,c 的值代入公式, x 1,2=____________ 求得方程的解 .方程 2-8=7x 化为一般形式是 _____,a=______,b=________,c=________, 4. 3x方程的根 x 1=________,x 2=________.二、选择题1.用公式法解方程 3x 2+4=12x ,下列代入公式正确的是()12 12 12 23 4A.x 、 =21 2 12 122 3 4B.x 、 =2C.x 1、 2= 12122 3 42D.x1、(12)(12) 2 4 34 2=232.方程 x2+3x=14 的解是()A.x= 365 B.x=36522 323D.x=323C.x=22下列各数中,是方程2)x+=0的解的有()-(1+553.x①1+ 5 ②1-5③1④-5A.0 个B.1 个C.2 个D.3 个4.方程 x2+(3 2 )x+ 6 =0的解是()A.x =1,x =6B.x=- 1,x =-61212C.x1= 2 ,x2= 3D.x1=-2 ,x2=-3三、用公式法解下列各方程1.5x2+2x-1=02.6y2+13y+6=03.x2+6x+9=7四、你能找到适当的x 的值使得多项式A=4x 2+2x-1 与 B=3x2-2 相等吗?参考答案一、 1.一元一次方程一元一次方程2.x2+ bx c0 x2+bx ca a a ax2b b)2c b2b b24acb2b b24ac x(a4a22a4a 24ac 0 x4a 2 a2a2ab b24ac b b24ac b b24acx4a22a2a2a3.一般形式二次项系数、一次项系数、常数项b2- 4ac≥0b b2 4ac2a4.3x2-7x- 8=0 3-7-87145 714566二、 1.D 2.B 3.B 4.D三、 1.解: a=5,b=2,c=-1∴Δ=b2-4ac=4+4×5×1=24>0∴x1·222416=105∴x116, x216=552.解: a=6,b=13,c=6∴Δ=b2-4ac=169-4×6×6=25>0∴x1·213 2513 5=1212∴x1=-3,x2=-2 233.解:整理,得: x2+6x+2=0∴a=1,b=6,c=2∴Δ=b2-4ac=36-4×1×2=28>0∴x1·2= 6 28=- 3±72∴x1=-3+ 7 ,x2=-3-7四、解:若 A=13,即 4x2+2x-1=3x2- 2整理,得 x2+2x+1=0∴(x+1)2=0,∴ x1 =x2=- 1∴当 x=- 1 时, A=13.。

九年级数学解一元二次方程——公式法(基础)(含答案)

九年级数学解一元二次方程——公式法(基础)(含答案)

解一元二次方程——公式法(基础)一、单选题(共10道,每道10分)1.下列一元二次方程中,有两个相等的实数根的是( )A. B.C. D.答案:B解题思路:A选项无解B选项可配方成,实数根为C选项:∵,∴x-2=1或x-2=-1,∴,D选项:试题难度:三颗星知识点:解一元二次方程2.对于方程,下列说法正确的是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.根的个数与m的取值有关答案:D解题思路:∵∴的取值大小与m的取值有关∴根的个数与m的取值有关试题难度:三颗星知识点:一元二次方程的根的判别式3.已知关于x的一元二次方程有两个相等的实数根,则c=( )A.4B.2C.1D.-4答案:A解题思路:∵方程有两个相等的实数根∴∴c=4试题难度:三颗星知识点:一元二次方程的根的判别式4.已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )A.m<-1B.m>1C.m<1且m≠0D.m>-1且m≠0答案:D解题思路:∵方程有两个不相等的实数根∴且m0∴m>-1且m0试题难度:三颗星知识点:解一元二次方程的根的判别式5.若关于x的方程有实数根,则整数a的最大值是( )A.6B.7C.8D.9答案:C解题思路:当,即时,方程为一元一次方程,可化为,有实数根.当,即时,方程为一元二次方程,要使方程有实根,需,由得,且,a取最大整数为8试题难度:三颗星知识点:一元二次方程的根的判别式6.一元二次方程的根是( )A. B.,C.,D.,答案:C解题思路:由题意,∴对于方程用公式法,∴,试题难度:三颗星知识点:解一元二次方程——公式法7.以为根的一元二次方程可能是( )A. B.C. D.答案:D解题思路:根据一元二次方程求根公式可知,一元二次方程二次项系数为1,一次项系数为-b,常数项为-c试题难度:三颗星知识点:解一元二次方程——公式法8.用公式法解方程,下列代入公式正确的是( )A. B.C. D.答案:D解题思路:方程可化为.这里a=4,b=-12,c=-3.∵,∴.试题难度:三颗星知识点:解一元二次方程——公式法9.用公式法解方程,下列代入公式正确的是( )A. B.C. D.答案:B解题思路:对于可直接利用公式法得,.也可将化成的形式对于用公式法,.试题难度:三颗星知识点:解一元二次方程——公式法10.已知一元二次方程的较小根为x1,则下面对x1的估计正确的是( )A.-2<x1<-1B.-3<x1<-2C.2<x1<3D.-1<x1<0答案:A解题思路:由题意,∴对于方程用公式法,∴方程的较小根∵∴∴∴试题难度:三颗星知识点:解一元二次方程——公式法。

21.2.2解一元二次方程之公式法 同步练习(含答案)

21.2.2解一元二次方程之公式法 同步练习(含答案)

21.2.2 解一元二次方程(公式法)一、 单选题(共10小题)1.已知关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是( )A . 1m >B .1mC .1m <-D .1m ≤-2.一元二次方程2210x x +-=根的情况为( )A .有两个相等的实数根B .有两个正实数根C .有两个不相等的实数根D .有两个负实数根3.(2019·娄底市娄星区小碧中学初三期末)关于x 的方程22x 2(1m)x m 0--+=有两实根α.β,则α+β的取值范围是( )A .α+β ≥12 B .α+β ≤12 C .α+β ≥1 D .α+β ≤14.关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围在数轴上可以表示为() A .B .C .D . 5.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是( )A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 6.(2019·河南中考真题)一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7. 关于x 的一元二次方程2x 2x m 0-+= 无实数根,则实数m 的取值范围是( )A .1m <B .m 1≥C .1mD .1m8.(2018·湖南广益实验中学初二期中)方程210x -+=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定根的个数9.若关于x 的一元二次方程2420kx x --+=有两个不相等的实数根,则k 的取值范围是( )A .2k >-B .2k <-C .2k <且0k ≠D .2k >-且0k ≠10.(2019·河南省实验中学初二期末)下列一元二次方程中,有两个不相等实数根的是( )A . x 2+6x +9=0B .x 2=xC .x 2+3=2xD . (x −1)2+1=011.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,则下列说法正确的是( )A. 1一定不是方程x 2+bx+a=0的根B. 0一定不是方程x 2+bx+a=0的根C. -1可能是方程x 2+bx+a=0的根D. 1和-1都是方程x 2+bx+a=0的根二、填空题(共5小题)11.关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 . 12.(2019·山东中考真题)一元二次方程2342x x =-的解是______.13.(2019·宁夏中考真题)已知一元二次方程2340x x k +-=有两个不相等的实数根,则k 的取值范围_____. 14. 若关于x 的一元二次方程()23x c +=有实数根,则c 的值可以为________(写出一个即可). 15. 已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是 .二、 解答题(共2小题)16.已知关于x 的一元二次方程2(1)(21)10m x m x m ---++=(m 为常数)有两个实数根,求m 的取值范围.17.已知 x = -2 是方程 2x + mx - 6 = 0 的一个根,求 m 的值及方程的另一根 x 的值。

人教版初中数学初三上册第二十一章《公式法解一元二次方程》同步练习题(解析版)

人教版初中数学初三上册第二十一章《公式法解一元二次方程》同步练习题(解析版)

