年产5000吨味精工厂糖化车间设计

合集下载

(完整版)年产5000吨糖化酶发酵车间设计

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院本科生毕业设计学院(系):生物与化学工程学院专业:生物工程学生: *******指导教师:***完成日期 2010 年 5 月南阳理工学院本科生毕业设计年产5000吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop总计:毕业设计(论文)28页表格: 5 个插图: 1 幅南阳理工学院本科毕业设计年产5000吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop学院(系):生物与化学工程学院专业:生物工程学生姓名:郭留洋学号:*****指导教师:******评阅教师:完成日期:2010年5月南阳理工学院Nanyang Institute of Technology年产5000吨糖化酶发酵车间的工艺设计生物工程专业郭留洋【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。

本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

【关键字】糖化酶工厂设计深层发酵黑曲霉The Design of Annual Output of 5000 Tons ofGlucoamylase Fermentation FactoryWorkshopAbstract:Glucoamylase is the main enzyme of industrial production which is widely used in wine, glucose, fructose syrup, antibiotics, lactic acid, organic acid, monosodium glutamate, cotton and so on.The design use corn starch as main raw material, using Aspergillums Niger, and apply mechanical ventilation it that can be fermented production. This industrial workshop design can complete the process of industrial design, the accounting, equipment selection facility layout design. This workshop can make production of 5,000 tons of glucoamylase fermentation using three 75 m3 and 3 based fermentation tank 6m3 seed set and so on, The fermentation plant has a reasonable layout which according to thefactory workshop’s layout of bio-engineering principles, With drawing a flow chart and workshop’s layout, the result of industrial design provide a reference to the production of glucoamylase.Keywords:Glucoamylase Plant DesignFermentation Aspergillus Niger目录1前言 (1)1.1糖化酶的简介 (1)1.2糖化酶的应用现状 (1)1.3糖化酶在国内外的研究进展及前景 (1)1.4设计内容及意义 (3)2本论 (5)2.1糖化酶生产中所用黑曲霉的特性 (5)2.2菌种培养工艺 (5)2.2.1菌种活化 (6)2.2.2一级种子培养 (6)2.2.3二级种子培养 (6)2.3工艺计算 (6)2.3.1工艺技术指标及基础数据 (6)2.3.2发酵工艺流程图 (8)2.3.3物料衡算 (8)2.3.4热量衡算 (10)2.3.5水平衡的计算 (13)2.3.6无菌空气用量的计算 (14)2.4设备的设计与选型 (14)2.4.1发酵罐的设计与选型 (14)2.4.2种子罐的设计与选型 (17)2.5 车间布置设计 (18)2.5.1车间布置设计的目的和重要性 (18)2.5.2 车间布置的有关技术要求和参数 (19)2.5.3设备的安全距离 (19)2.5.4设备布置原则 (20)3结论 (21)参考文献 (22)致谢 (23)1前言1.1 糖化酶的简介糖化酶又称葡萄糖淀粉酶,糖化酶是一种习惯上的名称,学名为α-1,4-葡萄糖水解酶。

年产5000吨味精工厂糖化车间设计

年产5000吨味精工厂糖化车间设计

湘潭大学化工学院专业课程设计说明书题目:年产5000吨味精工厂糖化车间设计专业:生物工程学号:***********名:***指导教师:***完成日期:2012.2.24湘潭大学化工学院专业课程设计任务书设计题目:年产5000吨味精工厂糖化车间设计学号:2008651201 姓名:罗开花专业:生物工程指导教师:张小云系主任:陶能国一、主要内容及基本要求主要内容:拟设计年产5000吨味精工厂,以糖化工序为主体做初步设计,完成糖化车间工艺流程选择、物料衡算、设备选型的相关计算,绘制车间平面和立面布置图、车间设备布置图、带控制点的生产工艺流程图及主要单件设备图等;按相关要求编写设计说明书1份基本要求:生产方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范二、进度安排三、应收集的资料及主要参考文献味精生产工艺和设备相关的文献;味精工厂设计相关文献;工厂设计所需各类工具书等。

6参考文献[1] 吴思方.发酵工厂工艺设计概论[M].北京:中国轻工业出版社,2006.7.[2] 陈宁.氨基酸工艺学[M].北京:中国轻工业出版社,2007.1.[3] 梁世中.生物工程设备[M].北京:中国轻工业出版社,2006.9.[4] 刘振宇.发酵工程技术与实践[M].上海:华东理工大学出版社,2007.1[5] 王志魁.化工原理[M] .北京:化学工业出版社,2004.10.[6] 李功样,陈兰英,崔英德.常用化工单元设备设计[M].广州:华南理工大学出版社,2003.4.[7] 俞俊堂,唐孝宣.生物工艺学(上册)[M].上海:华东理工大学出版社,2003.1.[8] 张克旭.氨基酸发酵工艺学[M].北京:中国轻工业出版社,2006.2.[9] 蒋迪清, 唐伟强. 食品通用机械与设备[M].广州:华南理工大学出版社,2003.7[10]刘玉德. 食品加工设备选用手册[M].北京:化学工业出版社,2006,8[11] 于信令主编. 味精工业手册[M].北京:中国轻工业出版社,2005目录前言 (5)1.味精的主要理化性质 (5)2.主要介绍任务内容、工厂特点、产品等 (6)第1章味精工厂糖化工艺 (8)1.1淀粉质原料蒸煮糖化的目的 (8)1.2设计方案的确定 (8)1.2.1 糖化方法的选择论证 (8)1.3糖化工艺流程 (10)1.3.1淀粉的液化(糊化) (10)1.3.2糊化和糖化的控制 (12)第2章工艺计算 (13)2.1味精生产糖化阶段工艺流程 (13)2.2糖化的主要工艺参数如下表2-1 (13)2.3物料的计算 (13)2.3.1 味精厂的总物料衡算 (13)2.3.2主要工艺参数及经济指标 (14)2.3.3 原料消耗的计算 (14)2.3.4 蒸煮醪量的计算 (15)第3章相关设备的计算与选型 (16)3.1蒸煮设备 (16)3.2糊化设备 (16)3.3糖化设备 (17)3.4车间设备数量 (18)设计体会 (19)参考文献 (19)前 言味精是利用微生物发酵生产的一个具有代表性的产品,生产工艺涉及种子培养、发酵、提取、脱色、离心和干燥等重要的单元操作和工程概念。

年产5000吨味精提取车间工艺的设计

年产5000吨味精提取车间工艺的设计

年产5000吨味精提取车间工艺的设计1. 引言本文档旨在设计一个年产5000吨味精提取车间的工艺流程。

味精是一种重要的调味品,广泛应用于食品加工行业。

为了满足市场需求,设计一个高效、稳定的工艺流程对于提高生产能力和产品质量至关重要。

2. 工艺流程设计2.1 原料处理•原料清洗:将原料进行清洗,去除杂质和污染物,确保原料的纯净度。

•切割和研磨:将清洗后的原料切割成适当大小的块状,然后进行研磨,以增加原料的表面积,有利于味精的提取。

2.2 味精提取•浸泡:将研磨后的原料放入浸泡槽中,加入适量的水,使原料充分浸泡,以便味精的溶解和提取。

•滤液分离:浸泡后的原料通过滤液分离设备进行分离,分离出的液体中含有味精。

•浓缩:将分离出的液体通过浓缩设备进行蒸发,使味精更加浓缩。

•结晶:将浓缩后的液体通过结晶设备进行结晶,得到固态的味精晶体。

2.3 干燥和包装•干燥:将味精晶体通过干燥设备进行脱水,以降低味精的含水量,增加其稳定性。

•粉碎:将干燥后的味精晶体进行粉碎,得到细小的颗粒状味精产品。

•包装:将粉碎后的味精产品通过自动包装机进行包装,以保持产品的新鲜度和卫生性。

3. 设备选型和布局3.1 设备选型为了满足年产5000吨味精的生产需求,需要选择高效、稳定的设备。

以下是一些建议的设备选型:•原料清洗设备:采用自动化设备,提高清洗效率。

•研磨设备:选择具有高效研磨功能的设备,确保原料的充分研磨。

•浸泡槽:设计大容量的浸泡槽,使原料能够充分浸泡。

•滤液分离设备:选择高效的分离设备,以提高提取效率。

•浓缩设备:选择能够进行高效蒸发的浓缩设备,以增加味精的浓度。

•结晶设备:选择具有稳定性和高效结晶功能的设备,确保结晶的效果。

•干燥设备:选择能够进行高效脱水的干燥设备,降低味精的含水量。

•粉碎设备:选择能够进行高效粉碎的设备,得到符合要求的颗粒状味精产品。

•自动包装机:选择高效的自动包装机,提高包装效率和产品质量。

3.2 车间布局为了最大程度地提高生产效率,车间布局应合理规划。

年产n吨味精糖化工段工艺设计.

年产n吨味精糖化工段工艺设计.

年产4.5万吨味精糖化工段工艺设计系(学院):班级(学号):学生姓名:组员:2012年月日摘要味精,又名“味之素”,学名“谷氨酸钠”。

成品为白色柱状结晶体或结晶性粉末,是目前国内外广泛使用的增鲜调味品之一,其主要成分为谷氨酸钠。

具有增强肉鲜味的功能。

人体中谷氨酸以游离态和结合态两种形态存在。

蛋白质在体内中占14%--17%。

谷氨酸占其中的20%,味精经胃酸作用转化为谷氨酸,被吸收构成蛋白质,并参与体内各器官代谢,他是一种非必需氨基酸,在脱氨基、脱羧、解氨等反应中起着重要的作用。

味精对人体没有直接的营养价值,但它能增加食品的鲜味,引起人们食欲,有助于提高人体对食物的消化率;味精中的主要成分谷氨酸钠还具有治疗慢性肝炎、肝昏迷、神经衰弱、癫痫病、胃酸缺乏等病的作用。

目录引言 (3)第一章糖化工段工艺 (3)1.1 味精简介 (3)1.2 设计方案的确定 (4)1.2.1法的选择论证 (4)1.2.2 液化工艺条件的论证 (5)1.3 糖化工艺流程 (7)1.4 糖化工艺技术要点 (7)1.4.1 调浆配料 (7)1.4.2 喷射液化 (7)1.4.3 糖化 (7)1.4.4 过滤 (7)1.4.5 贮存 (8)第二章糖化工段物料衡算 (8)2.1 生产能力 (8)2.2 计算指标 (8)2.3 总物料衡算 (8)2.3.1 商品淀粉用量 (9)2.3.2 糖化液量 (9)2.3.3 产谷氨酸量 (10)2.3.4 衡算结果汇总 (10)2.4 糖化工段物料衡算 (10)2.4.1 淀粉浆量及加水量 (10)2.4.2 液化酶量 (10)2.4.3 CaCl2量 (10)2.4.4 糖化酶量 (11)2.4.5 糖液产量 (11)2.4.6 过滤糖渣量 (11)2.4.7 生产过程进入的蒸汽冷凝水及洗水量 (11)2.4.8衡算结果汇总 (11)第三章糖化工段设备选型 (12)3.1 糖化罐的选型计算 (12)3.2 设备选型汇总 (12)结论 (13)引言味精的整个生产流程为:淀粉、水→调浆(加NaCO3、和淀粉酶)→喷射液化→保温灭菌→过滤→层流罐→贮罐→冷却→糖化(先调pH 再加糖化酶)→灭酶→离心过滤→得葡萄糖液→冷却→发酵罐发酵→冷却→等电点中和→谷氨酸晶体→加水溶解→二次中和→得谷氨酸钠溶液→活性炭脱色→过滤→离子交换脱金属离子→浓缩→蒸发结晶→分离出湿味精→干燥→得晶体味精→筛选→分装第一章糖化工段工艺1.1 味精简介味精化学名称为Lˉ谷氨酸单钠—水化合物。

