有电介质的高斯定理

合集下载

有电介质的高斯定理

有电介质的高斯定理

εr 1
S 2
S 2
d
V
V D1 = ε oε r E1 = ε oε r d ε oV D2 = ε o E2 = d
为什么 E1介 = E2真? 反而D1 ≠ D2了?
E1 , E2 , D1 , D2的方向均 ↓
关键: 关键: σ1 ≠ σ 2!
(2) 介质内的极化强度 P ,表面的极化电荷密度σ' 表面的极化电荷密度σ P = χ eε o E1 = ε o (ε r 1)V d σ1 S σ 2 方向: 方向: ↓ V εr 1 2 d ∵σ ′ = P cosθ
εo εo εr
(2) U = Q = 2b[ε r b (ε r 1)t ]Q ) C ε o S[2ε r b (ε r 1)t ]
问: Q左? 右 =Q
平板电容器极板面积为S间距为 接在电池上维持V 间距为d,接在电池上维持 例 . 平板电容器极板面积为 间距为 接在电池上维持 . 均匀介质ε 厚度d 均匀介质εr 厚度 ,插入电容器一半忽略边缘效应 求(1)1,2两区域的 E 和 D ;(2)介质内的极化强度 P, , 两区域的 介质内的极化强度 表面的极化电荷密度 σ ' ;(3)1,2两区域极板上自由 , 两区域极板上自由 σ 电荷面密度 σ 1 , 2. 解:(1)V = E1d = E2d ) ∴ E1 = E2 = V d
U = E1 (b t ) + E2 t = εrσ o [εrb (εr 1) t] ε
q εrεoS ∴C = = = U εrb (εr 1) t
空气隙中 D = σ E1 = σ εo
介质中 D = σ
ε 1 b r t εr
εoS b
与t的位置无关 的位置无关 t↑,C↑ ↑ ↑ εrεoS t=b C = b

10-2静电场中的电介质-有电介质时的高斯定理解析

10-2静电场中的电介质-有电介质时的高斯定理解析

若为不均匀极化,介质内有极化电荷的积累。
4. 电介质极化的定量描述
(1)电极化强度 P
用来量度电介质极化状态(极化的程度和方向)
P
单位:C/m²
pi V
物理意义:大量分子电偶极矩的统计平均值. 外场越强,极化越厉害,所产生的分子电矩的 矢量和也越大。 P E 如果电介质中各点的极化强度矢量大小和方向都 相同,则该极化是均匀的,否则极化是不均匀的.
Q
+++++++
U
Q
+++++++
-------
Q
U
-------
Q
r
U0
说明:
E0
E
r E0
ห้องสมุดไป่ตู้U0
(1)相对电容率 r 1 (2)电介质内附加电场方向与原电场相反(退极化场)。
r
E0
2.电介质对电场的影响
极化电荷 (产生附加电场 E ) ↑ 相互 电介质(绝缘体) 静电场(E0) 作用 ↓ 静电场重新分布 E E0 E

n
( ) PP ( (r 1) E QQ P E Q 1) 1) E 0 r 00 r
选-1 根据电介质中的高斯定理,在电介质中电位移 矢量沿任意一个闭合曲面的积分等于这个曲面 所包围自由电荷的代数和。下列推论正确的是
A. 若通过该曲面的电位移通量为零,曲面内一
E E0 E ' 0 E0 0
q ' 和 q 的关系。 2. D 、E、 P、 P 0 E P E

9-6有电介质时的高斯定理 电位移

9-6有电介质时的高斯定理 电位移

∫∫ D S
S1
= D 1 S=S σ
σ σ E1 = = ε 1 ε r 1ε 0
v v v v 再利用 D 1= ε 1 E 1 , D 2= ε 2 E 2 可求得
σ σ E2 = = ε 2 ε r 2ε 0
方向都是由左指向右。 方向都是由左指向右。
有电介质时的高斯定理 电位移
负两极板A、 间的电势差为 (2)正、负两极板 、B间的电势差为 )
例题9-6 一半径为 的金属球,带有电荷 0,浸埋在均匀 一半径为R的金属球 带有电荷q 浸埋在均匀 的金属球, 例题 无限大”电介质(电容率为ε),求球外任一点P的场 ),求球外任一点 “无限大”电介质(电容率为 ),求球外任一点 的场 强及极化电荷分布。 强及极化电荷分布。 P 根据金属球是等势体, 解: 根据金属球是等势体,而 ε r 且介质又以球体球心为中心对 称分布,可知电场分布必仍具 称分布, R Q0 球对称性, 球对称性,用有电介质时的高 斯定理来。 斯定理来。 S 如图所示, 如图所示,过P点作一半 点作一半 径为r并与金属球同心的闭合 径为 并与金属球同心的闭合 球面S, 球面 ,由高斯定理知
4εr(εr 2 1) 3 ′ σ 上负下正 σ2 = ε0 (εr2 1)E2 = εr1εr 2 +εr1εr3 + 2εr 2εr3
′ σ3 = ε0 (εr3 1)E3 =
4εr(εr3 1) 2 σ εr1εr 2 + εr1εr3 + 2εr 2εr3
上负下正
有电介质时的高斯定理 电位移
r r 由 P = ε0 (εr 1)E 得电极化强度矢量的分布
P=
r r 由 σ′ = P n 得束缚电荷的分布