第 1 页人教版初中数学初三上册第二十一章《公式法解一元二次方程》同步练习题(解析版)一、选择题(每小题只有一个正确答案)1.利用求根公式求5x 2+12=6x 的根时,此中a=5,则b、c 的值分别是( ) A . 12、6 B . 6、12 C . 、6、12 D . 、6、、122.方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x=±9D . x 1=3,x 2=﹣33.已知a 是一元二次方程x 2﹣3x ﹣5=0的较小的根,则下面对a 的预计正确的是( )A . ﹣2<a <﹣1B . 2<a <3C . ﹣3<a <﹣4D . 4<a <54.方程2x 2、√5x、3=0的两根是( )A . x=√5±√112B . x=√5±√292C . x=−√5±√292D . x=−√5±√2945.若3(x +1)2﹣48=0,则x 的值即是( )A . ±4B . 3或﹣5C . ﹣3或5D . 3或56.若※是新准则的某种运算标记,设a※b=b 2 -a ,则-2※x=6中x 的值()A . 4B . 8C .2 D . -2二、填空题7.根的鉴别式内容:△=b 2﹣4ac >0⇔一元二次方程_____;△=b 2﹣4ac=0⇔一元二次方程_____;此时方程的两个根为x 1=x 2=_____.△=b 2﹣4ac <0⇔一元二次方程_____.△=b 2﹣4ac ≥0⇔一元二次方程_____.8.用求根公式解方程x 2+3x=﹣1,先求得b 2﹣4ac=_____,则 x 1=_____,x 2=_____.9.用公式法解一元二次方程﹣x 2+3x=1时,应求出a ,b ,c 的值,则:a=_____;b=_____;c=_____.10.把方程(x +3)(x ﹣1)=x (1﹣x )整理成ax 2+bx +c=0的形式_____,b 2﹣4ac 的值是_____.三、解答题11.解方程:3x 2−2x −2=0、12.选择适当的要领解方程:、1、2(x 、3)2、8、、2、x2-6x-4、0.13.解方程:(1、(2x+1)2=(x-1)2;、2、x2+4x-7=014.已知关于x的方程mx2+(3、m)x、3=0(m为实数,m≠0)、(1) 试说明:此方程总有两个实数根.(2) 要是此方程的两个实数根都为正整数,求整数m的值.参考答案1.C【剖析】【剖析】把方程化为一般式,使二次项系数为5,从而可得到b、c的值.【详解】=0、5x2、6x+12、所以a=5、b=、6、c=12故选:C、【点睛】考察明白一元二次方程﹣公式法:用求根公式解一元二次方程的要领是公式法.2.D【剖析】【剖析】先移项得到x2=9,然后利用直接开平要领解方程.【详解】x2=9,x=±3,所以x1=3,x2=-3.故选D.【点睛】本题考察明白一元二次方程-直接开平要领:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采取直接开平方的要领解一元二次方程.3.A【剖析】【剖析】利用公式法表示出方程的根,再举行估算即可.【详解】一元二次方程x2-3x-5=0,第 1 页∵a=1,b=-3,c=-5,∴△=9+20=29,∴x=3±√292,则较小的根a=3−√292,即-2<a<-1,故选A.【点睛】此题考察明白一元二次方程-公式法,以及估算,熟练掌握运算准则是解本题的要害.4.B【剖析】【剖析】利用求根公式x=b±√b2+4c2解方程.【详解】方程:、√5x、3=0中b=-√5,a=2,c=-3.∴x=b±√b2+4c2、√5±√292.故选:B.【点睛】考察用公式法解一元二次方程,利用求根公式x=b±√b2+4c2解方程时,一定要弄明白该公式中的字母a、b、c所表示的意义.5.B【剖析】【剖析】先移项,再系数化成1,开方,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x+1)2-48=0,3(x+1)2=48,(x+1)2=16,第 3 页x+1=±4,x=3或-5,故选:B .【点睛】考察明白一元二次方程,解此题的要害是能把一元二次方程转化成一元一次方程.6.C【剖析】解:由题意得: 226x +=,∴24x =,∴x =±2.故选C .7. 有两个不相等的实数根 有两个相等的实数根 ﹣b 2a 无解 有实数根【剖析】【剖析】利用根的鉴别式与解的干系鉴别即可得到终于.【详解】△=b 2-4ac >0⇔一元二次方程有两个不相等的实数根;△=b 2-4ac=0⇔一元二次方程有两个相等的实数根;此时方程的两个根为x 1=x 2=-b 2a .△=b 2-4ac <0⇔一元二次方程无解.△=b 2-4ac≥0⇔一元二次方程有实数根.故答案为:有两个不相等的实数根;有两个相等的实数根;-b 2a ;无解;有实数根.【点睛】此题考察明白一元二次方程-公式法,熟练掌握根的鉴别式与解的干系是解本题的要害.8. 5 −3+√52 −3−√52【剖析】【剖析】将已知方程化为一般形式,找出a ,b 及c 的值,谋略出b 2-4ac ,发觉其值大于0,得到方程有两个不相等的实数根,故将a ,b 及c 的值代入求根公式,即可求出原方程的解.【详解】x 2+3x=-1整理为一般形式得:x 2+3x+1=0,∵a=1,b=3,c=1,∴b 2-4ac=32-4=5>0,∴x=−3±√52, ∴x 1=−3+√52,x 2=−3−√52.故答案为:5;−3+√52;−3−√52.【点睛】 此题考察了利用公式法求一元二次方程的解,利用此要领解方程时,应先将方程化为一般形式,找出二次项系数a ,一次项系数b 及常数项c ,然后谋略出根的鉴别式,当根的鉴别式大于即是0时,将a ,b 及c 的值代入求根公式可得出方程的解;当根的鉴别式小于0时,原方程无解.9. -1 3 -1【剖析】【剖析】先移项,将方程变形为一元二次方程的一般形式,然后再找出各项系数即可.【详解】-x 2+3x=1,-x 2+3x-1=0,a=-1,b=3,c=-1,故答案为:-1,3,-1.【点睛】本题考察明白一元二次方程,一元二次方程的一般形式的应用,注意:项的系数带着火线的标记.10. 2x 2+x ﹣3=0 25【剖析】【剖析】将方程整理为一般形式,谋略出根的鉴别式的值即可.【详解】方程(x+3)(x-1)=x (1-x )整理得:2x 2+x-3=0,b 2-4ac=25.故答案为:2x 2+x-3=0;25.第 5 页【点睛】此题考察明白一元二次方程-公式法,熟练掌握求根公式是解本题的要害.11.x 1=1+√73、x 2=1−√73. 【剖析】【剖析】先找出a、b、c ,再求出b 2-4ac=28,根据求根公式即可求出答案.【详解】a=3、b=-2、c=-2、b 2-4ac=、-2、2-4×3×、-2、=28>0、∴x=−b±√b 2−4ac 2a=−(−2)+√282×3=1±√73、 ∴x 1=1+√73、x 2=1−√73.【点睛】本题考察明白一元二次方程,解一元二次方程的要领有提公因式法、公式法,因式分化法等,根据方程的系数特点灵敏选择适当的要领举行求解是解题的要害.12.、1、x 1、5、x 2、1、、2、x 1、3+√13、 x 2、3-√13、【剖析】剖析:(1)方程用直接开平要领即可求解;、2)用公式法即可求解方程.详解:(1、2(x、3)2、8、(x、3)2、4、开方,得x、3、2或x、3、-2、解得x 1、5、x 2、1、、2、x 2-6x -4、0a=1、b=-6、c=-4、△=b 2-4ac=52>0、∴方程有两个不相等的实数根x=−b±√b 2−4ac 2a=−(−6)±√522×1=3±√13、 ∴x 1、3+√13、 x 2、3-√13点睛:此题考察明白一元二次方程的要领-直接开平要领和公式法,根据给出的方程的布局,选择适当的要领举行求解是要害.13.(1)x1=0,x2=-2;(2)x1=-2+√11,x2=-2-√11.谋略即【剖析】剖析:(1)用直接开平要领求解即可;(2)根据求根公式:x=−b±√b2−4ac2a可.详解:(1)∵(2x+1)2=(x-1)2,、2x+1=x-1或2x+1=-(x-1),、2x-x=-1-1或2x+1=-x+1,、2x-x=--1或2x+1=-x+1,、x=-2或x=0、即x1=0、x2=-2、(2)x2+4x-7=0∵a=1,b=4,c=-7,=−2±√11,∴x=−4±√42−4×1×(−7)2、x1=-2+√11、x2=-2-√11.点睛:本题主要考察的知识点是一元二次方程的解法-直接开平要领和求根公式法.熟练掌握直接开平要领和求根公式法是解答本题的要害,本题属于一道基础题,难度适中.14.(1)b2−4ac=(m+3)2≥0、(2)m=-1,-3.【剖析】剖析: (1)先谋略鉴别式得到△=(m-3)2-4m•(-3)=(m+3)2,利用非负数的性质得到△≥0,然后根据鉴别式的意义即可得到结论;、x2=-1,然后利用整除性即可得到m的值.、2)利用公式法可求出x1=3m详解: (1)证明:∵m≠0,∴方程mx2+(m-3)x-3=0(m≠0)是关于x的一元二次方程,∴△=(m-3)2-4m×(-3)=(m+3)2,∵(m+3)2≥0,即△≥0,∴方程总有两个实数根;,(2)解:∵x=−(3−m)±(m+3)2m,x2=1,∴x1=-3m∵m为正整数,且方程的两个根均为整数,∴m=-1或-3.点睛: 本题考察了一元二次方程ax2+bx+c=0、a≠0)的根的鉴别式、=b2-4ac:当、、0,方程有两个不相等的实数根;当、=0,方程有两个相等的实数根;当、、0,方程没有实数根.也考察明白一元二次方程.第 7 页。

