Carbon Chemistry and 讲义Life:碳化学与生命

合集下载

第七章 化学与生命

第七章 化学与生命

(2).维持生物体的生命活动
• 如Ca2+:哺乳动物如果缺乏,则会出现 肌肉抽搐; • 一定浓度的无机盐离子有利于维持细 胞的渗透压和酸碱平衡; • 体内缓冲对可调节体液pH值平衡; • 如:H2CO3/HCO3和 HPO42-/H2PO4- 是 细胞内重要的两个缓冲对;
二.糖类(碳水化合物)
• 1.糖类定义
3.蛋白质
• 从原则上说,生物的各种性状都是由基因决 定的,但生命活动的真正执行者是蛋白质。 (1)定义 蛋白质是指由许多相同或不同的氨基酸,按 照一定的顺序,通过酰胺键(即肽键)缩合而 成,具有较稳定的构象和一定生物功能的生物 大分子。
蛋白质元素组成:C、N、H、O、S、P等。
(2)蛋白质的结构
• 蛋白质的结构分为四级。
一级结构:肽链中氨基酸的连接顺序。 二级结构:肽链在空间的伸展方式; 三级结构:肽链中所有原子空间的排布方式; 四级结构:肽链(亚基)与肽链之间的结合方式; 一级结构称为化学结构,其它称为高级结构。
蛋白质的二级结构图示
4.蛋白质的生物功能
• 1.催化作用。大多数酶是蛋白质。 • 2.某些蛋白质参与细胞结构建成。 • 3.具有一定的调节功能。某些蛋白质 是激素。 • 4.在高等动物机体免疫机制中起作用。 某些蛋白质是抗体。
醛糖谱系
酮糖谱系
(2)多糖
• 它是由多个单糖分子缩合、失水而成。 • 水解后产生单一形式的单糖的叫均一多糖。 如淀粉、糖元和纤维素,水解后产生葡萄 糖;菊粉水解后产生果糖。 • 水解后产生多于一种形式的单糖或单糖衍 生物的叫不均一多糖。如植物产物中的半 纤维素和树胶,动物产物中的粘多糖(含 透明质酸、硫酸软骨素和肝素)。
三.蛋白质、肽、氨基酸
• 1.氨基酸

