整数和整除第一讲

合集下载

第1讲 数的整除(1)

第1讲   数的整除(1)

第一讲数的整除(1)【知识梳理】1、整除的定义:对于整数a和不为零的整数b,如果a除以b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记做b a。

a就是b的倍数,b是a的因数(或因数)。

2、一些数的整除特征:①被2整除的特征:数的个位上是0、2、4、6、8(即是偶数);②被3、9整除的特征:数的各数位上的数字和是3或9的倍数;③被5整除的特征:数的个位上是0、5;④被4、25整除的特征:数的末两位是4或25的倍数;⑤被8、125整除的特征:数的末三位是8或125的倍数;⑥被11整除的特征:数的奇数位上的数字和与偶数位上的数字和,两者的差是11的倍数。

【例题精讲】例1、按要求写出符合要求的数:一个四位数467□。

(1)要使它是2的倍数,这个数可能是();(2)要使它是5的倍数,这个数可能是();(3)要使它既含有因数2,又含有因数5,这个数是()。

分析:个位上是0、2、4、6、8的数是2的倍数数;个位上是0或5的数是5的倍数;个位上是0的数,能同时被2和5整除。

解答:(1)这个数可能是4670、4672、4674、4676、4678。

(2)这个数可能是4670、4675。

(3)这个数是4670。

例2、判断47382能否被3或9整除?分析:能被3或9整除的数的特点是这个数各数位上的数字和是3或9的倍数。

47382各个数位的数字相加和是24,24是3的倍数但不是9的倍数。

解答:47382能被3整除,不能被9整除。

例3、判断:1864能否被4整除?分析:能被4整除的数的特点是这个数的末两位是4的倍数, 1864的末两位是64,64是4的倍数。

能被125整除的数的特点是这个数的末三位是125的倍数,29375的末三位是375,375是125的倍数。

解答:1864能被4整除,29375能被125整除。

例4、29372能否被8整除?分析:能被125整除的数的特点是这个数的末三位是8的倍数,29372的末三位是372,372不是8的倍数。

人教高中数学选修 第一讲 整数的整除一整数的整除 课件

人教高中数学选修 第一讲 整数的整除一整数的整除 课件
3.通过将大化小,让学生自由讨论,教师 恰如其分的指出素数.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
情感态度与价值观
1.通过对整除的认识和学习,能够体会数 学中的联系与结合,有利于理解和掌握.
2.将知识应用到现实生活中. 3.培养合作交流意识.
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
实例
如:3的正因数只有1和3所以3为 素数;6的正因数有1、2、3、6所以 由定义知6为合数. 思考:最小的素数和最小的合数各是几?
最小的素数是:2 最小的合数是:4
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
想一想 如何判 断一个 数是不 是素数
如果大于1的整数a不能
被所有不超过 a 的素数整
知识回顾
以前学过的整数加法、减法、乘 法有什么特点?整数除法的商又是怎 样的? 整数的加法、减法、乘法运 算得到的结果任然为整数.两个 整数的商不一定是整数.
×B=C,那么C÷B=A或C÷A=B
也就是说乘法和除法是互逆的 运算.
例如:
13×2 = 26
26÷2 = 13 26÷13 = 2
( 9、12、20 )
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
定义
仅有两个正因数的正整数叫做素 数,不是素数又不是1的正整数叫做 合数.1既不是素数,也不是合数.
自然数
人教高中数学选修 第一讲 整数的整除一整数的整除 课件
素数 1 合数
人教高中数学选修 第一讲 整数的整除一整数的整除 课件

六年级第一讲(教师讲义)整数和整除

六年级第一讲(教师讲义)整数和整除

六年级第一讲(教师讲义)整数和整除第一讲(教师讲义)整数和整除【知识点1】1、整数整数;正整数、零、负正整统称为整数。

自然数:零和正整数统称为自然数。

正整数:非0自然数也叫正整数,即1,2,3,4,……负整数:小于0的整数叫负整数。

负整数的表示方法是在整数前面加上“–”最大的负整数是–1,没有最小的负整数,没有最大的整数。

2、零0是一个数,是最小的自然数。

零的性质:1)0是一个自然数,并且是一个整数,且小于一切非0自然数。

2)0是偶数;在十进制记数法中起占位作用。

3)0可以表示一个物体都没有,也可以表示确定的内容4)0是任意非0自然数的倍数(0除以任意非0自然数的结果为0)5)任何数与0相加,值不变。

6)任何数与0相乘,积等于0。

7)任何数减去0它的值不变。

8)相同的两个数相减,差等于0。

9)0不能作除数。

10)0是唯一的一个中性数,既不是正数也不是负数。

11)0被非0的数除商等于0。

3、整数和整除的意义整除:整数a除以整数b,如果除得的商是整数而余数为零,就说a能被b整除;或者说b能整除a。

注意整除的条件: (1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。

注意:整除与除尽的区别。

【知识点2】因数和倍数:整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称为约数) 一个的因数中最小的因数是1,最大的因数是它本身。

一个整数没有最大的倍数,而最小的倍数是它本身。

注意:在研究因数和倍数时,所指的自然数不包括0。

【知识点3】奇数和偶数:能被2整除的数叫做偶数,不能被2整除的数叫做奇数.注意:奇数、偶数包括负整数,0是偶数能被2、5整除的数的特征:个位上是0,2,4,6,8的数都能被2整除.个位上是0或者5的数都能被5整除.补充:能被3整除的数:各位数上的数之和为3的倍数。

一、填空题1、大于-2小于2的整数有: .2、在6,13,25,39这四个数中,能被整除.3、一个数的因数只有她本身,这个数是 .4、如果n是奇数,则和它相邻的奇数是 .5、一个数既有50的因数,又有50的倍数,则这个数是 .6、自然数m的最小因数是,最大因数是,最小倍数是 .7、如果a能整除11,则a是 .8、已知三个连续的偶数是30,则这三个连续的偶数是 .9、能被2和5同时整除的最大三位数是 .10、50以内,7的倍数且是奇数的数有: .11、有一个两位数,十位和个位上的数字互换,得到一个新的两位数,新、旧两位数都能被5整除,那么这个两位数是 .12、用0,2,5这三个数字组成一个三位数,它同时能被2,5整除,这个三位数最大的是,最小的是 .13、233至少加上能被5整除,至少加上能被3整除,至少加上能2,3,5整除.14、一个自然数与3的和是5的倍数,与3的差是6的倍数,则符合此条件的自然数中最小的数是 .二、选择题(每题3分,共15分)16、下列算式中表示整除的算式是()(A) 0.80.4÷ (D) 11÷(B) 816÷(C) 163÷17、既是18的因数又是27的因数的数是()(A) 1 ,2,3 (B) 1,3,6 (C) 1,2,9 (D) 1,3,918、从5,0,1,3四个数字中选出三个数字,组成一个三位数,能同时被2,3,5整除的有()(A)1个(B)2个(C)3个(D)4个19、A=2×3×5,A的因数有 ( )(A) 2、3、5 (B)2、3、5、6、10(C)1、2、3、5、6、10、15 (D)1、2、3、5、6、10、15、30三解答题(第20-25题各6分,26题7分,共43分)20、写出下列各数所有的因数.(1)11 (2)10221、一个正整数既是48的因数,又是3的倍数,求这个数.22、从0、3、5、7这四个数字中,任选三个数字组成一个同时能被2、3、5整除的三位数,这样的三位数有几个,是哪几个?23、儿童乐园是3路和6路车的始发站,3路车每4分钟发一次车,6路车每3分钟发一次车.现在这两路车同时发车,至少再过多少时间又同时发车?24、数a的最大因数是60,且a是b的3倍,求a与b所含有的共同因数.25、48本爱心捐赠书籍分给一些学生,每人发一样多且不止一本,可以分给多少人?每人几本,有多少种分法?26、我们设n为大于5的正奇数,那么紧邻它而比它小的两个奇数可以表示为n -2和n-4,紧邻它而比它大的奇数可以表示为n+2和n+4,因为n+(n-4)+(n-2)+(n+2)+ (n+4)=5n,所以我们可以说五个连续的奇数之和一定能被5整除.试用上面的方法说明“五个连续的正整数之和能被5整除”.回家作业:一:填空题:1、统称为自然数。

