传感器实验报告---实验一-金属箔式应变片性能—半桥、全桥单臂电桥

合集下载

应变片实验报告

应变片实验报告

传感器实验-——-金属箔式应变片:单臂、半桥、全桥比较【实验目得】了解金属箔式应变片,单臂单桥得工作原理与工作情况。

验证单臂、半桥、全桥得性能及相互之间关系。

【所需单元及部件】直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压/频率表、电源,重物加在短小得圆盘上。

【旋钮初始位置】直流稳压电源打到±2V挡,电压/频率表打到2V挡,差动放大增益最大.【应变片得工作原理】当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属得电阻应变效应。

设有一根长度为L、截面积为S、电阻率为ρ得金属丝,在未受力时,原始电阻为(1-1)当金属电阻丝受到轴向拉力F作用时,将伸长ΔL,横截面积相应减小ΔS,电阻率因晶格变化等因素得影响而改变Δρ,故引起电阻值变化ΔR。

对式(1-1)全微分,并用相对变化量来表示,则有:(1-2)【测量电路】应变片测量应变就是通过敏感栅得电阻相对变化而得到得。

通常金属电阻应变片灵敏度系数K 很小,机械应变一般在10×10-6~3000×10-6之间,可见,电阻相对变化就是很小得。

例如,某传感器弹性元件在额定载荷下产生应变-6,应变片得电阻值为,灵敏度系数K=2,则电阻得相对变化量为10—6=0、002,电阻变化率只有0、2%。

这样小得电阻变化,用一般测量电阻得仪表很难直接测出来,必须用专门得电路来测量这种微弱得电阻变化。

最常用得电路为电桥电路。

(a)单臂(b)半桥(c)全桥图1—1 应变电桥直流电桥得电压输出当电桥输出端接有放大器时,由于放大器得输入阻抗很高,所以,可以认为电桥得负载电阻为无穷大,这时电桥以电压得形式输出。

输出电压即为电桥输出端得开路电压,其表达式为(1-3)设电桥为单臂工作状态,即为应变片,其余桥臂均为固定电阻。

当感受应变产生电阻增量时,由初始平衡条件得,代入式(1—3),则电桥由于产生不平衡引起得输出电压为(1-4)对于输出对称电桥,此时,R´,当臂得电阻产生变化,根据式(1-4)可得到输出电压为(1—5)对于电源电桥,,´,当R1臂产生电阻增量时,由式(1-4)得(1-6)对于等臂电桥,当得电阻增量时,由式(1—10)可得输出电压为(1—7)由上面三种结果可以瞧出,当桥臂应变片得电阻发生变化时,电桥得输出电压也随着变化。

金属箔式应变片性能一单臂电桥实验报告

金属箔式应变片性能一单臂电桥实验报告

实验一金属箔式应变片性能一单臂电桥(998 B型)一、实验目的了解金属箔式应变片,单臂单桥的工作原理和工作情况。

二、实验仪器CSY型-998A传感器系统实验仪(直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F/V表、主、副电源)。

旋钮初始位置:直流稳压电源打到±2V档,F/V表打到2V档,差动放大增益最大。

三、实验原理本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/R3、ΔR4/R4,当使用一个应变片时,ΣR =ΔR/R;当二个应变片组成差动状态工作,则有ΣR =2ΔR/ R;用四个应变片组成二个差对工作,且R1=R2=R3=R4,ΣR =4ΔR/ R;由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

四、实验内容1、了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

2、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

3、根据图1-1接线。

R 1、R 2、R 3为电桥单元的固定电阻;Rx= R 4为应变片。

将稳压电源的切换开关置±4 V 档,F/V 表置20V 档。

实验一金属箔式应变片实验报告

实验一金属箔式应变片实验报告

成绩:预习审核:评阅签名:大学嘉庚学院传感器实验报告实验项目:实验一、二、三金属箔式应变片——单臂、半桥、全桥实验台号:专业:物联网工程年级: 2014级班级: 1班学生学号: ITT4004 学生:黄曾斌实验时间: 2016 年 5 月 20 日实验一金属箔式应变片——单臂电桥性能实验一.实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二.基本原理金属电阻丝在未受力时,原始电阻值为R=ρL/S 。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:式中RR/∆为电阻丝电阻的相对变化,K为应变灵敏系数,LL/∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

输出电压:1.单臂工作:电桥中只有一个臂接入被测量,其它三个臂采用固定电阻;输出U O14/εEK=。

2.双臂工作:如果电桥两个臂接入被测量,另两个为固定电阻就称为双臂工作电桥,又称为半桥形式;半桥电压输出U O22/εEK=。

3.全桥方式:如果四个桥臂都接入被测量则称为全桥形式。

全桥电压输出U O3εEK=。

三.需用器件与单元CGQ-001实验模块、CGQ-013实验模块、应变式传感器、砝码、电压表、±15V电源、±4V电源、万用表(自备)。

四.实验步骤()()ERRRRRRRRUO43213241++-=1.根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的BF 1、BF 2、BF 3、BF 4。

加热丝也接于模块上,可用万用表进行测量判别,R BF1= R BF2= R BF3= R BF4=350Ω,加热丝阻值为50Ω左右。

2.差放调零 3.电桥调零4.在电子秤上放置一只砝码,读取电压表数值,依次增加砝码和读取相应的电压表值,直到200g 砝码加完。

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压Uo= EKε/4。

半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

其桥路输出电压U o=KE ε。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。

四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。

金属箔式应变片:单臂、半桥、全桥比较(自检实验一)

金属箔式应变片:单臂、半桥、全桥比较(自检实验一)