电介质的极化和介质中的高斯定理

电介质的极化和介质中的高斯定理

串联 1 1 1 C C1 C2
C C1C2 C1 C2
0S d1 d2 r1 r2
②.已知 U,求0、E、D。
0
q S
CU S
0SU
S d1 d 2
0U
r1 r2
d1 d2
r1 r2
d1 d2
r1 r2 d
22
E1
Байду номын сангаас
0 0r1
d1
r1
0U
d2
r2
0r1
1)不管是位移极化还是取向极化,其最后的宏观 效果都是产生了极化电荷。
综 2)两种极化都是外场越强,极化越厉害,所产生 述:的分子电矩的矢量和也越大。
3)极化电荷被束缚在介质表面,不能离开电介质 到其它带电体,也不能在电介质内部自由移动。它 不象导体中的自由电荷能用传导方法将其引走。
7
二、极化强度矢量
r
r 称为相对
介电常数或
电容率。
从电学性质看电介质的分子可分为两类:无极分子、
有极分子。
每个分子负电荷对外影响均可等效为 单独一个静止的负电荷 的作用。其大小为 分子中所有负电之和,这个等效负电荷的 作用位置称为分子的“负电作用中心”。
-
3
同样,所有正电荷的作用也可等效一
个静止的正电荷的作用,这个等效正电 荷作用的位置称为“正电作用中心”。
电场 E有如下关系:Pe0E
e 称为电极化率或极化率, 在各向同性线性电介质
中它是一个纯数。
14
D 在均匀0各E 向同P 性介0质E 中P e0E e 0(1 Ee)0E
r0E
r (1e) 称为相对介电常数或电
容率。
在各向同E性介质中D.rE0关称系为:介D 电常数r,0E E

有电介质时的高斯定理

有电介质时的高斯定理

解:( 1 )求 : D D, E , P 具有球对称性
选过场点与球面同心的 球面为S:r
S内
R
q
r
P
2 D d S D 4 r q 0
S
r
当:r R : 当: r R :
q q
0
0 q0
D=0
E=0
P=0
0
E
(1 r )q0 R P n P 2 4r R 2 (1 r )q0 q 4R R

总结
D分布
球对称 面对称 轴对称
高斯面 同心球面 垂直于板的和中心 面对称的封闭柱面 同轴封闭园柱面
由于导体为等势体:
例:设无限长同轴电缆的芯线半径为R1,外皮 的内半径为R2。芯线与外皮之间充入两层绝缘 的均匀电介质,其相对电容率分别为εr1和εr2。 两层电介质的分界面半径为R,如图。求单位 长度的电容。 解: (1) 先求 : D R2 εr1 设单位长芯线、外皮 R R1 分别带电λ、-λ εr2 D, E 具有轴对称性 选过场点与电缆同轴的单位长封闭园柱 面为高斯面:r
§9-4 有介质时的高斯定理
一、有介质时的环路定理和高斯定理:
E E0 E
L
有介质时的环路定理:
E d l 0
有介质时的高斯定理:
q内
E d S
S
q
S内
q
S
0
0
q0
1 1 S内 ) ( q0 q内 P dS 0 S内 0 0 S ( E P ) d S q 0 0
D, E , P
40 r r