2022-2023学年九年级上数学:配方法和公式法解一元二次方程练习题(附答案解析)

2022-2023学年九年级上数学:配方法和公式法解一元二次方程练习题(附答案解析)

2022-2023学年九年级上数学第21章一元二次方程21.2.1配方法和公式法解一元二次方程一、选择题1.一元二次方程210x -=的根是()A .121x x ==B .121x x ==-C .11x =-,21x =D .1x =2.方程24x =的根为()A .2x =B .2x =-C .0x =D .2x =±3.用配方法解方程2210x x +-=时,配方结果正确的是()A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=4.若将一元二次方程2890x x --=化成2()x n d +=的形式,则n ,d 的值分别是()A .4,25B .4-,25C .2-,5D .8-,735.一元二次方程20(0)ax bx c a ++=≠的求根公式是()A .2b x a -=B .2b x a =C .x =D .x 6.用公式法解方程2263t t =+时,a ,b ,c 的值分别为()A .2,6,3B .2,6-,3-C .2-,6,3-D .2,6,3-7.方程210x x +-=的根是()A .1-BC .1-D 二、填空题8.若2280x -=,则x =.9.一元二次方程2(1)4x +=的解为.10.方程2220x x +-=配方得到2()3x m +=,则m =.11.方程2250x x --=配方后可化为.12.一元二次方程210x x +-=的解是.13.用公式法解一元二次方程,得y =,则该一元二次方程为.三、解答题14.解方程:(1)2(1)16x -=;(2)22310x x +-=.15.解方程:(1)(2)3x x -=;(2)210x x +-=.一、选择题1.下列配方中,变形正确的是()A .222(1)x x x +=+B .2243(2)1x x x --=-+C .222432(1)1x x x ++=++D .222(1)1x x x -+=-+-2.用配方法解下列方程,其中应在两端同时加上4的是()A .225x x -=B .2245x x -=C .245x x +=D .225x x +=3.利用配方法解方程22103x x --=时,应先将其变形为()A .2110()39x +=B .2110()39x -=C .218()39x -=D .218(39x +=4.方程(1)2x x -=的两根为()A .10x =,21x =B .10x =,21x =-C .11x =,22x =D .11x =-,22x =5.已知等腰ABC ∆中的三边长a ,b ,c 满足22248180a b a b +--+=,则ABC ∆的周长是()A .6B .9C .6或9D .无法确定6.已知方程264x x -+=□,等号右侧的数字印刷不清楚.若可以将其配方成2()7x p -=的形式,则印刷不清的数字是()A .6B .9C .2D .2-7.若方程2230x mx +-=的二次项系数、一次项系数、常数项的和为0,则该方程的解为()A .1x =,2x =B .11x =,23x =-C .11x =-,23x =D .11x =-,22x =-二、填空题8.已知x ,y 是有理数,且2226100x x y y ++-+=,则y x =.9.方程(4)(5)1x x +-=的根为.三、解答题10.解下列方程:(1)2(2)240x x --+=;(2)2410x x --=.11.解下列方程:(1)(4)3x x -=;(2)2215x x +-=.一、选择题1.(2022•聊城)用配方法解一元二次方程23610x x +-=时,将它化为2()x a b +=的形式,则a b +的值为()A .103B .73C .2D .432.(2022•雅安)若关于x 的一元二次方程260x x c ++=配方后得到方程2(3)2x c +=,则c 的值为()A .3-B .0C .3D .93.(2022•甘肃)用配方法解方程222x x -=时,配方后正确的是()A .2(1)3x +=B .2(1)6x +=C .2(1)3x -=D .2(1)6x -=4.(2021•赤峰)一元二次方程2820x x --=,配方后可变形为()A .2(4)18x -=B .2(4)14x -=C .2(8)64x -=D .2(4)1x -=5.(2021•丽水)用配方法解方程2410x x ++=时,配方结果正确的是()A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x +=6.(2021•海南)用配方法解方程2650x x -+=,配方后所得的方程是()A .2(3)4x +=-B .2(3)4x -=-C .2(3)4x +=D .2(3)4x -=7.(2020•泰安)将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是()A .4-,21B .4-,11C .4,21D .8-,698.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是()A .2317()416x -=B .231(42x -=C .2313(24x -=D .2311()24x -=9.(2022•郴州)一元二次方程2210x x +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根10.(2022•贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,011.(2022•营口)关于x 的一元二次方程240x x m +-=有两个实数根,则实数m 的取值范围为()A .4m <B .4m >-C .4m D .4m - 12.(2022•北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A .4-B .14-C .14D .413.(2022•辽宁)下列一元二次方程无实数根的是()A .220x x +-=B .220x x -=C .250x x ++=D .2210x x -+=14.(2022•湖北)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且1212(2)(2)217x x x x ++-=,则(m =)A .2或6B .2或8C .2D .615.(2022•宜宾)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是A .0a ≠B .1a >-且0a ≠C .1a - 且0a ≠D .1a >-16.(2022•常德)关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是()A .4k >B .4k <C .4k <-D .1k >二、填空题17.(2022•荆州)一元二次方程2430x x -+=配方为2(2)x k -=,则k 的值是.18.(2020•扬州)方程2(1)9x +=的根是.19.(2022•上海)已知20x m -+=有两个不相等的实数根,则m 的取值范围是.20.(2022•铜仁市)若一元二次方程220x x k ++=有两个相等的实数根,则k 的值为.21.(2022•鄂州)若实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,则11ab+的值为.三、解答题22.(2022•齐齐哈尔)解方程:22(23)(32)x x +=+.23.(2022•无锡)(1)解方程:2250x x --=;24.(2021•兰州)解方程:2610x x --=.参考答案基础训练1.【答案】C【解析】解:210x -= ,21x ∴=,1x ∴=±,即11x =-,21x =.故选:C .2.【答案】D【解析】解:24x = ,2x ∴=±,故选:D .3.【答案】B【解析】解:2210x x +-=,移项得221x x +=,等式两边同时加21得22111x x ++=+配方得2(1)2x +=.,故选:B .4.【答案】B【解析】解:2890x x --= ,281625x x ∴-+=,2(4)25x ∴-=,4n ∴=-,25d =,故选:B .5.【答案】A【解析】解:一元二次方程的求根公式为x =,故选:A .6.【答案】B【解析】解:方程化为22630t t --=,所以2a =,6b =-,3c =-.故选:B .7.【答案】D【解析】解:210x x +-=,1a = ,1b =,1c =-,∴△224141(1)50b ac =-=-⨯⨯-=>,故122b b ac x a --==,故选:D .8.【答案】2±【解析】解:由原方程,得228x =,24x ∴=,直接开平方,得2x =±.故答案为:2±.9.【答案】11x =,23x =-【解析】解:2(1)4x +=12x +=±21x =±-11x =,23x =-,故答案为:11x =,23x =-.10.【答案】1【解析】解:222x x +=,2213x x ++=,2(1)3x +=.所以1m =,故答案为1.11.【答案】2(1)6x -=【解析】解:2250x x --= ,2216x x ∴-+=,2(1)6x ∴-=,故答案为:2(1)6x -=.12.【答案】1152x -+=,2152x --=【解析】解:1a = ,1b =,1c =-,∴△2141(1)5=-⨯⨯-=,x ∴=,所以1x =,2x =.故答案为1152x -+=,2152x -=.13.