生命力学说 有机化学

生命力学说 有机化学

生命力学说有机化学全文共四篇示例,供读者参考第一篇示例:生命力学说是有机化学的一个重要分支,它研究的是生命产生、发展和维持的基本原理。

生命力学说认为生命不是一种超自然的现象,而是一种可以通过物理和化学过程来解释的现象。

它试图通过研究有机分子的结构和功能,揭示生命的起源和演化过程,探索生命活动的物理和化学机制。

有机化学是研究碳元素化合物的化学性质和反应规律的分支学科,它是生命力学说的基础。

有机分子是构成生命体的基本结构单元,包括蛋白质、核酸、脂类和碳水化合物等。

这些有机分子通过特定的化学反应形成生物分子,进而组成细胞和生物体。

有机化学的研究不仅是为了揭示有机分子的结构和性质,还可以帮助我们理解生命的本质和机制。

生命力学说和有机化学之间有着密切的联系和互补性。

生命力学说揭示了生命体的结构和功能,探讨了生命的起源和演化过程,指导着我们对生物实体进行研究。

而有机化学则提供了理论和方法,帮助我们解析生物分子的组成和反应过程,为生命力学说提供了实验和数据支持。

生物体内的化学反应是高度有序和复杂的,而有机化学则是研究这种复杂系统的有效工具。

通过研究有机分子的结构和功能,我们可以了解生物分子的特性和相互作用,揭示生命体内的化学过程。

有机化学的发展不仅深化了我们对生物体的认识,也为生命力学说的发展提供了重要的支持。

生命力学说和有机化学的研究不仅局限于理论层面,也涉及实践和应用。

在医药领域,有机化学的技术被广泛应用于药物研发。

通过合成和改良有机分子,可以研发出各种具有特定功能的药物,治疗各种疾病。

生命力学说的研究也为医学提供了理论基础,帮助我们了解疾病的发病机制和治疗方法。

生命力学说和有机化学在解析生命的起源和本质、探究生物体内的化学过程、推动医药领域的发展等方面发挥着重要作用。

它们的结合不仅促进了生命科学的发展,也为人类生活和健康带来了巨大的益处。

相信随着科学技术的进步,生命力学说和有机化学将继续发展,为人类认识生命、保护生命和改善生活做出更大的贡献。

与化学有关的英语作文

与化学有关的英语作文

Chemistry is a fascinating subject that delves into the composition,structure, properties,and reactions of matter.It is a fundamental science that has a profound impact on our daily lives,from the food we eat to the medicines we take,and even the air we breathe.In this essay,we will explore the significance of chemistry,its various branches, and how it shapes our world.The Importance of ChemistryChemistry is often referred to as the central science because of its interdisciplinary nature. It is the study of matter at the molecular and atomic levels,which is crucial for understanding the physical world around us.The principles of chemistry are applied in various industries,including pharmaceuticals,agriculture,materials science,and environmental science.It is also the foundation for many technological advancements, such as the development of new materials,drugs,and energy sources.Branches of ChemistryChemistry is a vast field with numerous branches,each focusing on different aspects of matter.Some of the major branches include:anic Chemistry:This branch deals with the structure,properties,composition, reactions,and synthesis of carboncontaining compounds,which are the basis of life.2.Inorganic Chemistry:It focuses on the properties and behavior of inorganic compounds,which are not carbonbased.This includes metals,minerals,and other noncarbon elements.3.Physical Chemistry:This branch explores the physical properties of substances,such as energy,heat,and light,and how they relate to chemical reactions.4.Analytical Chemistry:It involves the techniques and methods used to determine the composition of substances,including qualitative and quantitative analysis.5.Biochemistry:This is the study of chemical processes within living organisms, including the structure and function of biomolecules like proteins,carbohydrates,lipids, and nucleic acids.6.Environmental Chemistry:This branch examines the chemical and biochemical processes occurring in the environment,including pollution,climate change,and the natural cycles of elements.Chemistry in Daily LifeThe applications of chemistry are ubiquitous.From the synthetic materials used in clothing and electronics to the chemical reactions that produce energy in our bodies, chemistry is integral to our existence.It is also essential in the development of new medicines,which are designed to interact with specific biological targets to treat diseases. The Future of ChemistryAs our understanding of chemistry continues to grow,so does its potential to solve global challenges.For instance,chemists are working on developing sustainable energy sources, such as biofuels and solar cells,to reduce our reliance on fossil fuels.They are also researching ways to mitigate the effects of climate change,such as by creating materials that can capture and store carbon dioxide.In conclusion,chemistry is a dynamic and essential field that underpins many aspects of our lives.Its contributions to science,technology,and society are immeasurable,and its future promises even greater discoveries and innovations.Whether its through the development of new materials,the understanding of life processes,or the quest for a cleaner environment,chemistry will continue to shape our world in profound ways.。

