人教版二次根式教案课程

合集下载

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

二次根式教案人教版

二次根式教案人教版

二次根式教案(人教版)一、教学目标:1. 理解二次根式的定义和性质;2. 掌握二次根式的运算方法;3. 能够应用二次根式解决实际问题。

二、教学重点:1. 了解二次根式的定义和性质;2. 掌握二次根式的化简和运算方法。

三、教学难点:1. 掌握二次根式的运算方法;2. 能够灵活运用二次根式解决实际问题。

四、教学过程:1. 导入新知:通过引发学生的思考,引入二次根式这一知识点。

2. 概念讲解:1) 二次根式的定义二次根式是指形如√a的式子,其中a为非负实数。

这种形式的式子都属于二次根式,其中√a称为二次根式的根号,a称为二次根式的被开方数。

2) 二次根式的性质a. 二次根式的值是非负实数或零;b. √a = √b 当且仅当 a = b;c. 当a > 0且b > 0时,有√(a * b) = √a * √b。

3. 根据教材内容进行案例分析和练习:以人教版数学教材为基础,根据教材中的例题和习题,逐步讲解和巩固学生对于二次根式的理解和运算方法。

4. 拓展应用:通过实际问题的解答,帮助学生理解二次根式在实际生活中的应用。

例如:给出一个图形的边长或面积,并要求求出相应的二次根式表达式。

5. 练习与检测:在课堂上组织学生进行综合练习,巩固所学知识。

可以设计选择题、填空题和应用题等多种形式的习题,以确保学生对于二次根式的掌握程度。

6. 归纳总结:对本节课学习的内容进行归纳总结,重点强调掌握二次根式的化简和运算方法,并指导学生进行复习和预习。

五、课后作业:1. 教师布置制定一套总复习习题,让学生独立完成。

2. 要求学生预习下一课的内容,做好课前准备。

六、教学反思:本节课通过引入二次根式的定义和性质,帮助学生理解二次根式的概念。

通过案例分析和练习,培养学生对于二次根式的运算能力。

通过拓展应用,帮助学生将二次根式与实际问题相结合,加深对于二次根式的理解和应用能力。

最后,通过综合练习和总结,巩固和提升学生的学习效果。

人教版二次根式教案

人教版二次根式教案

人教版二次根式教案
教案一:引入二次根式
教学目标:
1. 理解二次根式的概念;
2. 掌握二次根式的运算法则;
3. 能够简化二次根式。

教学重点:
1. 二次根式的概念;
2. 二次根式的运算法则。

教学难点:
1. 二次根式的简化。

教学准备:
教师准备白板、黑板笔、练习题。

教学过程:
Step 1 引入新知识
1. 引导学生回顾平方根的概念和运算法则,并与其前面学过的知识进行对比。

2. 引导学生思考:如果开方的数不是完全平方数,是否可以开根号?这样的根式如何表示和计算?
3. 引入二次根式的概念:如果一个数不能整除任何一个完全平方数,那么它的平方根就是一个二次根式。

Step 2 二次根式的运算法则
1. 设 a 和 b 分别为两个正实数,若 a 和 b 的平方根都是二次根式,那么 a 和 b 的和、差、积、商仍然是二次根式。

2. 在黑板上列举例题并进行解答。

3. 引导学生归纳二次根式的运算法则。

Step 3 二次根式的简化
1. 通过例题引导学生进行讨论,发现二次根式可以进行简化。

2. 引导学生找出二次根式简化的方法。

3. 在黑板上列举例题并进行解答。

Step 4 练习
1. 根据所学知识,布置一些练习题让学生进行练习。

评价与反思:
通过本节课的学习,学生能够理解二次根式的概念,掌握二次根式的运算法则,也能够简化二次根式。

同时,通过课堂上的练习,可以检验学生的学习情况,并对学生的不足进行及时纠正。

人教版八年级下册二次根式教案

人教版八年级下册二次根式教案

人教版八年级下册二次根式教案一、教材分析本教材是人教版八年级下册,第一单元,二次根式。

本单元主要内容包括:1.二次根式的定义及性质2.二次根式的化简3.二次根式的运算4.二次根式的应用其中,二次根式的定义、化简、运算内容是本单元的重点,是学习本单元的基础。

而二次根式的应用则是拓展内容,可以让学生了解到根式在现实生活中的应用。

二、教学目标知识目标1.了解二次根式的定义及性质2.掌握二次根式的化简方法3.掌握二次根式的加减乘除运算方法4.了解二次根式在实际问题中的应用技能目标1.能够独立完成二次根式的化简、计算和应用题目2.能够在实际问题中使用二次根式进行运算和求解情感目标1.培养学生对于数学的兴趣和好奇心2.培养学生解决实际问题的能力和自信心三、教学重难点重点1.二次根式的化简方法2.二次根式的加减乘除运算方法难点1.二次根式的应用题目2.数学语言的运用四、教学过程1. 二次根式的定义及性质1.引导学生通过例题了解二次根式的定义2.讲解二次根式的性质,如非负性、次幂、加、减、积、商等2. 二次根式的化简1.讲解化简的基本原则2.通过例题一步一步地讲解化简的方法3. 二次根式的运算1.讲解加减乘除的基本原则2.通过例题一步一步地讲解加减乘除的方法4. 二次根式的应用1.讲解二次根式在实际问题中的应用2.通过例题引导学生理解应用题5. 课堂练习1.布置练习题,让学生通过练习加深对本单元内容的理解2.布置作业题,巩固本单元知识五、教学评价1.通过课堂回答问题、闪光灯、课堂练习等方式对学生进行监测和评价2.对学生参与课堂活动和完成作业的情况进行评价3.通过测试等方式对学生掌握情况进行评价六、教学反思本教案重点关注二次根式的化简及运算方法,同时通过应用题目的讲解让学生了解到二次根式的实际应用。

