高三数学寒假作业冲刺培训班之历年真题汇编复习实战53821
高三数学寒假作业冲刺培训班之历年真题汇编复习实战58323
数 学(理科)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)注意事项:1.答题前,考生务必将自己的姓名、考号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人员将答题卡收回。
一、选择题:(本大题10个小题,每小题5分,共50分)各题答案必须答在答题卡上。
1.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2B .2C .4D .42.下列命题正确的是( )A .若22,a b > 则a b >B .若11,a b> 则a b < C .若,ac bc > 则a b >D .若,a b < 则a b < 3.设全集U 是实数集,R 22{|4},{|1},1M x x N x x =>=≥-则图中阴影部分所表示的集合是 ( )A .{|21}x x -≤<B .{|22}x x -≤≤C .{|12}x x <≤D .{|2}x x <4.设,,x y R ∈ 则“0xy >”是“||||||x y x y +=+”成立的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分又不必要条件5.如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234,e e e e 、、、其大小关系为( )A .1234e e e e <<<B .2134e e e e <<<C .1243e e e e <<<D .2143e e e e <<<6.已知直线1:10l ax y a ++-=不经过第一象限,且12,l l ⊥ 则直线2l 的倾斜角的取值范围是( ) A .3(,]24ππB .(0,]4πC .[0,]4πD .3[,]24ππ7.已知函数()sin()(0,0)f x A x A ωϕω=+>>的图象在y 轴右侧的第一个最高点为(2,2),M 与x 轴在原点右侧的第一个交点为(5,0),N 则函数()f x 的解析式为( )x④ ③o① y ②A .2sin()66x ππ+B .2sin()36x ππ- C .2sin()66x ππ-D .2sin()36x ππ+ 8.已知0,ab ≠ 点(,)M a b 是圆222x y r +=内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2,ax by r += 则下面正确的是( ) A .//,m l 且l 与圆相交 B .,m l ⊥且l 与圆相切 C .//,m l 且l 与圆相离D .,m l ⊥且l 与圆相离9.设双曲线222:1,x M y a-= 过点(0,1)C 且斜率为1的直线交双曲线的两渐近线于点.A B 、若2,BC AC = 则双曲线的离心率为( )A 5105D 1010.已知420102()cos (11),20101x x f x x x x ⋅+=+-≤≤+ 设函数()f x 的最大值是,M 最小值是,N 则( )A .8M N +=B .8M N -=C .6M N +=D .6M N -=第Ⅱ卷(非选择题,共100分)二、填空题:(本大题5个小题,每小题5分,共25分)各题答案必须填写在答题卡上(只填结果,不要过程)11.若函数2()log (42),xf x =- 则1(1)f-=_____________.12.已知12F F 、是椭圆221916x y +=的两个焦点,过2F 的直线交椭圆于点.A B 、 若||5,AB = 则11||||AF BF +的值为_____________.13.已知||2,||2,a b ==a 与b 的夹角为45°,若||10,a b λ+< 则实数λ的取值范围是_____.14.已知数列{}n a 对于任意的*,,p q N ∈ 有.p q p q a a a +=⋅ 若12,a = 则18a =_______________.15.已知双曲线2222:1x y C a b-=(,a b 为大于0的常数),过第一象限内双曲线上任意一点P 作切线,l 过原点作l 的平行线交1PF 于,M 则||MP =______(用,a b 表示)三、解答题:(本大题6个小题,共75分)各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程)16.(13分)已知抛物线2:2(0),C y px p => 焦点F 到准线l 的距离为2. (1)求p 的值;(2)过点F 作直线交抛物线于点,A B 、 交l 于点.M 若点M 的纵坐标为2,求||.AB 17.(13分)已知函数()sin(),f x x ωϕ=+ 其中0,||.2πωϕ><(1)若3coscos sinsin 0,44ππϕϕ-= 求ϕ的值; (2)在(1)的条件下,若函数()f x 的图象的相邻两条对称轴之间的距离等于,3π 求最小的正实数,m使得函数的图象向左平移m 个单位后所对应的函数是偶函数。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战77256
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战73073
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x1,x2,…,xa 的标准差 锥体体积公式13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 2.若a ∈R ,则a=2是(a1)(a2)=0的A.充分而不必要条件 B 必要而不充分条件 C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A.14B.13C.12 D.23 5.10⎰(e2+2x )dx 等于A.1B.e1C.eD.e+1 6.(1+2x)3的展开式中,x2的系数等于 A.80 B.40 C.20 D.10 7.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A.1322或B.23或2C.12或2D.2332或8.已知O 是坐标原点,点A (1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是A.[1.0]B.[0.1]C.[0.2]D.[1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (1),所得出的正确结果一定不可能是A.4和6B.3和1C.2和4D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项: 用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战36865
本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S1、S2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的。
1.已知集合{}{}2lg ,230A x y x B x x x ===--<,则A B = ( ▲ )A .(0,3)B .(1,0)-C .(,0)(3,)-∞+∞D .(1,3)-2.已知b a ,为异面直线,下列结论不正确的是( ▲ )A .必存在平面α使得αα//,//b aB .必存在平面α使得b a ,与α所成角相等C .必存在平面α使得αα⊥⊂b a ,D .必存在平面α使得b a ,与α的距离相等3.已知实数y x ,满足⎪⎩⎪⎨⎧≤-≤+≥-32302y x y x y x ,则y x -的最大值为( ▲ )A .1B .3C .1-D .3-4.已知直线l :b kx y +=,曲线C :0222=-+x y x ,则“0=+b k ”是“直线l 与曲线C 有公共点”的( ▲ ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设函数)(x f y =是定义在R 上的偶函数,对任意的R x ∈都有(6)()(3)f x f x f +=+,则满足上述条件的)(x f 可以是( ▲ )A .()cos 3xf x π=B .()sin 3x f x π=C .2()2cos 6x f x π=D .2()2cos 12xf x π=6.如图,已知1F 、2F 为双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点,点P 在第一象限,且满足 2||F P a =,1122()0F P F F F P +⋅=,线段2PF 与双曲线C 交于点Q ,若225F P F Q =,则双曲线C 的渐近线方程为( ▲ )A.y = B .C .y x =D .y x =7.已知集合22{(,)|1}M x y x y=+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M的“和谐实数对”。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战77847
本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
第一部分选择题(共 50 分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数)421sin(2π+=x y 的周期是( )A .4π B .π4 C .π2D .2π 2.函数)10lg(1)(22x x x x f -+-=的定义域为( )A .RB .[1,10]C .(1,10)D .)10,1()1,(⋃--∞3.一个圆锥的侧面展开图是半径为3,圆心角为120的扇形,则圆锥的体积等于A.π322 B.π22 C.π324 D.π4835 4.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .3x y -=)(R x ∈B .x y sin =)(R x ∈C .x y tan -=D .xy )21(=)(R x ∈5.若向量)2,1(=a ,)4,3(-=b ,则)()(b a b a +⋅⋅等于( ) A .20 B .),(3010- C .54 D .),(248-6.如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界). 若21OP b OP a OP +=,且点P 落在第Ⅲ部分,则实数b a 、满足( ) A . 0,0>>b a . B. 0,0<>b a . C . 0,0><b a . D. 0,0<<b a .y xO6π 2 512π 7.在ABC ∆中,角2120,tan tan 33C A B =+=则tan tan A B 的值为 ( ) A .41 B .13 C .21 D .538.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如下图所示.则函数()f x 的解析式为( )A .)621sin(2)(π+=x x fB .)621sin(2)(π-=x x fC .)62sin(2)(π-=x x fD .()2sin(2)6f x x π=+9.在ABC ∆中,有命题①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆为等腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形. 上述命题正确的是 ( )A.①②B.①④C.②③D.②③④100≠=b a ,且关于x 的方程02=⋅++b a a x 有实数根,则a 与b 的夹角的取值范围是 ( ) A.[,]3ππ B.[0,]6π C.2[,]33ππ D.[,]6ππ 第二部分非选择题 (共 100 分)二.填空题:本大题共5小题, 每小题5分, 共25分. 把答案填在答卷的相应位置. 11.=-57sin 333cos 33sin 27sin ;12.已知1:210l x my ++=与2:31l y x =-,若两直线平行,则m 的值为; 13.将函数x y 2sin =的图象按向量)0,6(π-=平移后的图象的函数解析式为;14.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________.15.对于任意向量a 、b ,定义新运算“※”:a ※b =||||sin a b θ⋅⋅(其中 θ为a 与b 所的角)。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战53805