09介质中的高斯定理电位移矢量

09介质中的高斯定理电位移矢量

3
二、介质中的高斯定理 电位移矢量
1.介质中的高斯定理 1.介质中的高斯定理 真空中的高斯定理 φ =
r r ∫∫ E ⋅ dS =
S
∑q
ε0
在介质中,高斯定理改写为: 在介质中,高斯定理改写为:
自由电荷 总场强
v v 1 ∫∫ E ⋅ dS =
S
ε0
∑ (q
S
0
+q )
'
束缚电荷
v v 1 ∫∫ E ⋅ dS =
v = εE
电常量。 电常量。
例1:将电荷 q 放置于半径为 R 相对电容率为 εr 的介 : 质球中心, 质球中心,求:I 区、II区的 D、E、 及 U。 区的 、 、 。 在介质球内、 解:在介质球内、外各作半径为 r 的 高斯球面。 高斯球面。 R
r r ∫∫ D ⋅ dS = ∑q0
S
r r r 球面上各点D大小相等 D 大小相等, 球面上各点 大小相等, // dS , cosθ = 1 II 2 ∑q0 D4πr = q0 , ∴ D = 高斯面 4πr 2 q q I区: 1 = 区 D II区: 2 = 区 D 2 4πr2 4πr
dr =
q 4πε 0r
9
例2:平行板电容器极板间距为 d , 极板面积为 S,面 : , 电荷密度为 σ0 , 其间插有厚度为 d’ 、电容率为 εr 的 电介质。求 : ①. P1 、P2点的场强E;②.电容器的电 电介质。 点的场强 ; 电容器的电 容。 ①. 过 P1 点作高斯柱面 左右底面分别经过导体 点作高斯柱面, 解: d' − σ 和 P1 点。 σ
r r φD = ∫∫ D ⋅ dS = ∑ q0
S

有电介质时的高斯定理

有电介质时的高斯定理

有电介质时的高斯定理
有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。

此定理的公式表述为:电场穿过一个封闭曲面的通量等于该曲面内部的电荷总量的比例,即ΦE=Q/ε0,其中ΦE为电场的通量,Q为曲面内部的电荷总量,ε0为真空中的电介质常数。

在有电介质时,电场的分布受到电介质的影响。

电介质的存在会使电场强度发生改变,这是因为电介质的分子会被电场极化,从而产生极化电荷。

这些极化电荷会改变电场的分布,使电场在电介质中的强度比在真空中的强度小。

因此,在有电介质时,要考虑电介质对电场的影响,才能准确地计算电荷的分布。

在应用高斯定理时,通常需要选择一个适当的曲面来计算电场的通量。

曲面的选择应当考虑到电荷分布的对称性,以便简化计算。

在有电介质时,曲面的选择也需要考虑到电介质的影响。

如果曲面穿过电介质,那么在计算电荷总量时,需要将电介质中的极化电荷也计算在内。

高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。

在电场的计算中,高斯定理可以用来求解各种电场分布,例如电偶极子、均匀带电球面等。

在电容器的设计中,高斯定理可以用来计算电容器的电容量,从而确定电容器的电荷储存能
力。

在电荷分布的测量中,高斯定理可以用来测量电荷的总量,从而确定电荷的分布情况。

有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。

在应用该定理时,需要考虑到电介质的影响,并选择适当的曲面来计算电场的通量。

高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。

电容器、电介质、介质中的高斯定理

电容器、电介质、介质中的高斯定理

i
E总 E0 E 0
被约束在分子内
不一定与表面垂直
9
有极分子电介质
H
H
104
o
F
+ - pi
E0 F
+
+
+
E
无外场
pi 0
pi
0
i
外场中(转向极化)
pi 0
pi
0
i
出现束缚电荷和附加电场
位移极化和转向极化微观机 制不同,宏观效果相同。10
统一描述
pi
0
i
出现束缚电荷(面电荷、体电荷)
实验发现:
A
插入前: U 0
C0
q U0
插入后:U AB
C q U AB
U0 U AB
r,
C C0
r
r 1,常量 由电介质的种类和状态决定
0
真空介电常数
r
相对介电常数(电容率)
= 0 r 介电常数
13
E0
0 0
, U0
E0d ,
E
0
内部的场由自由电荷和
+
+
+
+
E0 E
+
+
极化电荷共同产生
静电感应
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡 导体内 E 0, 0 导体表面 E表面 感应电荷 0 E
内为部零:分子pi偶极0 矩矢量和不
i
出现束缚电荷(极化电荷)
12
二、电介质对电场的影响
+ + + + +
B

电介质中高斯定理

电介质中高斯定理

1
r r 1 Q Q r 0 0
)
Q Q0 (1
1
)
⑤极化电荷密度 与
E 0 rE
1 0 P ( 1 ) ( r 1 ) 0 0 0E 0 ( r 1 ) 0E 0E
r
r
R2
R1

r
R2
解(1)
R1

d S l D
S
D 2 π rl l
D
E ( R r R ) 1 2 r 2 π rr 0 0
D 2π r
r
R2
R1

( R r R ) (2)由(1)可知 E 1 2 2π 0r r R R d r 2 U E d r ln R 2 π r 2 π 0r R 0 r 1
2.极化电荷与电极化强度之间的关系 (以位移极化为例) 电场中每个分子产生电矩:
++++-
++++-
++++-
++++-
均匀介质
E
++++-
pe ql
单位体积中分子电矩 的矢量和为:
p P V
nql
e
npe
式中 n 为介质中单位体积的分子数。
电极化强度和极化电荷面密度的关系
6 2 P ( ε 1 ) ε E 5 . 89 10 C m r 0 6 2 σ ε E 8 . 85 10 C m 0 00 6 2 σ ' P 5 . 89 10 C m 6 2 D ε ε E ε E σ 8 . 85 10 C m 0 r 0 0 0