第1讲 数的整除-学生讲义

第1讲 数的整除-学生讲义

第1讲数的整除一、知识点1.整除的概念:整数a 除以整数b,如果除得的商是整数而余数为零,则称a能被b整除(或者说b能整除a),记作b|a,其中a叫做b的倍数,b叫做a的因数。

注意:我们讨论的整除性均在正整数范围内。

2.数的整除特征(1)一个数的个位数字是0,2,4,6,8中的某一个,那么这个整数就能被2整除。

(2)一个数的个位数字是0或者5,那么这个整数就能被5整除。

(3)一个数各数位上的数字和能被3或9整除,那么这个数就能被3或9整除。

(4)一个数的末两位数能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)|(7)一个数既能被2整除,又能被3整除,则这个数能被6整除,反之一个数能被6整除,则这个数一定能被6的因数(1,2,3,6)整除。

(8)能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)是11的倍数,那么这个数就是11的倍数。

(9)能被7(11或13)整除的特征:一个数的末三位与末三位以前的数字所组成的数之差(大数减小数)能被7(11或13)整除,那么这个数就能被7(11或13)整除。

3.数整除的性质(1)如果两个整数a、b都能被c整除,那么(a+b)与(a-b)也能被数c整除(2)如果数a能被数b整除,c是整数,那么ac也能被数b整除。

(3)如果数a能被数b整除,b又能被数c整除,那么数a也一定能被数c整除。

(4)如果数a能同时被数b、c整除,而且b、c互质,那么a一定能被积bc整除。

二、典例剖析#例1.周老师为全班28名同学买了价格相同的钢笔(每人一支),共付人民币9□.2□元。

已知□处数字相同,请问钢笔每支多少元练一练1.老师买了72本相同的书,当时没有记住每本书的价格,只用铅笔记下了用掉的总钱数□□元,回校后发现有两个数字已经看不清了,你能帮助补上这两个数字吗|例2.已知292x y 能被36整除,求所有满足条件的五位数。

沪教版六年级数学讲义 第1讲整数和整除

沪教版六年级数学讲义 第1讲整数和整除

第1讲 整数和整除【学习目标】整数和整除是六年级数学上学期第一章第一节内容,主要对整数的分类和整除的概念进行讲解,重点是整除的概念理解,难点是整除条件的归纳总结.通过这节课的学习一方面为我们后期学习公因数和公倍数提供依据,另一方面也为后面学习有理数奠定基础.【基础知识】1.⎧⎫⎪⎬⎨⎭⎪⎩正整数自然数整数零负整数; 2.整除:整数a 除以整数b ,若除得的商是整数且余数为零. 即称:a 能被b 整除;或b 能整除a.整除的条件:..⎫⎧⎪⎨⎬⎪⎩⎭除数、被除数都是整数;三整一零商是整数且余数为零整除与除尽的关系.⎧⎧⎪⎨⎨⎩⎪⎩整除:被除数、除数、商整数,且余数为零;区别除尽:被除数、除数、商是整数,没有余数.联系:整除是除尽都是不一定的特殊形式3.因数与倍数:整数a 能被整数b 整除,a 就叫b 的倍数,b 就叫a 的因数(约数).因数与倍数的特征:⎧⎪⎨⎪⎩因数与倍数互相依存;一个整数的因数中最小因数为1,最大因数为它本身一个整数的倍数中最小的倍数是它本身,无最大倍数.4.能被2整除的数2468.⎧⎨⎩偶数(2n);(否则是奇数(2n-1))特征:个位上是0,,,,,能5整除的数的特征:个位上数字是0,5; 能同时被2、5整除的数:个位上数字是0.*能被3整除的数:一个整数的各个数位上数字之和能被3整除,这个整数就能被3整除. *能同时被2、3和5整除的数:个位数是0,且各个数位上数字之和能被3整除.【考点剖析】考点一:整数的意义和分类例1.判断题(若是正确的,请说明理由;若是错误的,请把它改正确).(1)最小的自然数是1 ; (2)最小的整数是0;(3)非负整数是自然数;(4)有最大的正整数,但没有最小的负整数;(5)有最小的正整数,但没有最大的负整数.【难度】★【答案】(1)×;(2)×;(3)√;(4)×;(5)×.【解析】(1)错误,最小的自然数是0;(2)错误,不存在最小的整数;(3)正确;(4)错误,既没有最大的正整数,也没有最小的负整数;(5)错误,最小的正整数是1,最大的负整数是-1.【总结】本题主要考查与整数有关的概念.例2把下列各数放入相应的圈内:15,-1,-0.2,0,-63,0.7,13,-0.2323…,35.【难度】★【答案】整数:15,-1,0,-63,13;自然数:15,0,13;正整数:15,13;负整数:-1,-63.【解析】整数包括正整数、零、负整数;自然数包括正整数和零.【总结】本题主要考查整数的分类.例3(1)试说说正整数、负整数、零、自然数、整数之间的关系;(2)试比较正整数、负整数、零的大小;(3)试比较负整数、自然数的大小.【难度】★★【答案】(1)整数包括正整数、零、负整数;自然数包括正整数和零;(2)正整数大于0,负整数小于0,正整数大于负整数;(3)自然数大于负整数;例4五个连续的自然数,已知中间数是a,那么其余四个数分别是______、______、______、______.若这五个连续自然数的和是20,试求这五个数.【难度】★★【答案】2112、、、.这五个数是:2、3、4、5、6.a a a a--++【解析】列方程:(2)(1)(1)(2)20-+-+++++=a a a a a解得:4a=∴这五个数是:2、3、4、5、6.【总结】本题主要考查如何利用已知的字母去表示与其连续的整数.考点二:整除的意义例1.老师问:“当 4.5b=时,a能被b整除吗?”a=时,0.9一个同学回答:“因为商是5,是整数,所以a能被b整除.”你认为对吗?【难度】★【答案】不对【解析】整除要求被除数、除数、商是整数,且余数是零;本题只满足了商是整数,余数是0,忽略了对被除数、除数的要求;【总结】本题主要考查整除所满足的条件.例2下列各组数中,如果第一个数能被第二个数整除,请在下面的()内打“√”,不能整除的打“×”.18和9()15和30()0.4和4()14和6()17和35()9和0.5()【难度】★【答案】横向:√×××××【解析】整除的意义:整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a.只有18和9满足;【总结】本题主要考查整除所满足的条件.师生总结1、整除的条件是什么?2、“a能整除b”与“a能被b整除”的区别是什么?归纳总结1.除数、被除数都是整数;2.被除数除以除数,商是整数而且没有余数.归纳总结整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

沪教版6年级数学1.1:整数与整除的意义(讲义)

沪教版6年级数学1.1:整数与整除的意义(讲义)

第1讲:整数与整除【讲义】主讲内容:(1)整数:整数及其分类(正整数、负整数、自然数等);(2)整除的概念:整除及其判断方法;一:整数首先我们来复习回顾一下小学学过的有关整数的相关知识。

如下图所示,是某超市货架上摆放的商品,你能数出玉米和苹果的个数各是多少吗?从图中,我们不难看出,玉米的个数为7个,苹果的个数是4个。

在这里我们得到的数字7和4都属于整数,严格来讲它们应该叫作正整数。

那么什么是正整数呢?正整数:我们用来表示物体个数的1,2,3,4,5…叫做正整数。

生活中,我们都会用到正整数。

比如日历表中的日期都是用正整数表示的(如下图所示);月份、星期等也都是用正整数表示的。

有正整数就有负整数,那么什么是负整数呢?负整数:如果我们在正整数1,2,3,4,5…的前面添加符号“-”,得到的数-1,-2,-3,-4,-5…叫做负整数。

其中符号“-”叫做负号。

对比正整数和负整数,我们会发现它们是相互对应的,不同的只是符号。

负整数是在对应的正整数前面添加“-”得到的。

仔细观察,我们发现,正整数和负整数中都不包含零。

这说明,零既不是正整数,也不是负整数,它是一个特殊的整数。

零通常用来表示没有物体,比如我们说“教室有0个同学”,意思就是“教室每人”;零还可以表示描述事物中某种量的基准数,例如我们在计算温度时,都是将0摄氏度作为温度的基准点,其他温度都是相对于这个温度来说的。