考试时间:120分钟 满分:150分【试卷综析】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、函数的性质及图象、三角函数、解三角形、数列、平面向量、立体几何、导数的应用、圆锥曲线、复数、集合、程序框图、排列组合、参数方程、不等式选讲等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一、选择题(本大题共12题,每小题5分,共60分.)【题文】1.设不等式02≤-x x 的解集为M ,函数()x x f -=1lg )(的定义域为N ,则=⋂N MA.(]0,1-B.[)1,0C.()1,0D.[]1,0【知识点】集合的运算A1 【答案】【解析】B解析:由02≤-x x 得0≤x≤1,所以M=[0,1],由10x ->得1<x <1,所以N=(1,1),则[)0,1MN =,所以选B.【思路点拨】可先解不等式得M ,求函数的定义域得N ,再求交集即可. 【题文】2.若复数z 满足()i z i 21-2+=,则z 的虚部位 A.55 B.i 55 C.1 D.i 【知识点】复数的运算L4 【答案】【解析】A解析:因为)1222555i z i i +==+=+-,所以虚部为5,则选A. 【思路点拨】可先由已知条件计算出复数z 再判断其虚部,即可解答.【题文】3.命题“若b a ,都是偶数,则b a +是偶数”的逆否命题是A.若b a +不是偶数,则b a ,都不是偶数B.若b a +不是偶数,则b a ,不都是偶数C.若b a ,都不是偶数,则b a +不是偶数D.若b a ,不都是偶数,则b a +不是偶数【知识点】命题及其关系A2 【答案】【解析】B解析:由命题的逆否命题的含义可知选B.【思路点拨】写一个命题的逆否命题,可先写出其否命题,再对条件和结论同时否定即可. 【题文】4.已知等差数列{}n a 且()()48231310753=++++a a a a a ,则数列{}n a 的前13项和为A.24B.39C.52D.104 【知识点】等差数列的性质D2 【答案】【解析】C解析:因为()()3571013410732661248a a a a a a a a ++++=+==,所以74a =,则1371352S a ==,所以选C.【思路点拨】一般遇到等差数列时,可先观察项的项数是否有性质特征,有性质特征的可用性质转化求解.【题文】5.若抛物线2ax y =的焦点坐标是(0,1),则=aA.1B.21 C.2 D.41 【知识点】抛物线的性质H7【答案】【解析】D解析:因为抛物线方程为21x y a =,所以其焦点坐标为10,4a ⎛⎫⎪⎝⎭,则有111,44a a ==,所以选D.【思路点拨】本题主要考查的是抛物线的性质,由抛物线的方程求其焦点坐标时应先把方程化成标准方程再进行求值.【题文】6.已知函数),0(cos sin )(R x ab x b x a x f ∈≠-=在4π=x 处取得最大值,则函数⎪⎭⎫⎝⎛-=x f y 4π是 A.偶函数且它的图像关于点()0,π对称B.偶函数且它的图像关于点⎪⎭⎫⎝⎛023,π对称 C.奇函数且它的图像关于点⎪⎭⎫⎝⎛023,π对称D.奇函数且它的图像关于点()0,π对称 【知识点】三角函数的图象与性质C3【答案】【解析】B解析:因为函数),0(cos sin )(R x ab x b x a x f ∈≠-=在4π=x 处取得最大值,所以-=,b=a ,所以()()sin cos sin cos sin 4f x a x b x a x x x π⎛⎫=-=+=+ ⎪⎝⎭(a >0),则sin cos 42y f x x x ππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,所以为偶函数,且它的图像关于点⎪⎭⎫⎝⎛023,π对称,则选B.【思路点拨】可先结合最大值点得出a,b 关系,再把函数f(x)化成一个角的三角函数进行解答判断即可.【题文】7.执行如图所示的程序框图,若13)(2-=x x f ,取101=ε,则输出的值为 A.3219 B.169 C.85 D.43【知识点】程序框图 二分法求方程近似解B9 L1 【答案】【解析】A解析:因为()()010,120f f =-<=>,第一次执行循环体时13110244f ⎛⎫=-=-< ⎪⎝⎭,,12a =,11112210b a -=-=>;第二次执行循环体327111041616f ⎛⎫=-=> ⎪⎝⎭,311,4410b b a =-=>;第三次执行循环体5751151110,,864648810f b b a ⎛⎫=-=>=-=> ⎪⎝⎭,第四次执行循环体9139110.,16256161610f a b a ⎛⎫=-<=-=< ⎪⎝⎭,所以输出9519168232+=,则选A. 【思路点拨】遇到循环结构的程序框图时,可依次执行循环体,直到跳出循环再进行判断即可.【题文】8.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是【知识点】三视图G2 【答案】【解析】D解析:三棱锥的三视图均为三角形,四个答案均满足;且四个三视图均表示一个高为3,底面为两直角边分别为1,2的棱锥;A 与C 中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A ,C 表示同一棱锥;设A 中观察的正方向为标准正方向,以C 表示从后面观察该棱锥;B 与D 中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B ,D 中有一个不与其它三个一样表示同一个棱锥,根据B 中正视图与A 中侧视图相同,侧视图与C 中正视图相同,可判断B 是从左边观察该棱锥,综上可知选D.【思路点拨】由已知中的四个三视图,可知四个三视图,分别表示从前、后、左、右四个方向观察同一个棱锥,但其中有一个是错误的,根据A 与C 中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,可得A ,C 均正确,而根据AC 可判断B 正确,D 错误.【题文】9.已知A,B,C 三点是某球的一个截面的内接三角形的三个顶点,其中30,24,18===AC BC AB ,球心到这个截面的距离为球半径的一半,则该球的表面积为A.π1200B.π1400C.π1600D.π1800 【知识点】球的截面性质G8 【答案】【解析】A解析:因为222AB BC AC +=,所以三角形ABC 外接圆圆心在AC 中点处,半径为15,设球半径为R ,由球的截面性质得222152R R ⎛⎫-= ⎪⎝⎭,得2300R =,所以该球的表面积为241200R ππ=,则选A.【思路点拨】一般遇到球的截面问题时,通常利用球的截面性质寻求截面与球半径的关系进行解答.【题文】10.已知约束条件⎪⎩⎪⎨⎧≤≥-≤+-10012x y ax y x 表示的平面区域为D ,若区域D 内至少有一个点在函数xe y =的图像上,那么实数a 的取值范围为A.[)4,eB.[)+∞,eC.[)3,1D.[)∞+,2 【知识点】简单的线性规划E5【答案】【解析】B解析:由题意作出其平面区域及函数y=ex 的图象,结合函数图象知,当x=1时,y=ex=e ; 故实数a 的取值范围为[e ,+∞),所以选B..【思路点拨】可先作出指数函数xe y =的图象,再由不等式表示的平面区域数形结合得出实数a 满足的条件即可.【题文】11.已知函数x x x g kx x f ln )(,)(==,若关于x 的方程)()(x g x f =在区间⎥⎦⎤⎢⎣⎡e e ,1内有两个实数解,则实数k 的取值范围是 A.⎪⎭⎫⎢⎣⎡e e 21,12 B.⎥⎦⎤ ⎝⎛e e 1,21 C.⎪⎭⎫ ⎝⎛210e , D.⎪⎭⎫⎝⎛+∞,1e 【知识点】函数与方程B9 【答案】【解析】A 解析:由)()(x g x f =得2ln x k x =,令()2ln x t x x =,由()312ln '0xt x x -==得x e =得函数t(x)在1e e⎡⎢⎣上单调递增,在,e e ⎤⎦上单调递减,又()22111,,2te t e t e e e e ⎛⎫==-= ⎪⎝⎭,所以若关于x 的方程)()(x g xf =在区间⎥⎦⎤⎢⎣⎡e e ,1内有两个实数解,则实数k 的取值范围是⎪⎭⎫⎢⎣⎡e e 21,12,则选A. 【思路点拨】一般遇到方程的解的个数问题通常转化为函数的图象的交点个数问题;通过导数研究函数的单调性及极值;通过对k 与函数h (x )的极值的大小关系的讨论得到结论.【题文】12.已知椭圆C:)0(12222>>=+b a by a x 的左右焦点为21,F F ,若椭圆C 上恰好有6个不同的点P ,使得P F F 21∆为等腰三角形,则椭圆C 的离心率的取值范围是A.⎪⎭⎫ ⎝⎛3231,B.⎪⎭⎫ ⎝⎛121,C.⎪⎭⎫⎝⎛132, D.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛1212131,, 【知识点】椭圆的几何性质H5【答案】【解析】D解析:6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称左右对称。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战53331
数学(理科)第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)函数2lg(2)()x x f x x -++=的定义域为( ) A(1,0)(0,2) B .(1,0)(0,+∞) C .(一∞,1)(2,+∞) D .(1,2)(2)已知集合{}|2,*M x x a b a N ==+∈,对任意,x y M ∈,则下列说法错误的是( )A .x y M +∈B .2x M ∈C .x y M ⋅∈D .x M y∈ (3)已知225535232(),(),log ,,,555a b c a b c ===则的大小关系是( ) A. a<c<b B. b<a<e C. c<a<b D. a<b<c(4)下列函数中,随x(x>0)的增大,增长速度最快的是( )A. y =1,x ∈ZB. y=xC. y= 2xD. y=x e(5)11(2)ex dx x +⎰等于( ) A. e2 2 B. e 一1 C. e2 D.e+1(6)原命题为“三角形ABC 中,若cosA <0,则三角形ABC 为钝角三角形”,关于其遵命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真 B. 假,假,真C .真,真,假D .真,假,假(7)已知函数()ln f x x b x =+在区间(0,2)上不是单调函数,则b 的取值范围是( )A .(一∞,0)B .(一∞,2)C .(2,0)D .(2,+∞)(8)函数()sin ln ||f x x x =⋅的图象大致是( )(9)下列函数中,与函数()3x x e e f x --=的奇偶性、单调性均相同的是( ) 22.().().()tan .()ln(1)x xx x e e A f x B f x x e eC f x xD f x x x ---= =+= =-+-(10)已知函数()|1|x f x e =-满足()()()f a f b a b =≠,在区间[a ,2b]上的最大值为e1,则b 为( )A.ln3B. 13C. 12D.l (11)已知定义在R 上的函数()f x 满足:()2f x +∈①=2f(x);②当x [-1,1]时,()cos.2f x x π=记函数g(x)= f(x) log4(x+l),则函数g(x)在区间[0,10]内零点个数是( )A .12B .11C .10D .9(12)函数()f x 在R 上可导,下列说法正确的是( )A .若()'()0f x f x +>对任意x ∈R 恒成立,则有(2)(1)ef f <B .若()'()0f x f x -<对任意x ∈R 恒成立,则有2(1)(1)e f f -<C .若()'()1f x f x +>对任意x ∈R 恒成立,则有(0)(1)1f e ef +>+D .若()'()1f x f x -<对任意x ∈R 恒成立,则有(1)(0)1ef e f -+>+第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.(13)命题“任意x ∈(0,+∞),都有x2 2x >0”的否定是____。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战31563
本试题卷分选择题和非选择题两部分。
全卷共6页,选择题部分2至3页, 非选择题部分3至6页。