化学与生活英语作文

化学与生活英语作文

化学与生活英语作文Chemistry and Daily Life.Chemistry, a branch of science dealing with the composition, structure, properties, and reactions of matter, plays a crucial role in our daily lives. From the moment we wake up to the time we go to sleep, we are constantly interacting with chemical reactions and compounds that make our lives possible. In this essay, we will explore the intricate ways chemistry affects our daily lives, from the food we eat to the air we breathe.Let's start with a simple yet crucial aspect of our lives: nutrition. The food we consume contains a variety of chemical compounds that provide us with energy, essential nutrients, and building blocks for our bodies. For instance, carbohydrates, fats, and proteins are broken down into smaller molecules like glucose, amino acids, and fattyacids through chemical reactions in our bodies. These smaller molecules are then used to produce energy, buildtissues, and maintain vital bodily functions.Chemistry also plays a significant role in the preservation of food. Processes like refrigeration and canning rely on chemical principles to prevent the growth of harmful bacteria and extend the shelf life of food. Additionally, the use of preservatives and additives in processed foods helps to maintain their quality and safety during storage and transportation.Another example of chemistry in our daily lives is the cleanliness of our environment. Soaps and detergents, which contain surfactants that break up oil and dirt particles, are essential for hygiene and preventing the spread of diseases. The production of these cleaning agents involves complex chemical reactions that create molecules with specific properties that effectively clean surfaces.Chemistry is also crucial in the production of medicines and healthcare products. Pharmaceuticals, which are used to treat various diseases and conditions, are the result of extensive research and development in chemistry.The active ingredients in these medicines interact with the body's biochemistry to produce the desired therapeutic effects.Moreover, the air we breathe contains various gases, including oxygen, nitrogen, and carbon dioxide, that are essential for our survival. The process of photosynthesis, which occurs in plants, converts light energy into chemical energy by converting water and carbon dioxide into oxygen and glucose. This reaction not only provides us with the oxygen we need to breathe but also helps to maintain the carbon-oxygen balance in our atmosphere.Chemistry is also essential in the production of fuels and energy. Fossil fuels like coal, oil, and natural gas are used to generate most of the world's energy needs. These fuels undergo chemical reactions in power plants and engines to produce electricity and heat that power our homes, factories, and transportation systems. Additionally, the development of renewable energy sources like solarcells and batteries also relies on advanced chemical principles.In conclusion, chemistry is an integral part of ourdaily lives, affecting almost every aspect of our existence. It is responsible for the food we eat, the air we breathe, the cleanliness of our environment, and the production of medicines and healthcare products. Understanding the principles of chemistry helps us appreciate the complex systems that support our lives and inspires us to explore new possibilities in science and technology.。

《化学与生活》教学大纲

《化学与生活》教学大纲

《化学与生活》教学大纲一、课程基本信息课程编码:0801051B中文名称:化学与生活英文名称:Chemistry and Life课程类别:专业拓展课总学时:32学时总学分:2适用专业:化学专业开设系部:应用化学系二、课程的性质、目标和任务《化学与生活》课程从化学与人们生活的密切关系出发,展开各种主题讨论,如新能源及其开发利用、化学与人体健康、环境污染及环境保护、化学与人类衣食住行等,并在其中讲解有关化学的基本知识和内容。

本课程的目的和任务是通过系统教学,讲授能源、环境、健康、新型材料以及化学学科发展中的哲学思想等相关学科,要求学生在分析一些重大社会问题时,能对其中的化学基本知识有一定的了解,许多原先知其然的问题,提高到知其所以然或防患于未然。

同时,对化学的前沿发展的一些概况和名词有所了解,使化学走向社会、走向生活,从而有利于开阔学生视野,文理渗透,培养学生综合分析问题的能力,提高学生的社会责任感。

三、课程教学基本要求本课程的教学环节包括:课堂讲授、课后作业等。

通过这些环节的学习,使非化学专业的学生对一些与人类关系密切的相关化学基本知识有一定的了解,扩大其知识面,而且能将所学知识应用于生活实践中,学以致用,分析、解决生活中与化学相关的一些实际问题。

1、课堂讲授:采用板书辅助多媒体教学结合课题讨论,充分调动学生的学习兴趣,提高其学习的主动性和积极性,提高课堂教学效果。

2、课后作业根据教学内容和教学计划,本课程适当布置课后作业,并定期及时进行批改,随时检查学生的学习效果,将作业作为教师与学生沟通的桥梁,及时发现问题,解决问题,以巩固课堂教学效果。

四、课程教学内容及要求第1章化学与能源(4学时)【教学目标与要求】1、了解能源在人类生活中的重要作用;2、熟悉石油、煤等能源的基本知识;3、理解化学电源的基本工作原理;4、了解新型能源的开发和利用。