【答案】23510x x +-=【解析】解:根据题意得:3a =,5b =,1c =-,则该一元二次方程是23510x x +-=.故答案为:23510x x +-=.14.【解析】解:(1)2(1)16x -=,14x -=±,14x -=或14x -=-,15x =,23x =-;(2)22310x x +-=,△2342(1)9817=-⨯⨯-=+=,3174x -±∴=,13174x -+∴=,23174x --=.15.【解析】解:(1)方程整理得:223x x -=,配方得:2214x x -+=,即2(1)4x -=,开方得:12x -=或12x -=-,解得:13x =,21x =-;(2)这里1a =,1b =,1c =-,△1=+122b b ac x a --∴==,解得:1152x -+=,2152x -=.1.【答案】C【解析】解:22x x +2211x x =++-2(1)1x =+-,A 错误.243x x --24443x x =-+--2(44)(43)x x =-++--2(2)7x =--.B 错误.2243x x ++22(2)3x x =++22(211)3x x =++-+22(21)213x x =++-⨯+22(1)23x =+-+22(1)1x =++.C 正确.22x x -+2(211)x x =--+-2(21)1x x =--++2(1)1x =-++D 错误.故选:C .2.【答案】C【解析】解:A .由225x x -=得22151x x -+=+,不符合题意;B .由2245x x -=得2522x x -=,所以252112x x -+=+,不符合题意;C .由245x x +=得24454x x ++=+,符合题意;D .由225x x +=得22151x x ++=+,不符合题意;故选:C .3.【答案】B【解析】解:22103x x --=,移项,得2213x x -=,配方,得222211(1()333x x -+=+,即2110()39x -=,故选:B .4.【答案】D【解析】解:方程移项并化简得220x x --=,1a =,1b =-,2c =-△180=+12x ±∴=解得11x =-,22x =.故选:D .5.【答案】B【解析】解22248180a b a b +--+= ,222(1)(4)0a b ∴-+-=,10a ∴-=,40b -=,解得1a =,4b =,35c << ,ABC ∆ 是等腰三角形,4c ∴=.故ABC ∆的周长为:1449++=.故选:B .6.【答案】C【解析】解:设印刷不清的数字是a ,2()7x p -=,2227x px p -+=,2227x px p ∴-=-,222411x px p ∴-+=-,方程264x x -+=□,等号右侧的数字印刷不清楚,可以将其配方成2()7x p -=的形式,26p ∴-=-,211a p =-,3p ∴=,21132a =-=,即印刷不清的数字是2,故选:C .7.【答案】B【解析】解:方程2230x mx +-=的二次项系数、一次项系数、常数项分别是1,2m ,3-,方程2230x mx +-=的二次项系数、一次项系数、常数项的和为0,12(3)0m ∴++-=,解得:1m =,即方程为2230x x +-=,解得:11x =,23x =-,故选:B .8.【答案】1-【解析】解:2226100x x y y ++-+=,22(21)(69)0x x y y +++-+=,22(1)(3)0x y ++-=,则1030x y +=⎧⎨-=⎩,1x ∴=-,3y =,3(1)1y x ∴=-=-,故答案为:1-.9.【答案】1x 2x =【解析】解:(4)(5)1x x +-=,整理得:2210x x --=,224(1)41(21)85b ac -=--⨯⨯-=,1852x ±=,112x +=,212x =,故答案为:1x =2x =.10.【解析】解:(1)2(2)240x x --+=,2(2)2(2)0x x ---=,(2)(22)0x x ---=,20x -=或220x --=,解得:12x =,24x =;(2)2410x x --=,241x x -=,配方,得24414x x -+=+,2(2)5x -=,开方得:2x -=,解得:12x =+,22x =-.11.【解析】解:(1)(4)3x x -=,243x x -=,配方,得24434x x -+=+,2(2)7x -=,开方,得2x -=解得:12x =+,22x =-;(2)2215x x +-=,2260x x +-=,224142(6)148490b ac -=-⨯⨯-=+=> ,x ∴==,解得:132x =,22x =-.1.【答案】B【解析】解:23610x x +-= ,2361x x ∴+=,2123x x +=,则212113x x ++=+,即24(1)3x +=,1a ∴=,43b =,73a b ∴+=.故选:B .2.【答案】C【解析】解:260x x c ++=,26x x c +=-,2699x x c ++=-+,2(3)9x c +=-+.2(3)2x c += ,29c c ∴=-+,解得3c =,故选:C .3.【答案】C【解析】解:222x x -=,22121x x -+=+,即2(1)3x -=.故选:C .4.【答案】A【解析】解:2820x x --= ,282x x ∴-=,则2816216x x -+=+,即2(4)18x -=,故选:A .5.【答案】D【解析】解:方程2410x x ++=,整理得:241x x +=-,配方得:2(2)3x +=.故选:D .6.【答案】D【解析】解:把方程2650x x -+=的常数项移到等号的右边,得到265x x -=-,方程两边同时加上一次项系数一半的平方,得到26959x x -+=-+,配方得2(3)4x -=.故选:D .7.【答案】A【解析】解:2850x x --= ,285x x ∴-=,则2816516x x -+=+,即2(4)21x -=,4a ∴=-,21b =,故选:A .8.【答案】A 【解析】解:由原方程,得23122x x -=,23919216216x x -+=+,2317()416x -=,故选:A .9.【答案】A【解析】解: △2142(1)1890=-⨯⨯-=+=>,∴一元二次方程2210x x +-=有两个不相等的实数根,故选:A .10.【答案】B【解析】解:设方程的另一根为a ,2x =- 是一元二次方程220x x m ++=的一个根,440m ∴-+=,解得0m =,则20a -=,解得0a =.故选:B .11.【答案】D【解析】解: 关于x 的一元二次方程240x x m +-=有两个实数根,∴△2441()1640m m =-⨯⨯-=+ ,解得:4m - ,故选:D .12.【答案】C【解析】解:根据题意得△2140m =-=,解得14m =.故选:C .13.【答案】C【解析】解:A 、△2141(2)90=-⨯⨯-=>,则该方程有两个不相等的实数根,故本选项不符合题意;B 、△2(2)41040=--⨯⨯=>,则该方程有两个不相等的实数根,故本选项不符合题意;C 、△21415190=-⨯⨯=-<,则该方程无实数根,故本选项符合题意;D 、△2(2)4110=--⨯⨯=,则该方程有两个相等的实数根,故本选项不符合题意;故选:C .14.【答案】A【解析】解: 关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,∴△22(2)4(41)0m m m =---- ,即14m - ,且21241x x m m =--,122x x m +=,1212(2)(2)217x x x x ++-= ,1212122()4217x x x x x x ∴+++-=,即12122()417x x x x ++-=,2444117m m m ∴+-++=,即28120m m -+=,解得:2m =或6m =.故选:A .15.【答案】B【解析】解:由题意可得:20240a a ≠⎧⎨+>⎩,1a ∴>-且0a ≠,故选:B .16.【答案】A【解析】解: 关于x 的一元二次方程240x x k -+=无实数解,∴△2(4)410k =--⨯⨯<,解得:4k >,故选:A .17.【答案】1【解析】解:2430x x -+= ,243x x ∴-=-,24434x x ∴-+=-+,2(2)1x ∴-=,一元二次方程2430x x -+=配方为2(2)x k -=,1k ∴=,故答案为:1.18.【答案】12x =,24x =-【解析】解:2(1)9x +=,13x +=±,12x =,24x =-.故答案为:12x =,24x =-.19.【答案】3m <【解析】解: 关于x 的方程20x m -+=有两个不相等的实数根,∴△2(40m =-->,解得:3m <.故答案为:3m <.20.【答案】1【解析】解:根据题意得△22410k =-⨯⨯=,即440k -=解得1k =.故答案为:1.21.【答案】43【解析】解: 实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,a ∴、b 可看作方程2430x x -+=的两个不相等的实数根,则4a b +=,3ab =,则原式43a b ab +==,故答案为:43.22.【解析】解:方程:22(23)(32)x x +=+,开方得:2332x x +=+或2332x x +=--,解得:11x =,21x =-.23.【解析】解:(1)2250x x --=,225x x -=,22151x x -+=+,2(1)6x -=,1x ∴-=,解得11x =+,21x =-.24.【解析】解:2610x x --=,移项得:261x x -=,配方得:26910x x -+=,即2(3)10x -=,开方得:3x -=,则13x =+23x =。