满分150分, 考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径. 柱体的体积公式Sh V =,其中S 表示柱体的底面积,h 表示柱体的高.锥体的体积公式Sh V 31=, 其中S 表示锥体的底面积,h 表示锥体的高.台体的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示台体的上、下底面积,h 表示台体的高.选择题部分(共40分)一、选择题(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设全集U =R ,集合P {2}=>x x ,Q =2{20}--<x x x ,则(∁UP ) Q=A .)21(,-B .]21(,-C .)12(,-D .∅2.设a ,b 是实数,则“||||a b a b -≥+”是“0ab <”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A .0)(0)(==∈∀x g x f x 且R,B .0)(0)(==∈∀x g x f x 或R,C .0)(0)(000==∈∃x g x f x 且R,D .0)(0)(000==∈∃x g x f x 或R,5. 如图所示的是函数()sin 2f x x =和函数()g x 的部分图象,则函数()g x 的解析式可以是A .)3π2sin()(-=x x g B .2π()sin(2)3g x x =+C .)65π2cos()(+=x x gD .)6π2cos()(-=x x g6.已知实数a ,b 满足41)22()21(21>>>b a ,则 7.已知1F ,2F 分别为双曲线C :12222=-by a x 的左、右焦点, 若存在过1F 的直线分别(第5题)交双曲线C 的左、右支于A ,B 两点,使得122F BF BAF ∠=∠, 则双曲线C 的离心率e 的取值范围是A .()+∞,3B .()521+, C .()523+,D .()31, 8.已知二次函数)2()(2a b bx ax x f ≤+=,定义}11)({)(1≤≤≤-=x t t f max x f ,}11)({)(2≤≤≤-=x t t f min x f ,其中}{b a max ,表示b a ,中的较大者,}{b a min ,表示b a ,中的较小者,则下列命题正确的是.A .若)1()1(11f f =-,则)1()1(f f >-B .若)1()1(22f f =-,则)1()1(f f >-C .若)1()1(f f =-,则)1()1(22f f >-D .若)1()1(12-=f f ,则)1()1(11f f <-非选择题部分 (共110分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战36583
一.基础题组1.(北京市昌平区高三二模理3)已知等差数列{}n a 的公差是2,若134,,a a a 成等比数列,则1a 等于( ) A. 4- B. 6- C. 8- D. 10- 【答案】C考点:等差数列与等比数列.2.(北京市东城区高三5月综合练习(二)理3)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=( )(A )4(B )8(C )16(D )64 【答案】B 【解析】试题分析:由于数列{}n a 是正各项都是正数的等比数列,所以根据等比数列的性质可知:248664,2a a a a ==∴=,356768a a a a ==,所以答案为B.考点:1.等比数列的性质;2.等比数列的求值.3.(北京市丰台区度第二学期统一练习(一)理2)在等比数列}{n a 中,344a a +=,22a =,则公比q 等于( )A .2B .1或2C .1D .1或2 【答案】B 【解析】试题分析:∵344a a +=,∴2224a q a q +=∴解得1q =或2q =-,故选B.考点:等比数列的通项公式.4.(北京市顺义区高三第一次统一练习(一模)理11)已知无穷数列{}n a 满足:1110,2()n n a a a n N *+=-=+∈.则数列{}n a 的前n 项和的最小值为.【答案】30考点:等差数列. 二.能力题组1.(北京市石景山区高三3月统一测试(一模)理6)等差数列{}n a 中,11,m k a a k m==()m k ≠,则该数列前mk 项之和为( ) A .12mk - B .2mk C .12mk + D .12mk+ 【答案】C 【解析】试题分析:设公差为,d 由已知1111111,(1)(1),kk m d a a k d k m k mk m mk mk -===--=--⋅=-所以,1(1)1(1)11,222mk mk mk mk mk mk S mka d mk mk mk --+=+=⋅+⋅=选C .考点:等差数列及其求和公式.2.(北京市西城区高三一模考试理12)若数列{}n a 满足12a =-,且对于任意的*,m n ∈N ,都有m n m n a a a +=⋅,则3a =___;数列{}n a 前10项的和10S =____.【答案】8-,682 【解析】试题分析:由m n m n a a a +=⋅得2113214,8,a a a a a a =⋅==⋅=-由m n m n a a a +=⋅得112n n n a a a a +=⋅=-,所以数列{}n a 为等比数列,因此10102[1(2)]682.1(2)S ---==---考点:等比数列通项与和项3.(北京市朝阳区高三第二次综合练习理13)已知点()11,1a A ,()22,2a A ,⋅⋅⋅,(),n n a n A (n *∈N )在函数13log y x =的图像上,则数列的通项公式为__________;设O 为坐标原点,点,则,中,面积的最大值是__________.【答案】13n⎛⎫ ⎪⎝⎭,16考点:1.对数函数性质;2.求数列通项;3.数列单调性.4.(北京市海淀区101中学高三上学期期中模拟考试理10)在公差为正数的等差数列}{n a 中,n S a a a a ,0,011101110<<+且是其前n 项和,则使n S 取最小值的n 是.【答案】10 【解析】试题分析:因为数列的公差为正数,所以数列为递增数列,又因为0,011101110<<+a a a a 且, 所以0,01110><a a ,所以前10项的和最小,即使n S 取最小值的。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战53881
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
请在答题卷上作答。
第I 卷 (选择题 共60分)一、选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项符合题目要求。
) 1.已知集合,集合,则( )A. B. C.D.2.已知复数,z a i a R =+∈,若2z =,则a 的值为( ) 31±D. 3±3.设函数()2log 2g x x m x =--,则“函数()g x 在()2,8上存在零点”是“()1,3m ∈”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分且必要条件 D. 既不充分也不必要条件4.过抛物线22y px =(0p >)的焦点F 作斜率大于0的直线l 交抛物线于A , B 两点(A 在B 的上方),且l 与准线交于点C ,若4CB BF =,则AF BF=( )A. 53B. 52C. 3D. 2 5.设1F , 2F 分别为椭圆1C : 221122111(0)x y a b a b +=>>与双曲线2C : 222222221(0,0)x y a b a b -=>>的公共焦点,它们在第一象限内交于点M , 1290F MF ∠=︒,若椭圆的离心率134e =,则双曲线2C 的离心率2e 的值为( )A.92B. 322 C. 32 D. 546.已知函数()()2142,1{ 1log ,1a x a x f x x x -+-<=+≥,若()fx 的值域为R ,则实数a 的取值范围是( )A. (]1,2B. (],2-∞C. (]0,2D. [)2,+∞7.已知()()()4201xf x a x x x =-+>+,若曲线()f x 上存在不同两点,A B ,使得曲线()f x 在点,A B 处的切线垂直,则实数a 的取值范围是( ) A. ()3,3- B. ()2,2- C. ()3,2- D. ()2,3- 8.执行如图所示的程序框图,输出的T =A. 29B. 44C. 52D. 62 9.已知等比数列满足,则的值为( )A. 2B. 4C.D. 610.定义行列式运算12142334a a a a a a a a =-,将函数()sin23cos21x f x x =的图像向左平移6π个单位,以下是所得函数图像的一个对称中心是() A. ,04π⎛⎫⎪⎝⎭B. ,02π⎛⎫ ⎪⎝⎭ C. ,03π⎛⎫ ⎪⎝⎭D. ,012π⎛⎫⎪⎝⎭11.在ABC ∆中, P 是边BC 的中点, Q 是BP 的中点,若6A π∠=,且ABC ∆的面积为1,则AP AQ ⋅的最小值为( ) A. 23232 C. 13+ D. 312.一个几何体的三视图如图所示,则这个几何体的体积为( )A. B. C.D.第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知实数,x y 满足10{20 0x y x y x -+≤+-≤≥,则2z x y =-的最大值为__________.14.设函数()()sin f x A x ωϕ=+(,,A ωϕ是常数, 0,0A ω>>).若()f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上具有单调性,且2236f f f πππ⎛⎫⎛⎫⎛⎫==-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f x 的最小正周期为. 15.设正项等比数列{}n a 的前n 项和为n S ,则以1S , 3S , 4S 为前三项的等差数列的第8项与第4项之比为________. 16.平面四边形中,,沿直线将翻折成,当三棱锥的体积取得最大值时,该三棱锥的外接球的表面积是__________.三、解答题(共6小题 ,共70分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战5322
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战16599
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.356437-⎛⎫⎪⎝⎭; 2.34; 3.(,1)-∞-; 4.4π; 5.(,0)-∞6.(0,2); 7.13b -≤≤; 8.10082017; 9.π32; 10.16; 11.3; 12.(),1n n -+;13.;14.66a -≤≤. 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A ;16. A ; 17.B ;18.D .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.19.解:(1)证明:AB PAD ⊥平面,PH PAD ⊆平面,AB PH ⊥又PAD ∆中,PD PA =,点H 为线段AD 的中点,PH AD ⊥PH ADPH ABPH ABCD AD AB A ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面 (2)1,PH AD AH DH ===,又PH AD ⊥,PA PD ∴== 连结BH ,可得PBH ∠是PB 与平面ABCD 所成角,又PB 与平面ABCD 所成角的大小为45,1BH ∴=,在Rt ABH ∆中,AB =, 1111()3322P ABCDABCD V S PH AB CD AD PH -∴==⨯+⋅⋅=梯形.分 20.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为抛物线24y x =的焦点F 是椭圆M 的一个焦点,即(1,0)F又椭圆M 的对称轴为坐标轴,所以设椭圆方程为22221,0x y a b a b+=>>,且221a b -=又以F 为圆心,以椭圆M的短半轴长为半径的圆与直线20l x -+=:相切即1b ==,所以椭圆M 的方程是2212x y += (2)设11(,)A x y ,22(,)B x y22223422022y x mx mx m x y =+⎧⇒++-=⎨+=⎩ 222(4)12(22)8240m m m ∆=--=-+>m ⇒<<1212,(,)OP OA OB P x x y y =+∴++又121242,33x x m y y m +=-+=, 即42(,)33P m m -在椭圆2212x y +=上,即2242()2()233m m m -+=⇒=21.(本题满分14分)本题共2小题,第(1)小题4分,第(2)小题10分. 