有电介质时静电场的高斯定理

有电介质时静电场的高斯定理

E1d1 E2d2
Q ( d1 d2 )
0S r1 r2
C Q0 0 r1 r2S U r1d2 r2d1
d1 d2
+- + +-
-+ -
+ S- + 1 +-
-+-
0
+-+ +-
+-+-E+1--++
E2
-+-+--
+-
0


1' 1' 2'
1
rr

9 – 3 有电介质时静电场的高斯定理
r
R2
R1
第九章静电场中的导体和电介质

(2)由上题可知
D

E
0 r 2π 0 rr
E1 2π 0 r R1
E2 2π 0 r R2
(r R1)
(r R2 )
1' 2'
( r ( r
R1 2π 0 r r 2π 0 r R1
C Q 2π U
单位长度电容
0 rl
C l
ln R2 R1
2π 0
r

ln
r C0
R2 R1
真空圆柱形 电容器电容
9 – 3 有电介质时静电场的高斯定理 第九章静电场中的导体和电介质
的电介例质3 ,一它平们行的平相板对电电容容器率充分满别两为层厚r度1和各为r2d1,和极d板2
+-

电位移矢量 D 0 r E E (均匀各相同性介质)

3-5有介质时的高斯定理

3-5有介质时的高斯定理
s
q0和 ′ S所围区域内 q是 所围区域内
的自由电荷及极化电荷
ε0
3 – 5
有电介质时的高斯定理
第三章静电场中电介质
根据第四节的结果 则有
v r q′ = −∫ P⋅ ds
s
s ε0 r r r ∫ (ε 0 E + P ) ⋅ ds = q0 s
r r 1 r r ∫ E ⋅ ds = ( q0 − ∫ P ⋅ ds )
r r r D = ε0εr E = εE
r E

3 – 5
有电介质时的高斯定理
第三章静电场中电介质
r D =
q0 r en 2 4π r
r r r D = ε0εr E = εE
r q0 >0, E离开球心向外 , r r e q0 < 0, E 指向球心 r , s e
n
r E=
q0 r en 2 4πε r
1 1 σ ′ = − σ 0 εr εr 1 2
讨论极化电荷正负
ε r −1 σ 1′ = σ0 εr
1 1
两种介质表面极化电荷面密度
εr −1 ′ σ2 = σ0 εr
2 2
3 – 5
有电介质时的高斯定理
第三章静电场中电介质
常用的圆柱形电容器, 例3 常用的圆柱形电容器,是由半径为 R1 的长 的薄导体圆筒组成, 直圆柱导体和同轴的半径为 R2 的薄导体圆筒组成, 并在直导体与导体圆筒之间充以相对电容率为 ε r 的 电介质.设直导体和圆筒单位长度上的电荷分别为 电介质 设直导体和圆筒单位长度上的电荷分别为 + λ )电介质中的电场强度、 和 − λ . 求(1)电介质中的电场强度、电位移和极 化强度; 电介质内、外表面的极化电荷面密度; 化强度;(2)电介质内、外表面的极化电荷面密度; 此圆柱形电容器的电容. (3)此圆柱形电容器的电容.

9-3 电位移矢量 有电介质时的高斯定理

9-3 电位移矢量 有电介质时的高斯定理

ε = ε 0ε r
D = P + ε0 E
(任何介质) 任何介质) 介质 (均匀介质) 均匀介质) 介质
0
D = εE
S
有介质时的高斯定理 电容率 极化电荷面密度
ε = ε 0ε r
σ ' = Pn
∫ D ⋅ dS = ∑ q
第九章 静电场中的导体和电介质
9-3 电位移矢量 有电介质时的高斯定理
D = ε 0 E + P = ε 0 E + χ eε 0 E = ε 0 (1 + χ e ) E
电介质的相对电容率 电介质的相对电容率 相对
ε r = 1 + χe
第九章 静电场中的导体和电介质
9-3 电位移矢量 有电介质时的高斯定理
电介质的电容率 电介质的电容率 总结 电位移矢量
D = ε0εr E = εE
第九章 静电场中的导体和电介质
9-3 电位移矢量 有电介质时的高斯定理
一 概述 极化电荷和自由静电荷一样产生电场(电场线 电场线), 极化电荷和自由静电荷一样产生电场 电场线 , 因此高斯定理在有介质时,其电荷应该即包括自由电 因此高斯定理在有介质时, 荷也包括极化电荷,即 荷也包括极化电荷,
∫ E ⋅ dS = ε ∑ ( q