零的意义:(1)表示没有物体;(2)表示计量过程中某种量的基准数;这样我们就把整数分成了三类数,分别是:正整数、负整数和零。

因此,我们把正整数、零、负整数统称为整数。

整数:正整数、零、负整数,统称为整数。

用图可以表示为:⎪⎩⎪⎨⎧负整数正整数整数0另外,数学中把零和正整数合在一起,统称为自然数。

自然数:零和正整数统称为自然数(为什么将它们称为自然数呢?是因为这些数是我们在数数时自然产生的,因此才叫做自然数)。

所以整数又可以用下图来表示:⎪⎩⎪⎨⎧⎭⎬⎫负整数自然数正整数整数0 *注意:正整数和负整数是相互对应的,负整数是在正整数的前面加上“-”得到的。

第1章第1节整数和整除

第1章第1节整数和整除

教案设计1.1整数和整除的意义教学目标1、在“分类——归纳”的过程中,理解自然数与整数的意义。

2、在“实验一一猜想一一归纳“的过程中,理解和掌握整除的概念。

3、通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力,并从而树立学好数学的自信心。

重点、难点:理解和掌握整除的概念。

教学过程一、建立整数和自然数的概念:1 口答:根据一定的依据把老师念出来的数分一分类,并说明理由。

(小组讨论)(小组讨论、归纳、交流)归纳:在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。

在正整数1 2、3、4 的前面添上“一”号,得到的数-1 -2、-3、-4 , 叫做负整数。

零和正整数统称为自然数。

正整数、零和负整数,统称为整数。

2、把下列各数填在适当的圈内:12、-6、0、1.23 6、2005 -196 97二、建立整除的概念:1你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。

)2、你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。

(小组讨论)我们小组的分类:(根据需要填写)教育精选1、2、______________________________________________________________________3、______________________________________________________________________分类的理由:1、______________________________________________________________________2、______________________________________________________________________3、______________________________________________________________________3、请同学们仔细观察黑板上除法算式里的被除数、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?归纳:整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

第一讲:整除与整数的性质

第一讲:整除与整数的性质

第一讲 整除与整数的性质【知识点金】一.整数的基本性质1.整数集关于加、减、乘运算的封闭性,即整数的和、差、积仍为整数(两个整数的商不一定是整数)。

2.奇数和偶数的简单性质能被2整除的整数称为偶数,可表示为2n ()n Z ∈形式;不能被2整除的整数称之为奇数,可表示为21n -()n Z ∈形式。

对于奇数和偶数有以下性质:(1)任意多个偶数的和、差、积仍为偶数; (2)奇数个奇数的和、差仍为奇数; (3)偶数个奇数的和、差为偶数; (4)奇数与偶数的和为奇数,其积为偶数;(5)若有限个整数之积为奇数,则其中每个整数都是奇数;有限个整数之积为偶数,则这些整数中至少有一个是偶数;3.整数集的离散性两个连续整数之间不再有其他整数,两个连续整数的完全平方数之间不存在 完全平方数。

任一个整数有限集中必有最大数和最小数。

二.整除的定义和基本性质1.定义:设a 、b 是整数(0)b ≠,若存在整数q ,0q ≠,使a bq =,则称b 整除a ,或a 能被b 整除,记为b a ,这时b 叫做a 的因数或约数,a 叫做b 的倍数。

2.整除的基本性质(1)若b a ,则()b a -,b a -,()()b a --,b a ; (2)若a b ,b c ,则a c ;(3)若,,,a b c m Z ∈,且a b ,a c ,则()a b c ±,a mb ,a mc ,()a m b c ±。

事实上可推广到一般情形:若,,i i a b x Z ∈(1,2,,)i n =,且i a b ,则1ni i i a b x =∑;(4)设,a b Z ∈,且a b ,则对于任何m Z ∈,都有am bm ;反之,若am bm ,则a b 。

(5)若a b <,且b a ,则0a =; (6)若a 、b 互素,且a bc ,则a c ;(7)若p 是素数,且1ni i p a =∏,则至少有一个i a ,使得i p a (1)i n ≤≤;(8)若12,,,n a a a 两两互素,且i a A ,1,2,,i n =,则1ni i a A =∏;例1.求证:如果P 和2P +都是大于3的素数,那么6是1P +的因数。