解:(1)1212sin12032ABCDS=⨯⨯⨯=当点F 与点D 重合时,由已知134CDEABCDS S ==,又13sin12012CDESCE CD x x =⋅⋅==⇒= ,E 是BC 的中点 (2)①当点F 在CD上,即12x ≤≤时,利用面积关系可得1CF x=, 再由余弦定理可得y =≥1x =时取等号 ②当点F 在DA 上时,即01x ≤<时,利用面积关系可得1DF x =-, (ⅰ)当CE DF <时,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,12,60EG GF x EGF ==-∠=,利用余弦定理得y =(ⅱ)同理当CE DF ≥,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,21,120EG GF x EGF ==-∠=,利用余弦定理得y =由(ⅰ)、(ⅱ)可得y =,01x ≤<y∴==,01x ≤< ,min y ∴=12x =时取等号 ,由①②可知当12x =时,路EF 的长度最短为2.22.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题4分,第(3)小题8分.解:(1)因为(,)n n n P a S 、*111(,),n n n P a S n N +++∈都在直线y kx b =+上,所以11n nn nS S k a a ++-=-,即1(1)n n k a ka +-=,又0k ≠,且1k ≠,所以11n n a ka k +=-为非零常数,所以数列{}n a 是等比数列(2)由12log n n b a =得31()22nb n n a -==,即21kk =-得2k =. 由*(,),n n n P a S n N ∈在直线y kx b =+上得n n S ka b =+上,令1n =得111124b S a a =-=-=-(3)由12log n n b a =知1n a >恒成立等价于0n b <恒成立.因为存在*,,t s N s t ∈≠使得点(),s t b 和(),t s b 都在直线在21y x =+上,所以21s b t =+,21t b s =+即2()t s b b s t -=-,另1,2s t t =-≥,易证12(1)2t t b b t t --=--=-,又1(1)(2)21s b b s t =+--=+12()10b t s ⇒=+->,即{}n b 是首项为正,公差为2-的等差数列. 所以一定存在自然数M ,使100M M b b +≥⎧⎨<⎩即2()1(1)(2)02()1(2)0t s M t s M +-+--≥⎧⎨+-+-<⎩,解得1122t s M t s +-<≤++,*M N ∈,M t s ∴=+.存在自然数M ,其最小值为t s +使得当n M >(*n N ∈)时,1n a >恒成立时,1n a >恒成立.23.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1) x x x f sin cos )(+=,2πα=∴x x x f sin cos )(-=+α;∴x x g 2cos )(=(2)()2cos (cos )4cos cos()3g x x x x x x π=+=-,若()2cos f x x =,则()()2cos()33f x f x x ππα+=-=-(2)33k ππααπ⇒∴=-=-∈取,k Z 中一个都可以,()2cos f xx =(3)()sin cos f x x x =+,()()()g x f x f x α∴=⋅+=(sin cos )x x +(cos sin )x x -cos 22,2,2sin 212,2,23cos 22,2,2312sin 22,22.2x x k k x x k k k Z x x k k x x k k πππππππππππππππ⎧⎛⎤∈+ ⎪⎥⎝⎦⎪⎪⎛⎤--∈++⎪ ⎥⎪⎝⎦=∈⎨⎛⎤⎪-∈++ ⎥⎪⎝⎦⎪⎛⎤⎪-∈++ ⎥⎪⎝⎦⎩显然,(2)()g x g x π+=即()y g x =的最小正周期是2π,因为存在12,x x R ∈,对任意x R ∈,12()()()g x g x g x ≤≤恒成立, 所以当12x k ππ=+或12,2x k k Z ππ=+∈时,1()()1g x g x ≥=-当272,4x k k Z ππ=+∈时,2()()2g x g x ≤= 所以12121272(2),4x x k k k k Z ππππ-=+-+∈、 或12121272(2),24x x k k k k Z ππππ-=+-+∈、 所以12x x -的最小值是34π. 说明:写出分段函数后画出一个或多个周期上的函数图像,用数形结合的方法解同样给分一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大. 【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战43800
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠A DC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.已知定点A 、B ,且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( ) A .12B .32 C .72D .5 2. 若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是( )(A )(1,2](B )[2,)+∞(C )(1,3](D )[3,)+∞3.【百强校】【陕西西安西北工大附中高三下学期5月模拟】已知抛物线x y 82=的焦点与双曲线1222x y a-=的一个焦点重合,则该双曲线的离心率为() A .255 B .41515C .233D .2 4.【山东高考理第10题】 已知0>>b a ,椭圆1C 的方程为12222=+b y a x ,双曲线2C 的方程为22221x y a b -=,1C 与2C 的离心率之积为23,则2C 的渐近线方程为( ) A.02=±y x B.02=±y x C.02=±y x D.02=±y x5. 【嵊州市高三第二次教学质量调测】已知双曲线2222C :1(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,过2F 作平行于C 的渐近线的直线交C 于点P .若12PF PF ⊥,则C 的离心率为( )A 23.2 D 56.【全国1高考理第4题】已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3B. 3C. m 3D. m 37.【改编题】已知斜率为2的直线l 双曲线2222:1(0,0)x y C a b a b-=>>交,A B 两点,若点(2,1)P 是AB 的中点,则C 的离心率等于()(A) 22 (B) 2 (C) 3 (D ) 28.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞9.【百强校】【实验中学高三上学期第五次模拟考试】已知双曲线2222:1x y C a b-=的左、右焦点分别是12,F F ,正三角形12AF F 的一边1AF 与双曲线左支交于点B ,且114AF BF =,则双曲线C 的离心率的值是 ( ) A .123+B .312+C .1313+D .1313+ 10.已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,其中一条渐近线方程为(*)2by x b N =∈,P 为双曲线上一点,且满足5OP <(其中O 为坐标原点),若1PF 、12F F 、2PF 成等比数列,则双曲线C 的方程为( )A.2214x y -=B.221x y -= C.22149x y -= D.221416x y -= 二、填空题11.【全国普通高等学校招生统一考试理科数学(浙江卷)】双曲线2212x y -=的焦距是,渐近线方程是.12.【日照市高三校际联合检测(二模)】已知双曲线()222210,0x y a b a b-=>>的左焦点()125,0F -,右焦点()225,0F ,离心率5e =.若点P 为双曲线C 右支上一点,则12PF PF -=__________. 13. 【百强校】【实验中学高三上学期第五次模拟】已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且321π=∠PF F ,椭圆的离心率为1e ,双曲线的离心率2e ,则=+222131e e . 14.【全国普通高等学校招生统一考试理科数学(上海卷)】已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为.15. 【上海市闸北区高三下学期期中练习(二模)】从双曲线()222210,0x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于点P ,若M 是线段FP 的中点,O 为坐标原点,则MO MT -的值是____________.16.【全国普通高等学校招生统一考试数学(江苏卷)】在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战48583
12月调研考试数学理【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、三视图、导数、简单的线性规划、数列、三角函数的性质,统计概率等;考查学生解决实际问题的能力。
【题文】一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N =( )A .1[0,)2B .1(,1]2-C .1[1,)2-D .1(,0]2-【知识点】集合及其运算A1【思路点拨】解一元二次不等式求得N ,再根据两个集合的交集的定义求得M∩N .【题文】2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( ) A .2i -B .2i +C .4i - D .4i +【知识点】复数的基本概念与运算L4 【答案】A【思路点拨】直接利用复数模的公式求复数的模,再利用虚数单位i 的运算性质化简后得z ,则复数z 的共轭复数可求.【题文】3.设向量11(1,0),(,)22a b ==,则下列结论中正确的是( ) A .||||a b =B .22a b =C .//a bD .()a b b -⊥ 【知识点】平面向量基本定理及向量坐标运算F2 【答案】D11(1,0),(,)22a b ==,||||a b =不正12a b ⋅=,故a =(1,0),b =(12,12,易得//a b 不成立,故()0a b b -⋅=则a b-与b垂【思路点拨】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由11(1,0),(,)22a b ==,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”;B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题p :,21000nn N ∃∈>,则p ⌝:,21000nn N ∀∈≤;D .命题“(,0),23x xx ∃∈-∞<”是真命题.【知识点】命题及其关系A2 【答案】D【解析】因为命题“若x23x+2=0,则x=1”的逆否命题为“若x≠1,则x23x+2≠0”,所以A 正确;由a=2能得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之,函数f (x )=logax 在区间(0,+∞)上为增函数,a 不一定大于2,所以“a=2”是“函数f (x )=logax 在区间(0,+∞)上为增函数”的充分不必要条件,所以选项B 正确;命题P :∃n ∈N ,2n >1000,的否定为¬P :∀n ∈N ,2n≤1000,所以C 正确;因为当x <0时恒有2x >3x ,所以命题“∃x ∈(∞,0),2x <3x”为假命题,所以D 不正确【思路点拨】选项A 是写一个命题的逆否命题,只要把原命题的结论否定当条件,条件否定当结论即可;选项B 看由a=2能否得到函数f (x )=logax 在区间(0,+∞)上为增函数,反之又是否成立;选项C 、D 是写出特称命题的否定,注意其否定全称命题的格式.【题文】5.右图是一容量为100的样本的重量的频率分布直方图, 则由图可估计样本的重量的中位数为( ) A .11 B .11.5 C .12 D .12.5【知识点】用样本估计总体I2 【答案】C【解析】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50由于[10,15]的组中值为12.5,由图可估计样本重量的中位数12.【思路点拨】由题意,[5,10]的样本有5×0.06×100=30,[10,15]的样本有5×0.1×100=50,结合[10,15]的组中值,即可得出结论.【题文】6.