《用公式法解一元二次方程》课时练习(含答案) 2021--2022学年青岛版数学九年级上册

《用公式法解一元二次方程》课时练习(含答案)  2021--2022学年青岛版数学九年级上册

青岛版数学九年级上册4.3《用公式法解一元二次方程》课时练习一、选择题1.解方程(x +1)(x +3)=5较为合适的方法是( )A.直接开平方法B.配方法C.公式法或配方法D.分解因式法2.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a,b,c 的值,下列叙述正确的是( ) A.a=3,b=2,c=3 B.a=-3,b=2,c=3C.a=3,b=2,c=-3D.a=3,b=-2,c=33.一元二次方程x 2-0.25=2x 的解是( ) A. B.252±=x C.251+=x D.251±=x4.用公式法解方程4x 2﹣12x=3所得的解正确的是( )A.x=B.x=C.x=D.x=5.以x=为根的一元二次方程可能是( )A.x 2+bx+c=0B.x 2+bx ﹣c=0C.x 2﹣bx+c=0D.x 2﹣bx ﹣c=06.下列方程适合用求根公式法解的是( )A.(x ﹣3)2=2B.325x 2﹣326x+1=0C.x 2﹣100x+2500=0D.2x 2+3x ﹣1=07.用公式法解﹣x 2+3x=1时,先求出a 、b 、c 的值,则a 、b 、c 依次为( )A.﹣1,3,﹣1B.1,﹣3,﹣1C.﹣1,﹣3,﹣1D.1,3,18.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是( ) A.a=3,b=2,c=3B.a=-3,b=2,c=3C.a=3,b=2,c=-3D.a=3,b=-2,c=3 9.方程x 2+x -1=0的一个根是( )A.1- 5B.1-52C.-1+ 5D.-1+5210.方程2x 2+43x +62=0的根是( )A.x 1=2,x 2= 3B.x 1=6,x 2= 2C.x 1=22,x 2= 2D.x 1=x 2=- 6二、填空题11.用求根公式解方程x 2+3x=﹣1,先求得b 2﹣4ac= ,则 x 1= ,x 2= .12.当 ≥0时,一元二次方程ax 2+bx+c=0的求根公式为 .13.把方程(x+3)(x ﹣1)=x(1﹣x)整理成ax 2+bx+c=0的形式 ,b 2﹣4ac 的值是 .14.已知关于x 的方程ax 2-bx +c=0的一个根是x 1=12,且b 2-4ac=0, 则此方程的另一个根x 2= .15.方程2x 2-6x -1=0的负数根为 .16.等腰三角形的边长是方程x 2-22x+1=0的两根,则它的周长为 .三、解答题17.用公式法解方程:(x +2)2=2x +4;18.用公式法解方程:6x 2-11x +4=2x -2;19.用公式法解方程:2x 2+7x=4.解:∵a=2,b=7,c=4,∴b 2-4ac=72-4×2×4=17.∴x=-7±174, 即x 1=-7+174,x 2=-7-174. 上述解法是否正确?若不正确,请指出错误并改正.20.如图所示,要设计一座1 m高的抽象人物雕塑,使雕塑的上部(腰以上)AB与下部(腰以下)BC 的高度比,等于下部与全部(全身)AC的高度比,雕塑的下部应设计为多高?参考答案1.答案为:C2.答案为:D3.答案为:B.4.答案为:D.5.答案为:D.6.答案为:D.7.答案为:A.8.答案为:D9.答案为:D10.答案为:D11.答案为:5;; 12.答案为:b 2﹣4ac ;x=13.答案为:2x 2+x ﹣3=0;25.14.答案为:12. 15.答案为:x=3-112. 16.答案为:32+117.解:原方程可化为x 2+2x=0.a=1,b=2,c=0.Δ=b 2-4ac=22-4×1×0=4. x=-2±42=-1±1, x 1=0,x 2=-2. 18.解:原方程可化为6x 2-13x +6=0.a=6,b=-13,c=6.Δ=b 2-4ac=(-13)2-4×6×6=25. x=13±252×6=13±512, x 1=32,x 2=23.19.解:不正确.错误原因:没有将方程化成一般形式,造成常数项c 的符号错误. 正解:移项,得2x 2+7x -4=0,∵a=2,b=7,c=-4,∴b 2-4ac=72-4×2×(-4)=81.∴x=-7±812×2=-7±94. 即x 1=-4,x 2=12. 20.解:设雕塑的下部应设计为x m ,则上部应设计为(1-x)m.根据题意,得1-x x =x 1. 整理,得x 2+x -1=0.解得x 1=-1+52,x 2=-1-52(不合题意,舍去). 经检验,x=-1+52是原分式方程的解. 答:雕塑的下部应设计为5-12 m.。

公式法解一元二次方程含答案

公式法解一元二次方程含答案

公式法解一元二次方程第一课时一、学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.二、同步训练:(一)填空题:1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______.3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______.(二)选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( )(A)(x -1)2=m 2+1(B)(x -1)2=m -1 (C)(x -1)2=1-m (D)(x -1)2=m +15.方程x 2=x +1的解是( ) (A)1+=x x (B)251±=x (C)1+±=x x (D)251±-=x 6.方程x 2-6x -3=0的解的情况为( )(A)有两个相等的实数根(B)有两个不等的实数根 (C)有一个实数根 (D)没有实数根7. 在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( )(A)m =0,n =0(B)m ≠0,n ≠0 (C)m ≠0,n =0 (D)m =0,n ≠0 (三)解答题:8.用公式法解方程:(1)2x2+2x=1;(2)5x+2=3x2;(3)x(x+8)=16;(4)(2y+1)(3y-2)=3.公式法解一元二次方程一、学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率.二、同步训练:(一)填空题:1.方程x 2+x -3=0的两根是____________.2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________.(二)选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( )(A)p =1 (B)p >0 (C)p ≠0 (D)p 为任意实数5.已知x 2-3x +1=0,则x x 1的值为( ) (A)3 (B)-3 (C)23 (D)16.下列方程中,两实根之和等于零的是( )(A)9x 2+4=0(B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6(三)解答题:7.解下列方程:(1)x 2+3x -4=0;(2)x 2-x -1=0;(3)-2x2=5x-3;(4)3x2+2x=4.8. 一根长36cm的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.参考答案第一课时1.4x 2+7x +3=0,4,7,32.b 2-4ac3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t4.D 5.B 6.B 7.C 8. (1)231±-=x (2)2,3121=-=x x ,(3)x 244±-= (4)65,121-==y y 参考答案第二课时1.2131,213121--=+-=x x 2.x 1=-2,x 2=13.y 2+4y -140=04.C 5.A 6.D7.(1)x 1=1,x 2=-4 (2)251,25121-=+=x x (3)211=x ,x 2=-3 (4)3131,313121--=+-=x x 8. 长:cm 2219+ 宽cm 2219-,或长cm 2339+ 宽cm 2339-。

新人教版九年级数学上册:《解一元二次方程》题组训练(含答案解析)