六年级秋季班-第1讲:整数和整除

六年级秋季班-第1讲:整数和整除

整数和整除是六年级数学上学期第一章第一节内容,主要对整数的分类和整除的概念进行讲解,重点是整除的概念理解,难点是整除条件的归纳总结.通过这节课的学习一方面为我们后期学习公因数和公倍数提供依据,另一方面也为下学期学习有理数奠定基础.1、整数的意义和分类(1)自然数:零和正整数统称为自然数;(2)整数:正整数、零、负整数,统称为整数.2、整除的意义整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b 能整除a.整数和整除内容分析知识结构模块一:整数和整除的意义知识精讲例题解析【例1】在12、5.352、0、0.2、30、12.4、9.5、1这些数中,整数是_________,自然数是__________.【难度】★【答案】12,0,30,1;12,0,30,1.【解析】自然数:零和正整数统称为自然数;正整数、零、负整数,统称为整数.【总结】本题主要考查自然数和整数的概念.【例2】关于1836÷=,下列说法正确的是()A.18能整除3 B.3能被18整除C.18能被3整除D.3不能整除18【难度】★【答案】C【解析】整数a除以整数b,如果除得的商是整数且余数为零,我们就说a能被b整除;或者说b能整除a.【总结】本题主要考查整除的概念.【例3】下列各组数中,第一个数能整除第二个数的是________.○13和0.3;○212和4;○35和15;○40.2和0.4;○51.4和14;○65和0.1.【难度】★★【答案】③【解析】整数a除以整数b,如果除得的商是整数且余数为零,我们就说a能被b整除;或者说b能整除a.【总结】本题依旧考查整除的概念.【例4】下列说法中,正确个数是()○1整数包括负数、正数;○21是最小的自然数;○3a除以b,商为整数,且余数为0,则a能被b整除;○4有最大的自然数,而没有最小的自然数;○5最大的正整数和最大的负整数都不存在.A.0个B.1个C.2个D.3个【难度】★★【答案】A【解析】①错,整数包括正整数、负整数和0;②错,0是最小的自然数;③错,要求a和b也要为整数;④错,没有最大的自然数,有最小的自然数为0.⑤错,没有最大的正整数,有最大的负整数为-1.【总结】本题主要考查整数的分类问题,注意0的特殊性.【例5】下面的几对数中,第一个数能除尽第二个数的是____________.○17和11;○29和2538;○32和5;○415和5;○513和91;○62和0.4;○70.3和6;○81.5和2.5.【难度】★★【答案】②③⑤⑥⑦【解析】a能除尽b是指ab÷所得的商是整数或有限小数,要与数的整除的概念区分开.【总结】本题主要考查除尽的概念,注意与数的整除的区分.【例6】有15位同学参加学校组织的夏令营活动,老师准备把她们平均分成若干小组,有几种分法?有可能把他们平均分成4个小组吗?为什么?【难度】★★【答案】一组、三组、五组、十五组均可.不能平均分成4个小组,因为4不能整除15.【解析】因为515⨯=,所以可分为一组、三组、五组或者十五组.⨯=1315【总结】本题主要考查数的整除在实际问题中的应用.【例7】一班同学分成四个小组糊纸盒,每组糊的个数同样多,小马虎统计时说:全班共糊纸盒342个.小马虎的统计对吗?为什么?【难度】★★★【答案】不对,因为4不能整除342.【解析】24÷,余数不为0.342=......85【总结】本题主要考查数的整除在实际问题中的应用.【例8】在1~600这600个数中,不能被2整除的数有多少个?不能被3整除的数有多少个?既不能被2整除,又不能被3整除的数有多少个?【难度】★★★【答案】300,400,200【解析】在1~600这600个数中,能被2整数的数有2,4,6,8,......600,共有300个,则不能被2整除的数有600-300=300个;能被3整除的数有3,6,9,12,......600,共有200个,则不能被3整除的数有600-200=400个;既能被2整除,又能被3整除的数有6,12,18,......600,共有100个.能被2或3整除的数有300+200-100=400个,所以既不能被2整除,又不能被3整除的数有600-400=200个.【总结】本题主要考查整除在数字问题中的应用,注意思考方式的改变.模块二:因数和倍数知识精讲1、因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称为约数).注:一个整数的因数中最小的因数是1,最大的因数是它本身.例题解析【例9】在9、12、15、30、45、66有因数2的是_________,是3的倍数的是_________.【难度】★【答案】12、30、66;9、12、15、30、45、66.【解析】有因数2的是:12、30、66;是3的倍数的有:9、12、15、30、45、66.【总结】本题主要考查因数和倍数的概念.【例10】既是23的倍数,又是23的因数的数是______.【难度】★【答案】23.【解析】23的因数有1、23,其中是23的倍数为23.【总结】本题主要考查因数和倍数的概念.【例11】下列说法中不正确的是()A.1是任何整数的因数,任何整数都是1的倍数B.偶数的因数不一定是偶数C.奇数的因数一定是奇数D.一个数的最大因数一定小于它的最小倍数【难度】★★ 【答案】D【解析】D 答案中一个数的最大因数都是等于它的最小倍数的,故D 是不正确的. 【总结】本题主要考查因数和倍数的定义,注意1的特殊性. 【例12】一个正整数所有的因数是1、2、3、6,那么这个数是______.【难度】★★ 【答案】6【解析】因为一个正整数最小的因数为1,最大的因数为它本身,故这个数是6. 【总结】本题主要考查正整数的因数的特征. 【例13】既是3的倍数,又是30的因数的数是________________.(写出所有符合条件的数)【难度】★★【答案】3、6、15、30.【解析】6510315230130⨯=⨯=⨯=⨯=,所以30的因数为1、2、3、5、6、10、15、30.其中3的倍数为3、6、15、30.【总结】本题可以将30的因数一一列出,然后判断其实不是3的倍数,反过来也可以.【例14】一个数即是10的倍数,又是100的因数,且不能被4整除,这个数是______.【难度】★★【答案】10、30、50、70、90.【解析】10的倍数为:10、20、30、40、50、60、70、80、90、100,其中又是100的因数,且不能被4整除的是10、30、50、70、90.【总结】本题也可一一列举出即是10的倍数,又是100的因数的数,然后再判断哪些不能被4整除.【例15】用16块面积是1平方厘米的正方形,可以拼成多少种形状不同的长方形?它的长和宽分别是多少厘米? 【难度】★★★【答案】三种:(1)16,1;(2)8,2;(3)4,4. 【解析】161162844=⨯=⨯=⨯;答:可以拼成3种形状不同的长方形,长和宽分别是:16,1或8,2或4,4. 【总结】本题主要是利用因数的概念来解决实际问题.【例16】 已知一个三位数abc ,若两位数bc 能被4整除,那么这个三位数就能被4整除.这句话对吗?如果正确,请证明;如果不正确,请举出反例.【难度】★★★ 【答案】正确.【解析】三位数abc 可以表示为()c b a ++10100,两位数bc 可以表示为c b +10,因为两位数bc 能被4整除,∴c b +10能被4整除.而()()()410254104100410100÷++=÷++÷=÷++c b a c b a c b a ,没有余数,所以这个三位数就能被4整除.【解析】本题主要考查整除的概念,注意合理的运算方法的选择以及对于三位数的表示.1、 能被2整除的数能被2整除的数的特征:个位上是0,2,4,6,8的整数; 能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数. 2、奇数偶数的运算性质奇数±奇数 = 偶数;奇数±偶数 = 奇数;偶数±偶数 = 偶数;奇数⨯奇数 = 奇数; 奇数⨯偶数 = 偶数;偶数⨯偶数 = 偶数. 推广结论:(1)奇数个奇数的和为奇数;偶数个奇数的和为偶数;任意有限个偶数的和为偶数; (2)若干个奇数的乘积为奇数,偶数与整数的乘积为偶数; (3)如果若干个整数的乘积是奇数,那么其中每一个整数都是奇数;如果若干个整数的乘积是偶数,那么其中至少有一个整数是偶数;(4)如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数的奇偶性不同;(5)两个整数的和与差的奇偶性相同. 3、能被5整除的数能被5整除的数的特征:个位上是0或5的整数. 4、能同时被2、5整除的数知识精讲模块三:能被2、5整除的数能同时被2和5整除的数的特征:个位上是0的整数.例题解析【例17】两个连续自然数的差是()A.奇数B.偶数C.奇数或偶数D.既不是奇数也不是偶数【难度】★【答案】A【解析】两个连续自然数的差为±1,为奇数.【总结】本题主要考查奇、偶数的运算性质.【例18】9个连续自然数的积是______(“奇”或“偶”)数.【难度】★【答案】偶.【解析】9个连续的自然数中必定会有偶数,则乘积必定为偶数.【总结】本题主要考查奇、偶数的运算性质.【例19】已知一个三位数13x.(1)若这个三位数能被2整除,求x;(2)若这个三位数能被5整除,求x;(3)若这个三位数能同时被2和5整除,求x.【难度】★★【答案】(1)0,2,4,6,8;(2)0,5;(3)0.【解析】能被2整除的数的特征:个位上是0,2,4,6,8的整数;能被5整除的数的特征:个位上是0,5的整数;能同时被2和5整除的数的特征:个位上是0的整数.【总结】本题主要考查能被2、5整除的数的特点.【例20】用0、1、2三个数字组成的数字不重复的三位数中,偶数有()个A.4 B.3 C.2 D.1【难度】★★【答案】B【解析】用0、1、2三个数字组成的数字不重复的三位数有120、102、210、201,其中偶数有120、102、210.【总结】一一列举符合题目条件的数字,考查偶数的概念.【例21】5个连续偶数的和为240,这五个偶数分别是几?【难度】★★【答案】44、46、48、50、52.【解析】这5个偶数的平均数为48,则中间的数字为48,则这5个连续的偶数为44、 46、48、50、52.【总结】本题主要考查利用平均数解决连续整数和的问题.【例22】12320152016+++⋅⋅⋅++的结果是奇数还是偶数?请说明理由.【难度】★★【答案】偶数,理由见解析.【解析】1到2016个数字中有1008个偶数,这1008个偶数之和为偶数;有1008个奇数,这1008个奇数之和为偶数;则这2016个数字之和为偶数.【总结】本题主要考查奇、偶数的运算性质.【例23】用25、26、27、28、29这五个数两两相乘,可以得到10个不同的乘积,问乘积中有多少个偶数?【难度】★★【答案】7.【解析】要使乘积为偶数,则乘数中至少有一个为偶数.则26与25、27、28、29相乘,可以得到偶数;28与25、26、27、29相乘,可以得到偶数.中间有重复的26与28相乘,则一共有4+4-1=7个偶数.【总结】本题主要考查奇、偶数的运算性质.【例24】13个不同的的自然数之和等于100,其中偶数最多有几个?偶数最少有几个?【难度】★★★【答案】其中偶数最多有13个;偶数最少有1个.【解析】当偶数有13个时,则其和为偶数,所以其中偶数最多有13个;偶数为0个时,则这13个数均为奇数,其和定为奇数,不可能为100;偶数为1个时,则有12个奇数,这13个数字之和为偶数,所以偶数最少有1个.【总结】本题主要考查奇、偶数的运算性质.【例25】有五只杯口朝上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口朝下,问能不能经过这样有限多次的“翻转”后,使五只杯子的杯口全部朝下?为什么?【难度】★★★【答案】不能,理由见解析.【解析】对一只杯口朝上的杯子而言,需要“翻转”奇数次,才能使其杯口朝下,对于五只杯口朝上的杯子放在桌子上,则需要“翻转”的总次数为5个奇数的和,这个和定为奇数.而每次将其中四只杯子同时“翻转”,则每轮“翻转”的次数为4次(可以看做4个杯子各“翻转”1次),所以无论你“翻转”多少次,总次数都是4的倍数,定为偶数,不可能为奇数,则不能经过这样有限多次的“翻转”后,使五只杯子的杯口全部朝下.【总结】本题主要是将实际问题转化成奇、偶数的运算性质等问题.【例26】1011021039991000⨯⨯⨯⋅⋅⋅⨯⨯的结果的末尾有多少个零?【难度】★★★【答案】225.【解析】只要有因数5和因数2的两个整数相乘,末尾就会出现0.1到1000中5的倍数要少于2的倍数,其中5的倍数有10005200÷=个,25 的倍数有10002540÷=个,125的倍数有10001258÷=个,625的倍数有1个,而1到100中5的倍数有20个,25的倍数有4个,因此在1011021039991000⨯⨯⨯⋅⋅⋅⨯⨯的结果的末尾中含零的个数为:2004081204225+++−−=个.【总结】两数相乘结果末尾为0,则要求整数的个位为2和个位为5的数相乘即可.【例27】在1,2,3,…,2015,2016中每个数前面任意添加“+”、“−”号,最终的运算结果是奇数还是偶数?请说明理由.【难度】★★★【答案】偶数,理由见解析.