实验报告实验项目名称:金属箔式应变片:单臂、半桥、全桥比较同组人试验时间年月日,星期,节实验室K2,508传感器实验室指导教师一、实验目的1、了解金属箔式应变片,单臂、半桥、全桥的工作原理和工作情况。

2、验证单臂、半桥、全桥的性能及相互之间的关系。

二、实验原理电阻丝在外来作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为:式中为电阻丝电阻相对变化,K为应变灵敏系数,为电阻丝长度相对变化。

同时,由于应变片敏感栅丝的温度系数的影响,以及应变栅线膨胀系数与被测试件的线膨胀系数不一致,产生附加应变时,在被测体受力状态不变时,由于温度影响,输出会有变化。

金属箔式应变片是用光刻、腐蚀等工艺制成的一种很薄的金属箔栅,箔栅厚一般在0.003-0.01mm之间,箔材表面积大,散热条件好。

金属箔式应变的电阻变化范围很小,用欧姆表测量其阻值的变化十分困难,所以我们一般会用电桥来测试金属箔式应变的变化,将电阻的变化量转换成电压的变化量。

图6.1 应变电桥电路由于电压源电桥的测试精度受电源电压波动影响,测量灵敏度也随之变化,所以本实验是有恒流源供电:,(2-1)图6.1(a)为单臂电桥电路,R1为应变片电阻,R2、R3、R4为固定电阻,,代入式(2-1)。

图6.1(b)为半桥电桥电路,R1、R2为应变片电阻,R3、R4为固定电阻,,代入式(2-1)。

图6.1(c)为全桥电桥电路,R1、R2、R3、R4为应变片电阻,,,代入式(2-1)。

三、所需单元及部件STIM-01模块、STIM-05模块;±15V电源、万用表;电子连线若干四、实验步骤一、单臂电桥性能实验1、按图6.2连接好各模块,接上模块电源。

2、称重盘上不放任何东西,使STIM-01模块差动放大器上的增益调节到最大,调节STIM-05模块上的电位调节旋钮,使STIM-01模块差分放大输出OUT1接近于0V(用万用表测得)。