年产5万吨味精糖化工段设计

年产5万吨味精糖化工段设计

摘要味精,学名“谷氨酸钠(C5H8NO4Na)”。

谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。

我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。

谷氨酸是利用微生物发酵生产的一个具有代表性的产品,生产工艺涉及种子培养、发酵、提取、脱色、离心和干燥等重要的单元操作和工程概念。

通过对谷氨酸车间的工艺设计,可以加强对自己对所学知识的综合利能力。

本设计是以精制淀粉(纯度为85.9%)为原料进行设计,使用一次喷射双酶法为糖化工艺,以年实际工作日300天计算,日产味精165吨。

对全厂物料进行了衡算,对糖化工段的罐体如糖化罐进行了详细计算,以确定它的参数,便于设备布置图的绘制。

关键词:谷氨酸钠;糖化;工艺计算AbstractMonosodium glutamate (MSG) is the sodium salt of the non-essential amino acid glutamic acid,which is the final resolve product from protein. If we dilute the salt with 400 times water, we can’t taste salty any more. If we dilute the sucrose with 200 times water, we can’t taste sweetness too. But even if 3000 times water, Monosodium glutamate still taste flavor. Glutamate is produced by microbial fermentation of a representative of the products, production processes involved in seed culture, fermentation, extraction, bleaching, centrifugation and drying unit operations and other important engineering concepts.Through the workshop process design glutamate, can enhance their knowledge of the comprehensive profitability.The design is based on refined starch (85.9% purity) as raw materials for the design, the use of a jet of two enzymes for the saccharification process, the actual working days to 300 days calculated at 165 tons of monosodium glutamate production.The whole plant materials for the balance, the chemical section of the tank, such as sugar saccharification tanks carried out a detailed calculation to determine its parameters, easy to draw the layout of the device. Key words:glutamate;saccharification;process calculation.目录引言 (1)第一章糖化工段工艺 (1)1.1 味精简介 (1)1.2 设计方案的确定 (2)1.2.1 糖化方法的选择论证 (2)1.2.2 液化工艺条件的论证 (2)1.3 糖化工艺流程 (3)1.4 糖化工艺技术要点 (3)1.4.1 调浆配料 (3)1.4.2 喷射液化 (4)1.4.3 糖化 (4)1.4.4 过滤 (4)1.4.5 贮存 (4)第二章糖化工段物料衡算 (4)2.1 生产能力 (4)2.2 计算指标 (4)2.3 总物料衡算 (5)2.3.1 商品淀粉用量 (5)2.3.2 糖化液量 (5)2.3.3 产谷氨酸量 (5)2.3.4 衡算结果汇总 (6)2.4 糖化工段物料衡算 (6)2.4.1 淀粉浆量及加水量 (6)2.4.2 液化酶量 (6)量 (6)2.4.3 CaCl22.4.4 糖化酶量 (6)2.4.5 糖液产量 (7)2.4.6 过滤糖渣量 (7)2.4.7 生产过程进入的蒸汽冷凝水及洗水量 (7)2.4.8 衡算结果汇总 (7)第三章糖化工段设备选型 (7)3.1 糖化罐 (7)3.2 调浆罐 (8)3.3 储浆罐 (9)3.4 连续液化喷射器 (10)3.5 维持罐 (10)3.6 层流罐 (10)3.7 储糖罐 (10)3.8 设备选型汇总 (11)参考文献 (12)课程设计体会 (12)附图(糖化罐设备总装图)引言味精又称谷氨酸一钠,其基本成分为L-谷氨酸,具有强烈的肉类鲜味。

味精工厂设计实施方案

味精工厂设计实施方案

味精工厂设计实施方案一、背景介绍。

味精是一种常用的调味品,广泛应用于食品加工行业。

随着人们对食品安全和品质的要求不断提高,味精工厂的设计和实施方案显得尤为重要。

本文将就味精工厂的设计实施方案进行详细介绍。

二、工厂选址。

首先,要选择一个环境优美、交通便利的地理位置,以保证原料和产品的运输畅通无阻。

同时,要考虑当地的气候条件,确保生产过程不受外界环境的影响。

另外,要充分考虑当地的劳动力资源和用电情况,以确保工厂的正常运转。

三、工厂布局。

在工厂布局方面,要合理规划原料、生产车间、成品仓库等区域,确保生产流程顺畅。

同时,要考虑到员工的工作环境,提供舒适的办公和生产条件。

此外,要合理设置设备和管道,以确保生产过程的安全和高效。

四、设备选型。

在设备选型方面,要选择具有先进生产工艺和技术的设备,以提高生产效率和产品质量。

同时,要考虑设备的可靠性和维护成本,确保设备的长期稳定运行。

另外,要选用节能环保的设备,以降低生产成本和对环境的影响。

五、生产工艺。

在生产工艺方面,要制定科学合理的生产流程,确保原料的加工和产品的生产符合相关的标准和规定。

同时,要建立完善的质量控制体系,对生产过程进行严格监控,以确保产品的质量和安全。

六、安全环保。

在工厂设计实施方案中,安全环保是至关重要的一环。

要建立健全的安全生产管理制度,加强对员工的安全教育和培训,确保生产过程中不发生安全事故。

同时,要加强对废水、废气的处理和排放,确保工厂生产不对环境造成污染。

七、总结。

综上所述,味精工厂的设计实施方案需要充分考虑选址、布局、设备选型、生产工艺、安全环保等多个方面。

只有在这些方面都做到科学合理,才能确保工厂的正常运转和产品的质量安全。

希望本文的内容能对味精工厂的设计实施方案有所帮助。

年产万吨味精工厂发酵车间设计说明书

年产万吨味精工厂发酵车间设计说明书

安全与环保考虑:确保设备布局和流程优化符合安全和环保要求
设备选型依据:根据生产工艺要求,选择适合的设备型号和规格
设备安装与调试要求
设备安装前准备:检查设备规格、型号是否符合要求,准备安装工具和材料
设备安装过程:按照设备安装说明书进行安装,确保设备稳固、安全
设备调试要求:对设备进行调试,确保设备正常运行,达到设计要求
噪声控制:采用低噪声设备,并采取隔音措施
能源节约:优化工艺流程,降低能源消耗
应急预案与事故处理方案
应急预案:针对可能发生的事故,制定相应的应急措施和预案,包括疏散、救援、灭火等方面
事故处理方案:明确事故处理的流程和责任人,包括事故报告、调查、处理和预防等方面
安全生产与环境保护措施:加强安全生产管理,提高员工安全意识,确保生产过程符合环保要求
激励机制:根据考核结果给予相应的奖励或惩罚
培训计划:针对不同岗位制定相应的培训计划,提高员工技能水平
考核周期:按季度或年度进行考核
07
项目投资估算依据和方法
依据:设备购置费、安装工程费、建筑工程费、流动资金、其他费用等
方法:单位产品投资估算法、生产能力指数法、比例估算法等
经济效益分析指标体系建立
结论与建议:根据经济效益预测及敏感性分析结果,提出项目建设的可行性结论及建议。
感谢您的观看
成品检验与放行:对成品进行检验,确保符合质量标准后才能放行
04
主要设备选型依据
生产能力:满足年产万吨味精的生产需求
设备性能:稳定、高效、易于维护
设备材质:符合食品安全要求,耐腐蚀、耐磨损
设备布局:合理利用空间,提高生产效率
设备布局与流程优化
设备布局原则:合理规划设备布局,提高生产效率

(完整版)年产5000吨糖化酶发酵车间设计.doc

(完整版)年产5000吨糖化酶发酵车间设计.doc

南阳理工学院本科生毕业设计学院(系):生物与化学工程学院专业:生物工程学生: *******指导教师:李慧星完成日期2010年5月南阳理工学院本科生毕业设计年产 5000 吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop总计:毕业设计(论文)28 页表格:5个插图:1幅南阳理工学院本科毕业设计年产 5000 吨糖化酶发酵车间设计The design of annual output of 5000 tons of glucoamylasefermentation factory workshop学院(系):生物与化学工程学院专业:生物工程学生姓名:郭留洋学号:*****指导教师:******评阅教师:完成日期:2010 年 5 月南阳理工学院Nanyang Institute of Technology年产 5000 吨糖化酶发酵车间的工艺设计生物工程专业郭留洋【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。

本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000 吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产 5000 吨糖化酶发酵车间采用 3 个 75 m3发酵罐和 3 个 6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

【关键字】糖化酶工厂设计深层发酵黑曲霉The Design of Annual Output of 5000 Tons ofGlucoamylase Fermentation FactoryWorkshopAbstract :Glucoamylase is the main enzyme of industrial production which is widely used in wine, glucose, fructose syrup, antibiotics, lactic acid, organic acid, monosodium glutamate, cotton and so on. The design use corn starch as main raw material, using Aspergillums Niger, andapply mechanical ventilation it that can be fermented production. This industrial workshop designcan complete the process of industrial design, the accounting, equipment selection facility layoutdesign. This workshop can make production of 5,000 tons of glucoamylase fermentation using three 75 m3 and 3 based fermentation tank 6m3 seed set and so on, The fermentation plant has areasonable layout which according to thefactory workshop ’slayout of bio-engineering principles, With drawing a flow chart and workshop ’s layout, the result of industrial design provide a reference to the production of glucoamylase.Keywords :Glucoamylase Plant DesignFermentation Aspergillus Niger目录1 前言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 ..1.1 糖化的介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1)1.2 糖化的用状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1)1.3 糖化在国内外的研究展及前景⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.11.4 内容及意 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 32 本⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5..2.1 糖化生中所用黑曲霉的特性⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.52.2 菌种培养工⋯⋯⋯ ...⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯⋯⋯⋯⋯⋯ 52.2.1 菌种活化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯62.2.2 一种子培养⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.2.3 二种子培养⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.3 工算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 ...2.3.1 工技指及基数据⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.62.3.2 酵工流程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.82.3.3 物料衡算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯.82.3.4 量衡算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯ .102.3.5 水平衡的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯132.3.6 无菌空气用量的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯142.4 的与型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14...2.4.1 酵罐的与型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯ .142.4.2 种子罐的与型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯.172.5 布置⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯ (18)2.5.1 布置的目的和重要性⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.182.5.2 布置的有关技要求和参数⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯ 192.5.3 的安全距离⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯.192.5.4 布置原⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯⋯⋯⋯⋯ (20)3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯⋯⋯⋯ (21)参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.22 致⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.231 前言1.1 糖化酶的简介糖化酶又称葡萄糖淀粉酶,糖化酶是一种习惯上的名称,学名为α-1,4- 葡萄糖水解酶。