有电介质时的高斯定理的应用 有介质时先求 D → E → U
一个半径为R、电荷为q(设 的导体球, 例9-3 一个半径为 、电荷为 设q>0)的导体球,在 的导体球 的无限大均匀电介质, 它周围充满电容率为ε的无限大均匀电介质,求电介 质内任一点的场强。 质内任一点的场强。 解: 在与导体球接触的 介质的表面的极化电荷q′ 介质的表面的极化电荷 ′ 也是球对称分布的。 也是球对称分布的。 过任一点P作半 过任一点 作半 径为r的球面为高斯 径为 的球面为高斯 面S,如图。 ,如图。 P

有电介质时的高斯定理

有电介质时的高斯定理
(2)定义: D 0E P (普遍适用于各种介质)
而 P 0 E (用于各向同性介质)
3
则 D 0 1 E (用于各向同性介质)
即由E和可求得D,而且D与E方向相同,大小成正比。
① 令比例系数 0 1 称为电介质的绝对
介电常数。
② 真空中的绝对介电常数 0

P真空 0 而 P 0 E ,E不一定为0来自D ds q0S
4 r2 D q0
D
q0
4 r2
D
q0
4 r2

P +-
E + 金属 +
P
r 介质ε
-+
+-
q0+
B
n
+-
R
+
S
由D E得:
E
q0
4 r2

q0 0,E与rˆ同向,背离球心
q0
0,E与rˆ反向,指向球心
(2)在交界面上取一点B,过B点作界面的法线单
单位矢 nˆ(由介质指向金属),则

真空 0 真空 0
③ 电介质的相对介电常数
④ 由此得
0
r
1
D
0
1
E
0r E
E
(对各向同性介质)
4
(3) D ds q0
S ①上式说明 D 对S面的通量等于S内的自由电荷量,
与 q 无关,但 D 本身与 q和 q0 均有关。
②如果 q0 0,则 D ds 0
S
说明 D 对S面的通量为0,但 D 不一定为0;S面内
§3.5 有电介质时的高斯定理
一 电介质中的场强
电介质在外电场中极化,电介质 中的电场是极化 电荷产生的附加电场 E和外电场 E0 的矢量和。

07--4、电介质中的电场高斯定理

07--4、电介质中的电场高斯定理

解: (1)自由电荷所产生旳场强(在真空中)为
E0
σ0 ε0
9.0 106 8.85 1012
1.02 106 V/m
(2)

E
E0 εr
εσrε00
σ0 ε
可知电介质内的场强为
E
σ0 ε
9.0 106 3.5 1011
2.57 105
V/m
(3)极化电荷面密度为:
0
0
3.5 1011 8.85 1010 3.5 1011
有电介质时旳高斯定理得(注意导体中
D=0):
D dS S2
D dS
右底面
D1 A
A
与前面的式子相比较, 有D1 D2
+ +
S2
利用 D1 1E1 ,D2 2 E2 ,可求得:
E1
1
r1 0
,
E2
2
r 2 0
(2)正、负两极板间旳电势差为:
U
E1d1
E2d2
(d1 1
E1 E2
S D dS D S 0 S
D= 0
E1
D
1
0 0 r
E2
D
0
0 0
U
E1
d 2
E2
d 2
0d 2 0 r
0d 2 0
0d 0
r 1 2 r
3 5 U0
C1
Q1 U1
2 r 0 S
d
C2
Q2 U2
2 0 S
d
C1,C2串联:
C
C1C2 C1 C2
5 3 C0
由前面知:
例6、同轴电缆半径分别为R1和R2,其间充斥电介质 r1,,r2 ,

9.5 有电介质时的高斯定理

9.5  有电介质时的高斯定理
2 2
ˆ r
r 4 r
ˆ r
P + - + E + r q' + q - D ^ -r + R -+ P(R) + + + -
-
球表面的油面上的极化电荷:
1 ˆ P ( R ) ( r ) (1 )
q
1 q 4 R 2 ( 1 )q

S
( 0 E P ) d S q 0内
定义(引入)电位移矢量: D 0E P
D 的高斯定理:
通过任意封闭曲面的电位移矢量的通量,等于该 封闭面所包围的自由电荷的代数和

S
D d S

q0

S
D d S

q0 ,
D 0E P
电位移线(D 线)发自正自由电荷,止于负自由 电荷。在闭合面上的通量只和闭合面内的自由电荷有
关。
, 其中E 是所有电荷共同产生的, 所以,D的分布一般也和束 P 与束缚电荷有关。 缚电荷(介质分布)有关。
因为 D 0 E P
只有当介质的分布满足一定条件时,D 才与束缚
电荷无关。
为了求出电介质中电位移和场强的大小,我们 可另作一个高斯闭合面S2 ,如图中左边虚线所示, 这一闭合面内的自由电荷等于正极板上的电荷,按 有电介质时的高斯定理,得