传感器检测技术实验报告

传感器检测技术实验报告

传感器与检测技术实验报告姓 名: 学 号: 院 系:仪器科学与工程学院 专 业: 测控技术与仪器 实 验 室: 机械楼5楼 同组人员: 评定成绩: 审阅教师:传感器第一次实验实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能;二、基本原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应;金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化;电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态;单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=∆为电阻丝长度相对变化;三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等;四、实验步骤1. 根据接线示意图安装接线;2. 放大器输出调零;3. 电桥调零;4. 应变片单臂电桥实验;测得数据如下,并且使用Matlab 的cftool 工具箱画出实验点的线性拟合曲线:由matlab 拟合结果得到,其相关系数为,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确; 系统灵敏度S =ΔU ΔW=0.0535V/Kg 即直线斜率,非线性误差=Δm yFS=0.0810.7×100%=0.75%五、思考题单臂电桥工作时,作为桥臂电阻的应变片应选用:1正受拉应变片;2负受压应变片;3正、负应变片均可以;答:1负受压应变片;因为应变片受压,所以应该选则2负受压应变片;实验三 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边;当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=;其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善;三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等;四、实验步骤1.根据接线示意图安装接线;2.放大器输出调零;3.电桥调零;4.应变片全桥实验数据记录如下表所示,并且使用Matlab的cftool工具箱画出实验点的线性拟合曲线:由matlab拟合结果得到,其相关系数为,比上个实验中的单臂电桥线性度差,跟理论存在误差;系统灵敏度S=ΔUΔW = 0.2232V/Kg 即直线斜率,非线性误差δ= ΔmyFS=0.4945×100%1.1%,可见全桥的灵敏度是单臂电桥的4倍可以看出,但非线性度却高于单臂电桥;按照实验结果,对于灵敏度的测量时符合理论值的,但是非线性误差是有误的,分析其原因可能是测量过程中的仪器调节、读数误差、以及仪器本身存在的问题;我们在做实验的过程中,仪器存在一定问题,总是很难调节或者得到稳定的数据,不够精准;五、思考题1.测量中,当两组对边电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:1可以;2不可以;答:2不可以;因为电桥平衡的条件为:R1×R3=R2×R4;2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图2-8,能否如何利用四组应变片组成电桥,是否需要外加电阻;图2-8 受拉力时应变式传感器圆周面展开图答:能够利用它们组成电桥;a图中 4个应变片对称分布于测试棒上,检测试件横向拉力,如果已知试件泊松比则可知试件纵向应变;任意选取两个电阻接入电桥的对边,输出为两倍的横向应变,并选取外加电阻使电桥平衡;b图中R3、R4应变片检测试件纵向拉力,R1、R2检测横向拉力,可以选取R3、R4接入电桥对边,输出为两倍的纵向应变;需要接入与应变片阻值相等的电阻组成电桥;3.金属箔式应变片单臂、半桥、全桥性能比较基本原理如图2-9a、b、c;比较单臂、半桥、全桥输出时的灵敏度和非线性度,根据实验结果和理论分析,阐述原因,得出相应的结论;注意:比较实验中,a、b、c放大电路的放大器增益必须相同;a单臂 b半桥 c全桥图2-9 应变电桥①单臂U0 = U1-U3=〔R1+△R1/R1+△R1+R2-R4/R3+R4〕E=〔1+△R1/R1/1+△R1/R1+R2/R2-R4/R3/1+R4/R3〕E设R1=R2=R3=R4,且△R1/R1<<1;U0≈1/4△R1/R1E所以电桥的电压灵敏度:S=U0/△R1/R1≈kE=1/4E②半桥U0≈1/2△R1/R1ES =1/2E ③ 全桥 U0≈△R1/R1E S =E答:由以上可以看出,在灵敏度方面全桥的灵敏度最高,半桥次之,单臂最差,非线性度,单臂的非线性度最高即线性度最差,全桥的线性度最好 线性度:单臂>单桥>全桥 理论上: 灵敏度: 单臂 4E S = ,半桥 2ES = ,全桥 S E =; 非线性度:单臂100%2K K εδε=⨯+,半桥 0δ=,全桥 0δ=; 如前所述,由于外界因素,导致我们的非线性误差的计算存在很大偏差,但是就根据理论分析来看,全桥利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差;全桥利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差; 4、金属箔式应变片的温度影响电阻应变片的温度影响主要有两个方面;敏感栅丝的温度系数,应变栅的线膨胀系数与弹性体或被测试件的线膨胀系数不一致而产生附加应变;当温度变化时,即使被测体受力状态不变,输出也会有变化;① 按照全桥性能实验步骤,将200g 砝码放在砝码盘上,在数显表上读取数值Uo 1; ② 将主机箱中直流稳压电源+5V 、地⊥接于实验模板的加热器+6V 、地⊥插孔上,数分钟后待数显表电压显示基本稳定后,记下读数Uo t ;U ot -U 01即为温度变化的影响; 温度变化产生的相对误差:②如何消除金属箔式应变片温度影响答:可以采用温度自补偿法或者桥路补偿法;实验五差动变压器的性能实验一、实验目的了解差动变压器的工作原理和特性;二、基本原理差动变压器由一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有两段式和三段式,本实验采用三段式;当被测物体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化;将两只次级反向串接,引出差动电势输出;其输出电势反映出被测物体的移动量;三、实验器材主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器、万用表、导线等;四、实验步骤1.按照接线图连接线路;2.差动变压器L1的激励电压从主机箱中的音频振荡器的Lv端引入,音频振荡器的频率为4~5KHz,本次实验选取4561Hz,输出峰峰值为2V;3.松开测微头的紧固螺钉,移动测微头的安装套使变压器次级输出的Vp-p较小;然后拧紧螺钉,仔细调节测微头的微分筒使变压器的次级输出Vp-p为最小值零点残余电压,约为,定义为位移的相对零点;4.从零点开始旋动测微头的微分筒,每隔微分筒转过20格从示波器上读出示波器的输出电压Vp-p,记入表格中;一个方向结束后,退到零点反方向做相同的实验;5.根据测得数据画出Vop-p —X曲线,做出位移为±1mm、±3mm时的灵敏度和非线性误差;数据表格如下:实验曲线如下:从图可以看出,数据基本呈线性,关于x=0对称的,在零点时存在一个零点误差,即零点残余电压,在15mv左右;位移为1mm时, 灵敏度为151V/m,非线性度δ= ΔmyFS =5.67286×100%=1.98%;位移为-1mm时,灵敏度为m,非线性度δ= ΔmyFS =3.89263×100%=1.48%由上式得到的非线性度可知,差动式变压器输出的非线性较好;五、思考题1.