在教学过程中,我采用了多种教学方法,如例题、练习题、闪光灯等,以激发学生兴趣,提高课堂效率。

同时,在教学中也对学生的学习情况进行了监测和评价,以确保学生在本单元学习中取得良好的成果。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

人教版《二次根式》整章教案

人教版《二次根式》整章教案

第十六章二次根式教材内容二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥0)是一个非负数,2=a(a≥0)(a≥0).(3a≥0,b≥0)a≥0,b>0)a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1a≥0a≥0)是一个非负数;2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标知识与技能:1、a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.过程与方法:经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。

人教版九年级数学上册教案:二次根式

人教版九年级数学上册教案:二次根式

人教版九年级数学上册教案:二次根式一、教学目标1.理解二次根式的概念,能够将二次根式化为最简式。

2.掌握二次根式的运算法则,能够进行二次根式的加、减、乘、除运算。

3.能够应用二次根式进行代数式的化简、方程的解法等数学问题的求解。

二、教学重点1.二次根式的概念和最简式的求解方法。

2.二次根式的加、减、乘、除法则及其运用。

3.能够将代数式化简为二次根式的形式,并能应用二次根式解决相关数学问题。

三、教学难点1.能够熟练运用二次根式的运算法则进行相关数学运算。

2.能够将代数式化简为二次根式的形式,并应用二次根式解决相关数学问题。

四、教学内容与方法A. 教学内容第一节:二次根式1.二次根式的概念2.二次根式的化简方法3.二次根式的性质第二节:二次根式的加减法和乘法1.二次根式的加减法2.二次根式的乘法及其运用第三节:二次根式的除法和应用1.二次根式的除法及其运用2.将代数式化简为二次根式的形式3.应用二次根式解决相关数学问题B. 教学方法1.教师讲授法:通过讲解概念、性质、公式及样例等内容,引导学生逐步理解二次根式,并掌握相关的运算法则和解题技巧。

2.组合练习法:通过经典案例,让学生运用二次根式进行加、减、乘、除的运算,以及代数式的化简和相关问题的求解等,从而提高他们的理论水平和实际运用能力。

3.实践体验法:通过互动教学、团队合作、模拟测验等方式,让学生在实践中感受二次根式的实际应用,从而加深他们对二次根式概念、性质及其运算方法等的认知和理解,同时培养他们的数学思维和创新能力。

五、教学过程A. 概念教学1.向学生介绍二次根式的概念,并且提供一些简单的实验让学生加深对概念的理解。

2.猜想二次根式的化简方法,并通过案例进行验证。

3.介绍二次根式的性质,帮助学生加深对二次根式的理解和认知。

B. 运算法则1.通过样例演示二次根式的加减法和乘法,并提供练习题让学生巩固运算法则。

2.介绍二次根式的除法及其应用,并且应用解决一些相关数学问题。

人教版八年级数学下册教案-16.3二次根式的加减

人教版八年级数学下册教案-16.3二次根式的加减
3.实践活动(10分钟)
-实验操作:指导学生进行简单的二次根式加减计算;
-分组讨论:学生分成小组,讨论解决实际问题时如何应用二次根式加减。
4.学生小组讨论(10分钟)
-主题:围绕“二次根式在实际生活中的应用”展开讨论;
-引导与启发:提出问题,引导学生思考,激发他们的想象力。
5.成果展示(5分钟)
-每个小组选派一名代表分享讨论成果;
二、核心素养目标
1.培养学生逻辑推理能力,通过对二次根式性质的探究,理解并掌握二次根式的加减法则;
2.培养学生数学运算能力,能够熟练运用二次根式加减法则进行混合运算;
3.培养学生数学抽象能力,从实际问题中抽象出二次根式加减的数学模型,提升解决实际问题的能力;
4.培养学生合作交流能力,通过小组讨论、问题探究等形式,提高学生团队协作和沟通表达能力。
(2)指导学生在混合运算中如何识别同类二次根式,如√18 + √50,化简后为3√2 + 5√2,进而合并为8√2;
(3)通过设计不同类型的实际应用题,帮助学生克服在具体问题中应用二次根式加减法则的困难,例如在几何图形面积计算中,如何将不同长度的边转化为同类二次根式进行计算。
直接输出:
三、教学流程
1.导入新课(5分钟)
三、教学难点与重点
1.教学重点
-掌握二次根式的定义及性质,特别是二次根式乘除法的运算规律;
-熟练运用二次根式的加减法则进行计算,并能解决相关问题;
-能够将实际问题抽象为二次根式加减的数学模型。
举例解释:
(1)重点讲解二次根式乘除法的运算规律,如√a × √b = √(ab)等,并通过例题演示;
(2)强调二次根式加减法则,如√a + √b ≠ √(a+b),通过具体计算题指导学生正确运用;