新人教版九年级数学上册:《解一元二次方程》题组训练(含答案解析)

提技术·题组训练用公式法解一元二次方程1. 用公式法解方程6x-8=5x 2时,a,b,c的值分别是()A.5,6,-8B.5,-6,-8C.5,-6,8D.6,5,-8【分析】选 C.原方程可化为 :5x 2-6x+8=0,∴a=5,b=-6,c=8.2. 用公式法解方程4x2-12x=3, 获得 ()A.x=B.x=C.x=D.x=【解题指南】先把一元二次方程转变为一般形式 , 确立出 a,b,c 的值 , 代入求根公式 , 求出方程的根 .【分析】选 D.由方程 4x2 -12x=3, 得 4x2-12x-3= 0.这里a=4,b=-12,c=-3,b2-4ac=(-12)2-4×4×(-3)=192,所以x===.【易错提示】用公式法求一元二次方程的根时, 在确立系数 a,b,c时,易忘掉先把一元二次方程化为一般形式 .3. 方程x2+4x+6=0 的根是 ()A.x=,x =B.x=6,x2=121C.x 1=2,x 2=D.x 1=x2=-【分析】选 D.∵a=,b=4,c=6,∴b2-4ac=(4)2-4××6 =0,∴x1=x2==-.【一题多解】方法一 : 方程的两边都除以得,x2+2x+6=0,∴a=1,b=2,c=6,∴b2-4ac=(2) 2-4 ×1×6=0,∴x1=x2==- .方法二 : 方程的两边都除以得,x2+2 x+6=0,所以 x2+2x+( ) 2 =0, 即(x+ )2=0,所以 x1=x2=- .4. 方程 (2x+1)(x+2)=6化为一般形式是,b 2-4ac=, 用求根公式求得x1 =,x 2=.【分析】由方程 (2x+1)(x+2)=6,得2x2+5x-4=0,所以 b2-4ac=25-4 × 2× (-4)=57.所以 x=. 即 x1=,x 2=.答案 : 2x2 +5x-4=05725.(20XX ·无锡中考 ) 解方程 :x +3x-2=0.【分析】∵a=1,b=3,c=-2.=32 -4 ×1×(-2)=17,∴x=, ∴x1=,x 2=.【知识概括】公式法与配方法的联系配方法和公式法是解一元二次方程的两种不一样的方法,但两者的联系也比较亲密, 主要有以下两点 :(1)一元二次方程的求根公式是由配方法解一元二次方程的一般形式ax2+bx+c=0 获得的 .(2)两种方法都合用于随意有根的一元二次方程 . 在详细运用时 , 公式法能够看作直接运用了配方的结果 , 显得比配方法简单 , 所以没有特别要求时 , 一般运用公式法求解 .6. 解方程 :2x 2-5x=7.【分析】原方程可化为 2x2 -5x-7=0,∴a=2,b=-5,c=-7,22× 2× (-7)=81,∴b -4ac=(-5)-4∴x==. ∴x =-1,x2= .1一元二次方程根的鉴别式1.(20XX ·白银中考 ) 一元二次方程x2 +x-2=0 根的状况是 ()A. 有两个不相等的实数根B. 有两个相等的实数根C.无实数根D.没法确立【分析】选 A. 因为 b2 -4ac=1 2-4 × 1× (-2)=9>0,所以这个方程有两个不相等的实数根.2.(20XX ·上海中考 ) 以下对于 x 的一元二次方程有实数根的是()A.x 2 +1=0B.x 2 +x+1=0C.x 2-x+1=0D.x 2-x-1=0【分析】选 D. 由 x2+1=0 移项得 ,x 2=-1, 所以选项 A 无实数根 , 因为 ( ± 1) 2-4 × 1× 1=-3< 0, 所以选项 B,C 均没有实数根 , 因为 (-1) 2-4 × 1× (-1)=5>0, 所以选项 D有实数根 .【知识概括】 1. 一元二次方程 ax2 +bx+c=0(a ≠0), 若 a,c 异号 , 则方程必定有两个不相等的实数根 .2. 一元二次方程 ax2+bx+c=0(a ≠0), 当=0 时 , 方程的两个实根为 -.3.(20XX ·潍坊中考 ) 已知对于 x 的方程 kx 2+(1-k)x-1=0,以下说法正确的选项是()A. 当 k=0 时, 方程无解B. 当 k=1 时, 方程有一个实数解C.当 k=-1 时, 方程有两个相等的实数解D.当 k≠ 0 时, 方程总有两个不相等的实数解【分析】选 C. 当 k=0 时, 原方程变形为 x-1=0, 解为 x=1, 选项 A 说法错误 ; 当 k=1 时, 原方程变形为 x2 -1=0,解为 x=± 1, 选项 B 说法错误 ; 当 k=-1 时, 原方程变形为 x2-2x+1=0, 即 (x-1)2=0,解为 x 1222+4k=(1+k)2所以该方程有两=x =1, 选项 C 说法正确 ; 当 k≠ 0 时, =b -4ac =(1-k)≥ 0,个不相等的实数根或有两个相等的实数根 , 选项 D 说法错误 .4.(20XX ·枣庄中考 ) 若一元二次方程 x 2+2x+m=0有实数根 , 则 m的取值范围是() A.m≤-1 B.m≤ 1C.m≤4D.m≤【分析】选 B. 因为一元二次方程有实数根 , 所以 b2-4ac ≥0,所以 4-4m≥ 0. 解得 m≤ 1.5. 已知对于 x 的一元二次方程 x2 +kx+1=0 有两个相等的实数根 , 则 k=.【分析】∵一元二次方程 x2 +kx+1=0有两个相等的实数根 , 且 b2-4ac=k 2-4 ×1×1=k2-4, ∴ k2-4=0.所以 k=±2.答案: ±26. 对于 x 的一元二次方程 x2+x=k2的根的状况是.22因为22【分析】因为 b -4ac=1+4k,4k ≥ 0,所以 b -4ac>0.所以一元二次方程x2+x-k 2=0 有两个不相等的实数根 .答案 : 有两个不相等的实数根【易错提示】用根的鉴别式判断方程的解求时, 没有把一元二次方程变为一般形式, 系数易出现符号错误 .7.当 t 取什么值时 , 对于 x 的一元二次方程 2x2+tx+2=0 有两个相等的实数根 ?【分析】∵一元二次方程 2x2+tx+2=0 的二次项系数 a=2, 一次项系数 b=t, 常数项 c=2, ∴Δ =t 2-4 ×2×2=t 2-16=0,解得 ,t= ± 4, ∴当 t=4 或 t=-4 时, 原方程有两个相等的实数根.2【变式训练】当 t 取什么值时 , 对于 x 的一元二次方程2x +tx+2=0.(1)有两个不相等的实数根 ?(2)没有实数根 ?【分析】∵一元二次方程 2x2+tx+2=0 的二次项系数 a=2, 一次项系数 b=t, 常数项 c=2, ∴Δ =t 2-4 ×2×2=t 2-16.(1)∵方程有两个不相等的实数根 , ∴ t 2-16>0,解得 :t>4,t<-4.∴当 t>4,t <-4 时 , 原方程有两个不相等的实数根.(2)∵方程没有实数根 , ∴t 2-16<0,解得 :-4<t<4.∴当 -4<t<4时,原方程没有实数根.【错在哪?】作业错例讲堂实拍22对于 x 的方程 mx +(2m+1)x+1=0 有两个实数根 , 求 m的取值范围 .(1) 找错 : 从第 步开始出现错误 .(2) 纠错 :__________________________________________________________________________________.答案: (1) ①(2) 因为对于 x 的方程有两个实数根,所以 222≥0, 解得 m ≥ - 1, 且 m ≠0.m ≠0,且 (2m+1) -4m 4 所以当 m ≥-1,且 m ≠ 0 时,方程有两个实数根4。

2023年中考数学-----《一元二次方程之解一元二次方程》知识总结与专项练习题(含答案解析)

2023年中考数学-----《一元二次方程之解一元二次方程》知识总结与专项练习题(含答案解析)