产xxxxx吨味精的设计

产xxxxx吨味精的设计

年产xxxxx吨味精厂提取精制车间地设计目录绪论 (1)第一节设计简况 (1)第二节设计依据和原则 (1)第三节原料、辅料及各种化工产品地质量和来源 (1)工艺条件、厂址选择及其论证 (1)第一节生产工艺流程地确定及论证 (1)第二节工艺条件地确定 (1)第三节厂址选择与论证 (1)第四节各种成品、半成品质量要求工艺计算第一节味精生产能力地设计第二节制糖车间物料衡算第三节菌种培养物料衡算第四节发酵工段物料衡算第五节空气除菌物料衡算第六节提取工段物料衡算第七节精制工段物料衡算第八节专题车间能量衡算专题车间设备设计选型重点车间设计第一节车间布置第二节工艺操作要点、生产安排其他部分第一节水电气用量第二节三废排放及处理第三节电力部分第四节锅炉第五节全厂布置及人员第六节重点车间经济核算附:1.车间工艺流程设备一览表2.所用参考资料第一章(略)第二章工艺、厂址地选择及论证第一节生产工艺流程地确定及论证一全厂工艺流程图:(附工艺流程图0#图纸一张)淀粉→双酶法水解→葡萄糖液→(菌种→发酵←尿素 P Mg K 生物素)→↗99%味精(70%)↘等电离交提取→古氨酸→精制→80%味精(30%)→包装→商品味精二工艺特点及论证(一)糖化工艺特点及论证在味精生产过程中,糖化过程是指玉M淀粉转化为葡萄糖地过程.根据原料淀粉地性质及采用地催化剂地不同,水解淀粉为葡萄糖地方法有三种:酸解法、酶解法和酸酶结合法.本设计中选用双酶法水解,具有生产方便、条件温和、水解时间短、生产能力大地优点.因此此法目前为大多数工厂所采用.双酶法是用淀粉酶和糖化酶将淀粉水解成葡萄糖地工艺.双酶法水解可分为两步:加.第二步是糖化,利用糖化酶将糊精或低聚糖进一步水解,转化为葡萄糖.采用双酶法水解葡萄糖具有很多地优越性:(1)水解过程副产物少,水解糖液纯度高,比值可达98%以上.使糖液得到充分利用.(2)可以在较高地淀粉浓度下水解,水解糖液地还原糖含量可达到30%左右. (3)由于酶解反应条件温和,没有高温高压,水解过程副反应少,因此淀粉转化率高于酸解法和酶酸法.(4)双酶法制取地水解糖液营养成份丰富,可以简化发酵培养基,少加甚至不加生物素,有利于提高糖酸转化率,也有利于后续提取.(5)双酶法工艺同样适用于大M或粗淀粉原料,可以避免淀粉在加工过程中地大量流失,减少粮食消耗.(6)双酶法工艺,水解条件温和,不要求设备耐高温、高压,耐酸碱.缺点是生产周期长,夏天糖液容易变质,发酵生产不正常时,给生产调度带来困难.(二)发酵工艺地特点及论证氨基酸发酵是典型地代谢控制发酵.在味精生产过程中,发酵过程作为其重要地一个生产工段,需要严格控制其条件.在此发酵过程中,生产地产物谷氨酸是微生物地中间代谢产物,它地积累建立于对微生物正常代谢地抑制.在谷氨酸发酵过程中关键取决于其控制机制能否被解除,能否打破微生物正常代谢调节,人为地控制微生物代谢.此发酵过程为好气性发酵,在此过程中应有合适地通风搅拌.在发酵过程重要尽量避免噬菌体污染,控制最适温度,谷氨酸菌最适生长温度与产物积累温度不同,发酵前期控制在30~32℃,以利于谷氨酸菌体生长,后期温度可在34~36℃,以利于产酸.(三)等电离交提取工艺特点及论证发酵结束后,将生成地谷氨酸从发酵液中提取,这便是提取工序地主要目地.提取方法有一次等点提取、等电离交提取、离子交换法提取及电渗析法提取.离子交换法提取谷氨酸是将发酵液通过一定型号地地离子交换树脂,谷氨酸及其他阳离子先后被树脂交换吸附,然后用热碱洗脱.离子交换法提取谷氨酸具有过程简、周期短、设备省、占地少地特点,提取总收率在80~9%,是一种较好地方法.缺点是耗用大量酸碱工业原料,废液污染环境,同时树脂碎损易造成收率不稳定等弊病.(四)精制工艺特点及简要论证(1)中和液始终作为底料,母液作为补料,母液打入真空浓缩锅蒸发结晶出全部99%以上地成品味精,成品质量全部符合标准.(2)最后母液再通过二次回收地细结晶后放到提取车间结晶成湿谷氨酸,回收地细结晶与湿谷氨酸重新投料作中和液用.第二节工艺条件地确定一糖化工艺条件地确定及论证(一).液化工艺条件及论证(1)先往液化锅内泵入适量“底水”(以浸没下层蒸汽加热管为度)通入蒸汽底水加热至80℃左右,然后进料,速度要均匀,保持温度在80℃.(2)进料完毕逐步升温至规定液化温度90±2℃,保持20~25分钟左右,中间多次打开空气阀门,使锅内液化液沸腾均匀.(3)液化即将结束时,取样做碘液反应检查,直至无淀粉反应(呈棕红色或橙黄色)才算液化完全,最后升温至100℃杀菌5分钟后放料.(4)液化液过滤(一般用板框过滤机)速度要慢,一般要求大M出渣率在38%以下,M渣中淀粉含量12%左右,水分含量60%左右.(二)糖化条件及论证(1)糖液质量要求:色泽:呈浅黄色糊精反应:无还原糖含量:18%左右 DE值:90%以上透光率:60~80%左右 Ph值:4.6~4.8(2)工艺条件论证①合理控制淀粉乳浓度,适当配比盐酸,尽可能高温、快速、短时间内完成糖化,正确掌握中和、脱色地Ph值、温度和时间,借以提高糖液纯度.②糖液要清,色泽要浅,保持一定透光率.同时应不含糊精,以免引起污染.③糖液要新鲜,以免发酵变质,而且糖液贮存器要保持清洁,定期清理和清洗,防止酵母菌侵入.二发酵工艺条件及论证1 接种量 0.6~1.7%发酵培养基成份不同,谷氨酸菌种种类性质、种龄不同,所用接种量也不同,应根据实际情况和实验情况具体确定.2 温度控制前期32±0.6℃,后期可提高到33~36℃一般来讲温度升高反应速度加快,生长繁殖快,反应提前完成,但从酶反应动力学来看,酶易失活.温度越高,失活越快,菌体易衰老,影响产物生成.因此,温度地控制是发酵过程中极为重要地一环.不同地微生物都各有其最适生长温度范围,各种微生物由于种类不同,所具有地酶系及其性质不同,所要求地温度范围也不同.谷氨酸发酵前期,主要是张菌阶段,如果温度过高,菌种易衰老,严重影响菌体生长繁殖.因此,温度控制在谷氨酸最适生长温度32℃左右.在发酵后期,菌体生长基本结束,为了满足大量生成谷氨酸,可适当提高温度,控制在34~37℃.3 发酵罐内压力 1Kg/cm2(表压)4 通风量 0~8h: 1:0.1~0.11 8h~放料: 1:0.15~0.18谷氨酸发酵是好气性发酵,在此过程中供氧过大或过小均对菌体生长和谷氨酸积累有很大影响,在长菌阶段,若供氧过量,在生物素限量地情况下,抑制杂菌生长,表现为耗糖慢,长菌慢.在发酵阶段,若供氧不足,发酵地主产物由谷氨酸变为乳酸.5 搅拌转速 150rpm6 消泡培养基中加消泡剂:0.5~1斤在发酵过程中,根据泡沫情况及时添加灭菌过地消泡剂.在好气发酵中,由于通风与搅拌,产生一定量地气泡,泡沫过多,控制不好,会引起大量逃液而造成浪费和环境地污染.泡沫上升到罐顶,可能从轴封渗出,造成染菌危险.还会影响氧地传递,影响通风与搅拌.因此在发酵过程中应及时添加消泡剂,避免泡过多产生.7 尿素添加根据发酵过程中Ph值变化,确定尿素流加,当Ph值由高峰下降时,即可流加,总尿素用量为发酵液地3.5%.三等电离交工艺条件及论证(一) 等电沉淀发酵液(高流分边冷却边加硫酸调Ph)→Ph4.0~4.5发酵液(加晶种)→25℃育晶2h(边冷却边调Ph)→Ph3.0~3.2地发酵液(搅拌)→4℃静置4h→母液和谷氨酸(二)离子交换等电点母液→上柱交换→用水反洗离交柱→热水正洗和氨水洗脱→水洗树脂→树脂再生↓↓↗前流分(重新上柱)洗脱液→高流分(等电提取)↘后流分→污水处理(三)L-谷氨酸地提取(1)低温等电提取温度10℃以下,冷却截至液氨,Ph3.1~3.2(用硫酸调节)低温搅拌结晶8~10小时,发酵液经等电点法提取谷氨酸后,采用双柱法将等电电母液通过离子交换树脂柱进行交换,然后用氨水洗脱,树脂上地谷氨酸收集高流分将其与下一次发酵液合并再用等电点法提取,而前流分用于冲洗树脂,后流分废水处理.(2)母液用离氨行李自交换树脂回收.(3)分离后地谷氨酸废液为高浓度和有机废水,需进行三废处理解决环保问题. (4)等电离子交换回收率高,约≥95%四精制工艺条件及论证(一)中和与脱色用碳酸钠将谷氨酸中和为单钠盐,中和时应先加谷氨酸后加碱,开启搅拌,温度75℃左右(低于80℃),中和液浓度21~24Be,Ph.66~6.8,控制Ph不超过7,否则形成二钠盐,用粉末状活性炭,加量为3.6%(w/v),可用K活性炭.15(二)过滤用板框过滤机(三)离子交换采用树脂除贴离子等杂质(四)浓缩结晶罐内真空度0.075~0.085Mpa,温度60℃左右,加热蒸汽0.15~0.25Mpa,夹套加热,浓缩前要求透光率≥90%,浓缩到29.5~30.5Be时,加入晶种,辞职温度在65~70℃.晶种大小与投种量,以结晶罐全体积地3~5%(w/v),40目晶种6~9%,30目晶种6~12%.补料速度应与蒸发速度和解晶速度相一致,使料液浓度控制在介稳区内,使晶种以最大速度生长.结晶时间12~20小时. (五)分离干燥(1)工艺条件①用三足式离心机分离,按规定量装车,离心分离15~20分钟,分离过程中,每车加30~40℃蒸汽冷凝水淋洗一次,用水量为晶种地6~10%.②99%味精地干燥:用浮式干燥器控制温度30~40℃干燥,振动筛分离取10~28目为合格产品.③80%味精地干燥:用器流烘干控制温度70~80℃干燥,经振动筛分离取14~40目为原料,化验含量,配入精盐,真空抽取至混盐器混合15分钟,放出即为成品.(2)工艺条件论证结晶完成后离心分离晶体,一般采用三足式离心机.转速960~1250rpm,用水淋洗地目地可以溶去晶体表面地伪晶贺细晶,使晶体增加光泽,离心分离地晶体表面附着水分,如不加以干燥,则易粘结成块.干燥形式多样,我们采用气流和振动干燥.气流干燥地特点是待干燥地味精在干燥地热空气中呈悬浮状态,随着热空气地流动而被迅速干燥,它地优点是干燥速度快,干燥时间短(约1~4s),生产能力大,但是物料在热空气中悬浮运动相互间发生摩擦,对味精结晶光泽和外形不利.振动干燥地振动床振动频率120~400次/分,振幅5~10mm,这种干燥方式效果好,对结晶味精地晶体损失也少.结晶味精要求晶粒大小均匀,因此干燥好地晶体要经过振动筛分离,除去过大或过小地晶粒,使晶粒大小更加均匀.(六)晶种地制备(1) 99%味精晶种地制备气流干燥分离出大于10目地大结晶味精或其他结晶味精进行粉碎过筛,选除24~32目地作为99%味精晶种.(2) 80%味精晶种地制备 99%味精晶种制备过程中,筛出32亩以下地细结晶和气流烘干过筛40目以下地细结晶部分作为80%味精晶种用.(七)包装99%味精:1磅袋装(出口) 500g袋装(内销) 100g袋装(内销) 50g袋装(内销)80%味精(全部内销): 500g袋装 100g袋装 50g袋装 30g袋装 20g袋装第三节厂址选择一厂址选择原则1 节约用地,考虑发展2 靠近原料产地中心3 有丰富可靠地水源4 有良好地交通运输条件5 靠近电源6 利用城镇设施节约资源7 符合国家有关卫生、防火、人防方面地地规定和要求8 厂区地形英较平坦,倾斜破不易过大,厂区地耐力一般应大于14~20T/m29 山区建厂选用较平坦山坡,避开断层、塌方、滑坡、溶洞、地下暗流,避开有山风、谷风及洪水侵袭地地段.10 其他要求:厂址应考虑在产品、原材料、三废治理、综合利用、动力、给排水、交通运输、居住区建设、生活福利等方面,与邻近企业协作地可能等.二厂址不易选择地地段1 有爆破危险地范围内2 有开采价值地矿床上3 采矿崩落界限内4 低洼窝风地区,有滑坡、流沙、过于深厚地松软淤泥不稳定断层区,溶洞较严重等不良地质地区或新淤河道、古墓之上5 紧邻大水库下游,以及受山洪、内涝等水患威胁地地区6 受临近工厂严重污染地下风或下游地段7 自然保护区,水土保持禁垦区,风景区,疗养区,文物古迹考古区,妨碍少数民族风俗习惯地地区,以及集中式生活饮用水水源、第一卫生防护地带区8 地震强烈度在9度以上地地震区,超过7度,应依照国家颁布地抗震规范加以防范9 避开机场、高压输电线和城市工程管道等第四节各成品、半成品地质量要求一水解液质量要求1 透光率 90%以上2 不含糊精、低分子蛋白,防止起沫逃液3 淀粉出糖量4 DE值90~925 还原糖浓度30%以上二种子质量要求1 显微镜下检查时,菌体应大小均匀,呈单个或八字型排列.细胞呈棒状略有弯曲,革兰式染色阳性2 二级种子培养过程中,pH值变化有一定规律,从6.8上升到8.0左右然后逐步下降3 三级种子活菌浓度应达到108~109个/ml>1000微升氧/ml种子·小 4 二级种子要求活力旺盛,一般要求二级种子QO2时三谷氨酸质量要求1 离心分离后,谷氨酸含量90%左右2 氯化物≤0.2%3 应为α-结晶4 外观正常无杂色四味精质量(一)99%味精质量标准晶体粉状谷氨酸≥99% ≥99%水分≤0.2% ≤0.3%Nacl ≤0.5% ≤0.5%透光率≥95% ≥95%外观白色有光泽晶体白色粉状砷≤0.5ppm ≤0.5ppm铅≤1.0ppm ≤1.0ppm铁≤5ppm ≤5ppm锌≤5ppm ≤5ppm(二)80%味精质量标准晶体谷氨酸≥80%水分≤1.0%Nacl ≤20%透光率≥70%外观白色晶状或混盐晶体砷≤0.5ppm铅≤1.0ppm铁≤10ppm锌≤5ppm第三章工艺计算第一节味精生产能力地设计一、产量年产40000t味精,其中99%地商品味精39600 t,80%地商品味精400 t.日产味精: 40000÷300=133.33 t/d;日产纯MSG:(39600×99%+400× 80%)÷300=131.75 t/d.二、原料:玉M淀粉(淀粉纯度83%)三、全年劳动日:300天四、主要技术指标:1、淀粉出糖率:108%;2、糖酸转换率:55%;3、提取收率:95%;4、精制收率:110%.五、总物料衡算:1、1t纯淀粉理论产100%MSG量:1000×111%×81.7%×1.272=1153.50㎏2、1t纯淀粉实际产100%MSG量:1000×108%×55%×95%×110%=620.73㎏3、1t玉M淀粉(纯度为83%)产100%MSG量:620.73×83%=515.2 ㎏4、淀粉单耗:(1)理论:1t纯MSG理论消耗纯淀粉量:1000÷1153.5=0.87 t;1t纯MSG理论消耗玉M淀粉量:1000÷(1153.5×83%)=1.04 t(2)实际:1t纯MSG实际消耗纯淀粉量:1000÷620.73=1.611 t消耗玉M淀粉量:1000÷515.2=1.94 t5、原料及中间产品计算:①每日淀粉用量:1.94×131.75=255.60 t②糖化液量:255.60×108%=276.05t③发酵液量:纯Glu量:276.05×55%=151.83t/d折算为8g/dL地发酵液:151.83÷80%=1897.84m3④提取谷氨酸量:纯谷氨酸量:55.124×95%=52.368t/d折算为90%地谷氨酸量:52.368/90%=58.186t/d⑤谷氨酸废母液(采用等电—离子回收法,以排出废母液含谷氨酸0.3g/d计算:(55.124-52.368)/0.3%=918.667m3/d由上述得物料衡算表如下:其中,工业原料淀粉含量83%,糖蜜含量52%,总物料衡算结果t/年第二节糖化车间物料衡算一、浆量及加水量:(淀粉加水比例:1:2.51000kg工业淀粉浆: 1000×(1+2.5)=3500kg,加水2500kg二、粉浆干物质浓度: 1000×83%÷3500×100%=23.71%三、液化酶量:(使用а-淀粉酶) 3500×0.25%=8.75kg四、Glu量: 3500×0.25%=8.75kg五、液体糖化酶量:3500×0.25%=8.75kg六、糖化液产量: 1000×83%×1.11×1.08÷24%=4145.85 kg32%糖化液地相对密度为 1.09, 则糖化液体积:4145.85÷1.09=3803.53(L)七、加珍珠岩量:(糖化液地0.15%) 4145.85×0.15=6.22 kg八、渣产量:(含水70%废珍珠岩) 0.22÷(1-70%)=20.73 kg九、生产过程进入地蒸汽和洗水量:4145.85+20.73-3500-(8.75×3)-6.22=634.11 kg十、衡算结果:根据总物料衡算:日投入工业淀粉100.225t,制糖工序物料衡算汇总表如下:表二制糖工序物料衡算一览表第三节连续灭菌及发酵车间物料衡算一、发酵培养基数量:1、1000kg工业淀粉得到24%地糖化液4145.85kg,发酵初始糖浓度16.4g/dl,其数量为:4145.85×24%÷16.4%(w/v)=6067L16.4 g/dl地糖液相对密度为1.06:6067×1.06=6431 kg2、配料:按放罐发酵液体积计算:6067×16.4%÷16.0%=6291L玉M浆:6219×0.2%(w/v)=12.44 kg甘蔗糖蜜:6219×0.3%(w/v)=18.66 kg无机盐:(P、Mg、K等)6219×0.2%(w/v)=12.44 kg配料用水:配料时培养基地含糖量不低于19%,向24%地糖液中加水量为:4145.85×24%×19%-4145.85=1091 kg3、灭菌过程中加入蒸汽量及补水量:6431-4145.85-1091-12.44-18.66-12.44=1150.6 kg4、发酵0小时数量验算:4145.85+12.44+18.66+12.44+1091+1150.6=6431 kg其体积为6431÷1.06=6067L 与以上计算一致二、接种量:6219×1%(w/v)=62.2L62.2×1.06=66kg三、发酵过程加液氨量:为发酵液体积地2.8%6219×2.8%(w/v)=174 kg液氨地量0.62 kg/L ,174÷0.62=281 L四、加消泡剂地量:(为发酵液地0.05%)6219×0.05%(w/v)=3.1 kg消泡剂地相对密度为0.8,则体积 3.1÷0.8=3.9L五、发酵过程从排风带走地水分:进风25℃,相对湿度Φ=70%,水蒸气分压18mmHg,1mmHg=133.322Pa排风32 ,相对湿度D=100%,水蒸气分压27mmHg柱,进罐空气压力为1.5个大气压(表压)(1个大气压力为1.01325 10Pa)(表压)进出空气地含量差:X1-X2=(0.622*27*100%)/(1.5*760-27*100%)-(0.622*18*70%)/(25*760-18*70)=0.01(kg水/kg空气)通风比: 1:0.2带走水量:6219*0.2*60*36*1.157*0.001*0.01=31128其中32度时空气地密度为_kg/m3过程分析,放罐残留及其他损失52kg(6)发酵终止时地数量:6413+66+174+3.1-31-52=6591kg(7)衡量结晶总汇:年产25000吨商品msG,日投工业淀粉100.225吨.