《二次根式》教学教案

《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。

2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。

它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。

再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。

教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

人教版二次根式教案

人教版二次根式教案

人教版二次根式教案【课堂教学设计】教学目标:1. 理解二次根式的定义。

2. 掌握二次根式的性质。

3. 学会简化、合并和展开二次根式。

4. 运用二次根式在实际问题中解决问题。

教学重点:1. 二次根式的定义。

2. 二次根式的性质。

教学难点:1. 二次根式的简化、合并和展开。

2. 运用二次根式解决问题。

教学方法:1. 讲授与举例相结合的方法。

2. 组织学生小组活动,让学生合作解决问题。

教学手段:1. 图片、PPT。

2. 板书。

教学过程:Step 1:导入(5分钟)教师出示一张有二次根式的图片,问学生是否了解二次根式,引出本节课的主题。

Step 2:引入新知(10分钟)教师向学生介绍二次根式的定义,并通过几个例子让学生体会二次根式的意义。

Step 3:探究性学习(15分钟)教师将学生分成小组,让学生通过小组合作的方式解决一些关于二次根式的问题,例如:简化二次根式,合并二次根式等。

Step 4:总结二次根式的性质(10分钟)教师与学生一起总结二次根式的性质,包括:同底数相加、相减,同指数相乘、相除等。

Step 5:综合运用(10分钟)教师给学生出一组综合运用的题目,让学生独立完成,然后与小组成员讨论解题思路并互相检查答案。

Step 6:课堂小结(5分钟)教师总结本节课所学的知识点,重点讲解学生容易混淆的部分,并强调学生需要反复练习才能掌握二次根式的运用。

作业布置:1. 完成课堂上的综合运用题。

2. 自主查阅教材,了解二次根式的应用。

教学反思:这节课主要介绍了二次根式的定义和性质,通过小组合作的方式让学生参与进来,培养了学生的合作精神。

同时,通过综合运用题目的设置,巩固了学生对二次根式的运用能力。

通过这种方式,学生在课堂上得到了充分的锻炼,增加了学生对二次根式的理解和运用能力。

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《二次根式》一. 教材分析人教版数学八年级下册第16.1节《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。

本节内容为后续学习二次根式的应用和二次方程等知识打下基础。

教材通过引入二次根式,让学生体会数学与实际生活的联系,培养学生的数学应用能力。

二. 学情分析学生在学习本节内容前,已掌握了实数、有理数和无理数的基本知识,具备一定的代数运算能力。

但学生对二次根式这一概念的理解和应用尚存困难,因此,在教学过程中,要注重引导学生通过实例认识二次根式,感悟数学与生活的联系,激发学习兴趣。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算,提高学生的数学运算能力。

3.培养学生的数学思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.情境教学法:通过生活实例引入二次根式,让学生感受数学与生活的联系。

2.启发式教学法:引导学生探究二次根式的性质和运算方法,培养学生的独立思考能力。

3.小组合作学习:学生进行小组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示二次根式的概念、性质和运算方法。

2.练习题:准备适量练习题,巩固学生对二次根式的理解和应用。

七. 教学过程1.导入(5分钟)利用生活实例,如求物体长度、面积等,引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的定义,让学生通过实例理解二次根式。

3.操练(15分钟)让学生进行二次根式的基本运算,如加减乘除,巩固学生对二次根式的掌握。

4.巩固(10分钟)出示练习题,让学生独立解答,检查学生对二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的性质,如二次根式的乘除法、化简等,引导学生运用性质解决问题。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确二次根式的概念、性质和运算方法。

人教版数学八年级下册16.1.2二次根式的性质(教案)

人教版数学八年级下册16.1.2二次根式的性质(教案)
3.重点难点解析:在讲授过程中,我会特别强调二次根式的乘法、除法、平方和开方性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)和\( \sqrt{a^2} = |a| \)的运用。
(三)实践活动(用时10分钟)
-复杂化简:对于\( \sqrt{\frac{24}{3}} \)的化简,学生可能会直接得到\( \sqrt{8} \),而忽视\( \frac{\sqrt{24}}{\sqrt{3}} = \sqrt{\frac{24}{3}} = \sqrt{8} \)中的正确步骤。
四、教学流程
(一)导入新课(用时5分钟)
3.培养学生的数学建模能力:引导学生将实际问题转化为二次根式的数学模型,培养学生运用数学知识解决实际问题的能力。
4.培养学生的数学抽象素养:通过对二次根式性质的探究,使学生理解数学概念的本质,提高数学抽象思维。
三、教学难点与重点
1.教学重点
-二次根式的性质:理解并掌握二次根式的乘法、除法、平方和开方性质,能熟练应用于解题。
其次,我发现有些学生对乘法性质和除法性质容易混淆,尤其是在应用时。为了帮助学生更好地掌握这两个性质,我计划在下一节课中增加一些对比练习,让学生通过实际操作,感受两者之间的区别和联系。
此外,关于二次根式的化简,我觉得在讲解过程中需要更加注重步骤的详细解释。有些学生对于多层嵌套的二次根式化简感到困惑,我将在以后的课堂中多举例,并引导学生逐步分解和化简,以提高他们的解题能力。
-二次根式的化简:掌握运用性质对二次根式进行化简的方法,提高解题效率。
-实际问题的建模:学会将实际问题转化为二次根式的数学模型,培养数学应用能力。

二次根式教案人教版

二次根式教案人教版

二次根式教案人教版教案标题:二次根式教案(人教版)教案目标:1. 理解二次根式的概念和性质;2. 掌握二次根式的化简和运算方法;3. 能够在实际问题中应用二次根式。

教学重点:1. 二次根式的概念和性质;2. 二次根式的化简和运算方法。

教学难点:1. 二次根式的应用。

教学准备:1. 教材:人教版数学教材;2. 教具:黑板、粉笔、计算器。

教学过程:一、导入(5分钟)1. 引入二次根式的概念,通过例题让学生了解二次根式的基本形式;2. 提问学生是否了解二次根式的性质,并让学生简单描述。

二、讲解二次根式的概念和性质(15分钟)1. 通过示意图和实例,讲解二次根式的定义和含义;2. 引导学生发现二次根式的性质,如乘法性质、除法性质等;3. 提供一些练习题,让学生巩固对二次根式概念和性质的理解。

三、化简和运算方法的讲解(20分钟)1. 介绍二次根式的化简方法,包括合并同类项、提取公因式等;2. 讲解二次根式的加减法和乘除法运算规则;3. 提供一些练习题,让学生熟练掌握化简和运算方法。