用差动变压器测量,振动频率的上限受什么影响答:受导线的驱肤效应和铁损等的影响,若频率过大超过某一数值时该值视铁心材料而定将会导致灵敏度下降;2.试分析差动变压器与一般电源变压器的异同答:相同点:都利用了电磁感应原理;不同点:一般变压器为闭合磁路,初、次级间的互感为常数;差动变压器为开磁路,初、次级间的互感随衔铁移动而变,且两个次级绕组按差动方式工作;传感器第二次实验实验九电容式传感器的位移实验一、实验目的了解电容式传感器结构及其特点;二、基本原理利用电容C=εA/d的关系式,通过相应的结构和测量电路,可以选择ε、A、d三个参数中保持二个参数不变,而只改变其中一个参数,就可以组成测介质的性质ε变、测位移d变和测距离、液位A变等多种电容传感器;本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图3-6所示:由二个圆筒和一个圆柱组成;设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2 x/lnR/r; 图中C1、C2是差动连接,当图中的圆柱产生X位移时,电容量的变化量为C=C1-C2=ε2 2 X/lnR/r,式中ε2 、lnR /r为常数,说明C与位移X成正比,配上配套测量电路就能测量位移;图3-6 电容式位移传感器结构三、实验器材主机箱、电容传感器、电容传感器实验模板、测微头;四、实验步骤图3-7 电容传感器位移实验原理图1、按图3-8将电容传感器装于电容传感器实验模板上,实验模板的输出Vo1接主机箱电压表的Vin;2、将实验模板上的Rw调节到中间位置方法:逆时针转到底再顺时传3圈;3、将主机箱上的电压表量程显示选择开关打到2v档,合上主机箱电源开关;旋转测微头改变电容传感器的动极板位置使电压表显示0v ,再转动测微头向同一个方向5圈,记录此时测微头读数和电压表显示值,此点为实验起点值;此后,反方向每转动测微头1圈即△x=位移读取电压表读数,共转10圈读取相应的电压表读数单行程位移方向做实验可以消除测微头的回差;将数据填入表3-7并作出x-v实验曲线;结构:传感器为上下两个极板,谷物从传感器之间穿过;考虑因素:感应器是否与谷物接触的充分、谷物是否均匀的从传感器之间穿过以及直板传感器的边缘效应;实验十一压电式传感器振动测量实验一、实验目的了解压电传感器的测量振动原理和方法;二、基本原理压电式传感器由惯性质量块和受压的压电片等组成;工作时传感器感受与试件相同的振动频率,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶体上产生正比于运动速度的表面电荷;三、实验器材主机箱、差动变压器实验模板、振动源、示波器;四、实验步骤1、按照连线图将压电传感器安装在振动台上,振动源的低频输入接主机箱的低频振荡器,其它连线按照图示接线;2、合上主机箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察低通滤波器输出波形;3、用示波器的两个通道同时观察低通滤波器输入和输出波形;在振动台正常振动时用手指敲击振动台,同时观察输出波形的变化;4、改变振动源的频率,观察输出波形的变化;低频振荡器的幅度旋钮固定至最大,调节频率,用频率表监测,用示波器读出峰峰值填入表格;实验曲线:五、思考题根据实验结果,可以知道振动台的自然频率大致是多少传感器输出波形的相位差大致为多少答:根据实验曲线可知,振动台的自然频率大约为11Hz;×360°=17°t=5ms T=106ms φ=5106实验十二电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性;二、基本原理通过交变电流的线圈产生交变磁场,当金属体处于交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流; 涡流的大小与金属体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属表面的距离x等参数有关;电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线圈阻抗,涡流传感器就是基于这种涡流效应制成的;电涡流工作在非接触状态,当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量;三、实验器材主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体铁圆片;四、实验步骤1、观察传感器结构,根据示意图安装测微头、被测体、电涡流传感器并接线;2、调节测微头使被测体与传感器端部接触,将电压表显示选择开关切换到20V档,检查接线无误后开启主机箱电源开关,记下电压表读数,然后每隔0.1mm读一个数,直到输出几乎不变为止;将数据填入下表:3、画出V-X 曲线,根据曲线找出线性区域及正、负位移测量时的最佳工作点即曲线线性段的中点;试计算测量范围为1mm 与3mm 时的灵敏度和非线性度可以用端点法或其他拟合直线;1415161718192021xv测量范围1mm :非线性度:v =0.007v yFs= 所以测量范围3mm :非线性度:v =0.056v yFs=五、思考题1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器答:电涡流传感器的量程就是传感器的线性范围,它受到线圈半径;被测体的性质及形状和厚度等因素影响;2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器 答:所测量的位移在所选的传感器量程范围内;传感器第三次实验实验十五 直流激励时线性霍尔传感器的位移特性实验一、实验目的了解霍尔式传感器原理与应用;二、基本原理根据霍尔效应,霍尔电势H H B U K I =•,当霍尔元件处在梯度中运动时,它的电势会发生变化,利用这一性质可以进行位移测量;三、实验器材主机箱、霍尔传感器实验模板、霍尔传感器、测微头;四、实验步骤图5-1 霍尔传感器直流激励实验原理图1、按图5-2示意图接线实验模板的输出Vo1接主机箱电压表的Vin,将主机箱上的电压表量程显示选择开关打到2v 档;2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的中间位置,再调节Rw1使数显表指示为零;3、向某个方向调节测微头2mm 位移,记录电压表读数作为实验起始点;再反方向调节测微头,每增加0.2mm 记下一个读数建议做4mm 位移,将读数填入表5-1;表5-1作出V-X曲线,计算不同测量范围时的灵敏度和非线性误差;实验完毕,关闭电源;灵敏度:7277,4V mV X mm∆=∆=所以非线性度:207Vm mV∆=5983.8yFs=所以五、思考题本实验中霍尔元件位移的线性度实际上反映的是什么量的变化答:反映的是磁场的变化;实验十七霍尔转速传感器测量电机转速实验一、实验目的了解霍尔转速传感器的应用;二、基本原理利用霍尔效应表达式:UH =KH·IB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次;每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路计数就可以测量被测物体的转速;三、实验器材主机箱、霍尔转速传感器、转动源;四、实验步骤1、根据图5-5将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm;图5-5霍尔转速传感器实验安装、接线示意图2、在接线以前,先合上主机箱电源开关,将主机箱中的转速调节电源2~24v旋钮调到最小逆时针方向转到底,接入电压表显示选择打到20v档,监测大约为1.25v;关闭主机箱电源,将霍尔转速传感器、转动电源按图5-5所示分别接到主机箱的相应电源和频率/转速表转速档的Fin上;3、合上主机箱电源开关,在小于12v范围内电压表监测调节主机箱的转速调节电源调节电压改变电机电枢电压,观察电机转动及转速表的显示情况;4、从2v开始记录,每增加1v相应电机转速的数据待电机转速比较稳定后读取数据;表5-3电压v 2 3 4 5 6转速380 600 840 1060 1290电压v 7 8 9 10 11转速1520 1740 1980 2200 2420画出电机的V~n 电机电枢电压与电机转速的关系特性曲线; 实验完毕,关闭电源;五、思考题1、利用霍尔元件测转速,在测量上是否有限制 答:有;霍尔元件不能用来测磁体的转速;2、本实验装置上用了六只磁钢,能否用一只磁钢 答:可以,但是分辨率会降低,使实验结果不准确;实验十八 磁电式转速传感器测电机转速一、实验目的了解磁电式测量转速的原理;二、基本原理基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁棒时,每转一周线圈感应电势产生N 次的变化,通过放大、整形和计数等电路即可以测量转速;三、实验器材主机箱、磁电式传感器、转动源;四、实验步骤磁电式转速传感器测速实验除了传感器不用接电源外,其它完全与实验十七相同;图5-6 磁电转速传感器实验安装、接线示意图按图5-6接线,实验十七中的实验步骤做实验; 实验完毕,关闭电源;画出电机的V~n 电机电枢电压与电机转速的关系特性曲线; 实验完毕,关闭电源;dt d Ne Φ-=表5-4画出电机v~n特性曲线:五、思考题为什么磁电式转速传感器不能测很低速的转动,能说明理由么答:磁电式转速传感器是利用旋转体改变磁路,使磁通量发生变化,从而使其线圈产生感应电压,如果转速很慢,旋转体改变磁路也很慢,磁通量的变化也很慢,感应电压就会很小,就无法正确地测定转速;传感器第四次实验实验二十七发光二极管光源的照度标定实验一、实验目的了解发光二极管的工作原理;作出工作电流与光照度的对应关系及工作电压与光照度的对应关系曲线,为以后实验做好准备;二、基本原理半导体发光二极管筒称 LED;它是由Ⅲ-Ⅳ族化合物,如 GaAs砷化镓、GaP磷化镓、GaAsP磷砷化镓等半导体制成的,其核心是 PN 结;因此它具有一般二极管的正向导通及反向截止、击穿特性;此外,在一定条件下,它还具有发光特性;其发光原理如图7-1所示,当加上正向激励电压或电流时,在外电场作用下,在P-N 结附近产生导带电子和价带空穴,电子由 N 区注入 P 区,空穴由 P 区注入N 区,进入对方区域的少数载流子少子一部分与多数载流子多子复合而发光;假设发光是在 P 区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光;除了这种发光复合外,还有些电子被非发光中心这个中心介于导带、价带中间附近捕获,再与空穴复合,每次释放的能量不大,以热能的形式辐射出来;发光的复量相对于非发光复合量的比例越大,光量子效率越高;由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生;发光二极管的发光颜色由制作二极管的半导体化合物决定;本实验使用纯白高亮发光二极管;图7-1 发光二极管的工作原理三、实验器材主机箱0~20mA 可调恒流源、电流表、0~24V 可调电压源,照度表,照度计探头,发光二极管,光筒;四、实验步骤1、按图7-2配置接线,接线注意+、-极性;2、检查接线无误后,合上主机箱电源开关;3、调节主机箱中的恒流源电流大小电流表量程 20mA 档,即改变发光二管的工作电流大小就可改变光源的光照度值;拔去发光二极管的其中一根连线头,则光照度为 0如果恒流源的起始电流不为 0,要得到 0 照度只有断开光源的一根线;按表7-1进行标定实验调节恒流源,得到照度~电流对应值;4、关闭主机箱电源,再按图7-3配置接线,接线注意+、-极性;5、合上主机箱电源,调节主机箱中的 0~24V 可调电压电压表量程 20V 档就可改变光源发光二极管的光照度值;按表7-1进行标定实验调节电压源,得到照度~电压对应值;6、根据表7-1画出发光二极管的电流~照度、电压~照度特性曲线;表7-1 发光二极管的电流、电压与照度的对应关系照度Lx 2 10 20 30 40 50 60 70 80 90 100电流0 0mA电压V 0照度Lx 110 120 130 140 150 160 170 180 190 200电流mA电压V 3照度Lx 210 220 230 240 250 260 270 280 290 300电流mA电压V6、根据表7-1画出发光二极管的电流~照度、电压~照度特性曲线;发光二极管的电流-照度图纵坐标电流A,横坐标照度Lx发光二极管的电压-照度图横坐标照度,纵坐标电压由图可知,发光二极管的电压和电流必须达到一定值后,二极管才发光;这是由于正向电压必须达到二极管正向导通电压,二极管才能开始工作,才能发光;实验二十八光敏电阻特性实验一、实验目的了解光敏电阻的光照特性和伏安特性;二、基本原理在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应;光电导效应是半导体材料的一种体效应;光照愈强,器件自身的电阻愈小;基于这种效应的光电器件称光敏电阻;光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关;实验原理图如图7-4;图7-4 光敏电阻实验原理图三、实验器材主机箱0~20mv可调恒流源、电流表、0~24V可调电压源、照度表,照度计探头,发光二极管,遮光筒;四、实验步骤1、亮电阻和暗电阻的测量1将光敏电阻和电流表串联,两端并联电压表内接法,电压表正极接一上拉电阻至VCC;光敏电阻接受一个发光二级管的光照,中间有一个遮光筒;调节发光二级光的供电电压,查表7-1,使光照度为100Lx;210s左右读取光敏电阻电流值,作为亮电流I亮;3缓慢调节二极管供电电压减到0V,10s左右读取电流值,作为暗电流I暗;4根据以下公式,计算亮阻和暗阻照度100Lx:I亮=,U亮=10V, R亮=U/I=6kΩI暗=0mA,U暗=10V, R暗=U/I=∞2、光照特性测量光敏电阻的两端电压为定值时,光敏电阻的光电流随光照强度的变化而变化,它们之间的关系是非线性的;调节不同光照度,做出光电流与光照度的曲线图;表7-2 光照特性实验数据图7-3光敏电阻光电流-光照度曲线由图可知光敏电阻的光照特性呈非线性,因此不宜做线性检测元件,但是在自控系统中用作开关元件;3、伏安特性的测量光敏电阻在一定光照强度下,光电流随外加电压的变化而变化;测量时,光照强度为定值下,光敏电阻输入6档电压,测得光敏电阻上的电流值如表7-3,在同一坐标图中做出不同照度的三条伏安特性曲线;表7-3 光敏电阻伏安特性实验数据图7-4 光敏电阻伏安特性由图可知,光敏电阻的伏安特性是呈线性的;光照越强,伏安特性曲线斜率越大,说明电阻阻值越小;五、思考为什么测光电阻亮阻和暗阻要经过10s后才读数这是光敏电阻的缺点,只能应用于什么状态答:当光照强度发生变化时,材料的电阻率也会发生改变,从而电阻阻值也发生改变;该种改变需要时间,当光线突然改变,阻值不稳定,经过10秒后阻值基本稳定,便可以读数,以获得稳定的输出读数;光敏电阻只能应用于自动控制系统中的开关作用;实验三十一硅光电池实验一、实验目的了解光电池的光照、光谱特性,熟悉其应用;二、基本原理光电池是根据光生伏特效应制成的,不需加偏压就能把光能转换成电能的P-N 结的光电池器件;当光照射到光电池的P-N结上时,便在P-N结两端产生电动势;这。