2023年中考数学-----《一元二次方程之解一元二次方程》知识总结与专项练习题(含答案解析)知识总结1. 直接开方法解一元二次方程:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0)①p x =2时,方程的解为:p x p x −==21,。

②()p a x =+2时,方程的解为:a p x a p x −−=−=21,。

③()p b ax =+2时,方程的解为:abp x a b p x −−=−=21,。

2. 配方法解一元二次方程:运用公式:()2222b a b ab a ±=+±。

具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。

②移项——把常数项移到等号右边。

③配方——两边均加上一次项系数一半的平方。

④开方——整理式子,利用完全平方式开方降次得到两个一元一次方程。

⑤解一元一次方程即得到一元二次方程的根。

即:2222222222442420a acb a b x ac a b a b x a b x a cx a b x acx a b x c bx ax −=⎪⎭⎫ ⎝⎛+−=⎪⎭⎫ ⎝⎛++−=+=++=++∴a ac b a b x a ac b a b x 24224222−−=+−=+, aacb b x a ac b b x 24242221−−−=−+−=, 若042≥−ac b ,则即可求得两根。

3. 公式法解一元二次方程:(1)根的判别式:由配方法可知,ac b 42−即为一元二次方程根的判别式。

用∆表示。

①⇔−=∆042>ac b 方程有两个不相等的实数根。

②⇔=−=∆042ac b 方程有两个相等的实数根。

③⇔−=∆042<ac b 方程没有实数根。

(2)求根公式:当042≥−=∆ac b 时,则一元二次方程可以用aacb b x 242−±−=来求出它的两个根,这就是一元二次方程的求根公式。

九年级数学上册《用公式法解一元二次方程》经典习题练习与答案解析--巩固练习+随堂精选

九年级数学上册《用公式法解一元二次方程》经典习题练习与答案解析--巩固练习+随堂精选

九年级数学上册《用公式法解一元二次方程》经典习题练习与答案解析习题精选 + 巩固练习 + 随堂练习 + 同步练习习题精选基础测试一、选择题(每题5分,共15分)1.用公式法解方程4x 2-12x=3,得到( )A ..C .x=32-± D .x=32±2x 2的根是( )A .x 1,x 2B .x 1=6,x 2C .x 1,x 2D .x 1=x 2=3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( )A .4B .-2C .4或-2D .-4或2二、填空题(每题5分,共15分)1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.2.当x=______时,代数式x 2-8x+12的值是-4.3.若关于x 的一元二次方程(m -1)x 2+x+m 2+2m -3=0有一根为0,则m 的值是_____.三、用公式法解下列方程(每题6分,共18分)1.3x 2+5x -2=0 2.3x 2-2x -1=0 3.8(2-x )=x 2四、当m 为何值时,方程x 2-(2m+2)x+m 2+5=0(20分)(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根能力测试题1.用公式法解关于x 的方程:x 2-2ax -b 2+a 2=0.(12分)2.某数学兴趣小组对关于x 的方程(m+1)22m x ++(m -2)x -1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.(2)若使方程为一元二次方程m 是否存在?若存在,请求出.你能解决这个问题吗?(20分)拓展测试题1.如果关于x 的一元二次方程a (1+x 2)+2bx -c (1-x 2)=0有两个相等的实数根,那么以a ,b ,c 为三边的△ABC 是什么三角形?请说明理由.(10分)2.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?(10分)参考答案基础测试一、1.D 2.D 3.C二、1.x=2b a-±,b 2-4ac ≥0 2.4 3.-3三、1.x 1=-2,x 2=132.x 1=1,x 2=-1/3 3.244,24421+-=--=x x 四、m >2,m=2,m <2能力测试题1.x=22a ±=a ±│b │ 2、解:(1)存在.根据题意,得:m 2+1=2m 2=1 m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x 2-1-x=0a=2,b=-1,c=-1b 2-4ac=(-1)2-4×2×(-1)=1+8=9x=(1)13224--±±=⨯ x 1=,x 2=-12因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0因为当m=0时,(m+1)+(m -2)=2m -1=-1≠0所以m=0满足题意.②当m 2+1=0,m 不存在.③当m+1=0,即m=-1时,m -2=-3≠0所以m=-1也满足题意.当m=0时,一元一次方程是x -2x -1=0,解得:x=-1当m=-1时,一元一次方程是-3x -1=0解得x=-13因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-13. 拓展测试题1.直角三角形,理由略.2.(1)超过部分电费=(90-A )·100A =-1100A 2+910A (2)依题意,得:(80-A )·100A =15,A 1=30(舍去),A 2=50.4.3《用公式法解一元二次方程》巩固练习一、选择题1、多项式(3a +2b )2-(a -b )2分解因式的结果是( )A.(4a +b )(2a +b )B.(4a +b )(2a +3b )C.(2a +3b )2D.(2a +b )22、下列多项式,能用完全平方公式分解因式的是( )A.x 2+xy +y 2B.x 2-2x -1C.-x 2-2x -1D.x 2+4y 23、多项式4a 2+ma +25是完全平方式,那么m 的值是( )A.10B.20C.-20D.±204、在一个边长为12.75 cm 的正方形纸板内,割去一个边长为7.25 cm 的正方形,剩下部分的面积等于( )A.100 cm 2B.105 cm 2C.108 cm 2D.110 cm 2二、填空题1、多项式a 2-2ab +b 2,a 2-b 2,a 2b -ab 2的公因式是________.2、-x 2+2xy -y 2的一个因式是x -y ,则另一个因式是________.3、若x 2-4xy +4y 2=0,则x ∶y 的值为________.4、若x 2+2(a +4)x +25是完全平方式,则a 的值是________.5、已知a +b =1,ab =-12,则a 2+b 2的值为________.三、解答题1、分解因式(1)3x 4-12x 2 (2)9(x -y )2-4(x +y )2(3)1-6mn +9m 2n 2 (4)a 2-14ab +49b 2(5)9(a +b )2+12(a +b )+4 (6)(a -b )2+4ab2、(1)已知x -y =1,xy =2,求x 3y -2x 2y 2+xy 3的值.(2)已知a (a -1)-(a 2-b )=1,求21(a 2+b 2)-ab 的值.3、利用简便方法计算:(1)2001×1999(2)8002-2×800×799+79924、对于任意整数,(n +11)2-n 2能被11整除吗?为什么?参考答案:一、1、B ;2、C ;3、D ;4、D ;二、1、a -b ;2、y -x ;3、2 ;4、1或-9;5、25三、1、(1)3x 2(x +2)(x -2) (2)(5x -y )(x -5y ) (3)(3mn -1)2 (4)(a -7b )2(5)(3a +3b +2)2 (6)(a +b )22、(1)2 (2) 213、(1)3999999 (2)14、因为(n +11)2-n 2=(n+11+n )(n+11-n )=11(2n+11),所以能被11整除4.3用公式法解一元二次方程巩固练习一、选择题1、多项式4a 2+ma +25是完全平方式,那么m 的值是( )A.10B.20C.-20D.±202、在一个边长为12.75 cm 的正方形纸板内,割去一个边长为7.25 cm 的正方形,剩下部分的面积等于( )A.100 cm 2B.105 cm 2C.108 cm 2D.110 cm 23、如果b -a =-6,ab =7,那么a 2b -ab 2的值是( )A.42B.-42C.13D.-134、从边长为a 的正方形内去掉一个边长为b 的小 正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A.a 2 – b 2 =(a +b )(a -b )B.(a – b )2 = a 2 –2ab + b 2C.(a + b )2 = a 2 +2ab + b 2D.a 2 + ab = a (a +b)二、填空题1、请你任意写出一个..三项式,使它们的公因式是-2a 2b ,这个三项式可以是________. 2、用简便方法计算,并写出运算过程:(753)2-2.42=_____________. 9.92+9.9×0.2+0.01=_____________.3、如果把多项式x 2-8x +m 分解因式得(x -10)(x +n ),那么m =________,n =_______.4、若x =61,y =81,则代数式(2x +3y )2-(2x -3y )2的值是________. 三、解答题1、计算与求值(1)29×20.03+72×20.03+13×20.03-14×20.03.(2)已知S =πrl +πRl ,当r =45,R =55,l =25,π=3.14时,求S 的值.2、32003-4×32002+10×32001能被7整除吗?为什么?3、求证:当n 是正整数时,两个连续奇数的平方差一定是8的倍数.4、一条水渠,其横断面为梯形,根据图中的长度求横断面面积的代数式,并计算当a =1.5,b =0.5时的面积.5、如图,在半径为r 的圆形土地周围有一条宽为a 的路,这条路的面积用S 表示,通过这条道路正中的圆周长用l 表示.图2 图1①写出用a ,r 表示S 的代数式.②找出l 与S 之间的关系式.6、已知公式:U=IR 1+IR 2+IR 3,当R 1=12.9, R 2=18.5 R 3=18.6, I=2时, 求U 的值。