四、应用题的讲解(15分钟)1. 引导学生通过实际问题应用二次根式,如面积、周长等;2. 通过实例讲解如何将实际问题转化为二次根式的形式,然后进行计算;3. 提供一些应用题,让学生巩固应用二次根式的能力。

五、小结与拓展(5分钟)1. 对本节课的内容进行小结,强调重点和难点;2. 鼓励学生拓展思维,提出更多关于二次根式的问题。

六、作业布置(5分钟)1. 布置相关的练习题,要求学生独立完成;2. 鼓励学生自主学习,提出问题及时解答。

教学反思:本节课通过引入二次根式的概念和性质,讲解了二次根式的化简和运算方法,并应用于实际问题中。

通过讲解和练习,学生对二次根式有了更深入的理解,并能够熟练应用于实际问题中。

在教学过程中,可以适当增加一些拓展内容,提高学生的思维能力和解决问题的能力。

人教版数学八年级下册16.2二次根式的乘除(教案)

人教版数学八年级下册16.2二次根式的乘除(教案)
2.教学难点
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。

人教版九年级上册21.1二次根式教学设计

人教版九年级上册21.1二次根式教学设计

人教版九年级上册21.1二次根式教学设计一、教学目标1.了解二次根式的基本概念和性质。

2.掌握二次根式乘法法则。

3.掌握二次根式的化简和简单应用。

二、教学准备1.计算器。

2.小黑板、彩色粉笔。

3.练习册、评价表。

4.课件、视频等多媒体设备。

三、教学流程3.1 导入(5分钟)教师出示几个简单的二次根式,并引导学生思考以下问题:•什么是二次根式?•二次根式有哪些基本性质?3.2 讲授(25分钟)3.2.1 二次根式的定义和概念(10分钟)搭建二次根式的定义和概念,包括:•二次根式的定义:形如$\\sqrt{a}$ ($a\geq 0 $)的式子。

•二次根式的基本形式:$\\sqrt{a}$。

•二次根式的倒数:$\\dfrac{1}{\\sqrt{a}} =\\dfrac{\\sqrt{a}}{a}$。

•二次根式的加减法:同底数$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。

•二次根式化简:比如$\\sqrt{4a^2b} = 2ab$。

3.2.2 二次根式乘法法则(10分钟)搭建二次根式乘法的基本法则,引导学生掌握二次根式的乘法,包括:•二次根式之积仍为二次根式,比如$\\sqrt{a}\\times \\sqrt{b} = \\sqrt{ab}$。

•化简二次根式的过程。

3.2.3 二次根式的简单应用(5分钟)引导学生了解二次根式的简单应用,如:•计算周长、面积、体积等问题。

3.3 练习(20分钟)让学生做一些简单的练习题,如:•$\\sqrt{5}\\times \\sqrt{20}$。

•$\\sqrt{a^2}\\times \\sqrt{b}$。

•$(\\sqrt{3} + \\sqrt{2})^2$。

3.4 总结(5分钟)让学生自行总结本课的重点和难点。

四、课后作业布置适当的作业,巩固学生对二次根式概念和乘法法则的掌握。

五、教学评价教师可以通过教学课件、小板书、作业评分等对学生的学习情况进行评价。

人教版数学八年级下册16.1二次根式(教案)

人教版数学八年级下册16.1二次根式(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(例如,计算一个边长为$\sqrt{5}$的正方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
4.培养学生的数学抽象素养:让学生从具体的二次根式实例中抽象出一般规律,提升对数学概念的理解和抽象思维能力。
5.激发学生的数学探究精神:鼓励学生在二次根式学习中积极思考、探索,培养他们的创新意识和探究精神。
三、教学难点与重点
1.教学重点
-二次根式的定义:理解二次根式的概念,明确根号下仅含非负实数的表达式。
-二次根式的性质:掌握二次根式的乘除、平方等运算性质,如$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$。
-二次根式的化简:学会通过因式分解、提取公因数等方法化简二次根式,如$\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}$。
-二次根式的乘除法:熟练运用性质进行二次根式的乘除运算,如$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)。
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析问题,提高解题的条理性和逻辑性。
2.提升学生的数学运算能力:让学生掌握二次根式的化简、乘除与加减运算,培养他们在数学运算中的准确性和熟练度。
3.增强学生的数学建模意识:通过解决实际问题,使学生能够运用二次根式知识构建数学模型,提高解决实际问题的能力。

人教版数学八年级下册16.1二次根式(教案)

人教版数学八年级下册16.1二次根式(教案)
-在混合运算中,例如计算√3 + √5这样的题目,学生需要知道不能直接相加,而是保持原样。
-对于最简二次根式的判断,如√18与2√2这样的形式,需要学生识别出后者是最简形式,因为18不能再分解为两个不含平方数因子的乘积。
-在实际应用中,如计算一个矩形的对角线长度,需要学生将矩形的长和宽表示为二次根式,然后运用二次根式的乘法法则进行计算。
三、教学难点与重点
1.教学重点
-二次根式的概念:强调二次根式的定义,使学生理解根号下为何只能是正数,以及二次根式的性质。
-二次根式的简化方法:掌握将二次根式化简为最简形式的方法,包括分解质因数、提公因数等。
-二次根式的乘法法则:理解并掌握二次根式乘法的法则,如√a * √b = √(ab)。
-二次根式的应用:能够将二次根式应用于解决实际问题的情境中。
然而,我也注意到,在小组讨论环节,有些学生过于依赖同伴,缺乏独立思考。在今后的教学中,我要更加关注这部分学生,鼓励他们大胆提出自己的观点,培养他们的独立思考能力。
此外,在总结回顾环节,我强调了二次根式在解决实际问题中的应用,希望学生们能够将所学知识内化为自己的能力。但从学生的反馈来看,他们对这部分内容的掌握程度仍有待提高。因此,我计划在接下来的课程中,加入更多与实际生活相关的例题,让学生在解决具体问题的过程中,进一步巩固二次根式的运用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