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验本实验旨在通过测试金属箔式应变片的不同结构(单臂、半桥、全桥)对应变的检测效果进行比较。

实验采用了五个不同力值的负载,并通过相应的电桥电路将应变信号转化成电压信号进行读数。

实验过程中,我们首先制备了三种不同结构的金属箔式应变片。

单臂应变片的结构只有一个箔片悬挂在支架上,一端连接到外接电路中,另一端用隔绝材料与支架接触。

半桥应变片由两个箔片组成,一端紧贴在支架上,另一端则悬挂在外接电路中。

全桥应变片则是由四个箔片组成的,互相垂直组成一个正方形,四个角分别连接外接电路。

制备完成后,我们将三种结构的应变片依次进行了负载实验。

实验结果显示,三种类型的应变片在不同力值下的电压变化情况基本类似,但不同结构之间仍存在着一定差异。

在相同情况下,半桥和全桥应变片的电压输出量均高于单臂应变片。

当负载力值增大时,差别也更加明显。

数据分析后,我们认为这是由于半桥和全桥结构的电桥电路更为复杂,能够更好地抵消环境中的噪声影响,从而提高了测量精度。

在实验中,我们还发现了一个问题,即金属箔式应变片在不同应变方向下的电性能并不相同。

我们在测试中对金属箔的垂直方向和水平方向分别进行了测试,结果表明,垂直方向的应变片输出电压更稳定、更大。

我们分析认为,这是因为垂直方向对应的应变载荷更加均衡,能够更好地发挥应变片本身的性能。

总的来说,本实验通过比较不同结构的金属箔式应变片,揭示了应变载荷和电桥电路复杂性对应变检测的影响。

这有助于我们在实际测量和应用中更好地选择和使用相应的结构来满足不同的检测需求,提高测量精度和可靠性。

传感器实验1_金属箔式应变片性能

传感器实验1_金属箔式应变片性能

一、实验目的:了解金属箔式应变片,单臂、半桥、全桥电桥的工作原理。

二、实验原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。

它可用于能转化成形变的的各种物理量的检测。

贴片式应变片的应用:在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片半导体应变片很少应用(温漂、稳定性、线性度不好且易损坏),一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。

箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或者金属箔制成,如下图所示:金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件。

电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为△R/R=Kε。

式中△R/R为电阻丝电阻的相对变化,K为应变灵敏系数,ε=△L/L为电阻丝长度相对变化。

电桥是完成电阻到电压的比例变化,测取电压值。

(1)单臂电桥: 输出电压U01=EKε/4,输出信号最小,线性、稳定性较差。

(2)半桥:选用不同受力方向的应变片接入电桥作为邻边。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EKε/2,整体性能比单臂有所改善。

(3)全桥:将受力性质相同的两应变片接入电桥对边,不同的接入邻边,其桥路输出电压U03=KEε。

输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

(4)比较:量程不同,精度不同,选用比较多的是半桥或全桥。

三、使用仪器、材料:可调直流稳压电源、电桥、差动放大器、双平行梁、测微头、应变片、电压/频率表、主、副电源;准备导线;副电源管下面电路部分。

(完整word版)单臂半桥全桥传感器实验报告

(完整word版)单臂半桥全桥传感器实验报告

实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR /R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o1= EKε/4。

图1-1 应变式传感器安装示意图三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1.根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

2.接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表电压输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验三为止)。

3.将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入),此时应将±4地与±15地短接。

金属箔式应变片:单臂、半桥、全桥比较(自检实验一)

金属箔式应变片:单臂、半桥、全桥比较(自检实验一)

实验报告实验项目名称:金属箔式应变片:单臂、半桥、全桥比较同组人试验时间年月日,星期,节实验室K2,508传感器实验室指导教师一、实验目的1、了解金属箔式应变片,单臂、半桥、全桥的工作原理和工作情况。

2、验证单臂、半桥、全桥的性能及相互之间的关系。

二、实验原理电阻丝在外来作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为:式中为电阻丝电阻相对变化,K为应变灵敏系数,为电阻丝长度相对变化。

同时,由于应变片敏感栅丝的温度系数的影响,以及应变栅线膨胀系数与被测试件的线膨胀系数不一致,产生附加应变时,在被测体受力状态不变时,由于温度影响,输出会有变化。

金属箔式应变片是用光刻、腐蚀等工艺制成的一种很薄的金属箔栅,箔栅厚一般在0.003-0.01mm之间,箔材表面积大,散热条件好。

金属箔式应变的电阻变化范围很小,用欧姆表测量其阻值的变化十分困难,所以我们一般会用电桥来测试金属箔式应变的变化,将电阻的变化量转换成电压的变化量。

图6.1 应变电桥电路由于电压源电桥的测试精度受电源电压波动影响,测量灵敏度也随之变化,所以本实验是有恒流源供电:,(2-1)图6.1(a)为单臂电桥电路,R1为应变片电阻,R2、R3、R4为固定电阻,,代入式(2-1)。