【解析】2016个数中有1008个奇数,这1008个奇数之和为偶数;2016个数中有1008个偶数,这1008个偶数之和为偶数;偶偶相加为偶数,则2016个数字之和为偶数.每个数前面任意添加“+”、“−”号,与1,2,3,…,2015,2016之和的奇偶性是一样的,所以结果为偶数.【总结】本题主要考查奇、偶数的运算性质.1、 能被3整除的数能被3整除的数的特征:各个数位上的数字和是3的倍数. 2、 能被9整除的数能被9整除的数的特征:各个数位上的数字和是9的倍数.【例28】 要使三位数2□3能被3整除,那么□中可以填的数是_____________;要使三位数2□3能被9整除,那么□中可以填的数是_____________.【难度】★【答案】1、4、7;4.【解析】能被3整除的数的特征:各个数位上的数字和是3的倍数;能被9整除的数的特征: 各个数位上的数字和是9的倍数.【总结】本题主要考查能被3和9整除的数的特点. 【例29】一个五位数497A B 能被3整除,且7B 能被2整除,这样的五位数有______个.【难度】★★ 【答案】16.【解析】7B 能被2整除,则B 为0、2、4、6、8;497A B 能被3整除,则B A ++20能 被3整除.当B =0时,A 可为1、4、7;当B =2时,A 可为2、5、8;当B =4时,A 可为0、3、6、9;当B =6时,A 可为1、4、7;当B =8时,A 可为2、5、8;所以这样的五位数有16个.【总结】先一一列举符合7B 能被2整除的数,然后一一列举数字,判断符不符合题意.知识精讲模块四:能被3、9整除的数例题解析【例30】从2、4、0、5、8这五个数字中选出3个数字组成一个三位数,使得这个三位数同时被2、3和5整除,那么这样的三位数有______个.【难度】★★★【答案】6.【解析】能同时被2和5整除的数末尾数为0,则有240、420、580、850、250、520、280、820、450、540、480、840,其中能够被3整除的有240、420、450、540、480、840.【总结】本题主要考查能被2、3、5整除的数的特征.【例31】已知一个三位数abc,试证明:若a b c++能被9整除,则abc能被9整除.【难度】★★★【答案】证明见解析.【解析】因为a b c++能被9整除,则可得mcba9=++(m为正整数),又abc=10010a b c++ ()()999a b a b c=++++,因为ba999+能被9整除,也a b c++能被9整除,所以abc 能被9整除.【总结】本题一方面考查三位数的表示方法,另一方面考查整除的运用.【例32】我们知道,每个正整数都有因数,对于一个正整数a,我们把小于a的正的因数叫做a的真因数.如10的正因数有1、2、5、10,其中1、2、5是10的真因数.把一个正整数a的所有真因数的和除以a,所得的商叫做a的“完美指标”.如10的“完美指标”是4(125)105++÷=.一个正整数的“完美指标”越接近1,我们就说这个数越“完美”.如8的“完美指标”是7(124)88++÷=,10的“完美指标”是45,因为78比45更接近1,所以我们说8比10完美.根据上述材料,回答下面问题:(1)5的“完美指标”是____________;(2)6的“完美指标”是____________;(3)9的“完美指标”是____________.(4)试找出比20大,比30小的正整数中,最“完美”的数.【难度】★★★【答案】14 1213 59()();();(4)28;【解析】(1)5的“完美指标”:15;(2)6的“完美指标”是:12316++=(3)9的“完美指标”是:134 99+=;(4)素数的“完美指标”为1n,不够完美;合数的真因数较小,完美指标也会比较小,不够完美;所以验证24和28的完美指标:24的“完美指标”是:123468123242++++++=;28的“完美指标”是124714128++++=;∴28是比20大,比30小的正整数中,最“完美”的数.【总结】本题主要是考查学生的理解能力,通过对题目中新的概念的理解,利用概念去解决新的问题.随堂检测【习题1】下列说法正确的是()A.一个数至少有两个因数B.个位上是3、6、9的整数都能被3整除C.一个数既是2的倍数又是5的倍数,那么这个数一定是10的倍数D.非负整数是正整数【难度】★【答案】C【解析】A答案错误,如1只有一个因数;B答案中考查能被3整除的数的特征:各个数位上的数字和是3的倍数;C答案是正确的;D答案中0也属于非负整数.【总结】本题主要考查因数、倍数的概念以及整数分类的问题.【习题2】50以内的7的倍数有_______个.【难度】★【答案】7【解析】50以内的7的倍数有:7、14、21、27、35、42、49.【总结】从最小的倍数一一尝试即可得到答案.【习题3】一个数的最大因数与最小倍数的和是2014,这个数是______.【难度】★★【答案】1007.【解析】一个数的最大因数和最小倍数都是它本身,因此这个数是1007.【总结】任何一个正整数的最大因数和最小倍数都是它本身.【习题4】下列说法不正确的个数有()个(1)两个正整数的和或差的奇偶性相同;(2)甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能整除丙数;(3)任何正整数都能被0整除;(4)3m n÷=,则n一定能整除m;(5)三个连续自然数的乘积能被2整除.A.1 B.2 C.3 D.4【难度】★★【答案】B【解析】(1)对;(2)错,考查整除的定义;(3)错,0能被任何正整数整除;(4)错,n 和m不一定为整数;(5)对,因为三个连续自然数中一定有偶数,则它们的积一定是偶数.【总结】本题主要考查整除的概念,注意整除的定义中的被除数、除数、商都必须是整数,且余数为零,另外还考差了奇、偶数运算性质的问题.【习题5】下列各算式中,满足整除的有______个,满足除尽的有______个.(1)135÷;÷;(4)02÷;(3)20163÷;(2)127(5)246÷.÷;(8)8.82÷;(7)2.8 1.4÷;(6)2.53【难度】★★【答案】(3)、(4)、(5);(1)、(3)、(4)、(5)、(7)、(8)【解析】整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a.【总结】本题主要考查整除和除尽的概念,注意除尽与整除的区别.【习题6】能整除18的数有________________.【难度】★★【答案】1、2、3、6、9、18.【解析】整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a.【总结】本题主要考查整除的概念.【习题7】一个两位数,其中个位上的数字比十位数字大2,且能被5整除,求所有符合条件的两位数:_______________.【难度】★★【答案】35.【解析】能被5整除的数尾数为0或5.0为个位数时,十位数字为负数,不合题意,舍去.所以个位上的数字只能为5,十位上的数字为3,则这个两位数为35.【总结】本题主要考查能被5整除是数的特点,可以一一举例得到最后的答案.【习题8】四位数29A B能同时被3和5整除,写出所有满足条件的四位数__________.【难度】★★【答案】2190、2490、2790、2295、2595、2895.【解析】能被5整除的数的个位数为0或5,则B为0或5;当B=0时,A为1、4、7;当B=5时,A为2、5、8.所以满足条件的四位数为2190、2490、2790、2295、2595、2895.【总结】本题主要考查能被3、5同时整除的数的特点,可以一一举例得到最后的答案.【习题9】三个连续的自然数的和一定能被3整除吗?如果是,请证明;如果不是,请举出反例.【难度】★★★【答案】是,证明见解析【解析】设三个连续的自然数为1+11=−,此数一定能n3++,,则其和为n−n1+nnn,n被3整除.【总结】三个连续的自然数的表示方法为11+n,,.−nn【习题10】小明有12张卡片,其中3张卡片上面写着1,3张卡片上面写着3,3张卡片上面写着5,3张卡片上面写着7,小明从中选出5张卡片,它们上面的数字之和可能等于22吗?如果能,请说明如何选择卡片;如果不能,请说明理由.【难度】★★★【答案】不能.【解析】因为12张卡片上的数字都是奇数,5个奇数之和一定为奇数,不可能为偶数,22是偶数,所以不能.【解析】本题主要考查数字的奇偶性,偶数个奇数相加结果为偶数;奇数个奇数相加结果为奇数.课后作业【作业1】如果A表示一个正整数,它的最小因数是_______,最小倍数是_______.【难度】★【答案】1;A.【解析】一个正整数的最小因数为1,最小倍数为它本身.【总结】本题主要考查一个正整数的最小因数的和最大因数的特征.【作业2】731最少加上______,就是5的倍数. 【难度】★【答案】4【解析】能被5整除的数的特点:个位数字为0或5,因此最少加上4即可.【总结】本题主要考查能被5整除的数的特征.【作业3】三位数“15□”是8的倍数,那么“□”中能填的数字的个数是( ) A .1B .2C .3D .4 【难度】★★【答案】B【解析】可以填2,四个答案一一验算.【总结】本题主要考查因数和倍数的概念,是8的倍数,则说明该数能被8整除.【作业4】 一个奇数要变成偶数,下列方法中可行的方法有______个(1)加上()12399100+++⋅⋅⋅++;(2)减去()1002327985⨯+⨯;(3)乘以2;(4)除以2.A .1B .2C .3D .4【难度】★★【答案】A【解析】(1)12399100=5050+++⋅⋅⋅++为偶数,奇数加上偶数,结果为奇数; (2)1002327985=16996⨯+⨯为偶数,奇数加上偶数,结果为奇数;(3)奇数乘以2,为偶数;(4)奇数除以2余数为1.【总结】本题主要考查奇、偶数的运算性质.【作业5】 三个连续的奇数的和是321,则这三个奇数为____________ 【难度】★★【答案】105、107、109【解析】这三个连续的奇数平均数为1073321=÷,则中间的数为107,其余两个数为 105和109.【总结】连续的奇数和偶数之和的问题均可以用平均数来解决.【作业6】小智买一大箱苹果,共有84个,要求每次拿出的个数一样多,拿了若干次正好拿完,则小智共有______种不同的拿法.(假设不能一次全拿出)【难度】★★【答案】11.【解析】12=⨯⨯=⨯==,则84的因数为1、2、3、4、⨯=⨯=22161474281844284⨯36、7、12、14、21、28、42、84,共有12个,因为不能一次全拿出,所以共有11中不同的拿法.【总结】将实际问题转化为寻找因数的方法来解决.【作业7】一个整数的最大因数与最小因数的差为27,写出这个整数的所有因数:_______________.【难度】★★【答案】1、2、4、7、14、28.【解析】一个整数的最大因数为它本身,最小因数为1,则这个数为28.=⨯28⨯⨯=,则28的因数有1、2、4、7、14、28.=17144282【总结】任何一个正整数的最大因数为它本身,最小因数为1.【作业8】122334************⨯+⨯+⨯+⋅⋅⋅⨯+⨯的结果是______.(填奇数或偶数)【难度】★★【答案】偶数.【解析】连续的自然数乘积为偶数,表达式中有101个偶数相加,则其结果为偶数.【总结】本题主要考查奇、偶数的运算性质.【作业9】五位数538AB能够同时被2、3、5整除,求A + B的值.【难度】★★★【答案】2、5、8.【解析】能被2、5整除的数的特点是个位上数字为0,则B=0.能被3整除的数的特点是各个数位上的数字之和能被3整除,则A可为2、5、8.则A+B为2、5、8.【总结】本题主要考查能被2、3、5整除的数的特点.【作业10】小明有一本共126张纸的记事本,他依次将每张纸的正反两面编页码,即由第1页一直编到252页.如果从这本记事本中撕下31张纸,并将它们的页码相加,和是否可能等于2010?【难度】★★★【答案】不能【解析】31张纸的所有页码中,共31个奇数和31个偶数相加,答案是奇数,不可能是2010.另:拓展来看,每一张纸的页码和:1+2=3,3+4=7,5+6=11,……共同点:加上1后都是4的倍数,整体考虑,32页纸的页码和+31应是4的倍数,但2010+31不能被4整除,所以是不可能的.【总结】奇数+奇数=偶数,偶数+偶数=偶数.【作业11】油库中有7桶油,分别是汽油、柴油和机油,每桶油分别重12千克、13千克、16千克、17千克、22千克、27千克和32千克,已知柴油的总重量是机油的3倍,汽油只有一桶,请问7个桶分别装的是什么油?12千克:____油;13千克:____油;16千克:____油;17千克:____油;22千克:____油;27千克:____油;32千克:____油.【难度】★★★【答案】机油;柴油;机油;柴油;柴油;汽油;柴油.【解析】因为柴油的总重量是机油的3倍,所以他们的重量和一定为4的倍数.而7桶油的总重量是12+13+17+22+27+32=139(千克),而139÷4=34......3,我们容易推出汽油的重量被4除余3,由此可见,汽油的重量是27千克.剩下的6桶共重139-27=112(千克),其中包括1份机油和3份柴油,因此机油的总重量为112÷4=28 (千克),柴油的总重量为112-28=84(千克),剩下的6个数字中只有12和16的和为28,则重量是12千克、16千克的这两只桶内装的是机油,其余4只桶内装的柴油.【总结】本题综合性较强,主要考查利用倍数的概念来解决实际问题.。