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:①y=x•sinx 为偶函数;②y=x•cosx x <0时,③y=x•|cosx|≤0恒成立则从左到右图象对应的函数序号应为:①④②③【思路点拨】从左到右依次分析四个图象可知,第一个图象关于Y 轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y 轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y 轴左侧,函数值不大于0,分析四个函数的解析后,即可得到函数的性质,进而得到答案.【题文】7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂则a α⊥ B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα【知识点】空间中的平行关系垂直关系G4 G5【答案】C【解析】A .根据线面垂直的垂直的判定定理可知,m ,n 必须是相交直线,所以A 错误. B .根据直线和平面平行的判定定理可知,a 必须在平面α外,所以B 错误.xC .根据面面平行的性质定理可知,两个平行平面同时和第三个平面相交,则交线平行,所以C 正确.D .根据面面平行的判定定理可知,直线a ,b 必须是相交直线,才能得到面面平行.所以D 错误. 【思路点拨】A .利用线面垂直的定义和判定定理判断.B .利用线面平行的判定定理判断.C .利用面面平行的性质判断.D .利用线面平行的性质和面面平行的判定定理判断. 【题文】8.点)2,4(-P 与圆422=+y x 上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++=B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-= 【知识点】圆的方程H3 【答案】A代入x2+y2=4得(2x4)2+(2y+2)2=4,化简得(x2)2+(y+1)2=1.【题文】9.已知函数0x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A .()0,-∞B .()()001,,-∞ C .()01, D .()()011,,+∞【知识点】函数与方程B9 【答案】B若a≠0,若f (f (x ))=0,可得当x≤0时,a•ex=1无解,进而得到实数a 的取值范围.【题文】10.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π25【知识点】空间几何体的三视图和直观图G2 【答案】A【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在正方体中,所以我们可以在正方体中寻找此四面体.如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球, 由题意可知,正方体的棱长为1,所以外接球的半径为R=32, 所以此四面体的外接球表面积S=4×π×(32)2=3π. 【思路点拨】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球表面积. 【题文】11.已知b 为如图所示的程序框图输出的结果,则二项式6()bx x-的展开式中的常数项是( )A .20B .20C .540D .540【知识点】算法与程序框图L1 【答案】C【解析】第一次循环:b=3,a=2;第二次循环得:b=5,a=3;第三次循环得:b=7,a=4;第四次循环得:b=9,a=5;不满足判断框中的条件输出b=9.【思路点拨】根据题意,分析该程序的作用,可得b的值,再利用二项式定理求出展开式的通项,分析可得常数项.【题文】12.设等差数列{}n a满足:22222233363645sin cos cos cos sin sin1sin()a a a a a aa a-+-=+,公差(1,0)d∈-.若当且仅当9n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是( )A.74,63ππ⎛⎫⎪⎝⎭B.43,32ππ⎛⎫⎪⎝⎭C.74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦【知识点】等差数列及等差数列前n项和D2【答案】B【思路点拨】利用三角函数的倍角公式、积化和差与和差化积公式化简已知的等式,根据公差d的范围求出公差的值,代入前n项和公式后利用二次函数的对称轴的范围求解首项a1取值范围.第II卷(非选择题,共90分)【题文】二、填空题:本题共4小题,每小题5分,共20分。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战41863
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟。
考试结束后,将本试卷和答题卡一并收回.注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上。
3.答第Ⅱ卷时必须使用0.5毫米的黑色墨水签字笔书写,要字体工整,笔迹清晰,严格在题号所指示的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.参考公式:柱体的体积公式:V=Sh .其中S 是柱体的底面积,h 是柱体的高.锥体的体积公式:13V Sh =.其中S 是锥体的底面积,h 是锥体的高. 第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}220A x x x =-≥,集合{}21x B x A B =>⋂=,则A.(]0,2B.[]0,2C.[)2,+∞D.()2,+∞ 2.设0.30.40.3log 2,2,0.3a b c ===,则,,a b c 的大小关系是A.a b c <<B.a c b <<C.c a b <<D.c b a <<3.直线l 过定点()1,2-且在两坐标轴上的截距相等,则直线l 的方程为A.2010x y x y +=+-=或B.2010x y x y -=+-=或C.2030x y x y +=-+=或D.1030x y x y +-=-+=或 4.下列说法错误的是A.命题“若23201x x x -+==,则”的逆否命题为“若21320x x x ≠-+≠,则”B.“11a b >>且”是“1ab >”的充分不必要条件C.若命题00:,21000:,21000x x p x N p x N ∃∈>⌝∀∈≤,则D.若p q ∧为假命题,则,p q 均为假命题5.已知函数()()sin f x A x ωϕ=+(其中0,0,2A πωϕ>><)的部分图象如图所示,则()f x 的解析式为A.()2sin 3f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C.()2sin 26f x x π⎛⎫=- ⎪⎝⎭ D.()2sin 46f x x π⎛⎫=- ⎪⎝⎭6.某几何体的三视图如图所示,则这个几何体的体积是A.482+B.842+C.42D.22 7.在ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若223,sin 23sin c b ab A B -==,则角C=A.6πB.3πC.23πD.56π 8.设变量,x y 满足约束条件10,20,240.x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩若目标函数z ax y =+取得最大值时的最优解不唯一,则实数a 的值为A.1-B.2C.12-或D.1或2- 9.已知抛物线242y x =-的焦点到双曲线()222210,0x y a b a b-=>>的一条渐近线的距离为55,则该双曲线的离心率为 A.223 B.103 C.10 D.23903911.函数()2sin()(,0,||f x x x ωϕωϕ=+∈><R π)2的部分图象如图所示,则()f x 的单调递减区间为 ( )A .511[,],1212k k k z ππππ++∈ B. 511[],66k x k k z ππππ+≤≤+∈ C. 511[2,2],1212k k k z ππππ++∈ D.5[,],1212k k k z ππππ-++∈ 11.A 解析:由图知()f x 在5π12x =时取到最大值2,且最小正周期T 满足35ππ+.4123T =, 故2A =,,2T πω==,所以52)212πθ⨯+=,所以5+=62ππθ,即=3πθ-,所以()2)3f x x π=-,令3222232k x k πππππ+≤-≤+得511,1212k x k k z ππππ+≤≤+∈。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战58052
一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.故c=a,从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为﹣=1.设直线l与x轴相交于点C,当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,所以|OC|•|AB|=8,因此a•4a=8,解得a=2,此时双曲线E的方程为﹣=1.以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;则C(﹣,0),记A(x1,y1),B(x2,y2),由得y1=,同理得y2=,由S△OAB=|OC|•|y1﹣y2|得:|﹣|•|﹣|=8,即m2=4|4﹣k2|=4(k2﹣4).由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,因为4﹣k2<0,所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),又因为m2=4(k2﹣4),所以△=0,即直线l与双曲线E有且只有一个公共点.因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1.【点评】本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数的符号变化可求得函数的极值;(2)构造函数g(x)=ex﹣x2,求出导数,利用(1)问结论可得到函数的符号,从而判断g(x)的单调性,即可得出结论;(3)首先可将要证明的不等式变形为x2<ex,进而发现当x>时,x2<x3,因此问题转化为证明当x∈(0,+∞)时,恒有x3<ex.【解答】解:(1)由f(x)=ex﹣ax,得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)首先证明当x∈(0,+∞)时,恒有x3<ex.证明如下:令h(x)=x3﹣ex,则h′(x)=x2﹣ex.由(2)知,当x>0时,x2<ex,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<ex,取x0=,当x>x0时,有x2<x3<ex.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.【点评】该题主要考查导数的几何意义、导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想.属难题.21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.【分析】(1)利用AA﹣1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.【解答】解:(1)设A=,则由AA﹣1=E得=,解得a=,b=﹣,c=﹣,d=,所以A=;(2)矩阵A﹣1的特征多项式为f(λ)==(λ﹣2)2﹣1,令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,设λ1=1对应的一个特征向量为α=,则由λ1α=Mα,得x+y=0得x=﹣y,可令x=1,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为,同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为.【点评】本题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.【分析】(1)由绝对值不等式|a|+|b|≥|a﹣b|,当且仅当ab≤0,取等号;(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得.【解答】(1)解:∵|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时,等号成立,∴f(x)的最小值为3,即a=3;(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3.