S1
D S D 1 S= S
再利用 D 1= 1 E 1 , D 2= 2 E 2 可求得
E1
S1
所以
D 1= D 2
即在两电介质内,电位移 D 1 和 D 2 的量值相等。由于

介质中的高斯定理

介质中的高斯定理

v E
D
介质中的高斯定理
例 自由电荷面密度为0的平行板电容器,其极化电荷面密度
为多少?
解: 由介质中的高斯定理
-+´0
DS 0S D 0
D +´
E
D
0r
0 0 r
- 0
0 0
E0
0 0
E 0
E E0 E
0 r 0 0
1
1
r
0
E
dS S
++++++
-q - - - - - -
移出S面
qi
留在S面内
介质中的高斯定理
v v E dS
S
1
0
qi
1
0
vv P dS
S
S 0E P dS qi
定义电位移矢量: D 0 E P C m2
介质中的高斯定理: 在任何静电场中,通过任意闭合曲面 的电位移通量等于该曲面所包围的自由电荷的代数和.
D S
dS
qi
说明:
D S
dS
qi
介质中的高斯定理
1. 介质中的高斯定理虽说是从平板电容器这一特例推 导出,但它却有普适性.
2. 介质中的高斯定理包含了真空中的高斯定理.
真空中: P 0 所以: D 0E P 0E
v D dS
S
S 0E dS qi
vv E dS
S
1
0
qi
3. 电位移矢量D 是一个辅助量.描写电场的基本物理
介质中的高斯定理
大学物理
静电场中的导体和电介质
第4讲 介质中的高斯定理
介质中的高斯定理

有电介质的高斯定理

有电介质的高斯定理

有电介质的高斯定理好的,那我们就开始聊聊有电介质的高斯定理吧。

电介质的高斯定理啊,听起来就很厉害的样子呢。

其实啊,它就像是一个超级智慧的小管家,管理着电场在电介质中的那些事儿。

你想啊,电场这个东西本来就很神秘,看不见摸不着的,就像一个调皮的小精灵到处乱窜。

但是有了这个高斯定理呢,就好像给这个小精灵套上了一个小缰绳,能让我们更好地去把握它。

在电介质里啊,电荷可不像在真空中那么自由自在了。

电介质会对电场产生影响,就像是给电场设置了一些小障碍一样。

而高斯定理呢,它就像一个聪明的侦探,能透过这些复杂的情况,找到电场和电荷之间的关系。

比如说吧,当有个电介质放在电场里的时候,电介质里的分子会被电场影响,它们会发生极化现象。

这极化就像一群小士兵,被电场这个将军指挥着,重新排列队形。

那高斯定理是怎么做到看透这一切的呢?它通过巧妙地选择一个高斯面,就像在电介质的世界里圈出了一块特殊的领地。

然后呢,根据穿过这个高斯面的电通量,就能知道这个领地里面电荷的情况啦。

这电通量就像是经过这个领地边界的某种流量一样,它能告诉我们很多秘密哦。

你要是把电场想象成水流,那电介质就像是水里的一些小障碍物,会让水流改变方向。

而高斯定理就是那个能算出水流到底是怎么变化的神奇法则。

而且啊,这个定理不仅仅是个干巴巴的公式,它背后有着很多有趣的物理故事呢。

就像每一个科学发现都是人类探索未知的小冒险一样,这个定理的诞生也是科学家们不断思考、不断实验的成果。

理解电介质的高斯定理其实也不是特别难啦,只要你愿意去想象,把那些抽象的东西变成生活中的场景,就像我们刚刚说的小精灵、小士兵、水流这些。

这样的话,这个定理就不再是高高在上、让人望而生畏的东西了,而是像一个可爱的小伙伴,可以跟我们愉快地聊天,告诉我们电介质和电场之间那些有趣的互动呢。

你看,科学有时候就是这么有趣,只要我们换个角度去看,那些看似枯燥的定理也能变得生动起来,就像电介质的高斯定理一样,充满了魅力。

大学物理 第三篇 电位移矢量和有电介质时的的高斯定理

大学物理 第三篇 电位移矢量和有电介质时的的高斯定理

1Q W 2 C
2
四.场能密度
单位体积内的电能
能量储存于场中 dW we dV
以平行板电容器的场为特例可以 导出 在带电为 Q 时 We 电场能量密度为 we V (自证)
r
S
d
1 we D E 2
普遍
1 单位体积内的电能 we D E 2
例 导体球的电场能ຫໍສະໝຸດ 二. D 的高斯定理
S
D dS
q
i
0i
自由电荷
证: E dS
S
q
i
i
0
i