图6.1(b)为半桥电桥电路,R1、R2为应变片电阻,R3、R4为固定电阻,,代入式(2-1)。

图6.1(c)为全桥电桥电路,R1、R2、R3、R4为应变片电阻,,,代入式(2-1)。

三、所需单元及部件STIM-01模块、STIM-05模块;±15V电源、万用表;电子连线若干四、实验步骤一、单臂电桥性能实验1、按图6.2连接好各模块,接上模块电源。

2、称重盘上不放任何东西,使STIM-01模块差动放大器上的增益调节到最大,调节STIM-05模块上的电位调节旋钮,使STIM-01模块差分放大输出OUT1接近于0V(用万用表测得)。

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压Uo= EKε/4。

半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

其桥路输出电压U o=KEε。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。

四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。

传感器实验报告

传感器实验报告

重庆邮电大学传感器实验报告姓名:李振洲学号:2012216478班级:5121201实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器双杆式悬臂梁应变传感器、电压温度频率表、直流稳压电源(±4V )、差动放大器、电压放大器、万用表(自备) 三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1) 式中RR∆为电阻丝电阻相对变化; k 为应变系数;ll∆=ε为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件。

如图1-1所示,将四个金属箔应变片(R1、R2、R3、R4)分别贴在双杆式悬臂梁弹性体的上下两侧,弹性体受到压力发生形变,应变片随悬臂梁形变被拉伸或被压缩。

图1-1 双杆式悬臂梁称重传感器结构图通过这些应变片转换悬臂梁被测部位受力状态变化,可将应变片串联或并联组成电桥。

如图1-2信号调理电路所示,R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RR R R E U ∆⋅+∆⋅=211/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR。

图1-2 单臂电桥面板接线图四、实验内容与步骤1.悬臂梁上的各应变片已分别接到面板左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2.按图1-2接好“差动放大器”和“电压放大器”部分,将“差动放大器”的输入端短接并与地相连,“电压放大器”输出端接电压温度频率表(选择U ),开启直流电源开关。

将“差动放大器”的增益调节电位器与“电压放大器”的增益调节电位器调至中间位置(顺时针旋转到底后逆时针旋转5圈),调节调零电位器使电压温度频率表显示为零。

关闭“直流电源”开关。

传感器实验

传感器实验

实验一 (1)金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压U O14/εEK =。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。

加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源。

图1-1 应变式传感器安装示意图3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw 1,使数显表显示为零。

《传感器原理及应用》实验报告

《传感器原理及应用》实验报告

《传感器原理及实验》实验报告2011~2012学年第1学期专业测控技术及仪器班级姓名学号指导教师王慧锋电子与信息实验教学中心2011年9月实验一金属箔式应变片――单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理本实验说明箔式应变片及单臂直流电桥的原理和工作情况。

应变片是最常用的测力传感元。

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态的变化。

电桥电路是最常用的非电量测量电路中的一种,当电桥平衡时,电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力情况。

单臂电桥输出电压U o1= EKε/4。

三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验三为止)。

金属箔式应变片-单臂,半桥,全桥比较实验报告

金属箔式应变片-单臂,半桥,全桥比较实验报告

金属箔式应变片-单臂,半桥,全桥比较实验报告实验目的
本实验旨在比较单臂、半桥和全桥金属箔式应变片三种桥式应变测量方式的各项性能
指标,以确定实验系统采用哪种应变电阻测量方式更为合适。

实验原理
金属箔式应变片是一种通过钢带和金属铋素材以及其他电子组件构成的应变测量系统,它以电阻变化反映外力作用于它所处位置上应变参数比如应力、压力、位移等的变化。


式应变测量系统主要把箔式传感器通过桥式电路连接,采用桥式方式结成形成的放大系统,以及与之相配的信号处理装置,能够检测更小的微小应变,从而实现压力、位移等多变量
的实时测量。

实验装置
在实验中,我们使用了一台微工控机,一台注塑机(模具温度可调),10只单臂、半桥和全桥金属箔式应变片,三种不同的应变测量系统,以及一套由计算机驱动的数据采集
系统。

实验方法
1.首先,我们调节注塑机的温度到所测试的温度等级,保持它处于恒定的温度状态。

2.然后,给定三种桥式应变片金属箔所处的表面位置,将10只应变片分别安装在相
同位置,连接到同一个微控机上。

3.在测试温度范围内,做240次应力波动,每次应力值为奇数,持续时间为一小时。

4.计算一小时内每只应变片的平均应变值,并记录三种应变测量方式的误差。

5.回算比较三种金属箔式应变片的应变特性,最终选出最佳的应变测量方式。

实验结果
在实验中,通过比较计算得出的结果,可以看到半桥式箔式应变片的平均应变值小于
单桥式和全桥式,误差也最小,使用效果最好。

因此在实际系统中采用半桥式的应变测量
更为合适,能够取得更高的测量精度和可靠性。

检测技术实验2 金属箔式应变片 单臂、半桥、全桥性能实验

检测技术实验2 金属箔式应变片 单臂、半桥、全桥性能实验

上海电力学院检测技术实验金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压U01=EKε/4。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。

全桥测量电路中其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤1、根据图(1-1)应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

实验一 应变片单臂、半桥、全桥实验

实验一 应变片单臂、半桥、全桥实验

实验一金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压U01=EKε/4。

当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。

全桥测量电路中其桥路输出电压U03=KEε。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1)应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源。