连续灭菌和发酵工序地物料衡算总汇列表:(1)进入系统离开系统100.225/1000工程1吨工业淀物t/d 工程1吨工业淀粉匹配物料kg t/d粉匹配物料kg t/d 料kg24%糖液4145.85415.518发酵液6591660.748玉M 浆 12.44 1.247 空气带走水量 31 3.508 甘蔗蜜 18.66 1.87 过程分析放罐 无机盐 12.44 1.247残留及其他损失 52 5.213 配料水 1091109.373 灭菌用蒸馏水 1150.6115.348接种量 66 6.617 液氨 174 17.444 消泡剂 3.1 0.311总计 6674 669.069 总计 6674 669.069第四节 提取工段地物料衡算采用冷冻等电结晶地工艺(按100kg 工业淀粉计算)(1)发酵液量6219升(6591千克)(2)加入98%硫酸量:6219*3.6%=224千克,98%硫酸地密度为 1.84,其体积为:224/1.84=122升 (3)Glu 产量:分离前:纯Glu 6219*8%(w/v)=497.52kg 分离后:纯Glu497.52*95%=472.64kg98%地Glu 472.64/98%=525.16kg (4)母液量: 母液含Glu0.3kg/dl 则(497.52-472.64)/0.3%=3554kg(5)分离洗水量:525.16*20%=105.03kg(6)母液回收过程用水及其酸碱地数量:8293-6219-122-105.03=1847l=1847kg(7)物料衡算结果进入系统工程1吨淀粉匹配物料kg t/d 工程1吨淀粉匹配物料kgt/d发酵液6591 660.748 98%Glu 525.16 52.634 硫酸224 22.456 母液8293 831.166 分离用洗水105.8 10.527回收加水量1847 185.162累计8767 878.673 累计8767 878.673第五节制取工序地物料衡算(1)数量:100%Glu472.61kg,90%Glu525.16kg(2)碳酸钠量:525.16*36.6%=192.21kg(3)加活性C 量:525.16*0.3%=1.58kg(4)中和液量:472.6*1.272/40%(w/v)=1503l1593*1.16=1743kg(5)中和加水量:1743-525.16-192.21-1.58=1024kg(6)产 mSG 量:100%mSG,精制收率92%,产100%mSG472.6*1.272*92%=553.1kg(7)产母液量:母液平均含mSG 25%(w/v)472.6*1.272*8%/25%=192 l母液地相对密度为1.1,则192*1.1=211.6(kg)(8)废液地活性炭数量:湿炭含水75%1.58/(1-0.75)=6.32kg(9)mSG调和洗水量:553.15*5%=27.65kg(10)中和脱色及结晶蒸发出地水量:1743+27.65-211.6-6.32-553.1=991.63kg(11)物料衡算汇总:进入系统离开系统工程1吨工业淀粉匹配物料kg t/d 工程1吨淀粉匹配物料kg t/d90%Glu 25.16 52.634 100%mSG 553.1 55.434 碳酸钠192.21 19.264 母液211.6 21.208 活性C 1.58 0.158 废C 6.32 0.633 中和加水1024 102.63 蒸发水量999.6 100.185 分离洗水27.65 2.771累计1770.6 177.458 累计1770.6 177.458味精生产过程物料汇总以投料1000千克工业淀粉为基准,所地各段中间物料及其匹配辅料标准以衡算结果汇总于下图:按年产25000吨MSG衡算结果(以日产量为基准)汇总于下:第六节提取车间热量衡算一.冷冻结晶冷量计算(设等点中和液终温是50)(1)等电点罐420m3,装液量315 m3,相对密度为:1.06,有30℃降至5℃,降温速度℃/h,其冷量为:420×103×1.06×2×3.97=2.7×106(kj/h)其中3.97位发酵液比热(kj/kg水)中和时H2SO4对水地溶解热为92 kj /mol,6h加98% H2SO45100 kj,其溶解热为:5100×98%÷6÷98×92=782(kj /h)可忽略不计.(2)2.7×106/3600=750(kw)发酵罐500 m3,装料系数0.7,每罐产100%MSG量:500×0.7×8%×95%×1.272=28.08(t)_年产2.5万吨商品味精,日产100%MSG72.891t,发酵操作时间48h(其中发酵时间38h),需发酵罐台数:72.891÷28.08×48+38=5.91取6台每日投(放)料罐次: 72.891÷28.08=2.60次日运转: 2.60×38÷48=2.05罐每天运转3.43罐,总制冷量: 2.05×750=1537.5(kw)第七节谷氨酸钠溶液浓缩结晶过程热量衡算年产2.5万吨商品味精,日产100%MSG72.891t,选用30 m3机械搅拌内热式浓缩操作,周期为24h,其中付诸实践为4h,每罐产100%MSG15t,需结晶罐台数:72.891÷(15-2.0)=5.61台,取6台一. 热平衡与计算加热蒸汽量每罐投入40g/dl地中和脱色液32m3,流加30g/dl母液32m3过程中加入6 m3,在70℃下真空蒸发结晶,浓缩3h,育晶17h,放料数量25 m31.热量衡算(1).进料带入热量:进料温度35℃,比热为3.5kj/kg水Q采料=(32×1.16+32×1.13)×3.5×3.5×103=8.92×106(kj)(2).加水带入热量:MSG比热熔1.67 kj/kg水Q夹水=6×4.18×35×103=8.8×105(kj)(3).晶种带入热量:Q夹晶=2000×1.67×20=6.7×104(kj)(4).结晶放热:MSG结晶热为12.7kj/molQ晶热=(15-2.0)×106×12.7÷187=8.9×105(kj)(5).母液带走热量:分离牧业15m3,折算为相对密度为 1.26时为19t,比热为2.83kj/kg水Q =19×103×2.83×70=3.8×106(kj)(6).随二次蒸汽带走热量:Q二蒸=(32+32+6-25)×2.626×106=1.18×108(kj)其中25为放罐时地结晶液量(7).随结晶MSG带走地热量Q出晶=15×103×1.67×70=1.75×106(kj)需供外热:Q =(Q母液+Q二蒸+Q出晶)-(Q采料+Q采水+Q采晶+Q晶热)=(3.8×106+1.18×108+1.75×106)-(8.92×106+8.8×105+6.1×104+8.9×105)=1.13×108(kj)2.计算蒸汽用量:每罐次用量,热损失按5%计算D =1.13×108÷(27.7-535)×0.95=54513(kj/罐)每罐浓缩液结晶时间为20h,每小时耗蒸汽高峰量:54513÷20=2725.65(kg/h)5.61台同时运转高峰蒸汽用量为:5.61×2725.65=15290.90(kg/h)每日用蒸汽量:54513×5.61=305817.93(kg/d)≈306(t/h)二. 冷却二次蒸汽所消耗冷却水量:1.二次蒸汽数量:即水蒸发速度:(32+32+6-25)÷20=2.25m3(水/h)2.冷却用水量:使用循环水,进口温度30℃,出口为45℃,70℃水蒸气焓为2626.8kj/kg.需冷却水量W =2.25×103×(2626.8-45×4.18)÷(45-30)÷418=8.75×104kg/h=87.5(t/h)6台罐高峰用水量:87.5×6=525(t/h)含日用水量:87.5×20×60×5.61=9817.5(t/d)平均用水量:9817.5÷24=409(t)为保证循环水不高于30℃需加二次水5000t/d第八节干燥过程地热量衡算分离之后湿MSG含水20%干燥后到10.2%,加热空气为18℃,相对湿度为70%,通过加热器使空气升至80℃,从干燥器出来地空气为60℃,年产2.5万吨商品MSG,日产湿味精78.125t,二班生产,即:78.125÷16=4.883(t/h)(78.125×2%-72891×0.2%)÷16=88.545(kg/h)18空气湿含量为70%,XO=0.009kg/kg干空气,IO=41.8kj/kg干空气加热80,I1=104.5kj/kg干空气用公式=(I2-I1)÷(X2-X1)=Q物料+Q损失-Q初温式中:空气经干燥后地热量变化(kj/kg)I1:出空气加热器地空气热焓I2:出干燥器地空气热焓IO:冷空气热焓XO:空气湿含量(kj/kg干空气)X1:进干燥器地空气湿含量X2:出干燥器地空气湿含量Q初温:物料初始湿度时地物料中每1kg水地热焓量(kj/kg)Q物料:加热物料所耗热量(kj/kg,k)Q损失:损失热量通常为有效热量地10%Q物料=8.4×103×(60-18)×0.4×4.18÷34=17349(kj/kg水) =18×4.18-17349-1987.9=-19261.7设X2=0.0108I 2=I1+(X2-X1)=104.5+(-19261.7)×(0.0108-0.009)=69.8(kj/kg干空气)空气耗量为: 88.545/(0.0108-0.009)=49192(kg/h)80时空气地比容:83m3/kg实际耗空气量为: 49192×0.83=40829m3/h耗用蒸汽量(D):使用0.1MPa(表压)蒸汽加热,热损失按15%计算D=(104.5-41.8)×49192×1.15÷(2706.7-504.7)=1610.80kg/h每日用蒸汽量: 1610.80×16+25772.80(kg/d)平均每小时用蒸汽量:25772.80÷24=1073.87(kg/h)第四章精制提取车间设备设计选型第一节等电罐一制造与防腐材料:选用钢板(5~6mm)贴玻璃布,用环氧树脂作粘合剂,此法耐腐蚀性好,但造价略高.二罐地数量和容积:1,罐数:等电点罐一般与发酵罐配合使用,即一个发酵罐地发酵液由泵送到一个等电点罐进行提取n等电点罐=n发酵罐=6台(计算见热量衡算部分)2,罐地容积:VG =(1.2~1.3)VF其中 VG----等电点罐容积VF-----发酵罐地容积取系数为1.2,则VG =1.2VF-1.2*500=600m33,罐地尺寸比例:H/D=1.2~1.5,取H/D=1.3VG=Л/4D2 H=Л/4D3*1.3=1.02D3故有D=(VG/1.02)1/3 =(600/1.02)1/3 =8.4m4,冷却面积计算:设发酵液密度ρ为 1.06,由30℃下降至5℃降温速度为2℃/h,总制冷量为2165KW,共2台,则每台1056KW按经验取K=4.187*350〔KJ/(m2*H*K)〕Δt m =(Δt1-Δt2)/ln(Δt1/Δt2)设酵液由30℃降至5℃,冷冻盐水由-5℃至2℃(先用冷水冷却后用冰盐水冷却)Δt m ={〔30-(-5)〕-(5-2)}/{ln[30-(-5)]/(20-2)}=32/ln (35/18)=48.1℃传热面积为:F=θ/(K*Δtm)=3600*1056/[(4.187*350)*48.1]=53.95m2考虑罐地散冷损失,取F=54 m2,冷却管选用57*3.5mm不锈钢管,管长L=F/(Лdcp)=54/{3.14*[57+157-2*3.5]/(1000*2)}=321.6m 设蛇管圈直径为8m,则圈数为:n=L/(Лd)=321.6/(3.14*8)=13 5,搅拌功率计算:取平直双浆搅拌器,由查表《发酵工厂设备》可得:A=6.8, m=0.2, 取转数为30r/min,d=0.65D=0.65*8.4=5.46m 取发酵液粘度为0.86cp,代入式子得:N运转={6.8/〔(30/60*5.462*1060)/0.86*10-3〕}*1060*5.465*(30/60)3=(6.8/28.37)*642953=154KWN启动=(2~3)N运转(308~462)KW取462KW取N电机=1.12 N启动=517KW第二节离子交换柱一,离子交换柱材料:采用4mm不锈钢材料.二,离子交换柱地有关计算:1树脂体积计算:选用胺型离子交换树脂,交换等量干树脂为 1.2公斤当量/m3树脂湿树脂为1.90mg当量/g.V树脂=V(GA %/147)/N树脂其中,V-上柱地母液量GA %-母液中GA地百分含量根据经验值,上柱量在70~150L/min之间,取120L/min则V=120*24*60/1000=172.8m3/d等电结晶后母液中含GA0.7%V树脂=(1000*172.8/2)*0.7%/147/1.2=3.43=4 m3 /周期设树脂地湿密度ρ为0.8t/ m3(0.75~0.85t/ m3),则树脂地重量为W=0.8V树脂=4*0.8=3.2t2树脂柱数目计算:设支离子交换柱装树脂为1 m3,则离子交换柱数量为:n=每次交换所需树脂体积/每柱装树脂量+1=4/1+1=5支(1为备用柱数)3树脂柱高度计算:取树脂层高度H=2D,柱地高径比为H/D=4:1有V=Л/4*D2* H=Л/4*D2*2D=Л/2D3故D=(2V/Л)1/3=(2*1/3.14) 1/3=0.86m取0.9m树脂层高度H=2D=1.8mH/D=4:1,故H=4D=4*0.9=3.6m取下封头为锥形,高度为0.3m,上部不设封头,则柱地总高度为H总=H+h=3.6+0.3=3.9m4洗脱剂用量WW=V*n,经验上n取2.5~3 取n=2.8W=2.8*1=2.8m3采用10%NH3·H2O洗脱,每柱需2.8 m3.第三节中和脱色罐地选取一,体积地计算:年产味精25000t,工作日320天,则日产MSG=25000/320=78.125t,中和液MSG含量40%,则中和液V=78.125/40%=195.313 m3.设用3班进行中和,则每班中和地体积:V班=195.313/3=65.104 m3取中和桶地容积系数为0.60,则中和桶V桶=65.104/0.60=108.507 m3 =109 m3.二高径比计算:取中和桶地形状为圆柱圆锥形,选D/H=1:1 ,h=0.2DV=Л/4*D2* H+1/3*Л/4*D2* h=Л/4*D3+Л/12*D2*0.2D=4/15D3D=(15/4V )1/3=(15/4*109) 1/3=7.42m圆柱高H=D=7.42m,圆锥高h=0.2D=1.48m第三节助晶槽贮晶槽是供结晶罐放出地结晶液去分离地中间贮存设备,由生产要求,选择VN=30m3地贮晶槽,各参考数如下:槽宽B=2200mm,槽体高H1=2200mm,中心高H2=1500mm,总高H=2860mm,总长L=8000mm,换热面积A=49 m3. 转速n=8r/min,电机功率P=11KW.第五章重点车间设计第一节车间布置第二节工艺操作要点、生产安排第六章其它部分一,用水量1,配料用水量:日投工业淀粉100.225t,加水比1:2.5用水量:100.225*2.5=250.563t因连续生产,平均水量=高峰水量=250.56/24=10.4(t/h)新鲜水2,液化冷却用水量:将物料由100℃→65℃,使用二次冷却水,进口20℃,出口58.7℃100.225/24=4.176t,加水为1:25,粉浆量4176*3.5=14616kg/h液化蒸汽用量:D=14616*3.53*(90-20)/(2738-377)=1529.7(kg/h)灭菌用蒸汽量:D灭=14616*3.53*(100-90)/(2738-419)=222.3(kg/h)所以冷却水量:W=(14616+1529.7+222.3)*3.53*(100-65)/〔(58.7-20)*4.18〕=12.50t/h=300t/d3,糖化冷却水用量:(使用二次用水)G化液由85℃→60℃,二次用水进口20℃,出口45℃平均用水量:(14616+1529.7+222.3)*3.53*(85℃-60℃)/〔(45℃-20℃)*4.18〕=13.8t/h要求2h内把75m3G液冷却至40℃,高峰用水:..................2,提取工序用水量:用于GA分离及冲洗水,每日用量195t/d,平均量8.15t/h高峰量:(80t/h),使用新鲜水.3,中和脱色工序用水量(1)配料用水(使用回收地结晶罐蒸汽冷凝水)第六章其它部分第一节水汽用量一,水用量1,糖化工序用水量(1)配料用水量:日投工业淀粉100.225t,加水比1:2.5用水量为:100.225*2.5=250.5t/d(2)液化液冷却用水量:平均量=高峰量=19.7t/h,=472t/d(二次水)(3)糖液冷却用水量(使用二次水):每日用水冷却量:540t/h平均量:540/24=22.5t/h,高峰量:86.25t/h。