二次根式教案

二次根式教案

二次根式教案通用一、教学内容本节课我们将学习人教版数学八年级下册第14章“二次根式”的内容。

具体包括:二次根式的定义与性质;二次根式的乘除法运算;最简二次根式的概念与化简方法。

重点章节为14.1节和14.2节。

二、教学目标1. 理解并掌握二次根式的定义,能够识别常见的二次根式。

2. 学会二次根式的乘除法运算,并能解决实际问题。

3. 能够化简最简二次根式,提高数学思维能力。

三、教学难点与重点教学难点:二次根式的乘除法运算、最简二次根式的化简。

教学重点:二次根式的定义与性质、二次根式的乘除法运算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:学生用计算器、草稿纸、笔。

五、教学过程1. 导入新课:通过实际情景引入,如土地面积的测算,让学生感受到二次根式的实际意义。

2. 新知讲解:(1)讲解二次根式的定义,让学生理解根号下为何种类型的式子。

(2)通过例题讲解,让学生掌握二次根式的乘除法运算。

(3)介绍最简二次根式的概念,并进行化简方法的讲解。

3. 随堂练习:布置一些具有代表性的练习题,让学生巩固所学知识。

4. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导。

六、板书设计1. 二次根式的定义与性质2. 二次根式的乘除法运算3. 最简二次根式的概念与化简方法七、作业设计1. 作业题目:(1)计算:√18 ÷ √2,√27 × √8(2)化简:√(4/9),√(1/24)2. 答案:(1)3,3√6(2)2/3,√6/4八、课后反思及拓展延伸本节课通过实际情景引入、例题讲解、随堂练习等方式,让学生掌握了二次根式的定义与性质、乘除法运算以及最简二次根式的化简方法。

课后,教师应关注学生对知识的掌握情况,并进行针对性的辅导。

拓展延伸部分,可以让学生探索二次根式的加减法运算,为下一节课的学习打下基础。

重点和难点解析1. 教学内容的设置与衔接2. 教学目标的明确与实现3. 教学难点与重点的把握4. 教学过程的实践情景引入5. 例题讲解的深度与广度6. 随堂练习的设计与反馈7. 板书设计的逻辑性与条理性8. 作业设计的针对性与拓展性9. 课后反思及拓展延伸的实际应用一、教学内容的设置与衔接教学内容应紧密联系学生的已有知识,确保学生能够顺利过渡到新的知识点。