3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压 Uo= EKε/4。

半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

其桥路输出电压U o=KEε。

三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。

四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

应变式传感器(电子秤传感器)已装于应变传感器模板上。

传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。

传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。

当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。

实验一 金属箔式应变片 单臂、半桥、全桥性能比较实验

实验一 金属箔式应变片 单臂、半桥、全桥性能比较实验

实验一 金属箔式应变片 单臂、半桥、全桥性能比较实验一、实验目的比较单臂、半桥、全桥输出时的灵敏度和非线性误差,得出相应的结论。

二、实验原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1) 式中 RR∆为电阻丝电阻相对变化;k 为应变灵敏系数;l l ∆=ε为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。

如图1所示,将四个金属箔式应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,则应变片随弹性体形变被拉伸,或被压缩。

图1 应变式传感器安装示意图三、主要实验设备1.应变传感器实验模块 2.托盘 3.砝码4.±15V 、±4V 电源 5.直流电压表 6. 万用表(自备)四、实验内容1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

通过这些应变片转换弹性体被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,如图2所示R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RR RR EU ∆⋅+∆⋅=211/40 (2)其中,E 为电桥电源电压。

2.差动放大器调零。

从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui 短接并与地短接,输出端Uo 接数显电压表(选择2V 档)。

将电位器调节放大倍数的Rw4调到适当位置(注意:不能置于逆时针最小位置!),调节电位器Rw3使电压表显示为0V 。

关闭主控台电源(Rw3、Rw4的位置确定后不能改动)。

3.按图2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。

图2 单臂电桥面板接线图4.加托盘后电桥调零。

电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京XX大学
实验报告
课程(项目)名称:金属箔式应变片性能—半桥、全桥单
臂电桥
学院:自动化专业:自动化
班级:学号:
姓名:成绩:
2013年12月10日
实验一
一、任务与目的
了解金属箔式应变片,差动半桥的工作原理和工作情况。

二、原理(条件)
金属箔式应变片是一种敏感器件,当它在外力作用下发生机械变形时,其电阻丝阻值发生变化,这就是电阻应变效应,通过它将被测部位的受力状态变化转化为阻止的变化。

再通过电桥可以把电阻的变化转化为电压的变化,从而其输出反映了相应的受力状态。

单臂电桥
输出电压。

半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电
桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压Uo=EKε/2。

三、内容与步骤
(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双
平行梁前面的支座上,可以上、下、前、后、左、右调节。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图4接线R1、R2、R3为电桥单元的固定电阻。

Rx为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。

调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零(粗调),然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零(细调)。

图4
(4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V表
显示为零(细调零),
这时的测微头刻度为零位的相应刻度并记下这个刻度值。

(5)——往下或往上旋动测微头,使梁的自由端产生位移记下F /V 表显示的值。

建议每旋 动测微头一周即ΔX =0.5mm 记一个数值填入表格中。

(6)据所得结果计算灵敏度S =ΔV /ΔX (式中ΔX 为梁的自由端位移变化,ΔV 为相应F /V 表显示的电压相应变化)。

(7)实验完毕,关闭主、副电源,所有旋钮转到初始位置。

四、数据处理(现象分析)
(1)当往下或往上旋动测微头使梁的自由端产生位移,记下F /V 表显示的值见下表:
/V 表显示的电压相应变化) 将数据输入Excel 电子表格,经计算 S 平均值=0.041 V/mm =41mV/mm
实验二
一、任务与目的
了解金属箔式应变片,差动全桥的工作原理和工作情况。

二、原理(条件)
金属箔式应变片是一种敏感器件,当它在外力作用下发生机械变形时,其电阻丝阻值发生变化,这就是电阻应变效应,通过它将被测部位的受力状态变化转化为阻止的变化。

再通过电桥可以把电阻的变化转化为电压的变化,从而其输出反映了相应的受力状态。

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

其桥路输出电压Uo=KEε。

三、内容与步骤
(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双
平行梁前面的支座上,可以上、下、前、后、左、右调节。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图4接线R1、R2、R3为电桥单元的固定电阻。

Rx为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。

调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零(粗调),然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零(细调)。

图4
(4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V表
显示为零(细调零),这时的测微头刻度为零位的相应刻度并记下这个刻度值。

(5)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。

建议每旋动测微头一周即ΔX=0.5mm记一个数值填入表格中
(6)据所得结果计算灵敏度S =ΔV /ΔX (式中ΔX 为梁的自由端位移变化,ΔV 为相应F /V 表显示的电压相应变化)。

(7
)实验完毕,关闭主、副电源,所有旋钮转到初始位置。

四、数据处理(现象分析)
(1)当往下或往上旋动测微头使梁的自由端产生位移,记下F /V 表显示的值见下表:
(2)据所得结果计算灵敏度S =ΔV /ΔX (式中ΔX 为梁的自由端位移变化,ΔV 为相应F/V
表显示的电压相应变化)。

利用Excel 电子表格计算得出S 平均值
=0.079 V/mm =79mV/mm
五、结论
通过实验进一步了解了金属箔式应变片配和电桥使用的工作原理,并且观察了实过程中的工作状况,通过对实验数据的整理计算,分别测得使用不同种类的电桥下实验仪器的灵敏度。

通过比较单臂、半桥和全桥输出时的灵敏度可得出差动全桥的灵敏度大约是是差动半桥的两倍。

且通过Excel 对两组实验数据分别绘制图表可以发现,差动全桥的线性度要好于差动半桥。

相关文档
最新文档