化工开题报告年产6000吨味精厂糖化车间工艺设计

化工开题报告年产6000吨味精厂糖化车间工艺设计

(2).液化的条件 ① 淀粉酶的液化能力与温度和pH值有直接关系 ② 酶活力的稳定性还与保护剂
(3).液化程度的控制
糖化工段主要有酸解法、酶酸法、双酶法这三种方法。 三种糖化工艺,各有其优缺点。 从糖液质量、收得率、耗能以及对粗淀粉原料的适应情况看,双 酶法最佳、酶酸法次之、酸解法最差。但双酶法生产周期长,糖化设 备较庞大。 从糖浆的黏度来看,双酶法最低、酸解法最高。
第二阶段:以面筋或大豆粕为原料通过用酸水解的方法生 产味精,在1965年以前是用这种方法生产的。
第三阶段:自1965年以后我国味精厂都采用以粮食为原料 (玉米淀粉、大米、小麦淀粉、甘薯淀粉)通过微生物发 酵、提取、精制而得到符合国家标准的谷氨酸钠。
从1923年我国开始生产味精以来,至今已有90余年历史。
主要发生的反应: I. 与酸盐反应生成谷氨酸盐
C5H8NO4Na+HCl→C5H9O4N+NaCl Ⅱ. 与碱反应生成谷氨酸二钠盐 C5H8NO4Na+NaOH→C5H7O4NNa2+H2O
第一阶段:1866年德国人H·Ritthasen(里德豪森)博士从面 筋中分离到氨基酸,他们称谷氨酸。1908年日本东京大学 池田菊苗试验,从海带中分离到L—谷氨酸结晶体。
闪蒸
调 PH(盐酸或石灰水、碳酸钠)、酶
降温
过滤
过滤
升温灭酶
糖化
过滤
过滤
NaCO3
一次喷射双酶法制糖工艺流程图
层流液化 酶、调 PH
综上所述,本设计将采用双酶法制糖工艺。
双酶法制糖工艺可根据升温方式的不同分为升温 液化法、喷射液化法。喷射液化法又依所用加热设备 的不同分为一次喷射液化法和二次喷射液化法。一次 喷射液化法由于能耗低,设备少,糖液质量好而获得 广泛的应用。所以本次设计采用一次喷射双酶法。