【教学重点与难点】1、石油、煤等能源的基本知识;2、化学电源的基本工作原理。

化学与生命的关系是什么

化学与生命的关系是什么

化学与生命的关系是什么Chemistry and Its Relationship with LifeChemistry is the scientific field that deals with the properties, composition, and structure of matter, as well as the changes that matter undergoes. It is a crucial field that has contributed immensely to our understanding of the world and the materials that make up the universe. One of the most interesting aspects of chemistry is the relationship it has with life. Life is made up of complex chemical processes, which makes chemistry a fundamental aspect of life.At its core, life is made up of molecules, and molecules are made up of atoms. Atoms and molecules interact with each other according to the laws of chemistry, and this interaction is what drives the processes of life. For instance, the molecules in our bodies interact with each other in complex ways to perform essential functions like digestion, respiration, and transportation of nutrients and oxygen. Chemistry helps us understand these processes at the molecular level and provides insights into how we can improve our health by manipulating these interactions.One of the most significant chemical processes in living organisms is the process of metabolism. Metabolism is the sum of all the chemicalreactions that take place in the body, and it is responsible for the production of energy needed for our cells to function. The metabolic process involves the conversion of nutrients into energy. The breakdown of carbohydrates, proteins, and fats into their constituent molecules is a complex chemical process that involves enzymes, which are biological molecules that facilitate chemical reactions. This process is essential for life and without it, our cells would not have the energy to carry out basic functions like cell division and growth.Chemistry is also involved in the growth and development of living organisms. The process of growth and development involves the synthesis of new molecules, such as proteins and DNA. These molecules are synthesized through a series of chemical reactions that involve the building blocks of proteins, called amino acids, and the building blocks of DNA, called nucleotides. The interactions between these molecules are governed by the laws of chemistry, and understanding them is essential to understanding the process of growth and development.In addition to its role in life processes, chemistry is also crucial in medicine. Medical practitioners use chemical compounds to treat diseases, and the field of pharmacology is entirely based on chemical principles. Chemists design and synthesize new chemical compoundsthat can be used as drugs, and understanding the way these compounds interact with living organisms is essential for their efficacy.In conclusion, the relationship between chemistry and life is fundamental. The chemical interactions that occur in living organisms are what make life possible, and understanding these interactions has immense potential benefits for human health. The relationship between chemistry and life is an excellent example of how scientific disciplines often overlap, and it highlights the importance of interdisciplinary research in advancing our understanding of the world.。

碳一化学

碳一化学

34.4%
2003 8299 万吨
49.3%
2003
1442 万吨 2002 成品油净进口
12.0%
2003 2.52 亿吨 2002 石油消费量
1993年起我国成为石油纯进口国,石油消费以5~6%速度增长。 2004年前石油进口 1.2亿吨﹐比去年同期增加了40%。成为仅 次于美国的全球第二大石油消费国。
10.0 2.9
10.1
93 94 95 96 97 98 99 00 01 02 03
93 94 95 96 97 98 99 00 01 02 03
石油净进口量/Mt
进口量占国内消费量的比例/%
石油产品消费结构
数据来源2003年中国能源发展报告
2002年中国主要炼油化工产品产量
名称 原油一次加工能力 产量(万吨) 27030 比例/%
175.78万亿 M3
1.82万亿M3
世界总产量
中国产量 世界平均储采比 中国储采比 中国剩余探明可采储量占世 界比例(%)
25.1亿吨当量油
8.42亿吨当量油 192 69 11.6
36.97亿吨
1.69亿吨 41 19.1 2.1
26185亿M3
341亿M3 67.1 53.4 1.0
中国产量占世界比例(%)
第一章 绪论
1. C1化学的发展 2. C1化学的基础化学 3. C1化学展望
1.C1化学的发展
1.1 中国和世界能源发展 1.2 煤替代石油能源的技术路线 1.3 煤炭是可以清洁利用的能源 1.4 多联产——煤洁净高效利用的必然选择
1.1 中国和世界能源发展
1.1.1.世界能源
6
世界能源供应结构
原油生产量和消费量