初中数学精品试题:第一讲 整数的整除性和带余数除法

初中数学精品试题:第一讲 整数的整除性和带余数除法

第一讲 整数的整除性和带余数除法一. 内容提要 班级______ 姓名______1. 整除的性质⑴ n 个连续正整数的积能被n !整除.(n 的阶乘:n !=1×2×3×…×n ).例如:a 为整数时,2a(a+1),6a(a+1)(a+2),24a(a+1)(a+2)(a+3),……⑵ 若a b 且a c ,则a (b ±c). ⑶ 若a,b 互质,且a c, b c ,则ab c ;反之则有:a,b 互质,ab c ,则a c, b c. 2. 带余数除法用一个整数a 去除整数b ,且a>0,则必有并且只有两个整数q 与r ,使b=aq+r ,0≤r<a .这就是带余数除去的一般表达式.当r=0时,记为a│b ,b 被a 整除;当r≠0时,记为ab ,b 不能被a 整除,或者说,b 除以a 有余数.利用余数将自然数分类,在解决实际问题中有广泛应用.我们说,任何一个自然数b 被正整数a 除时,余数只可能是0、1、2、…、a-1.这样就可以把自然数分为a 类.例如,一个自然数被4除,余数只能是0、1、2、3中的一个.因此,所有自然数按被4除时的余数分为4类,即4k ,4k+1,4k+2,4k+3.任何自然数都在这四类之中. 二. 热身练习1. 2006年“五一节”是星期一,同年“国庆节”是星期 .2. 有一个数能被5整除,但除以4余3,这个正整数最小是 .3. 一个整数去除300,262,205,所得余数相同,这个整数是 .4. 一个数除以3余2,除以4余1,那么这个数除以12,余数是 .5. 正整数2006200634+除以3,所得余数是________.6.已知x ,y ,z 均为整数,若11|(7x+2y-5z ),求证:11|(3x-7y+12z ).7.如果一个四位数abcd 能被9整除,试说明四位数bdca 也能被9整除.8.设一个五位数abcad,其中d-b=3,试问a,c为何值时,这个五位数被11整除。

