二元一次方程组应用题经典题(解析版----例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组题型归纳

知识点一:列方程组解应用题的基本思想

列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. 知识点二:列方程组解应用题中常用的基本等量关系

1.行程问题:

(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比较直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开始时两者相距的路程;

;;

(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比较直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;

②船在静水中的速度-水速=船的逆水速度;

③顺水速度-逆水速度=2×水速.

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.

2.工程问题:工作效率×工作时间=工作量.

3.商品销售利润问题:

(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利

润率;

(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;

(5)注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.(例如八折就是按标价的十分之八即五分之四或者百分之八十)

(6)4.储蓄问题:

(7)(1)基本概念

(8)①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.

(9)③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.

(10)⑤利率:每个期数内的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.

(11)(2)基本关系式

(12)①利息=本金×利率×期数

(13)②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)

(14)③利息税=利息×利息税率=本金×利率×期数×利息税率.

(15)④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥月利率=年利率1

.

12

注意:免税利息=利息

5.配套问题:

解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例.

6.增长率问题:

解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;

原量×(1-减少率)=减少后的量.

7.和差倍分问题:

解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.

8.数字问题:

解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n 为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字

9.浓度问题:溶液质量×浓度=溶质质量.

10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式

11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的

12.优化方案问题:

在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.

注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.

知识点三:列二元一次方程组解应用题的一般步骤

利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:

1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;

3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.

要点诠释:

(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;

(2)“设”、“答”两步,都要写清单位名称;

(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.

(4)列方程组解应用题应注意的问题

①弄清各种题型中基本量之间的关系; ②审题时,注意从文字,图表中获得有关信息; ③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆; ⑤在寻找等量关系时,应注意挖掘隐含的条件; ⑥列方程组解应用题一定要注意检验.

类型一:列二元一次方程组解决——行程问题

1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米 思路点拨:画直线型示意图理解题意:

(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.

(2)有两个等量关系: ①相向而行:汽车行驶113小时的路程+拖拉机行驶113

小时的路程=160千米; ②同向而行:汽车行驶12小时的路程=拖拉机行驶112⎛⎫+ ⎪⎝

⎭小时的路程. 解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.

根据题意,列方程组()4160,311122x y x y ⎧+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 解这个方程组,得: 90,30x y =⎧⎨=⎩ 1111901165,301185323

2⎛⎫⎛⎫⨯+=⨯+= ⎪ ⎪⎝⎭⎝⎭. 答:汽车行驶了165千米,拖拉机行驶了85千米.

总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.

相关文档
最新文档