人教版八年级下册数学第2课时 二次根式的除法教案

人教版八年级下册数学第2课时 二次根式的除法教案

第2课时二次根式的除法教学设计课题二次根式的除法授课人素养目标1.理解最简二次根式的概念,并运用二次根式的性质把二次根式化成最简二次根式,感知数学转化思想的应用.2.理解并掌握二次根式的除法法则:ab=ab(a≥0,b>0).会用类比的数学思想方法来探究除法法则.3.理解并掌握商的算术平方根的性质:ab=ab(a≥0,b>0).体会二次根式的除法法则与商的算术平方根的性质之间的互逆关系.4.利用二次根式的除法法则和商的算术平方根的性质进行计算和化简,培养学生良好的运算习惯,提高运算能力和推理能力.教学重点会利用商的算术平方根的性质化简,会进行二次根式的除法运算.教学难点二次根式的除法与商的算术平方根的性质的关系及应用.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图利用实际问题引入新课.【情境导入】电视塔越高,从塔顶发射出的电磁波传播得越远,从而收看到电视节目的区域就越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=2Rh,其中R是地球半径,R≈6400km.如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径之比是2Rh12Rh2.你能将这个式子化简吗?化简这个式子需要学习二次根式的除法,下面我们一起来看看.【教学建议】让学生拓展知识,共同讨论,教师说明学完本课时就可以解决这个问题,调动积极性.活动二:问题引入,自主探究设计意图引导学生观察总结出二次根式的除法法则.探究点1二次根式的除法法则1.计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.答:规律:1.被开方数都是正数;2.左边的两个二次根式的商等于右边的一个二次根式,且左边的两个二次根式的被开方数的商等于右边的一个二次根式的被开方数.2.你能用字母表示你发现的规律吗?答:二次根式的除法法则:ab=ab(a≥0,b>0).即二次根式相除,把被开方数相除,根指数不变.【教学建议】(1)学生口答问题1的填空,指定学生代表回答规律,教师补充完整.(2)学生讨论问题2,教师板书总结,提醒学生这里b>0,因为b=0时分母为0,没有意义.教学步骤师生活动设计意图引导学生逆向思考,发现商的算术平方根的性质.3.计算:(1)243;(2)32÷118;(3)145÷110;(4)x2÷x8y3.解:(1)243=243=8=4×2=22;(2)32÷118=32÷118=32×18=3×9=33;(3)145÷110=95÷110=95÷110=95×10=32×2=32;(4)x2÷x8y3=x2÷x8y3=x2·8y3x=4y3=2y y.【对应训练】计算:(1)18÷2;(2)726;(3)41222;(4)b5÷b20a2.解:(1)18÷2=18÷2=9=3;(2)726=726=12=4×3=23;(3)41222=2122=26;(4)b5÷b20a2=b5÷b20a2=b5·20a2b=4a2=2a.探究点2商的算术平方根的性质1.把ab=ab反过来,可以得到什么?答:商的算术平方根的性质:ab=ab(a≥0,b>0).(利用它可以进行二次根式的化简)2.化简:(1)3100;(2)179;(3)7527;(4)4z49x2y2(x>0,y>0).解:(1)3100=3100=310;(2)179=169=169=43;(3)7527=52×332×3=5232=53;(4)4z49x2y2=4z49x2y2=2z7xy.3.(1)观察32和118,怎么去掉被开方数中的分母?答:综合利用分数的基本性质、商的算术平方根的性质.例如:(3)指定学生代表回答问题3,提醒学生计算二次根式的除法应注意:①结果中应不含能开得尽方的因数因式;②如果有系数,就将系数与系数相除,二次根式与二次根式相除,两者的积作为商;③如果有带分数,就先将带分数化为假分数,再进行计算.【教学建议】指定学生代表回答,提醒学生:(1)化简和计算的结果中应不含能开得尽方的因数或因式,分母中也应不含根号;(2)可先将分子与分母中公共的因数或因式约去,再转化为二次根式的商的形式进行化简;(3)根号下是带分数的应先化为假分数再化简.教学步骤师生活动设计意图引导学生发现总结最简二次根式的特点.32=3×22×2=622=62,118=1×218×2=236=26.(这里令分子、分母同乘一个数,使得分母变成完全平方数)(2)观察35,3227,82a,怎么去掉分母中的根号?答:方法1:35=35=3×55×5=1552=1552=155;(这里先用二次根式的除法法则,再用(1)中方法)方法2:35=3×55×5=15(5)2=155.(这里分子、分母同乘一个二次根式,使得分母变成有理数.)3227=3232×3=3232×3=23=2×33×3=63.82a=8·2a2a·2a=4a2a=2aa.【对应训练】1.化简:(1)364;(2)11549;(3)196100;(4)25a49b2(b>0).解:(1)364=364=38;(2)11549=6449=6449=87;(3)196100=72×452×4=7252=75;(4)25a49b2=25a49b2=5a23b.2.计算:(1)78;(2)2a÷6a.解:(1)原式=722×2=722=7×222×2=144;(2)原式=2a6a=13=1×33×3=332=332=33.探究点3最简二次根式观察前面出现过的22,310,2aa等,这些式子有什么特点?答:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.概念引入:我们把满足上述两个条件的二次根式,叫做最简二次根式.【对应训练】【教学建议】可先让学生讨论,再指定学生代表回答,教师进行总结.提醒学生根号下是小数时先化为分数.教学步骤师生活动1.下列各式是最简二次根式的是(A)A.13B.12C.a2D.53 2.教材P10练习第2题.活动三:重点突破,提升探究设计意图巩固学生对二次根式的除法法则和商的算术平方根的性质的理解.例1计算:(1)27×83÷12;(2)45÷33×35.解:(1)27×83÷12=27×83÷12=27×83×2=9×16=32×42=3×4=12;(2)45÷33×35=13453×35=13453×35=139=13×3=1.例2解答教材P9例7.【对应训练】1.计算:12÷(-12)×324.解:12÷(-12)×324=-12÷12×324=-124×324=-3124×24=-3.2.教材P10练习第3题.3.解答活动一中提出的问题.解:2Rh12Rh2=2R·h12R·h2=h1h2=h1·h2h2·h2=h1h2h2.【教学建议】(1)指定学生代表回答,提醒学生在进行二次根式的乘除混合运算时要遵循从左到右的顺序,可先观察式子特点再决定计算之前是否化简.(2)教师强调二次根式的运算结果应是最简二次根式或整式.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:二次根式的除法法则是什么?其逆向公式怎么表示?什么是最简二次根式?在二次根式的运算中,你认为应该注意哪些问题?【知识结构】【作业布置】1.教材P10习题16.2第2,3,4,8,9,10,11,13题.2.相应课时训练.板书设计16.2二次根式的乘除第2课时二次根式的除法1.二次根式的除法法则:ab=ab(a≥0,b>0).2.商的算术平方根的性质:ab=ab(a≥0,b>0).3.最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.4.二次根式的运算要求:一般要把最后结果化为最简二次根式或整式,并且分母中不含二次根式.教学步骤师生活动教学反思前两个探究点注意引导学生用与乘法相类似的方法去学习,对最简二次根式的概念要逐步渗透.强调计算结果要化为最简形式,以规范做题.在教学中感受到学生对分母有理化的运用不够灵活,应在今后的复习中强化巩固.1.最简二次根式(1)概念:符合下列两个条件的二次根式,叫做最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.如:52+122不是最简二次根式,因为52+122=25+144=169=13;m 2+n 2是最简二次根式.(2)化简二次根式一般分三步:①化去分母:如果被开方数是分数或分式,运用商的算术平方根的性质将其化成a b的形式;②能开则开:把被开方数分解因式,利用积的算术平方根的性质把能开得尽方的因数或因式开出来;③化去分母中的根号:如果分母中含有根号,则运用分式的基本性质化去分母中的根号.例1将1212化为最简二次根式.解:1212=252=252=52=5×22×2=522.注意:化简时别犯这种错误:1212=12×12=23×22= 6.2.商的算术平方根的性质:ab =a b(a≥0,b >0).例2若y +22x -1=y +22x -1,且x +y =5,则x 的取值范围是(D )A .x >12B .12≤x <5C .12≤x <7D .12<x ≤7解析:∵y +22x -1=y +22x -1,∴y +2≥0,2x -1>0,∴y ≥-2,x >12.∵x +y =5,∴y =5-x ,则5-x ≥-2,解得x ≤7.故x 的取值范围是12<x ≤7.故选D .3.二次根式的除法法则:a b=ab(a≥0,b >0).例3计算:m 3n÷mn·1mn(m >0,n >0).解:原式=m 3n mn ·1mn =m mn =m·mn mn·mn=mnn .注意:计算时注意运算顺序,别犯这种错误:原式=m 3n÷(mn·1mn)=m mn÷1=m mn.例4计算:2a ab 5·(-32a 3b)÷(-13ba).解:原式=2a ab 5·(-32a 3b)·(-3a b )=2a ×32×3×ab 5·a 3b·a b =9a a 5b 5=9a·a 2b 2·ab =9ab2ab.例1把二次根式(x-1)11-x中根号外的因式移到根号内,结果是-1-x.解析:由题意得1-x>0,则x-1<0,∴(x-1)11-x=-11-x·(1-x)2=-1-x.故答案为-1-x.例2已知9-xx-6=9-xx-6,且x为偶数,求(1+x)x2-5x+4x2-1的值.分析:ab=ab在a≥0,b>0时成立,再结合x为偶数得到x的值,然后化简式子,最后代入求值.,0,∴6<x≤9.又x为偶数,∴x=8.原式=(1+x x)x-4x+1=(1+x)x-4x+1=(1+x)(x-4).∴当x=8时,6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 二次根式课题:16.1二次根式 课型:新授课教学目标:1、理解二次根式的定义,会用算术平方根的概念解释二次根式的意义2、会确定二次根式有意义的条件,知道a (a ≥0)是非负数,并会运用会进行二次根式的平方运算,3、会对被开方数为平方数的二次根式进行化简通过探究()2a 和2a 所含运算、运算顺序、运算结果分析,归纳并掌握性质教学重点: 1.a 有意义的条件. 2.a ≥0时a ≥0的应用. 3.()2a 和2a 的运算、化简 教学难点:当a <0时2a 的化简教学过程:一、复习引入在七年级实数中,已经用到过简单的二次根式,在本章中将系统地学习二次根式的运算。