Chemistry--Today and Tomorrow

Chemistry--Today and Tomorrow

化学是最古老的科学之一。在改变人类生活方面,它
也是最有成效的科学之一。应用化学于生产产品的工业—— 化学过程工业——在先进社会的生产中占有最大的份额。
内蒙古科技大学化学与ห้องสมุดไป่ตู้工学院
2
To study this course, I do not assume that you have taken any course in chemistry, but I believe that at some point you have learned that “ chemicals ” consist of molecules made up of atoms of the elements. For example, a molecule of water contains two atoms of hydrogen and one atom of oxygen, hence the formula H2O. These atoms are linked together by chemical bonds. 学习这门课程,并不要求事先学过任何化学课程,但我 相信你们以前一定学过“化学物品”是由元素的原子结合成 的 分子组成的。例如,一个水分子含有两个氢原子和一个氧原 子,因此化学式为H2O。这些原子之间以化学键相联结。
◎THE FUTURE 关于未来 Exercise:
内蒙古科技大学化学与化工学院
8
1.1 What is chemistry? 什么是化学?
Chemistry is the science that tries to understand the
properties of substances and the changes that substances undergo. It is concerned with substances that occur naturally—the minerals of the earth, the gases of the air, the water and salts of the seas, the chemicals found in living creatures—and also with new substances created by humans. It is concerned with natural changes—the burning of a tree that has been struck by lighting, the chemical changes that are central to life — and also with new transformations invented and created by chemists.

药明康德立体化学讲义

药明康德立体化学讲义

培训目的: 理解立体化学的基本原理. 培训后有能力区分辨别镜像立体异构体(enantiomers)和非镜像立体异构体(diastereomers), 镜像立体异构体(enantiomers)和非镜像立体异构体(diastereomers)的物理化学性质, 镜像立体选择反应(enantioselective)和非镜像立体选择(diastereoselctive)反应等培训时间: 1.5 –2小时培训内容:1. 碳原子有机化合物的异构体种类(Isomerism in Carbon Compounds)2. 镜像立体异构体(enantiomers) 和非镜像立体异构体(diastereomers)的物理化学性质3. 立体选择反应(Stereochemistry in Chemical Reactions)参考文献:1. /nbauld/teach/stereo.html#stereo2. Organic Chemistry, Solomans&Fryhle, 4th editionProperties of Enantiomers and Diastereomers 手性分子使偏振光偏转对应的镜像异构体会向相反方向偏转相同的角度!!手性色谱(HPLC, GC, etc)Properties of Enantiomers and Diastereomers1.不是所有的外消旋化合物都是可以分开的2.外消旋化合物需要在手性柱上先被分开来测量反应ee%3.绝对构型无法通过手性色谱确立,除非同已知文献报道的结果相比NNH NNBocO NNH NNBocO 外消旋化合物(普通HPLC)NNH NNBoc O=+外消旋化合物(手性HPLC)OMeOMe: 你能将上图中的四组峰和下面四个化合物一一对应吗OH OMeOH OMeOH OMe OH OMe:51问题?OH。

碳化相关书籍

碳化相关书籍

碳化相关书籍关于碳化(Carbonization)的主题,有很多涉及不同方面的书籍,包括碳材料、碳化工艺、碳化物的应用等。

以下是一些可能对你感兴趣的碳化相关书籍:* 《Carbon Materials: Science and Applications》* 作者:M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund* 这本书全面介绍了碳材料的科学和应用,包括石墨、炭黑、碳纤维、纳米碳等。

适合对碳材料的基础知识和应用领域感兴趣的读者。

* 《Carbon Nanotubes: Synthesis, Structure, Properties, and Applications》* 作者:Mildred S. Dresselhaus, Gene Dresselhaus, Ado Jorio* 该书深入研究了碳纳米管的合成、结构、性质和应用。

是一本适合对纳米碳材料感兴趣的读者的专业性书籍。

* 《Carbon Nanomaterials》* 作者:Yexin Zhang, Han Zhang, Guoqiang Luo, Zhiming M. Wang* 该书系统地介绍了碳纳米材料的合成、表征和应用。