【点评】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【分析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.【第一试】一、选择题(本题满分36分,每小题6分)1.已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0,x∈R}的子集的个数为().A.1B.2C.4D.不确定2.命题1:长方体中,必存在到各顶点距高相等的点.命题2:长方体中,必存在到各条棱距离相等的点;命题3:长方体中,必存在到各个面距离相等的点.以上三个命题中正确的有().A.0个B.1个C.2个D.3个3.在四个函数y=sin|x|、y=cos|x|、y=|ctgx|、y=lg|sinx|中,以π为周期、在(0,π/2)上单调递增的偶函数是().A.y=sin|x|B.y=cos|x|C.y=|ctgx|D.y=lg|sinx|4.如果满足∠ABC=60°,AC=12,BC=k的△ABC恰有一个,那么k的取值范围是().A.B.0<k≤12C.k≥12D.0<k≤12或5.若(1+x+x2)1000的展开式为a0+a1x+a2x2+…+a2000x2000,则a0+a3+a6+a9+…+a1998的值为().A.3333B.3666C.3999D.36.已知6枝玫瑰与3枝康乃馨的价格之和大于24,而4枝攻瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较,结果是().A.2枝玫瑰价格高B.3枝康乃馨价格高C.价格相同D.不确定二、填空题(本题满分54分,每小题9分)7.椭圆ρ=1/(2-cosθ)的短轴长等于______________.8.若复数z1、z2满足|z1|=2,|z3|=3,3z1-2z2=(3/2)-i,则z1·z2=______________.9.正方体ABCD-A1B1C11的棱长为1,则直线A1C1与BD1的距离是______________.10.不等式|(1/log1/2x)+2|>3/2的解集为______________. 11.函数的值域为______________.图312.在一个正六边形的六个区域栽种观赏植物(如图3),要求同一块中种同一种植物,相邻的两块种不同的植物.现有4种不同的植物可供选择,则有______________种栽种方案.三、解答题(本题满分60分,每小题20分)13.设{an}为等差数列,{bn}为等比数列,且b1=a12,b2=a22,b3=a32(a1<a2=.又 试求{an}的首项与公差.14.设曲线C1:1222=+y a x (a 为正常数)与C2:y2=2(x+m )在x 轴上方仅有一个公共点P .⑴求实数m 的取值范围(用a 表示);⑵O 为原点,若C1与x 轴的负半轴交于点A ,当0<a<21时,试求ΔOAP 的面积的最大值(用a 表示).15.用电阻值分别为a1、a2、a3、a4、a5、a6 (a1>a2>a3>a4>a5>a6) 的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论.【第二试】 一.(本题满分50分)如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ;(2) OH ⊥MN .O ABC H FE DNM二.(本题满分50分)设≥i x (i=1,2,…,n )且12112=+∑∑≤<≤=nj k j k ni ix x j kx,求∑=ni i x 1的最大值与最小值.三.(本题满分50分)将边长为正整数m ,n 的矩形划分成若干边长均为正整数的正方形.每个正方形的边均平行于矩形的相应边.试求这些正方形边长之和的最小值.nDAC B参考答案一. 选择题:1.C 2.B 3.D 4.D 5.C 6.A 二.填空题:7.332 8.i 13721330+-9.6610.),4()2,1()1,0(72∞+ 11.),2[)23,1[∞+ 12. 732三.解答题:13.设所求公差为d ,∵a1<a2,∴d >0.由此得412121)()2(d a d a a +=+ 化简得:0422121=++d d a a 解得:1)22(a d ±-= ……………………………………………………… 5分而022<±-,故a1<0若1)22(a d --=,则22122)12(+==a a q若1)22(a d +-=,则22122)12(-==a a q ……………………………… 10分但12)(21+=++++∞→n n b b b lim 存在,故| q |<1,于是2)12(+=q 不可能.从而2)12)(222(12)12(121221=+-=⇒+=--a a所以222)22(,211-=+-=-=a d a ……………………………… 20分14.解:(1)由⎪⎩⎪⎨⎧+==+)(212222m x y y ax 消去y 得:0222222=-++a m a x a x ①设222222)(a m a x a x x f -++=,问题(1)化为方程①在x ∈(-a ,a)上有唯一解或等根.只需讨论以下三种情况:。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战36121
班级姓名学号得分 第I 卷(选择题 70分)(请将是非选择题、单项选择题答案写到表格中) 一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题作出选择,的选A,错的选B. 1. 实数0与集合A={0,1}的关系是.0A ∈(A B) 2. 点M(1,1)在圆.1)1(22上=+-y x(A B)3. 若非零向量.0,//,=•b a b a b a 则满足(A B)4. }.10{02<<<+x x x x 的解集是不等式(A B)5. 342tan ,2tan ==θθ则若(A B) 6. 24lg 25lg =+(A B) 7. 函数x y πsin = 的最小周期是2(A B)8. 若点A,B 到平面a 的距离都等于1,则直线.//a AB (A B) 9. 当6)32(3的系数是的展开式中x x +(A B)10,等差数列).(125,3,1*N n n a n ∈-=的通项公式为(A B)二、单项选择题:本大题共8小题,每小题5分,共40分.11. 的离心率为椭圆125922=+y x ( )A. 53B. 54C. 43D. 4512. 已知的值域是函数xy 2=( )A.{}0≤y yB. {}0≥y yC. {}0>y yD. {}R y y ∈13. 已知[]()=⋂==B A B A 则集合,5,2,3,0( )A. (]3,2B. [)5,0C. ()3,2D. []3,214. 不等式[]的最小值为函数2,1,32-∈+-=x x y ( ) A. 1 B. 0C. 2D. 315. 的大小关系是,,三个数53cos 5cos )8-(cos πππ( ) A.)53cos()5cos()8cos(πππ<<-B .⎪⎭⎫ ⎝⎛-<<8cos )5cos()53cos(πππ B.C.⎪⎭⎫ ⎝⎛<-<5cos )8cos()53cos(πππ D.⎪⎭⎫ ⎝⎛<<-5cos )53cos()8cos(πππ 16. 不等式的取值范围是,则是直线与平面所成的角若θθ( ) A.[)π,0B. )2,0(πC. )2,0[πD.]2,0[π17. 那么下列说法正确的是如果,b a >( )A.1>baB. 22b a >C.ba 11< D. 33b a >18. 从1,2,3,4,5,6中任取两个数,则这两个数之和为9的概率是( )A.154 B.51 C. 152D. 151 第I 卷(非选择题 80分)三、填空题:本大题共6小题,每小题5分,共30分.19.在直角坐标系中,过点(0,1)和(1,0)的直线l 的方程是 20. 在===∠=∠∆AC BC B A ABC ,则,,中,4453021. 到右焦点的距离为,则点到右焦点的距离为右支上一点若双曲线p p x x 3116922=- 22. 已知一个圆柱的底面半径为1,高为2,则该圆柱的全面积为 23. 已知向量),1,2(),1,1(-=-=b a =+b a 则24.甲乙两人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,用甲、乙训练的成绩的方差大小关系是,乙甲22s s四、解答题:本大题共6小题,2528小题每小题8分,2930小题每小题9分,共50分. 25. (本小题满分8分)的值,求实数若,已知向量m b a m b a ⊥=-=),,1()2,1(.)()2()()1(cos 11)()8.26的奇偶性判断函数的定义域;求函数已知函数分(本小题满分x f x f x x f +=27. (本小题满分8分).}{68}{221的通项公式求数列,的前项和,若是递增等比数列已知n n n a S a a a S ==28. 已(本小题满分8分)已知).0(0542:22>=-+--+m m y x y x C 的方程是.0943:)2(;)1(的值相切,求实数与直线若圆的坐标求圆心m y x l C C =++30. (本小题满分9分).1111-AA BC AB C B A ABC ==形,的底面是等腰直角三角如图,已知直三棱柱(1)求异面直线所成的角与11CC AB . (2) (3) (4)若M 为线段AC 的中点,N 为线段1111//:BMC N AB C A 平面平面的中点,求证29. (本小题满分9分).),1(]1,(),()(2单调递增上上单调递增,在区间在区间已知函数+∞-∞∈++=R b a b ax x x f .2]0,1[)()2(.)1(的值,求实数上的最小值为在若的值求实数b x x f a -∈(5)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:s in67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于 60 m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)【分析】过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.【解答】解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m,AB=,根据正弦定理,,得BC===60m.故答案为:60m.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f (x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f (x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【分析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.【分析】(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值. 【解答】解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值【点评】本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.【分析】(1)由于点(an,bn)在函数f(x)=2x的图象上,可得,又等差数列{an}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得 d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到an,bn.再利用“错位相减法”即可得出.【解答】解:(1)∵点(an,bn)在函数f(x)=2x的图象上,∴,又等差数列{an}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴Sn==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2xln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴an=a1+(n﹣1)d=1+(n﹣1)×1=n,∴bn=2n.∴.∴Tn=+…++,∴2Tn=1+++…+,两式相减得Tn=1++…+﹣=﹣==.【点评】本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.【解答】解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,∴①当时,则2a≤1,g′(x)=ex﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=ex﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即gmin(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即kOT=kON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).【点评】本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.。