6万吨每年味精发酵车间工艺设计

6万吨每年味精发酵车间工艺设计

唐山学院毕业设计设计题目:6万吨/年味精发酵车间工艺设计系别:环境与化学工程系班级:07化工本(2)班姓名:宗静指导教师:李云凯2011年6月3日6万吨/年味精发酵车间工艺设计摘要味精的主要成分是谷氨酸钠,是一种鲜味剂。

本设计是生产纯度为99%商品味精的设计。

采用的是中糖发酵、一次等电点提取的发酵方法生产味精。

选用机械涡轮搅拌通风发酵罐,每年生产时间是300天,每天生产味精200吨。

以粮食淀粉为原料,经糖化、发酵、提取、中和、精制工艺制成商品味精。

谷氨酸发酵受温度、pH、排气通风量等因素的影响,整体操作要在无菌的条件下进行。

本设计从工艺流程,物料和热量衡算,用水量和无菌空气量计算,设备选型,主要设备工艺尺寸的计算,车间布局几个方面对发酵车间进行设计。

关键词:谷氨酸钠发酵工艺The Fermentation Process Design Of The MSG Factory for the Annual Capacityof 60,000 Tons/YearAbstractThe main component of MSG is monosodium glutamate,which is generally used as a kind of food flavor enhancer.This Graduate design is The Fermentation Process Design Of The MSG Factory,the purity of MSG is 99%.Sugar fermentation and extracted from the isoelectric point of the first fermentation are used in this desin.I choose mechanical ventilation stirred fermenter in the Fermentation Process,the Production time is 300 days and produces 200 tons of MSG per day.Grain starch is the raw material,after saccharification, fermentation, extraction and refining process we can get MSG.The fermentation of Glutamic acid was affacted by temperature、pH、exhaust ventilation and other factors,the overall operation should be carried out under sterile conditions.The design includes plant technical process, material and heat balance, aseptic air amount used computation, equipment selection, and the main equipment craft size computation, workshop layout, which are to design a fermentation workshop.Key word: Monosodium glutamate Fermentation Process design目录1 前言 (1)1.1味精的主要性质 (1)1.1.1味精的物理性质 (1)1.1.2味精的化学性质 (2)1.1.3味精的鲜味和化学结构 (2)1.2味精与人体健康 (2)1.3味精的应用 (3)1.3.1食品工业 (3)1.3.2医药工业 (3)1.3.3制造工业 (4)1.3.4农业领域 (4)1.4味精工业的发展及现状 (4)1.4.1世界味精工业的发展历程 (4)1.4.2我国味精工业的发展史 (4)1.4.3我国味精工业的发展现状 (5)1.4.4我国味精工业的发展趋势 (5)2 工艺流程设计 (7)2.1味精生产工艺的选择 (7)2.1.1水解提取法 (7)2.1.2合成法 (7)2.1.3发酵法 (7)2.1.4味精各种制法的比较及选择 (8)2.2发酵法生产味精工艺概述 (8)2.3淀粉糖化工艺 (9)2.3.1原料及其预处理 (9)2.3.2淀粉水解糖制备 (9)2.4发酵工艺 (12)2.4.1谷氨酸生产菌的分离纯化 (12)2.4.2种子扩大培养 (12)2.4.3发酵培养基的组分 (13)2.4.4发酵条件的控制 (14)2.4.5发酵工艺要点 (15)2.5谷氨酸提取工艺 (16)2.6味精的精制工艺 (17)2.6.1精制工艺流程 (17)2.6.2氨基酸中和原理 (18)2.6.3氨基酸中和技术条件 (18)3 工艺计算 (20)3.1物料衡算 (20)3.1.1工艺技术指标及基础数据 (20)3.1.2谷氨酸发酵车间的物料衡算 (20)3.1.3 60000t/a味精厂发酵车间的物料衡算结果 (22)3.2热量衡算以及用水量计算 (23)3.2.1培养液连续灭菌用蒸汽量 (23)3.2.2培养液冷却用水量 (23)3.2.3发酵罐空罐灭菌蒸汽用量 (23)3.2.4发酵过程产生的热量及冷却用水量 (24)3.3发酵车间无菌空气用量计算 (25)3.3.1谷氨酸发酵无菌空气平衡示意图 (25)3.3.2 谷氨酸发酵工艺技术指标及基础数据 (25)3.3.3 发酵过程无菌空气用量计算 (25)3.3.4 发酵车间无菌空气单耗 (27)3.3.5 无菌空气衡算表 (27)4设备的选型及计算 (28)4.1发酵罐 (28)4.1.1发酵罐的选型 (28)4.1.2生产能力、数量和容积的确定 (28)4.1.3主要尺寸的计算 (28)4.1.4冷却面积的计算 (29)4.1.5搅拌器计算 (30)4.1.6搅拌轴功率的计算 (31)4.1.7设备结构的工艺计算 (32)4.1.8设备材料的选择 (35)4.1.9发酵罐壁厚的计算 (35)4.1.10接管设计 (36)4.1.11支座的选择 (37)4.2种子罐的设计 (37)4.3 空气分过滤器 (38)4.4 二级种子罐分过滤器 (38)4.5发酵罐分过滤器 (38)4.6 味精厂发酵车间设备一览表 (39)5 结论 (40)参考文献 (41)谢辞 (42)附录 (43)外文资料 (44)1 前言1.1味精的主要性质味精的主要成分是谷氨酸钠盐(MSG),又名谷氨酸钠、味素等,它具有强烈的鲜味,是食品中添加的增鲜剂[1]。

味精发酵车间设计

味精发酵车间设计

2.1 味精工厂发酵车间的物料衡算2.1.1 工艺技术指标及基础数据(1)查《发酵工厂工艺设计概论》P326表3 味精行业国家企业标准[5],选用主要指标如表1表1 味精发酵工艺技术指标指标名称单位指标数生产规模t/a 15000(味精)生产方法中糖发酵,一次等电点提取年生产天数d/a 300产品日产量t/a 50产品质量纯度% 99倒灌率% 1.0发酵周期h 48发酵初糖Kg/m3 150淀粉糖转化率% 95糖酸转化率% 48麸酸谷氨酸含量% 90谷氨酸提取率% 80味精对谷氨酸产率% 112(2)主要原材料质量指标淀粉原料的淀粉含量为80%,含水14%。

(3)二级种子培养基(g/L)水解糖25,糖蜜20,尿素3.5,磷酸氢二钾1.0,硫酸镁0.6,玉米浆5~10,泡敌0.6,硫酸镁0.002,硫酸亚铁0.002。

(4)发酵培养基(g/L)水解糖150,糖蜜4,硫酸镁0.6,氯化钾0.8,磷酸氢二钠0.2,硫酸亚铁0.002,硫酸锰0.002,尿素(总尿)40,泡敌0.6,植物油1.0。

(5)接种量为2% 。

2.1.2 谷氨酸发酵车间的物料衡算首先计算生产1000kg纯度为100%的味精需耗用的原辅材料及其他物料量。

(1)发酵液量V1式中 150——发酵培养基初糖浓度(kg/m3)48%——糖酸转化率80%——谷氨酸提取率99%——除去倒灌率1%后的发酵成功率112%——味精对谷氨酸的精制产率(2)发酵液配制需水解糖量G1以纯糖算,(3)二级种液量V2(4)二级种子培养液所需水解糖量G2式中 25——二级种液含糖量(kg/m3)(5)生产1000kg味精需水解糖总量G为:(6)耗用淀粉原料量理论上,100kg淀粉转化生成葡萄糖量为111kg,故理论上耗用的淀粉量G淀粉为:式中 80%——淀粉原料含纯淀粉量95%——淀粉糖转化率(7)尿素耗用量二级种液耗尿素量为V3发酵培养基耗尿素为V4故共耗尿素量为627.5kg(8)甘蔗糖蜜耗用量二级种液耗用糖蜜量V5发酵培养基耗糖蜜量V6合计耗糖蜜69.9kg(9)氯化钾耗量GKCl(10)磷酸氢二钠(Na2HPO4•7H2O)耗量G3(11)硫酸镁(MgSO4•7H2O)用量G4(12)消泡剂(泡敌)耗用量G5(13)植物油耗用量G6(14)谷氨酸(麸酸)量发酵液谷氨酸含量为:实际生产的谷氨酸(提取率80%)为:2.1.3 15000t/a味精厂发酵车间的物料衡算结果由上述生产1000kg味精(100%纯度)的物料衡算结果,可求得15000t/a味精厂发酵车间的物料平衡计算。

年产6000t味精发酵车间工艺设计

年产6000t味精发酵车间工艺设计
成品味精
蒸发结晶
贮晶 母 分离 水 液
图 1.1 味精生产工艺流程简图
-1-
1.2 原料预处理
年产 6000t 味精厂发酵车间工艺设计
此工艺操作的目的在于初步破坏原料结构,以便提高原料中淀粉的利用率, 同时去除固体杂质,防止机器磨损。以制取玉米淀粉为例,其工艺流程为:
玉米 亚硫酸浸泡 粉碎 除杂 玉米淀粉
用于原料粉碎的设备除盘磨机外,还有锤式粉碎机和辊式粉碎机。盘磨机广 泛用于磨碎大米、玉米、豆类等物料,而锤式粉碎机应用于薯干等脆性原料的中 碎和细碎作用,辊式粉碎机主要用于粒状物料的中碎和细碎。用于除杂的设备为 筛选机,常用的是振动筛和转筒筛,其中振动筛结构较为简单,使用方便。
1.3 淀粉水解糖制备
1.4 种子扩大培养及发酵
种子扩大培养为谷氨酸发酵过程提供所需的大量种子,发酵车间内设有种子 室,完成生产菌种的扩大培养任务。从斜面出发,经复壮培养,摇瓶培养,扩大 至一级种子乃至二级种子罐培养,最终向发酵罐提供足够数量的健壮的生产种子。
谷氨酸发酵开始前,首先必须配制发酵培养基,并对其作连续灭菌处理。培 养基连续灭菌的基本流程如图 1.2 所示。连续灭菌的基本设备一般包括:(1)配 料预热罐,将配制好的料液预热至 60~70○C,以避免连续灭菌时料液与蒸汽温 度相差过大而产生水汽撞击声;(2)连消塔,连消塔的主要作用是使高温蒸汽与
常用的谷氨酸提取方法有以下几种:(1)等电点法:利用谷氨酸是两性电解 质的性质,将发酵液加硫酸调 pH 至谷氨酸的等电点,使谷氨酸沉淀析出。(2) 离子交换法:先将发酵液稀释至一定浓度,用盐酸将发酵液调至一定的 pH,采 用阳离子交换树脂吸附谷氨酸,然后用洗脱剂将谷氨酸从树脂上洗脱下来,达到 浓缩和提纯谷氨酸的目的。(3)金属盐法:利用谷氨酸与 Zn2+、Ca2+、Co2+等金 属离子作用生成难溶于水的谷氨酸金属盐而沉淀析出。(4)离子交换膜电渗析法: 根据渗透膜对各种离子的选择透性不同而将谷氨酸分离,如电渗析和反渗透法。 本设计采用等电点法。生产上等电点法提取谷氨酸的工艺有很多,归纳起来有: 直接常温等电点法、水解等电点法、低温等电点法、等点—离子交换法和浓缩连 续等电点法等。目前,我国味精厂已采用浓缩连续等电点法提取谷氨酸,对于谷 氨酸含量 10.5%的发酵液,其提取收率为 88%左右。本设计亦采用浓缩连续等电 点法。其具体操作是:将发酵液和硫酸同时加入等电点罐中,始终保持罐内 pH 在 3.0~3.2,发酵液在等电点罐中采用低温等电点法结晶,待析晶完全后,以晶 体及母液作为“种子”,维持一定的温度和 pH,然后一边连续添加新发酵液,一 边从等电点罐底部放出已结晶的谷氨酸,使进出料量保持一致,放出的物料在育 晶罐中进行育晶,让晶体长大。育晶结束后进行分离,得到谷氨酸晶体。浓缩连 续等电点法提取谷氨酸的特点是:(1)析出的谷氨酸晶体颗粒粗大,大小均匀,