第一讲 整数奇偶性与整除性

第一讲  整数奇偶性与整除性

a k b k a k n (a n b n ) b n (a k n b k n )
al bl al n (an bn ) bn (al n bl n ).
设m=nq+r,0≤r<n,则由引理1,2可知
a b | a (1) b .
2000个 0
1 证明:001 10
2000个0
2001
1 (10 3 ) 667 1 (10 3 1)[(10 3 ) 666 (10 3 ) 665 10 3 1]
.
所以103+1(=1001)整除 10 01
2000个 0
21n 4 例3 (IMO,1959)若n是正整数,则 是既约分数. 14 n 3
例6 若17|(2a+3b),试证:17|(9a+5b).
证明:注意到2(9a+5b)=9(2a+3b)-17b,于是17|2(9a+5b). 但是(17,2)=1,即得17|(9a+5b).
二 · 整除 在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是 整数,所采用的字母也表示整数。 定义1:设a,b是给定的数,b≠0,若存在整数c,使得a=bc则称b 整除a,记作b|a,并称b是a的一个约数(因子),称a是b的一个倍 数,如果不存在上述c,则称b不能整除a,记作 b | a.
性质: (1)若b|c且c|a,则b|a(传递性质); (2)若b|a且b|c,则b|(a c). 即为某一整数倍数的整数之集关于加、减运算 封闭。若反复运用这一性质,则对于任意的整数u,v有b|(au cv)。
证明 :由a bq r , 0 r b, 则(a, b) (b, r )得 : (21n 4,14n 3) (7 n 1,14n 3) (7 n 1,1) 1. 21n 4 是既约分数. 14n 3

1六年级上-整数与整除ppt课件

1六年级上-整数与整除ppt课件

特殊数整数判定法一
如何判断一个数能被25整除? 25 125 225 150 250 250 75 175 275 100 200 300
总结规律,判定方法是:
特殊数整数判定法一 为什么判定后两位就可以? 再想想如何判定一个数能被4整除? 按照这种思路,还有判定被哪个数整除的方法?
特殊数整数判定法一
注意:一个数分解 的两个因数必需互

例3 解:5
03
02
04
01
05
06
练习3
九位数8765□4321能被33整除,求中间□中的数。
解:0
03
02
04
01
05
06
PART FOUR



21
教学过程 95%
你知道1299能否被29整除么?
解:不能 75%
提示:动手做除法算 式
教学反思
XX% 双击输入替换内容 双击输入替换内容
整数和整除的意义
1


01.整除的概念 02.特征除数判定
03.分解判定法 04.试除法
2
PART ONE 第一部分整除的概念
3
教学分析
PART TWO 特征除数判定
5
特殊数整数判定法一
如何判断一个数能被2整除? 13 345 6788 89067 344560 如何判断一个数能被5整除? 15 345 6788 89066 344565 判定方法的共同点是?
判断下列各数是否能被2或5整除: 2570,,587931。
判断下列各数是否能被8整除: 257000,,587808。
03
02
04
01
05

第一讲整数与整除的基本性质(一)

第一讲整数与整除的基本性质(一)

第一讲 整数与整除的基本性质(一)一、整数基本知识:关于自然数:1、有最小的自然数1;2、自然数的个数是无限的,不存在最大的自然数;3、两个自然数的和与积仍是自然数;4、两个自然数的差与商不一定是自然数。

关于整数:1整数的个数是无限的,既没有最小的整数,也没有最大的整数;2、两个整数的和、差、积仍是整数,两个整数的商不一定是整数。

十进制整数的表示方法正整数可以用0,1,2,3,4,5,6,7,8,9十个数字中的一个或若干个组成一个排列表示,如67表示7106+⨯,四位数1254可以写成410510210123+⨯+⨯+⨯,同样地用字母表示的两位数ab b a +⨯=10,三位数f e d def +⨯+⨯=10102, n 位整数表示为121a a a a n n n --,(其中a i 是0,1,2,3,4,5,6,7,8,9中的某个数字,i= n , n – 1,…,2,1,其中a n 0≠)并且.10101211121a a a a a a a n n n n n n n ++⋅+⋅=-----经典例题:例1、用0、1、2、...、9这10个数字组成两个三位数和一个四位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能地小,那么这两个三位数及这个四位数的和是( ))A 1995 )B 1683 )C 1579 )D 1401解:为使和最小,四位数的千位应该是1,百位上的数为0,两个三位数上的百位应分别为2和3;若三个数十位上的数分别是4、5、6,则个位上的数分别是7、8、9,但7+8+9=18是个偶数,这与其和为奇数矛盾,故应调整为三个十位上的数应安排为4、5、7,个位分别为6、8、9,6+8+9为奇数,1046+258+379=1683,选 )B例2、一个两位数,用它的个位、十位上的两个数之和的3倍减去2-,仍得原数,这个两位数是( ))A 26 )B 28 )C 36 )D 38解:设这个两位数为ab ,由题意,得b a b a +=++102)(3,227+=∴b a 即 )1(27+=b a 由于)1(2+b 为偶数,∴a 必须为偶数,排除)),D C 又由于)1(+b 是7的倍数,故选)A(此题也可以直接来解)1(+b 是7的倍数,故有6=b 返回有2=a )例3、一个两位数,加上2以后和的各数字之和只有原数字和的一半,这个两位数是_____________。

整数和整除的意义

整数和整除的意义

第一讲整除和整除、因数和倍数、能被2、3、5整除的数以及分解素因数第一部分:整除和整除的意义1、六(1)班同学分成四个小组制作世博会中国馆模型,每组做的一样多,小沈统计后说:全班共做了42个模型,他的统计正确吗?2、在1到180之间找出所有36的倍数,并求出36的所有因数。

3、96名同学报名参加世博志愿者活动,需平均分成若干组,每组不少于4人,也不多于6人,应怎样分组?4、鲁迅纪念馆的小纪念册每本5元,大纪念册每本7元,王刚买了这两种纪念册共花142元,求两种纪念册最少买了多少本?5、2010年教师节正好是星期五,师生们可以利用下午的班会课好好庆祝一下节日,有同学问了,那明年呢?你能不能不翻日历就能知道明年的教师节是星期几?6、用1,2,3这三个数任意排列,可组成若干个三位数,在这些三位数中,能被11整除的数是多少?第二部分:因数和倍数1、李海区世博会参观,可以在同一个车站乘坐世博21路和869路,世博21路每4分钟发车一次,869路每6分钟发车一次,现在这两路车同时发车以后,至少再过多少分钟又同时发车?2、为庆祝国庆,六年级同学买来336支红花,252枝黄花,210枝粉花,用这些花可以扎成每束最多多少枝同样的花?在每束花中,红、黄、粉共有多少枝?3、小明想把一张长36厘米,宽24厘米的白纸折出一些尽可能大的正方形,最后没有多余,请问这些正方形的边长为多少?一共可以折出多少个正方形?4、五年级一班学生进行队列表演,每行12人或每行16人都正好整行,已知这个班的学生不到50人,你能算出这个班级的人数吗?5、今天是9月19号,正好是星期天,这是小明最高兴的一天,因为他和爸爸妈妈一起去公园玩了一天,小明想:下次什么时候才能和爸爸妈妈一起去玩呢?小明知道爸爸妈妈工作很忙,只有在休息的时候才能和他一起玩,爸爸工作4天休息1天;妈妈工作3天,休息1天;小明学习5天,休息2天(周一至周五学习,星期六、日休息),你能帮他算出来吗?(要说出是几月几号?星期几)第三部分:能被2、5、3整除的数1、某个七位数1993 能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数依次是多少?2、在1—199中,有多少个奇数?多少个偶数?其中奇数之和与偶数之和谁大?3、(!)不算出结果,判断数(524+42-429)是偶数还是奇数?(2)数(42 +30-147)能被2整除,那么,应该填什么数?(3)下面的连乘积是偶数还是奇数?1×3×5×7×9×11×13×14×154、1+2+3+4+…+999+1000+1001的和是奇数还是偶数?5、□△○□▽○…,则第2001个图形是什么形状?第四部分:素数、合数与分解素因数1、两个素数的和是40,求这两个素数的乘积最大值是多少2、自然数123 456 789是素数还是合数?3、把5、6、7、14、15这5个数分成两组,使每组数的乘积相等。