q q
i i
oi
0 E dS P dS qoi
S S
D dS q0i
S i
0
i
在具有某种对称性的情况下,可 以首先由高斯定理出发 解出 D
W Aq1
q2
q 2 E 1 dl q 2 E1 dl r r
q U 2 21 40 r
q1
在处的电势
q1 在 q2 所
也可以先移动 q2
q2 在 q1所
在处的电势
状态a
q2 W q1 q1U 12 40 r 作功与路径无关 q2U 21
Q E 2 40 r
We
Q D 2 4 r

r
ED
all space of field
we dV
Q 2 2 4 4 r dr 32 0 r R
2
We
Q
2
8 0 R
与前面计 算结果同

6 有电介质时的高斯定理

6 有电介质时的高斯定理

于该闭合曲面所包围的自由电荷的代数和.
E dS
S 0r
Q
0i
i
自由电荷 代数和
讨论 电场中充满均匀各向同性电介质的情况下
1、定义:电位移矢量 D 0rE E
: 电容率,决定于电介质种类的常数
说明
(1)是描述电场辅助性矢量
(2) 对应电场线起始于正自由电荷,
(3)
终止于负自由电荷
电位移通量 Ψ D
二、电介质中的静电场环路定理
l E dl 0
D dl 0 l
电位移 有介质时的高斯定理
一、电介质中的高斯定理 电位移矢量 D
加入电介质(εr )
E dS
1
S
0
qi
i
1
0
(
0 )S
'(1 1r Nhomakorabea)
0
EdS Q
S 0r i
E
dS
0S
1
S
0 r 0 r
Q0i
i
0i
自由电荷的代数和
令: D0ErE
电位移矢量
DdS
S
Q0i
i
电介质中通过任一闭合曲面的电位移通量等
D
s
dS
电力线与电位移线的比较
E线
D线
+Q
+Q
r
r
2、电介质中电场 强度
E
、电极化强度
P
和电位移矢量D 之间的 关系
电位移
D 0rE E
电极化强度
P
(r1)0 E
D P 0E
3、电介质中的高斯定理
D dS Q0i
S
i
(自由电荷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7-9 有电介质时的高斯定理 电位移
E 满足高斯定理:
q q E dS
' q i
一.D 的高斯定理 有介质时,自由电荷和束缚电荷共同产生电场 E E0 E

S
i0
q i
可以证明: P d S

S
0
0
S 定义: D E P 0
R r R
E0 q D1 E1 2 r 0 r 4 0 r r q D2 E2 2 E0 0 r 4 0r
r
q
I
II
R
r


a
E dl a Edr
R
r
U1 E1dr E2dr

r
高斯面
q 1 1 q q q dr dr 2 2 R 4 r 40 r r R 40 R 40 r r 0

r o

0 S[2b r ( r 1)t ] 2 2 C C左 C右 1 电容并联相加: b 2b[b r ( r 1)t ] b r t r
例 .一平行板电容器,两极板间距为b、面积为S,在其间 平行地插入一厚度为t,相对介电常数为r,面积为S/2 的均匀介质板。设极板带电Q,忽略边缘效应。 求(1)该电容器的电容C(2)两极板间的电势差U。 解:(1)等效两电容的并联 S S2 o r b t 左半部:C 2 左 r 1 b t oS S r C o r 1 右半部: C 2 b t 右 b r S S
l

S
D dS

S1
D dS
D 2rl
l
S S1

D dS
D

E 2 r
R2 R1
• 两极板间的电势差 U

R2 dr ln 2 r 2 R1
• 根据电容定义式计算电容
Q C U
R2 ln 2 R1
o o
(2) U Q 2b r b r 1t Q C o S2 r b r 1t
问: Q左? =Q右
例 . 平板电容器极板面积为S间距为d,接在电池上维持V 。 均匀介质r 厚度d,插入电容器一半忽略边缘效应 求(1)1、2两区域的 E 和 D ;(2)介质内的极化强度 P, 表面的极化电荷密度 ' ;(3)1、2两区域极板上自由 2。 电荷面密度 1 , 解:(1)V E1d E2d
V D1 o r E1 o r d oV D2 o E2 d
E1 E2 V d
r 1
S 2
S
2
d
V
为什么E1介 E2真? 反而D1 D2了?
E1 , E2 , D1 , D2的方向均
关键:1 2!
(2) 介质内的极化强度 P ,表面的极化电荷密度' P e o E1 o ( r 1)V d 1 S 2 方向: V r 1 2 d P cos
球面上各点D大小相等, D // dS , 2 q 0 D4r q0 , D 4r 2 q I区:D1 2 4r q II区:D2 4r 2