味精工艺设计

味精工艺设计

摘要 :味精旳重要成分是谷氨酸钠,是一种鲜味剂。

本设计是年产味精5.9万吨(其中99%味精1.77万吨,80%味精4.13万吨),折合纯味精5.0563万吨,年生产日为320天每天生产味精158吨。

发酵车间选用18个发酵罐,日运转9个发酵罐,每天装9罐。

等电点灌车间选用18个等罐,日运转9个等电点罐,每天装9罐。

等电点提取旳发酵措施生产味精。

以大米为原料,经糖化、发酵、提取、中和、精制工艺制成商品味精。

谷氨酸发酵受温度、pH、排气通风量等原因旳影响,整体操作要在无菌旳条件下进行。

本设计从工艺流程,物料和热量衡算,用水量,设备选型,重要设备工艺尺寸旳计算。

关键词:谷氨酸钠发酵工艺Abstract :The main composition of MSG is monosodium glutamate, is a kind of freshness. This design is an annual output of 59000 tons of monosodium glutamate (99% of monosodium glutamate, 17700 tons of monosodium glutamate, 41300 tons), or pure monosodium glutamate, 50563 tons of annual production for the production of monosodium glutamate, 158 tons a day, 320 days. Selects 18 fermentation tank, fermentation workshop day nine fermentation tank, running every day 9 cans. Isoelectric point selection of filling workshop in 18, pot, nine days running isoelectric point cans, 9 pot every day.Isoelectric point extraction methods of fermentation production of MSG.Using rice as raw materials, saccharification, fermentation, extraction, neutralization, refined workmanship goods monosodium glutamate. Glutamic acid fermentation temperature, pH, exhaust ventilation rate, the influence of such factors as the overall operation under aseptic conditions. Thedesign process, from material and heat balance, water consumption, equipment type selection, the calculation of main equipment process size, the fermentation workshop design.Keywords:monosodium glutamate fermentation process1设计产品种类1.1味精旳重要性质味精旳重要成分是谷氨酸钠盐(MSG),又名谷氨酸钠、味素等,它具有强烈旳鲜味,是食品中添加旳增鲜剂[1]。

年产5000万吨味精工厂发酵车间设计说明书(修复)

年产5000万吨味精工厂发酵车间设计说明书(修复)

年产5000万吨味精工厂发酵车间设计说明书(修复)年产5000万吨味精工厂发酵车间设计说明书制药设备与工艺作业制药0703 连中帅200782073许琦光200782067卢一鹤2007820632010-6-30摘要:本设计主要内容为了解味精生产中的原料预处理、发酵、提取部分的生产方法和生产流程,根据实际情况来选择发酵工段合适的生产流程,并对流程中的原料进行物料衡算、热量衡算及设备的选择。

年产5000万吨味精工厂发酵车间设计说明书1前言 (2)2味精生产工艺 (2)2.1味精生产工艺概述 (2)2.2 原料预处理及淀粉水解糖制备 (2)2.3谷氨酸的发酵 (2)3工艺技术指标和基础参数 (2)3.1生产规模及产品规格 (2)3.2生产工作制度 (2)3.3主要工艺技术参数 (2)3.4味精生产过程中的原辅材料机动力单耗(1T100%MSG计算) (2)3.5培养基的组成(重量/体积) (2)3.5.1二级种子培养基 (2)3.5.2发酵培养基 (2)4物料衡算 (2)4.1生产过程的总物料衡算 (2)4.1.1生产能力: (2)4.1.2总物料恒算: (2)4.1.3总物料衡算结果 (2)4.2淀粉制糖工艺的物料衡算 (2)4.3发酵工序的配料及连续灭菌过程的物料衡算 (2) 4.3.1发酵培养基数量 (2)4.3.2接种量 (2)4.3.3发酵过程加液氨数量 (2)4.3.4加消泡剂(泡敌)量 (2)4.3.5发酵过程从排风带走的水分 (2)4.3.6发酵终点时发酵液质量 (2)4.3.7衡算结果总汇 (2)4.4谷氨酸提取工艺物料衡算 (2)4.5精制工序的物料衡算 (2)4.6精制工序的物料衡算图 (2)5热量衡算 (2)5.1液化工序的热量衡算 (2)5.1.1液化加热蒸气量 (2)5.1.2灭酶蒸汽用量 (2)5.1.3液化液冷却用水量 (2)5.2糖化工序热量衡算 (2)5.3连续灭菌和发酵工序热量衡算 (2)5.3.1培养液连续灭菌用蒸汽量 (2)5.3.2培养液冷却水用量 (2)5.3.3发酵罐空罐灭菌蒸汽用量 (2)5.3.4发酵过程冷却水用量 (2)5.4谷氨酸提取工艺冷量衡算(略) (2)5.5谷氨酸钠溶液浓缩结晶过程的热量衡算(略) (2) 5.6干燥过程的热量衡算(略) (2)5.7生产过程耗用蒸汽衡算总汇表 (2)6水平衡 (2)6.1糖化工序用水量 (2)6.1.1配料用水量 (2)6.1.2液化液冷却用水量 (2)6.1.3糖化液冷却用水量 (2)6.2连续灭菌工序的用水量 (2)6.2.1配料用水量 (2)6.2.2灭菌后料液的冷却水用量(使用二次水) (2) 6.3发酵工序的用水量(使用新鲜水) (2)6.4提取工序的用水量(略) (2)6.5中和脱色工序的用水量(略) (2)6.6精制工序的用水量(略) (2)6.7动力用水量(略) (2)6.8用水量汇总记水平衡图 (2)7设备的设计与选择 (2)7.1发酵罐 (2)7.1.1发酵罐生产能力的确定 (2)7.1.2发酵罐台数的确定 (2)7.1.3设备容积的计算 (2)7.1.4校核 (2)7.1.5主要尺寸的计算 (2)7.1.6冷却面积的计算 (2)7.1.7设备结构的工艺设计 (2)7.1.8设备材料的选择 (2)7.1.9发酵罐壁厚的计算 (2)7.1.10接管设计 (2)7.1.11支座选择 (2)7.2种子罐 (2)7.2.1选型 (2)7.2.2容积和数量的确定 (2)7.2.3主要尺寸的确定 (2)7.2.4冷却面积的计算 (2)7.2.5 设备材料的选择 (2)7.2.6设备结构的工艺设计 (2)7.2.7支座选型 (2)7.3空气分过滤器的计算 (2)7.3.1种子罐分过滤器 (2)7.4连续操作设备的设计选型 (2)7.4.1连消塔 (2)7.4.2维持罐 (2)7.5味精发酵车间设备一览表 (2)8设备工艺流程图 (2)9厂方平面布置图 (2)参考文献 (2)附:组内分工情况 (2)1前言味精是人们熟悉的鲜味剂,是L-谷氨酸单钠盐(Mono sodium glutamate,MSG)的一水化合物(HOOC-CH2CH(NH2)-COONa?H2O),IUPAC英文名为sodium(2S)-2-amino-5-hydrox y-5-oxo-pentanoate,摩尔质量187.13g/mol,外观为白色结晶粉末,熔点225℃,因具有很强的鲜味(阈值为0. 03%),已成为人们普遍采用的鲜味剂。

年产4.0万吨味精工厂设计

年产4.0万吨味精工厂设计

年产4.0万吨味精工厂工艺设计1前言味精是采用微生物发酵的方法由粮食制成的现代调味品,是L-谷氨酸单钠(Mono sodium glutamate)的一水化合物(HOOC-CH2CH(NH2)-COONa·H20),具有旋光性,有D-型和L-型两种光学异构体。

谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。

我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,现在是广泛使用的鲜味剂。

1987年3月,联合国粮农组织和世界卫生组织食品添加剂专家联合委员会第十九次会议,宣布取消对味精的食用限量,再次确认为一种安全可靠的食品添加剂[1]。

关于味精的生产有着两种方式,发酵法和水解蛋白质法,用发酵法生产味精最想起源于日本,当时日本一家私人公司发明了这个方法,从那以后发酵法便广泛流传开来,截止到目前为止世界上所有国家仍然是以这种方法生产味精的。

但是在很久以前我们是用水解蛋白质的方法来生产味精的。

味精可以参与体内的各种代谢活动,比如糖代谢,蛋白质代谢,这些代谢活动对我们的中枢神经系统的正常运行时非常重要的,此外,味精在治疗神经运动性发作和癫痫病发作方面还是有一定作用的。

长期食用谷氨酸对于我们智力的提高还是有一定效果的。

但是味精确实有时候会存在一定的危害,但这种危害是因为对味精特性不够了解,食用方法不当造成的,如果烹饪时温度超过了120℃的话,谷氨酸钠就会发生裂解变成焦谷氨酸钠,这种物质不但会减退鲜味,而且具有一定的毒性,但是我们只要注意味精的加入时间就不会出现这样的问题。

此外,我们还需要注意味精不能与碱性物质一起使用,在碱性环境中味精会发生化学反应生成谷氨酸二钠的化合物,所以存放味精时注意不要和苏打放在一起。

谷氨酸发酵是通气发酵,也是我国目前通气发酵产业中,生产厂家最多、产品产量最大的产业[2]。

味精是一种弱酸强碱盐,当它遇到水以后可以完全解离成钠离子和谷氨酸离子。

年产5万吨味精糖化工段工艺

年产5万吨味精糖化工段工艺

生物与化学工程学院课程设计报告题目年产 5 万吨味精糖化工段设计学生姓名:卢琴专业班级:生物工程2011010501班学号:1101815081指导教师:罗建成、王莹设计时间:2014.5.12-2014.5.16生物反应工程与设备课程设计任务书学院生化学院专业班级11生物1班姓名卢琴所在组别第一组设计题目年产 5 万吨味精糖化工段设计完成时间2014.5.12-2014.5.16(13周)设计内容及要求1.设计题目:年产5 万吨味精糖化工段设计2.生产基础数据(1) 产品规格:纯度为99%的味精。

(2) 生产天数:300 天/年,糖化周期40-48h。

(3) 糖化工艺:一次喷射双酶糖化法;液化酶为耐高温液体α-淀粉酶(20000U / ml,密度为1.2),加酶量为10U / g干淀粉;液体糖化酶为(100000U / ml,密度1.25),加酶量为120U / g干淀粉;CaCl2一般加量为干淀粉的0.15;液化后的湿糖渣约为淀粉原料的1;进入发酵工段的糖液浓度为30(密度为1.1321)。

(4) 商品淀粉中淀粉含量82-88%,淀粉加水调浆比例为1:1.5-2.5。

(5) 淀粉糖化转化率92-96%,发酵产酸率(浓度)10-12%,发酵对糖转化率55-62%,倒罐率为1-2%。

(6) 提取工段:谷氨酸提取收率95-98%,精制收率95-%98。

(7) 糖化罐单台体积100-200立方米,糖化罐装液系数75-85%,糖化罐H=2D,糖化罐下部使用圆锥形,圆锥高度为D/4。

3.设计内容(1) 根据以上设计任务。

查阅有关资料、文献、搜集必要的技术资料,工艺参数与数据,进行生产方法的选择,工艺流程与工艺条件的确定与论证。

(2) 工艺计算:糖化工段的物料衡算。

(3) 糖化工段设备的选型计算:包括设备的容量、数量、主要的外形尺寸。

(供选择)(4) 选择其中某一重点设备进行单体设备的详细化工计算与设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘潭大学化工学院专业课程设计说明书题目:年产5000吨味精工厂糖化车间设计专业:生物工程学号:01姓名:罗开花指导教师:张小云完成日期:湘潭大学化工学院专业课程设计任务书设计题目:年产5000吨味精工厂糖化车间设计学号:01 姓名:罗开花专业:生物工程指导教师:张小云系主任:陶能国一、主要内容及基本要求主要内容:拟设计年产5000吨味精工厂,以糖化工序为主体做初步设计,完成糖化车间工艺流程选择、物料衡算、设备选型的相关计算,绘制车间平面和立面布置图、车间设备布置图、带控制点的生产工艺流程图及主要单件设备图等;按相关要求编写设计说明书1份基本要求:生产方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范二、进度安排味精生产工艺和设备相关的文献;味精工厂设计相关文献;工厂设计所需各类工具书等。