二、探究新知(一)定义及非负性活动1、填空,完成课本思考1:65,S ,2,5h 活动2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义.活动3、给出二次根式的定义,介绍二次根式的读法.活动4、思考下列问题: ①9的运算结果是3,9是不是二次根式?3是不是?②定义中为什么要加a ≥0?若a<0,a 表示什么?有无意义?③当 a=0时,a 表示什么?结果是什么?当 a>0时,a 表示什么?可不可能为负数?a (a ≥0)是什么样的数呢?例1、当x 是怎样的实数时,下列二次根式有意义?在下列二次根式有意义的情况下,其运算结果是怎样的实数?2-x , 11+x , 32+x练习:1、课本思考2:当x 是怎样的实数时,2x ,3x 有意义? 1、若m x -=-2,则x 和m 的取值范围是x_____;m______. 2、已知053=-++y x ,求y x ,的值各是多少?(二)两个运算性质活动5、完成课本探究1活动6、对()2a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变. 练习:课本例2活动7、完成课本探究2活动8、对2a 中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例3补充练习:1、化简:2)4(-π,2)32(-;2、直角三角形的三边分别为a ,b ,c ,其中c 为斜边,则式子()2a -()2c 与式子2)(c a -有什么关系?三、课堂训练完成课本中两个练习.1、m m =-1 成立的条件是_______.2、m m =+1成立的条件是_______.四、小结归纳 1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象”,开方为“子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计必做:P5:1、2、3、4、5、6选做:P5:7、8、9、10教学反思教学课题:16.2二次根式的乘除(第1课时) 教学课型:新授课教学目标:1.会运用二次根式乘法法则进行二次根式的乘法运算2.会利用积的算术平方根性质化简二次根式经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质.3.通过例题分析和学生练习,达成目标1,2,认识到乘法法则只是进行乘法运算的第一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的方法教学重点:双向运用ab b a =⋅(a ≥0,b≥0)进行二次根式乘法运算教学难点:被开方数的最优分解因数或因式的方法教学过程一、复习引入:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算二、探究新知(一)二次根式乘法法则活动1、1.填空,完成课本探究12.用1中所发现的规律比较大小36436⨯;26活动2、给出二次根式的乘法法则活动3、思考下列问题:①公式中为什么要加a ≥0, b≥0?②两个二次根式相乘其实就是 不变, 相乘 ③c b a ⋅⋅(a ≥0, b≥0,c≥0)=练习:课本例1,在(1)(2)之后补充 (3)a a 4⋅归纳:运算的第一步是应用二次根式乘法法则,最终结果尽量简化(二)积的算术平方根性质活动4.将二次根式乘法公式逆用得到积的算术平方根性质完成课本例2,在(1)(2)之间补充48归纳:化简二次根式实质就是先将被开方数因数分解或因式分解,然后再将能开的尽方的因数或因式开方后移到根号外. 例3. 计算:(1)714⨯ (2)10253⨯;(3)xy x 313⋅ 分析:(1)第一步被开方数相乘,不必急于得出结果,而是先观察因式或因数的特点,再确定是否需要利用乘法交换律和结合律以及乘方知识将被开方数的积变形为最大平方数或式与剩余部分的积,最后将最大平方数或式开方后移到根号外.(2)运用乘法交换律和结合律将不含根号的数或式与含根号的数或式分别相乘,再把这两个积相乘.,之后同(1)三、课堂训练完成课本练习.补充:1.1112-=-⋅+x x x 成立,求x 的取值范围.2.化简:()03≤-x y x四、小结归纳 1.二次根式乘法公式的双向运用;2.进行二次根式乘法运算的一般步骤,观察式子特点灵活选取最优解法五、作业设计必做:P10:1、3(1)(2)、4补充作业:1.计算: (1)57⨯; (2)2731⨯;(3)155⨯; (4)8423⨯ 2.化简(1)3227y x ; (2)ab a 1832⋅教学课题:16.2二次根式的乘除(第2课时) 教学课型:新授课教学目标:1.会运用二次根式除法法则进行二次根式的除法运算.2.会利用商的算术平方根性质化简二次根式.3.理解最简二次根式概念,知道二次根式的运算中,一般要把最后结果化为最简二次根式.4通过例题分析和学生练习分母有理化方法进行二次根式除法教学重点:双向运用0)b 0( ≥≥=、a ba b a进行二次根式除法运算 教学难点:能使用分母有理化方法进行二次根式的除法运算教学过程:一、复习引入导语设计:上节课学习了二次根式的乘法,这节课学习二次根式的除法运算.二、探究新知(一)二次根式除法法则活动1、1.填空,完成课本探究12.用1中所发现的规律比较大小活动2、给出二次根式的除法法则活动3、思考下列问题:①公式中为什么要加a ≥0, b>0?②两个二次根式相除其实就是 不变, 相除练习:课本例4,在(1)(2)之后补充 (3)a a ÷34归纳:运算的第一步是应用二次根式除法法则,最终结果尽量简化.(二)商的算术平方根性质活动4.将二次根式除法公式逆用得到商的算术平方根性质完成课本例5归纳:化简被开方式含有分数线的二次根式,就是将分子的算术平方根做分子,分母的算术平方根做分母,再利用积的算术平方根分别化简.例6. 计算:(1)53 (2)2723;(3)a28分析:第一步可以把被开方数相除,然后告诉学生被开方数中不能含有分母,数必须是整数,利用分数的基本性质将分母变成完全平方数,开方后移到根号外;也可以直接模仿分数的基本性质和公式a a =2)(,)0,0(≥≥=⋅b a ab b a ,以去掉分母中的根号.(三)最简二次根式概念活动5、让学生观察所做习题结果,总结归纳结果的特点,得到最简二次根式的概念.分析概念:1.被开方数不含分母的含义指-----因数是整数,因式是整式;2.被开方数中不能含开得尽方的因数是指----被开方数不能分解出完全平方数;被开方数中不含开得尽方的因式是指----被开方数的每一个因式的指数都小于根指数2,因此,每一个因式的指数都是1.完成课本例7 补充:化简2442y x y x +注意:被开方数是和式时,结果不等于各加数的算术平方根的和.三、课堂训练完成课本练习.补充: 1.1111-+=-+x xx x 成立,求x 的取值范围.2.找出下列根式中的最简二次根式3.判断下列等式是否成立四、小结归纳1.二次根式除法公式的双向运用;2.进行二次根式除法运算的一般步骤,观察式子特点灵活选取最优解法.3.最简二次根式概念五、作业设计必做:P10:2、3(3)(4)、5、6、7选做:P11:8、9、10教学课题:16.3二次根式的加减(第1课时) 教学课型:新授课教学目标:1.知道在有理数范围内成立的运算律在实数范围内仍然成立.2.能熟练将二次根式化简成最简二次根式.3.会运用二次根式加减法法则进行二次根式的加减运算教学重点:二次根式加减法运算方法教学难点:二次根式的化简,合并被开方数相同的最简二次根式教学过程一、复习引入上节课学习了二次根式的乘除法,这节课学习二次根式的加减法运算.二、探究新知(一)二次根式加减法法则活动1、类比计算,说明理由① 2a +3a ; 2322+. ② 2a -3a ; 2322-. ③123+ ; 1812+思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的加减运算与整式的加减运算相同之处是什么?(3) 什么样的二次根式能够合并?(4)模仿整式的加减运算怎样进行二次根式的加减运算?活动2、给出二次根式的加减法法则分析法则:二次根式加减时,先将非最简二次根式化为最简二次根式,再逆用乘法分配律将被开方数相同的二次根式进行合并.被开方数不同的最简二次根式不能合并,作为最后结果中的部分.练习:①课本例1,补充 (3)182- (4)821- ②课本例2,补充 ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛-6812124 分析说明:①中补充(3)结果为负,(4)含分数线,作为例1,例2的过渡。