S

0
r
q
r r

I II
高斯面

D 0 r E
q D1 4r 2
q D2 2 4r
由 Ua
r 1 q0 q0 q 0 r r
总电荷量减小到自由电荷量的1/εr倍,这是离球 心r处P点的场强减小到真空时的1/εr倍的原因。
d1
+ + + + + A S
r D2
0
ε
D1
S D dS 0 D S 0 d2 1 1 S D1 E1 / 0 D S D dS 0 D S 0 2 2 2 B S d2 U A U B A E dl d 1 0 0 r S 0S C d2 d1 d2 d1 0 0 r r
(
0
E P ) dS qi 0
称电位移矢量
则:
D dS q
S
0
D dS q
S
0
D 的高斯定理: 通过任意闭合曲面的电位移通量
等于面内包围的自由电荷代数和 讨论
1、电位移线: 规定:1)线上各点切线方向与D方向相同
2)通过任意单位垂直面元的电位移线条数 d d 等于该点电位移矢量的大小
C
B
S
E2 0 r
σ
例 . 一平行板电容器,两极板间距为b、面积为S, 其中置一厚度为t 的平板均匀电介质,其相对 介电常数为r, 求该电容器的电容C。 q 解:根据定义 C U r b 设极板面密度为、- t 由高斯定理可得: 空气隙中 D E1 o 介质中 D
+ + + + + + +



+ + +
D线
电场线起于正电荷、止于 负电荷,包括自由电荷和 极化电荷。
电位移线起于正的自由电 荷,止于负的自由电荷。 电极化强度矢量线起于负的 极化电荷,止于正的极化电 荷。只在电介质内部出现。
+ + + + + + +


D
起自正自由电荷(或无穷远), 特点: 终止于负自由电荷(或无穷远), 在无自由电 荷处不会中断(无自由电荷处电位移矢量连续)
dS
从有电介质时的高斯定理可知:通过电介质中任一 闭合曲面的电位移通量等于该面包围的自由电荷的代 数和。
+ + + + + + &##43; +
E线
电极化强度 质内部极化电荷体密度等于零,极化面电荷分布 在与金属交界处的电介质表面上(另一电介质表 面在无限远处),其电荷面密度为
P 与 r 有关,是非均匀极化。在电介
P er
q0 r 1 4R 2 r
因为εr >1,上式说明σ’恒与q0反号,在交界 面处自由电荷和极化电荷的总电荷量为
D Q Q E D S S Q 两极板间的电势差 U E d d S
Q C U

S
d

0 r S
d
例. 圆柱形电容器的电容 已知:圆柱形电容器 R1,R2,
求: 其电容.
ε
r
S1
A
B L
解:

设两极板面电荷线密度 分别为 +,- 做如图高斯面

+ + +
P线
二.D与E 的关系 D 0E P 在各向同性、均匀的电介质中 P e 0 E ( r 1) 0 E
令:
0 r
D 0 r E
即: D 与 E 成正比且方向相同
D E
称为介质的介电常数
真空中: D 0 E
束缚电荷产生的场: 0 3.介质中高斯定理的应用
S
1 D E ( D P ) 自由电荷产生的场: 0 0 P
介质中真实的场:E
D dS q
0
有电介质存在时的高斯定理的应用 (1)分析自由电荷分布的对称性,选择适当的高斯面 求出电位移矢量。
P cos 180 P 上 o (1 r )V 0 d P cos 0 P o ( r 1)V 0 下 d (3) 1、2两区域极板上自由电荷面密度1、2 1 1 V E1 1 o r o r d
S1 S2 上底
0 0
r
S
S D d S D d S D d S D d
S
由高斯定理:
D 底 0 S 内 S
D 0
0 E 0 r
D
S3
下底 底
D 内 S 底
例2 一无限大各向同性均匀介质平板厚度为d 相对介电常数为r ,内部均匀分布体电荷密度为 0 的自由电荷 求:介质板内、外的 DEP 解: 面对称 取坐标系如图
D 0d E 0 2 0 均匀场
2DS0 0 2 x S0 D 0 x 0 x D E 0 r 0 r
0
S
r
0x
x
x
2
P 0 r 1E 0
例3:将电荷 q 放置于半径为 R 相对电容率为 r 的介 质球中心,求:I 区、II区的 D、E、 及 U。 解:在介质球内、外各作半径为 r 的 高斯球面。 R D dS q

r
P
R
Q0
S
D d S D 4 r q 0
2 S
q0 D 所以 2 4r q0 写成矢量式为 D e 2 r 4r 因 D E , 所以离球心r 处P点的场强为
E D


4 r
q0
2
er
4 0 r r
q0
2
er
E0
r
结果表明:带电金属球周围充满均匀无限大电介 质后,其场强减弱到真空时的1/εr倍, 可求出电极化强 度为 q0 q0 q0 r 1 P e 0 e er 2 r 2 r 2 4r 40 r r 4r r
相关文档
最新文档