6参考文献[1] 吴思方.发酵工厂工艺设计概论[M].北京:中国轻工业出版社,.[2] 陈宁.氨基酸工艺学[M].北京:中国轻工业出版社,.[3] 梁世中.生物工程设备[M].北京:中国轻工业出版社,.[4] 刘振宇.发酵工程技术与实践[M].上海:华东理工大学出版社,[5] 王志魁.化工原理[M] .北京:化学工业出版社,.[6] 李功样,陈兰英,崔英德.常用化工单元设备设计[M].广州:华南理工大学出版社,.[7] 俞俊堂,唐孝宣.生物工艺学(上册)[M].上海:华东理工大学出版社,.[8] 张克旭.氨基酸发酵工艺学[M].北京:中国轻工业出版社,.[9] 蒋迪清, 唐伟强. 食品通用机械与设备[M].广州:华南理工大学出版社,[10]刘玉德. 食品加工设备选用手册[M].北京:化学工业出版社,2006,8[11] 于信令主编. 味精工业手册[M].北京:中国轻工业出版社,2005目录前言错误!未定义书签。

1.味精的主要理化性质错误!未定义书签。

2.主要介绍任务内容、工厂特点、产品等错误!未定义书签。

第1章味精工厂糖化工艺错误!未定义书签。

淀粉质原料蒸煮糖化的目的错误!未定义书签。

设计方案的确定错误!未定义书签。

糖化方法的选择论证错误!未定义书签。

糖化工艺流程错误!未定义书签。

淀粉的液化(糊化)错误!未定义书签。

糊化和糖化的控制错误!未定义书签。

第2章工艺计算错误!未定义书签。

味精生产糖化阶段工艺流程错误!未定义书签。

糖化的主要工艺参数如下表2-1 错误!未定义书签。

物料的计算错误!未定义书签。

味精厂的总物料衡算错误!未定义书签。

主要工艺参数及经济指标错误!未定义书签。

原料消耗的计算错误!未定义书签。

蒸煮醪量的计算错误!未定义书签。

第3章相关设备的计算与选型错误!未定义书签。

蒸煮设备错误!未定义书签。

糊化设备 错误!未定义书签。

糖化设备 错误!未定义书签。

车间设备数量 错误!未定义书签。

设计体会 错误!未定义书签。

参考文献 错误!未定义书签。

前 言味精是利用微生物发酵生产的一个具有代表性的产品,生产工艺涉及种子培养、发酵、提取、脱色、离心和干燥等重要的单元操作和工程概念。

通过对谷氨酸车间的工艺设计,可以加强对自己对所学知识的综合利能力。

通过本毕业设计训练,可以提高自己理论联系实际的能力和工程设计方面的能力。

1. 味精的主要理化性质味精又名麸氨酸钠,化学名称为L-谷氨酸一钠(C 5H 8NO 4Na·H 2O )[1],是氨基酸的一种,也是蛋白质的最终分解产物。

现多采用微生物发酵的方法由粮食制成。

从发酵液中提取得到的谷氨酸仅仅是味精生产中的半成品。

谷氨酸盐与适量的碱进行中和反应,生成谷氨酸一钠,其溶液经过脱色、除铁、除去部分杂质,最后通过减压浓缩、结晶及分离,得到较纯的谷氨酸一钠的晶体,不仅酸味消失,而且有很强的鲜味(阈植为 %)。

① 味精的物理性质味精是无色至白色的柱状结晶或白色的结晶性粉末。

晶系结构为斜方柱状八面体。

味精易容易水,不溶于乙醚、丙酮等有机溶剂,难溶于纯酒精。

谷氨酸钠在水中的溶解度随温度的变化而改变(表1)。

其相对密度为[1],视相对密度为~。

比旋光度[a]20D =+°~+°,氮含量为 %,熔点为195 ℃(在125 ℃以上易失去结晶水),常温易脱湿,100~120 ℃稳定;120~130 ℃失去结晶水;130~170 ℃稳定;170~250 ℃分子内脱水;240~280 ℃热分解;280 ℃炭化。

表1-1谷氨酸钠在水中的溶解度② 味精的化学性质味精的相对分子质量为187.13g/mol ,易溶于水。

与酸盐反应生成谷氨酸盐,与碱反应生成谷氨酸二钠盐,主要的反应式如下:C 5H 8NO 4N a+HCl→C 5H 9O 4N+NaCl (1) C 5H 8NO 4Na+NaOH →C 5H 7O 4NNa 2+H 2O (2)温度/℃ 谷氨酸钠/(g/100mlH 2O )温度/℃ 谷氨酸钠/(g/100mlH 2O )40 50 60 70 80纯的味精外观为一种白色晶体状粉末。

当味精溶于水(或唾液)时,它会迅速电离为自由的钠离子和谷氨酸盐离子(谷氨酸盐离子是谷氨酸的阴离子,谷氨酸则是一种天然氨基酸)。

要注意的是如果在100 ℃以上的高温中使用味精,经科学家证明,味精在100 ℃时加热半小时,只有%[2] 的谷氨酸钠生成焦谷氨酸钠,对人体影响甚微。

还有如果在碱性环境中,味精会起化学反应产生一种叫谷氨酸二钠的物质。

所以要适当地使用和存放。

2. 主要介绍任务内容、工厂特点、产品等本设计是以精制淀粉(纯度为86%)为原料进行设计,使用一次喷射双酶法为糖化工艺,以实际工作日30天计算,日产味精60吨。

对全厂物料、热量就行衡算,对糖化工段的罐体如调浆罐、储浆罐、维持罐、层流罐、糖化罐、储糖罐以及一些标准设备如液化喷射器、板框过滤机、板式换热器和泵等进行了详细计算,以确定它们的参数,便于设备布置图的绘制。

下面详细表述:1.任务内容:5000吨味精厂的设计。

设计的内容主要包括设计方案,工艺计算,设备选型,成本预算,厂的总平面设计,各车间设备布置图及说明书。

2.工厂特点:味精是人们的日常用品,由于味精生产没有季节限制,所以工厂可以实现全年生产,但考虑到设备要进行维修,所以基本选定年生产天数为30天。

工厂生产受环境和原料的限制比较大,所以选址要严格按照标准来进行。

3.味精特点:味精是谷氨酸的一种钠盐C5H8NO4Na ,为有鲜味的物质,学名叫谷氨酸钠,又叫麸氨酸钠,是氨基酸的一种,也是蛋白质的最后分解产物。

有固体味精和液体味精两种。

液体味精是未经炼成颗粒的味精原液,饮食业中以用固体味精为常见。

味精是鲜味调味品类烹饪原料,以小麦、大豆等含蛋白质较多的原料经水解法制得或以淀粉为原料经发酵法加工而成的一种粉末状或结晶状的调味品,也可用甜菜、蜂蜜等通过化学合成制作。

除含有谷氨酸钠外还含有少量的食盐,以含谷氨酸钠的多少(99%、95%、90%、80%),分成各种规格。

全国各地均有生产。

据研究,味精可以增进人们的食欲,提高人体对其他各种食物的吸收能力,对人体有一定的滋补作用。

因为味精里含有大量的谷氨酸,是人体所需要的一种氨基酸,96%能被人体吸收,形成人体组织中的蛋白质。

它还能与血氨结合,形成对机体无害的谷氨酰胺,解除组织代谢过程中所产生的氨的毒性作用。

又能参与脑蛋白质代谢和糖代谢,促进氧化过程,对中枢神经系统的正常活动起良好的作用。

4.我国味精生产发展状况:我国的味精生产,近十年来得到很大的发展。

1992年我国全国产味精34万吨[3],2001年味精产量达万吨,味精产量以每年10%速度递增。

目前,我国的味精总产量居世界第一位,但人均消费水平仍然较低,随着我国人民生活水平的提高,味精消费量将会持续增长。

按年人均消费600克计算,估计每年需求72万吨。

随着糖蜜味精生产技术的日益成熟,生产成本进一步下降。

至本世纪八十年代,糖蜜味精已成为世界味精生产发展的主趋势,并占领和垄断了世界味精市场。

第1章味精工厂糖化工艺淀粉质原料蒸煮糖化的目的薯类和谷类以及野生植物原料经过加压蒸煮,淀粉糊化成为溶解状态,但是还不能直接被酵母菌利用进行发酵。

因此,经过蒸煮以后的糊化醪,在发酵前必须加入一定量的糖化剂,使溶解状态的淀粉,变为酵母能够发酵的糖类,这一个由淀粉转变为糖的过程,称为糖化。

糖化过程是淀粉酶或酸水解的作用,把淀粉糖化变成可发酵性糖。

将淀粉质原料进行蒸煮的第一个目的就是;原料吸水后,借助于蒸煮时的高温高压作用,使原料的淀粉细胞膜和植物组织破裂,即破坏原料中淀粉颗粒的外皮,使其内容物流出,呈溶解状态变成可溶性淀粉,以便糖化剂作用,使淀粉变成可发酵性糖。

这个过程叫糊化,采用的方法是用加热蒸汽加热蒸煮。

蒸煮的第二个目的是借助蒸汽的高温高压作用,把存在于原料中的大量微生物进行灭菌,以保证发酵过程中原料无杂菌污染,使酒精发酵能顺利进行。

设计方案的确定1.2.1 糖化方法的选择论证糖化工段主要有酸解法、酶酸法、双酶法这三种方法。

酸解法是传统的制糖方法,它是利用无机酸为催化剂,在高温高压条件下,将淀粉转化为葡萄糖。

酶酸法是将淀粉乳先用α-淀粉酶液化[4],然后用酸水解成葡萄糖。

双酶法是通过淀粉酶液化和糖化酶糖化将淀粉转化为葡萄糖。

三种糖化工艺,各有其优缺点。

从糖液质量、收得率、耗能以及对粗淀粉原料的适应情况看,双酶法最佳、酶酸法次之、酸解法最差。

但双酶法生产周期长,糖化设备较庞大。

从糖浆的黏度来看,双酶法最低、酸解法最高。

双酶法制糖工艺可根据升温方式的不同分为升温液化法、喷射液化法。

喷射液化法又依所用加热设备的不同分为一次喷射液化法和二次喷射液化法。

一次喷射液化法由于能耗低,设备少,糖液质量好而获得广泛的应用[5]。

所以本次设计采用一次喷射双酶法。

液化工艺条件的论证α-淀粉酶能能水解淀粉及其产物内部的α-1,4糖苷键,不能水解α-1,6糖苷键,但能越过α-1,6糖苷键继续水解α-1,4糖苷键,而将α-1,6糖苷键[3]留在水解产物中。

(1)淀粉液化条件淀粉是以颗粒状态存在的,具有一定的结晶性结构,不容易与酶充分反应,如淀粉酶水解淀粉颗粒和水解糊化淀粉的比例为1﹕20000[2]。

因此必须先加热淀粉乳,使淀粉颗粒吸水膨胀,使原来排列整齐的淀粉层结晶结构被破坏,变成错综复杂的网状结构。

这种网状会随温度的升高而断裂,加之淀粉酶的水解作用,淀粉链结构很快被水解为糊精和低聚糖分子,这些分子的葡萄糖单位末端具有还原性,便于糖化酶的作用。

由于不同原料来源的淀粉颗粒结构不同,液化程度也不同,薯类淀粉比谷类淀粉易液化。

淀粉酶的液化能力与温度和pH值有直接关系。

每种酶都有最适的作用温度和pH值范围,而且pH和温度是互相依赖的,一定温度下有较适宜的pH值。

相关文档
最新文档