②中补充括号前是负号的.(二)二次根式加减的应用1.课本引例分析:这个实际问题的解决方法可能不同,还可以先估算两个正方形的边长,,再把它们的和与木板的长比较.三、课堂训练完成课本练习补充:1.下列各组二次根式中,化简后被开方式相同的是() A.2ab ab 与 B. 2222n m n m -+与 C.n m mn 11+与 D.29984343b a b a 与 2.二次根式的计算为什么先学乘除,后学加减?还有哪块知识也是如此?四、小结归纳1.进行二次根式加减运算的一般步骤.2.二次根式的熟练化简.3.二次根式加减的实际应用.五、作业设计必做:P15:1、2、3选做:5补充作业:计算:(1)223-; (2)27122+;(3)2918-; (4)x x 2242+; (5)3222x a x -; (6)23218+-; (7)108965475-+-; (8))272(43)32(21--+教学课题:16.3二次根式的加减(第2课时) 教学课型:新授课教学目标:1.在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算2.对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算的顺序及运算律在计算过程中的作用.并感受数的扩充过程中运算性质和运算律的一致性以及数式通性.3.在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整式的运算的联系.教学重点:混合运算的法则,运算律的合理使用教学难点:灵活运用运算律、乘法公式等技巧,使计算简便教学过程一、复习引入导语设计:到目前为止,我们已经学习了二次根式的乘除、加减运算,这节课来学习二次根式的混合运算.二、探究新知(一)二次根式混合运算法则活动1、类比计算,说明理由①(2a +3b)a ; ( 3322+)6 ②(2a +3b)(a -b); ()()3262+- ③(3a b-4a 2 )÷a ; ()3126÷+思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的混合运算与整式的混合运算相同之处是什么?(3)左边式子中的字母a 、b 可以表示二次根式吗?(4)模仿整式的混合运算怎样进行二次根式的混合运算?活动2、给出二次根式的混合运算的一般步骤.分析法则:(1)进行二次根式混合运算时,运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去掉括号).(2)对于二次根式混合运算,原来学过的所有运算律、运算法则仍然适用,整式、分式的运算法则仍然适用。

相关文档
最新文档