高三数学寒假作业冲刺培训班之历年真题汇编复习实战44284
一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠A DC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0} B.{1} C.{0,1,2} D.{0,1}2.(5分)若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,43.(5分)下列函数为奇函数的是()A.y=B.y=ex C.y=cosx D.y=ex﹣e﹣x4.(5分)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.1285.(5分)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2 B.3 C.4 D.56.(5分)若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣7.(5分)设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.8.(5分)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.B.C.D.9.(5分)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+2B.11+2C.14+2D.1510.(5分)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.211.(5分)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.(0,] B.(0,] C.[,1)D.[,1)12.(5分)“对任意x,ksinxcosx<x”是“k<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.14.(4分)在△ABC中,AC=,∠A=45°,∠C=75°,则BC的长度是.15.(4分)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.16.(4分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.三、解答题:本大题共6小题,共74分.17.(12分)等差数列{an}中,a2=4,a4+a7=15.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2+n,求b1+b2+b3+…+b10的值.18.(12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示:组号分组频数1 [4,5) 22 [5,6)83 [6,7)74 [7,8] 3(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.19.(12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E 上,且|AF|=3,(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.20.(12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;(Ⅲ)若BC=,点E在线段PB上,求CE+OE的最小值.21.(12分)已知函数f(x)=10sin cos+10cos2.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)将函数f(x)的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.(i)求函数g(x)的解析式;(ii)证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.22.(14分)已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k (x﹣1).高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0} B.{1} C.{0,1,2} D.{0,1}【分析】直接利用交集及其运算得答案.【解答】解:由M={x|﹣2≤x<2},N={0,1,2},得M∩N={x|﹣2≤x<2}∩{0,1,2}={0,1}.故选:D.【点评】本题考查了交集及其运算,是基础题.2.(5分)若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b 的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【点评】本题考查复数的加法运算及复数相等的条件,是基础题.3.(5分)下列函数为奇函数的是()A.y=B.y=ex C.y=cosx D.y=ex﹣e﹣x【分析】根据函数奇偶性的定义进行判断即可.【解答】解:A.函数的定义域为[0,+∞),定义域关于原点不对称,故A为非奇非偶函数.B.函数y=ex单调递增,为非奇非偶函数.C.y=cosx为偶函数.D.f(﹣x)=e﹣x﹣ex=﹣(ex﹣e﹣x)=﹣f(x),则f(x)为奇函数,故选:D.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性定义是解决本题的关键.4.(5分)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.128【分析】模拟执行程序框图,可得程序框图的功能是求y=的值,从而得解.【解答】解:模拟执行程序框图,可得程序框图的功能是求y=的值,若x=1不满足条件x≥2,y=8输出y的值为8.故选:C.【点评】本题主要考查了程序框图和算法,正确得到程序框图的功能是解题的关键,属于基础题.5.(5分)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2 B.3 C.4 D.5【分析】将(1,1)代入直线得:+=1,从而a+b=(+)(a+b),利用基本不等式求出即可.【解答】解:∵直线=1(a>0,b>0)过点(1,1),∴+=1(a>0,b>0),所以a+b=(+)(a+b)=2++≥2+2=4,当且仅当=即a=b=2时取等号,∴a+b最小值是4,故选:C.【点评】本题考察了基本不等式的性质,求出+=1,得到a+b=(+)(a+b)是解题的关键.6.(5分)若sinα=﹣,则α为第四象限角,则tanα的值等于()A.B.﹣C.D.﹣【分析】利用同角三角函数的基本关系式求出cosα,然后求解即可.【解答】解:sinα=﹣,则α为第四象限角,cosα==,tanα==﹣.故选:D.【点评】本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.7.(5分)设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.【分析】由题意可得的坐标,进而由垂直关系可得k的方程,解方程可得.【解答】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴•=0,∴1+k+2+k=0,解得k=﹣故选:A.【点评】本题考查数量积和向量的垂直关系,属基础题.8.(5分)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D 在函数f(x)=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.B.C.D.【分析】由题意易得矩形和三角形顶点的坐标,进而可得面积,由几何概型可得.【解答】解:由题意可得B(1,0),把x=1代入y=x+1可得y=2,即C(1,2),把x=0代入y=x+1可得y=1,即图中阴影三角形的第3个定点为(0,1),令=2可解得x=﹣2,即D(﹣2,2),∴矩形的面积S=3×2=6,阴影三角形的面积S′=×3×1=,∴所求概率P==故选:B.【点评】本题考查几何概型,涉及面积公式和分段函数,属基础题.9.(5分)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+2B.11+2C.14+2D.15【分析】判断出该几何体是底面为直角梯形,高为2的直四棱柱,底面的梯形上底1,下底2,高为1,运用梯形,矩形的面积公式求解即可.【解答】解:根据三视图可判断该几何体是底面为直角梯形,高为2的直四棱柱,底面的梯形上底1,下底2,高为1,∴侧面为(4)×2=8,底面为(2+1)×1=,故几何体的表面积为8=11,故选:B.【点评】本题考查了空间几何体的三视图的运用,空间想象能力,关键是能够恢复判断几何体的形状.10.(5分)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为,解得:m=1.故选:C.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.(5分)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.(0,] B.(0,] C.[,1)D.[,1)【分析】如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.取M(0,b),由点M到直线l的距离不小于,可得,解得b≥1.再利用离心率计算公式e==即可得出.【解答】解:如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.取M(0,b),∵点M到直线l的距离不小于,∴,解得b≥1.∴e==≤=.∴椭圆E的离心率的取值范围是.故选:A.【点评】本题考查了椭圆的定义标准方程及其性质、点到直线的距离公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)“对任意x,ksinxcosx<x”是“k<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用二倍角公式化简不等式,利用三角函数线判断充要条件即可.【解答】解:对任意x,ksinxcosx<x,即对任意x,ksin2x<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学高三模拟考试试卷压轴题高三年级第四次月考文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}02|{2<--=x x x A ,集合}41|{<<=x x B ,则=B AA .}21|{<<x xB .}41|{<<-x xC .}11|{<<-x xD .}42|{<<x x 2.已知复数z 满足ii z z+=,则z = A .11i 22+ B .11i 22- C .11i 22-+ D .11i 22-- 3.抛物线24y x =的焦点到准线的距离为 A .2 B .1 C .14D .184.已知直线210x ay -+=与直线820ax y -+=平行,则实数a 的值为 A .4B .-4C .-4或4D .0或45.已知双曲线C:22x a 22y b =1(a>0,b>0)的一条渐近线方程为y=52x ,且与椭圆212x +23y =1有公共焦点,则C 的方程为A .212x 210y =1B .24x 25y =1C .25x 24y =1D .24x 23y =16.函数142)(2-⋅=x x x x f 的图像大致为A .B .C .D .7.某多面体的三视图如图所示,则该多面体的各棱中, 最长棱的长度为 A .6 B .5 C .2D .11 1 1正视图侧视图俯视图 18.公元前5世纪,古希腊哲学家芝诺发表了著名 的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为A .410190-B .5101900-C .510990-D .4109900- 9.已知向量44sin,cos 22x x a ⎛⎫= ⎪⎝⎭,向量()1,1b =,函数b a x f ⋅=)(,则下列说法正确的是 A .()f x 是奇函数 B .()f x 的一条对称轴为直线4x π=C .()f x 的最小正周期为2πD .()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数 10.已知抛物线y2=2px(p >0)的焦点F 恰好是双曲线x2a2-y2b2=1(a >0,b >0)的右焦点,且两曲线的交点连线过点F ,则该双曲线的离心率为A . 