适合材料科学、纳米科技等领域的学者和研究人员。

* 《Carbon-Related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE》* 编者:Teruo Henmi, Yen Wei* 这本书收录了鈴木章教授在国际碳素大会上的诺贝尔奖获奖演讲,涵盖了碳相关材料的广泛应用。

* 《Introduction to Carbon Science》* 作者:Mark M. Bockrath* 该书为初学者提供了对碳科学的基础介绍,包括碳的基本性质、碳的不同形态等。

请注意,书籍的选择可能因你对碳化的具体兴趣而有所不同。

九年级化学化学英语阅读理解20题

九年级化学化学英语阅读理解20题

九年级化学化学英语阅读理解20题1<背景文章>The Periodic Table of Chemical Elements is one of the most important tools in chemistry. It has a long and interesting history of discovery.In the early 19th century, many chemists were trying to find a way to organize the known elements. Dmitri Mendeleev, a Russian chemist, made a significant breakthrough. He arranged the elements in order of increasing atomic mass and noticed that certain properties of the elements repeated periodically. This led to the creation of the first version of the periodic table in 1869.Elements can be classified in different ways. One common way is to divide them into metals, non - metals and metalloids. Metals are generally shiny, good conductors of heat and electricity, and malleable. Non - metals, on the other hand, usually have properties opposite to those of metals. Metalloids have properties that are intermediate between metals and non - metals.Let's take a look at some important elements. Hydrogen is the lightest element. It is highly flammable and is used in fuel cells. Oxygen is essential for life. It is a colorless, odorless gas and is involved in combustion reactions. Carbon is another crucial element. It can form a large number ofcompounds due to its unique ability to bond with other elements in different ways. It is the basis of all organic compounds.1. <问题1>Who was the first to create a significant version of the periodic table?A. An English chemist.B. A French chemist.C. A Russian chemist.D. A German chemist.答案:C。

清华大学有机化学李艳梅老师课件第3章ppt模板

清华大学有机化学李艳梅老师课件第3章ppt模板

键能键能
CH CC
C Cl C Br CI CS
H
CH3CH2CH2CH2 CH2C H
H
415KJ/mol 345.6KJ/mol
相较相对大对较大
330KJ/mol
285KJ/mol
218KJ/mol
272KJ/mol
特点2:可以反应
H
CH3 CH2 CH2 CH2 CH2 C H 裂解 H取代
IR
普通峰: C-C伸缩 1200-700(w) C-H伸缩 2960-2850(s)
特殊峰:
1380 1380 1370
1380 1370
n4 724-722 cm-1 (m)
少于四个亚甲基时,吸收峰向高波数移动
MS UV
* 真空紫外
3.4 Chemical properties
特点一:较稳定
轨道对称性匹配原理: 原子轨道重叠时,重叠部分必须有相同符号才可成 键,使能降低;符号相反则为反键,能量升高
类比:周环反应
对超共轭作用的共振解释
“试题一”的结论:相邻甲基上电子的传递作用,也就是 超共轭作用,是导致乙烷交叉式更稳定的真正、唯一原因。
Organic Chemistry (T.W.Graham Solomons, Craig B. Fryhle, (John Wiley&Sons, Inc, 2004, 8th Ed.,p156 《有机化学》(胡宏纹等,高等教育出版社,2006年第3版,p22) 周公度,《大学化学》,16(5),51-52,2001年5月
3.4.1 Oxidation 氧化反应
A. Auto oxidation 自动氧化 O2
R R CH
R
X