一元二次方程解法————公式法(含答案)

一元二次方程解法————公式法(含答案)

一元二次方程解法————公式法1.解下列方程:(1)x2+2x﹣5=0(2)(x﹣2)2+x(x﹣2)=02.解方程(1)2y2+6y+5=0;(2)x(2x﹣5)=4x﹣10.3.解方程:(1)3x2﹣6x=2;(2)x(2x﹣5)=4x﹣10.4.解方程:(1)x2﹣4x+2=0;(2)(x﹣1)(x+2)=4.5.解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.6.解方程:(1)2x2+3x﹣4=0.(2)(x+3)(x﹣1)=5.7.解下列方程(1)x2﹣3x﹣2=0;(2)8﹣(x﹣1)(x+2)=4.8.用适当方法解方程(1)x2﹣3x﹣9=0;(2)﹣x2﹣x+2=﹣x+1.参考答案与试题解析一.解答题(共8小题)1.解下列方程:(1)x2+2x﹣5=0(2)(x﹣2)2+x(x﹣2)=0【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案.【解答】解:(1)∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=6,∴(x+1)2=6,∴x=﹣1±,∴x1=﹣1+,x2=﹣1﹣(2)∵(x﹣2)2+x(x﹣2)=0,∴(x﹣2)(x﹣2+x)=0,∴x﹣2=0或x﹣2+x=0,∴x1=2,x2=1.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.解方程(1)2y2+6y+5=0;(2)x(2x﹣5)=4x﹣10.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=2,b=6,c=5,∴Δ=62﹣4×2×5=﹣4<0,∴此方程无实数根;(2)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x1=2.5,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.解方程:(1)3x2﹣6x=2;(2)x(2x﹣5)=4x﹣10.【分析】(1)根据公式法即可求出答案(2)根据因式分解法即可求出答案;【解答】解:(1)∵3x2﹣6x=2,∴a=3,b=﹣6,c=﹣2,∴△=36+24=60>0,∴x==,∴x1=,x2=(2)∵x(2x﹣5)=4x﹣10,∴x(2x﹣5)=2(2x﹣5),∴(x﹣2)(2x﹣5)=0,∴x﹣2=0或2x﹣5=0,∴x1=2,x2=.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.4.解方程:(1)x2﹣4x+2=0;(2)(x﹣1)(x+2)=4.【分析】根据根的判别式即可求出答案.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x+4=2,∴(x﹣2)2=2,∴x﹣2=±,∴;(2)∵(x﹣1)(x+2)=4,∴x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵2x2﹣6x﹣1=0,∴x2﹣3x=,∴(x﹣)2=,∴x=;(2)∵2y(y+2)﹣y=2,∴2y(y+2)﹣y﹣2=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,∴y=﹣2或y=;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.6.解方程:(1)2x2+3x﹣4=0.(2)(x+3)(x﹣1)=5.【分析】(1)确定a,b,c的值,然后代入求根公式计算即可;(2)先将方程整理成一般形式,然后用因式分解法解答即可.【解答】解:(1)2x2+3x﹣4=0,a=2,b=3,c=﹣4,Δ=b2﹣4ac=9﹣4×2×(﹣4)=41,x==,∴x1=,x;(2)(x+3)(x﹣1)=5,整理得,x2+2x﹣8=0,因式分解得,(x+4)(x﹣2)=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的各种解法.7.解下列方程(1)x2﹣3x﹣2=0;(2)8﹣(x﹣1)(x+2)=4.【分析】(1)先计算判别式的值,然后利用求根公式计算出方程的根;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)∵a=1,b=﹣3,c=﹣2,∴Δ=b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=17>0,∴x=,∴x1=,x2=;(2)原方程化为x2+x﹣6=0,∵(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.8.用适当方法解方程(1)x2﹣3x﹣9=0;(2)﹣x2﹣x+2=﹣x+1.【分析】(1)先确定a,b,c的值,然后利用公式法解答即可;(2)先化简方程,然后确定【解答】解:(1)x2﹣3x﹣9=0,a=1,b=﹣3,c=﹣9,Δ=b2﹣4ac=9﹣4×1×(﹣9)=45,x==,x1=,x2=;(2)﹣x2﹣x+2=﹣x+1,整理得,2x2+x﹣3=0,a=2,b=1,c=﹣3,Δ=b2﹣4ac=1﹣4×2×(﹣3)=25,x===,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:《公式法解一元二次方程》练习(含答案)一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥24.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0二、填空题5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2=______.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______.9.写出一个一元二次方程,使它有两个不相等的实数根______.10.一次二元方程x2+x+=0根的情况是______.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______.13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=______.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.《公式法》参考答案与试题解析一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2【解答】解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选C.二、填空题5.一元二次方程x2+x=3中,a= ,b= 1 ,c= ﹣3 ,则方程的根是x1=﹣1+,x2=﹣1﹣.【解答】解:移项得, x+x﹣3=0∴a=,b=1,c=﹣3∴b2﹣4ac=7∴x1=﹣1+,x2=﹣1﹣.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2= 3 .【解答】解:根据题意得x1+x2=3.故答案为3.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c <5 .【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是k>﹣2且k≠﹣1 .【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)•(﹣1)>0,解得k>﹣2且k≠﹣1.故答案为k>﹣2且k≠﹣1.9.写出一个一元二次方程,使它有两个不相等的实数根x2+x﹣1=0 .【解答】解:比如a=1,b=1,c=﹣1,∴△=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.10.一次二元方程x2+x+=0根的情况是方程有两个相等的实数根.【解答】解:∵△=12﹣4×=0,∴方程有两个相等的实数根故答案为方程有两个相等的实数根.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x= 1±.【解答】解:根据题意得:7x(x+5)﹣6x2﹣37x﹣9=0,这里的:x2﹣2x﹣9=0,这里a=1,b=﹣2,c=﹣9,∵△=4+36=40,故答案为:1±13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是k>4 .【解答】解:依题意可得x2﹣4x+k=0无解,也就是这个一元二次方程无实数根,那么根据根的判别式△=b2﹣4ac=16﹣4k,没有实数根,那么16﹣4k<0,解此不等式可得k>4.故答案为:k>4.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0, 解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.【解答】解:(1)这里a=4,b=﹣4,c=1, ∵△=32﹣16=16,(2)这里a=1,b=﹣,c=﹣3,∵△=2+12=14,∴x=.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.【解答】解:①△=32﹣4×2×(﹣4)=41>0,所以方程两个不相等的实数根;②方程化为一般式为3x2﹣2x+2=0,△=(﹣2)2﹣4×3×2=0,所以方程有两个相等的实数根;③方程化为一般式为x2﹣x+1=0,△=(﹣)2﹣4××1<0,所以方程无实数根.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.【解答】证明:当m=0时,原方程为x﹣2=0,解得x=2;当m≠0时,△=(3m﹣1)2﹣4m(2m﹣2)=(m+1)2≥0,所以方程有两个实数根,所以无论m为何值原方程有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0, ∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a、b为腰,则a=b=4,即2k﹣1=4,解得k=,此时三角形的周长=4+4+2=10;当b、c为腰时,b=c=2,此时b+c=a,故此种情况不存在.综上所述,△ABC的周长为10.。

相关文档
最新文档