2B . 3C .1+ 2D .1+311.已知F 为抛物线C:y2=4x 的焦点,过F 作两条互相垂直的直线l1、l2,直线l1与C 交于A 、B 两点,直线l2与C 交于D 、E 两点,则|AB|+|DE|的最小值为 A .16B .14C .12D .1012.设函数⎩⎨⎧>≤+=0|,log |0|,2|)(2x x x x x f ,若关于x 的方程a x f =)(有四个不同的解x1、x2、x3、x4,且x1<x2<x3<x4,则x3(x1+x2)+4231x x 的取值范围 A .),3(+∞-B .)3,(-∞C .)3,3[-D .]3,3(-二、填空题:本大题共4小题,每小题5分.共20分,13.在数列{}n a 中,11n n a a +-=,n S 为{}n a 的前n 项和. 若735S =,则3a =_______. 14.设实数y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00821223y x y x y x ,则y x z 43+=的最大值为.15.若圆C :22(1)x y n ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,且nm=. 16.在椭圆193622=+y x 上有两个动点M 、N ,K (2,0)为定点,若0=⋅KN KM ,则NM KM ⋅的最小值为_____.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分) 17.(12分)已知数列{}n a 的前n 项和为()()31*1227n n S n N +=-∈. (1)求数列{}n a 的通项公式; (2)设2log n n b a =,求12231111n n b b b b b b ++++…. 18.(12分)已知△ABC 的内角A 、B 、C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 19.(12分)四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(1)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值;(2)若BC SD ⊥,求点B 到平面SAD 的距离. 20.(12分)已知椭圆以坐标原点为中心,坐标轴为对称轴,以抛物线y2=16x 的焦点为其中一个焦点,以双曲线x216-y29=1的焦点为顶点. (1)求椭圆的标准方程;(2)若E 、F 是椭圆上关于原点对称的两点,P 是椭圆上任意一点,则当直线PE 、PF 的斜率都存在,并记为kPE 、kPF 时,kPE ·kPF 是否为定值?若是,求出这个定值;若不是,请说明理由.21.(12分)已知函数x ax xx f +-=221ln)( (1)讨论函数f (x )的极值点的个数;(2)若f (x )有两个极值点x1、x2,证明:f (x1)+f (x2)>34ln2.(二)选考题:共10分。
请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分。
22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求MON ∆面积的最大值. 23.[选修4-5:不等式选讲]已知函数()f x =R ;(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=, 求222111123a b c +++++的最小值. 银川高三第四次月考数学(文科)参考答案一、选择题:(每小题5分,共60分)13. 4 14. 18 15. 8 16. 323 三、解答题:17.解:(Ⅰ)当2≥n 时,3+13232111(22)(22)277n n n n n n a S S ---=-=---= 当1=n 时,112a S ==312=2⨯-,符合上式所以32*2()n n a n -=∈N . (Ⅱ)由(Ⅰ)得322log 2=32n n b n -=-, 所以=+-++⨯+⨯=++++)13)(23(174141111113221n n b b b b b b n n 13)1311(31)]131231()7141()411[(31+=+-=+--++-+-n n n n n . 18.解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c .根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A <<π,所以3A π=. (2)22sin 2sin 3sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+--=≥,所以11333sin 32224S bc A =⨯⨯=≤(b c =时取等号).19.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为AB AM λ=,12λ∴=. (2)因为BC ⊥SD ,BC ⊥CD , 所以BC ⊥平面SCD ,又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD , 在Rt △SEA 和Rt △SED 中,因为SA SD =,所以AE DE ===,又由题知45EDA ∠=,所以AE ED ⊥,由已知求得AD =1AE ED SE ===,连接BD ,则111133S ABD V -=⨯⨯=三棱锥,又求得△SAD 的面积为2,所以由B ASD S ABD V V --=三棱锥三棱锥点B 到平面SAD 的距离为3.20.解 (1)由抛物线y2=16x 的焦点为(4,0)可得c =4.可设椭圆的标准方程为x2a2+y2b2=1(a >b >0).∵双曲线x216-y29=1的焦点为(±5,0).∴由题意知a =5,b2=a2-b2=25-16=9. 故椭圆标准方程为x225+y29=1. (2)kPE ·kPF 为定值,该定值为-925. 理由:E,F 是椭圆上关于原点对称的两点.设E(m,n),则F(-m,-n),又设P 点坐标为(x,y).则m225+n29=1,x225+y29=1. 两式相减可得x2-m225+y2-n29=0,即y2-n2x2-m2=-925.(由题意知x2-m2≠0).又kPE =y -n x -m ,kPF =y +n x +m ,则kPE ·kPF =y2-n2x2-m2=-925.∴kPE ·kPF 为定值,且为-925.21.解(1)由,得:,(ⅰ)a=0时,,x ∈(0,1),f′(x )<0,x ∈(1,+∞),f′(x )>0, 所以x=1,f (x )取得极小值,x=1是f (x )的一个极小值点. (ⅱ)a <0时,△=18a >0,令f′(x )=0,得显然,x1>0,x2<0, ∴,f (x )在x=x1取得极小值,f (x )有一个极小值点. (ⅲ)a >0时,△=18a≤0即时,f′(x )≤0,f (x )在(0,+∞)是减函数,f (x )无极值点. 当时,△=18a >0,令f′(x )=0,得当x ∈(0,x1)和x ∈(x2,+∞)f′(x )<0,x ∈(x1,x2)时,f′(x )>0,∴f (x )在x1取得极小值,在x2取得极大值,所以f (x )有两个极值点. 综上可知:(ⅰ)a≤0时,f (x )仅有一个极值点; (ⅱ)当时,f (x )无极值点; (ⅲ)当时,f (x )有两个极值点.(2)证明:由(1)知,当且仅当a ∈(0,81)时,f (x )有极小值点x1和极大值点x2, 且x1,x2是方程2ax2x+1=0的两根, ∴,,===, 设,,∴时,g (a )是减函数,,∴,∴f (x1)+f (x2)>34ln2.22(1)由题意可知直线l 的直角坐标方程为32y x =+,曲线C 是圆心为(3,1),半径为r 的圆,直线l 与曲线C 相切,可得:33122r ⋅-+==;可知曲线C 的方程为22(3)(1)4x y -+-=,所以曲线C 的极坐标方程为223cos 2sin 0ρρθρθ--=, 即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>),6sin 21πON OM S MON =∆,,当12πθ=时,32+≤∆MON S ,所以△MON 面积的最大值为23+23.(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为3,所以实数m 的取值范围为3m ≤-; (2)由(1)可知2229a b c ++=,所以22212315a b c +++++=, 222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (3)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4iB.3+4iC.﹣3﹣4iD.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z 的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5B.6C.7D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论xi所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|xi|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①xi中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②xi中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③xi中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞) .【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得 x∈∅,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为 y=﹣5x+3. .【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.【解答】解;y′=﹣5e﹣5x,∴k=﹣5,∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{an}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1) .【分析】首先运用x=ρcosθ,y=ρsinθ,将极坐标方程化为普通方程,然后组成方程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,即为ρ2sin2θ=ρcosθ,化为普通方程为:y2=x,曲线ρsinθ=1,化为普通方程为:y=1,联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,再由θ∈(0,),求得sinθ 的值,从而求得f(﹣θ)的值.【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A•=,∴A=.(2)由(1)可得 f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题. 17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n1 f1(45,50] n2 f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值;(2)求数列{an}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测an=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即ak=2k+1.那么,当n=k+1时,由Sn=2nan+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴an=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0 解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x<﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f (1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1•k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.。