有机化学英文

有机化学英文

Title: The Importance of Organic Chemistry in Everyday LifeIntroduction:Organic chemistry is the study of carbon-based compounds and their reactions. It is a vital field of study that has numerous applications in our daily lives. From the food we eat to the clothes we wear, organic chemistry plays a significant role in shaping our world.Body:1. Food: Organic chemistry is essential in the production of food. The fertilizers and pesticides used in agriculture are made up of carbon-based compounds. Organic chemistry is also used in food preservation and flavoring. For example, the artificial sweetener aspartame is made up ofcarbon-based compounds.2. Medicine: Organic chemistry is the backbone of modern medicine. Most drugs are made up of carbon-based compounds. For example, aspirin is made up of salicylic acid, which is a carbon-based compound. Organic chemistry is also used in the development of new drugs and treatments for diseases.3. Plastics: Plastics are ubiquitous in our daily lives, and they are made up of carbon-based compounds. Organic chemistry is used in the production of plastics, such as polyethylene and polystyrene. These materials are used in a wide range of applications, including packaging, construction, and electronics.4. Clothing: Organic chemistry is used in the production of synthetic fibers, such as polyester and nylon. These materials are used in clothing, shoes, and other textiles. Organic chemistry is also used in the production of dyes and pigments used to color fabrics.5. Energy: Organic chemistry is essential in the production of fuels, such as gasoline and diesel. These fuels are made up of carbon-based compounds. Organic chemistry is also used in the development of renewable energy sources, such as biofuels and solar cells.Conclusion:In conclusion, organic chemistry is a vital field of study that has numerous applications in our daily lives. From the food we eat to the clothes we wear, organic chemistry plays a significant role in shaping our world. As we continue to develop new technologies and materials, organic chemistry will continue to play a critical role in our lives.。

生命与化学

生命与化学

第六讲生命与化学引言:〃人体和化学的关系非常密切,首先生命和人类的演变过程离不开化学,要是没有化学变化,地球上就不会有生命,更不会有人类,而人类的生存和繁衍更是靠化学反应来维持的。

〃生物进化是生命科学中的一个重大理论课题,如生命的起源就是其中的一个重要领域。

化学能够通过分析、研究有关物质和化学变化现象,并通过化学模拟来揭示生命起源之谜。

6-1、生命的起源一、地球上最早出现的生命物质是什么?1.米勒的研究发现(1953年),实验设计:CH4、NH3、N2、H2O等封闭在石英管内模拟原始地球大气环境加热放电8天8夜生成了多种氨基酸、有机酸和尿素等〃按上述同样的方法也获得了诸如嘌呤、嘧啶、核糖核苷酸、脱氧核糖核苷酸、脂肪酸等重要的生物分子。

2.澳大利亚炭质陨石(1959年9月),经分析发现了多种氨基酸和有机酸,震动了当时整个的科学界。

3.人们的认识与推论——目前一个普遍被人们接受的观点:宇宙的发展阶段物质粒子→元素宇宙的诞生阶段物理和化学进化→星际分子→(150亿年前的大爆炸)物质的形态逐渐演变生物小分子→生物大分子宇宙的生命生化阶段二、先有鸡还是先有蛋?——古老的生物学话题1.蛋白质起源学——蛋白质在生命起源中的关键作用〃美国的Fox(60年代)〃中科院赵玉芬院士2.核酸起源学——强调核酸在编码蛋白质系列中的重要作用。

(诺贝尔化学奖1989)〃Cech和Altmon等学者,提出原始生命可能发生于核酸工程的首先启动,认为小分子RNA是原始生命系统的主体,具有酸的活性,而RNA又可作为模板来合成DNA,并在蛋白质的介入下,加速了DNA,→RNA→蛋白质系统的诞生。

3.手性分子起源学〃自然界中发现的氨基酸绝大多数是L—构型、绝大多数单糖是D—构型等都是手性生物分子。

〃DNA双螺旋也是右手螺旋分子等。

〃手性生物分子的某种对映体在生物体中占有绝对优势。

4.谁是谁非,是先有鸡还是先有蛋,迄今尚未定论。

6—2、构成生命的最基本物质——蛋白质与核酸一、蛋白质——生命活动的主要承担者〃在所有生物分子中结构最具多样性,功能最具多样性,一切生命活动无不与蛋白质有关,其主要特征是:1.蛋白质的组成特征——氨基酸单元(残基)〃蛋白质是由各种不同的氨基酸构成的生物大分子,其主要组成元素是C、N、H、0,其次含有S、P、Fe、Cu等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档