数的整除讲义

数的整除讲义

第一章数的整除1.1整数和整除1、整除和除尽整除:除数、被除数、商都是整数。

除尽:除数、被除数、商不一定是整数2、20÷5=4,我们就说20能被5整除,或者说:5能整除20.【例题】1.按要求填空1÷50;18÷6;23÷7;0.6÷0.5;1÷5除尽:()除不尽:()整除:()2、已知正整数x能整除41,求x的值。

3、用1、2、3这三个数任意排列,可组成若干个三位数,在这些三位数中,能被11整除的数哪个三位数?1.2因数和倍数1、寻找一个数的因数通常使用“对称法”如60的因数:1、60;2、30;3,20;4、15;5、12;6、10;2、当这个数过大时,用“公式法”设整数为N,经过分解素因数后可得:N=x1^m1×x2^m2……xn,则因数的个数为P=(m1+1)×(m2+1)……(mn+1)【例题】1、24的因数有哪些?25的因数有哪些?2、4的倍数有哪些?10的倍数有哪些?3、用4、5、6排成的三位数呢中,(1)哪些是5的倍数?(2)哪些是3的倍数?哪些是9的倍数?(3)哪些是6的倍数?(4)哪些是8的倍数4、求144(9×16)的因数有多少个?1.3能被2、5整除的数【例题】1、2( ) 5、3:()5()2、在内这个数能被72整数。

3、用0、1、2、3这四个数字排成一个四位数。

(1)使这个数有因数2,有几种不同的排法?(2)使这个数能被5整数,有几种不同的排法?(3)使这个数是3的倍数,有几种不同的排法?1.4分解素因数1、一个整数如果只有1和本身两个因数,那么这个数就叫做素数。

2、一个整数除了1和本身还有别的因数,那么这个数叫做合数。

3、把一个合数用素因数相乘的形式表示出来叫做分解素因数;4、1的因数只有一个,1既不是素数也不是合数。

【例题】1、先把36分解素因数,再找出36的所有因数,并回答下列问题:(1)36的每一个素因数都是它的因数吗?36的,每一个因数都是它的素因数吗?(2)36的每两个素因数的乘积都是它的因数吗?(3)36的所有素因数的乘积是它的因数吗?2、把426名学生分成人数相等的若干组参加课外活动小组,每组人数在10—25之间,求每组人数及分成的组数。

整数整除的概念和性质

整数整除的概念和性质

第一讲整数整除的概念和性质1.已知a,b是整数,求证:a+b,ab、a-b这三个数之中,至少有一个是3的倍数.解答:证明:对于a,b,若至少有1个数是3的倍数,则ab是3的倍数;若a,b都不是3的倍数①当a=3m+1,b=3n+1时,a-b=3(m-n),a-b是3的倍数;②当a=3m+1,b=3n+2时,a+b=3(m+n+1),a+b是3的倍数;③当a=3m+2,b=3n+2时,a-b=3(m-n),a-b是3的倍数;∴a+b,ab、a-b这三个数之中,至少有一个是3的倍数.2.已知7位数是72的倍数,求出所有的符合条件的7位数.解答:解:∵72|,∴8|,9|。

由此得:1+2+8+7+x+y+6=24+x+y是9的倍数,而0<x≤9,0<y≤9,则x+y=3或12,又必是8的倍数,必是4的倍数,则y=1,3,5,7或9,当y=1时,x=2,8|216;当y=3时,x=0或9,8不能整除36(不符合题意),8|936(符合题意);当y=5时,x=7,8不能整除756(不符合题意);当y=7时,x=5,8|756;当y=9时,x=3,8不能整除396(不符合题意);综上可得:当y=1,x=2;y=3,x=9,;y=7,x=5时所得的7位数满足条件.∴符合条件的7位数为:1287216,1287936,1287576.3.(1)若a、b、c、d是互不相等的整数,且整数x满足等式(x-a)(x-b)(x-c)(x-d)-9=0,求证:4|(a+b+c+d).(2)已知两个三位数与的和+能被37整除,证明:六位数也能被37整除.解答:证明:(1)∵9=1×(-1)×3×(-3),∴可设x-a=1,x-b=-1,x-c=3,x-d=-3,∴a=x-1,b=x+1,c=x-3,d=x+3,∴a+b+c+d=4x,即4|(a+b+c+d);(2)∵= ×1000+ = ×999+(+)又∵和(+)能被37整除,∴×999+(+)能被37整除,即六位数能被37整除.4.某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除.解答:解:由已知,显然,号码为9999是幸运券,除这张外,如果某个号码n是幸运券,那么号m=9999-n也是幸运券,由于9是奇数,所以m≠n.由于m+n=9999相加时不出现进位,这就是说,除去号码9999这张幸运券外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的整倍数,而101|9999,故知所有幸运券号码之和也能被101整除.5.写出都是合数的13个连续自然数.解答:解:我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也是14的倍数,所以只要取a为2,3,…,14的倍数,则a+2,a+3,…,a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.6.已知定理“若大于3的三个质数a、b、c满足关系式2a+5b=c,则a+b+c 是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.解答:证明:∵a+b+c=a+b+2a+5b=3(a+2b),显然,3|a+b+c,若设a 、b 被3整除后的余数分别为a r 、b r ,则a r ≠0,b r ≠0.若a r ≠b r ,则a r =2,b r =1或a r =1,b r =2,则2a+5b=2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2)=3(2p+5q+4),即2a+5b 为合数与已知c 为质数矛盾.∴只有a r =b r ,则a r =b r =1或a r =b r =2.于是a+2b 必是3的倍数,从而a+b+c 是9的倍数.又2a+5b=2×11十5×5=47时,a+b+c=11+5+47=63,2a+5b=2×13十5×7=61时,a+b+c=13+7+61=81,而(63,81)=9,故9为最大可能值.7.一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”.解答:解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:,不妨设其中的最大数为,则最小数为.由“新生数”的定义,得N=abc -cba =(100a+l0b+c )一(100c+l0b+d )=99(a-c ).由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这九个数中,只有954-459=495符合条件,故495是唯一的三位‘新生数”.8.从左向右将编号为1至2002号的2002个同学排成一行,从左向右从1到11报数,报到11的同学原地不动,其余同学出列;然后,留下的同学再从左向右从1到11报数,报到11的同学留下,其余同学出列;留下的同学再从左向左从1到11地报数,报到11的同学留下,其余同学出列.问最后留下的同学有多少?他们的编号是几号?解答:解:由题意,第一次报数后留下的同学,他们的编号必为11的倍数;第二次报数后留下的同学,他们的编号必为112=121的倍数;第三次报数后留下的同学,他们的编号必为113=1331的倍数.因此,最后留下的同学编号为1331的倍数,我们知道从1~2002中,1331的倍数只有一个,即1331号,所以,最后留下一位同学,其编号为1331.9.在一种游戏中,魔术师请一个人随意想一个三位数,把的和N告诉魔术师,于是魔术师就能说出这个人所想的数.现在设N=3194,请你做魔术师,求出数来.解答:解:将acb也加到和N上,这样a、b、c就在每一位上都恰好出现两次,所以有acb+N=222(a+b+c),从而3194+100≤222(a+b+c)≤3194+999,而a、b、c是整数.所以15≤a十b十c≤18①.因为222×15-3194=136,222×16-3194=358,222×17-3194=580,222×18-3194=802,其中只有3+5+8=16能满足①式,∴=385.10.在下边的加法算式中,每个口表示一个数字,任意两个数字都不同:试求A和B乘积的最大值.解答:解:先通过运算的进位,将能确定的口确定下来,再来分析求出A和B 乘积的最大值.设算式为显然,g=1,d=9,h=0.a+c+f=10+B,b+e=9+A,∴A≤6.∵2(A+B)+19=2+3+4+5+6+7+8=35,∴A+B=8.要想A ×B 最大,∵A ≤6,∴取A=5,B=3.此时b=6,e=8,a=2,c=4;f=7,故A ×B 最大值为15.11.任给一个自然数N ,把N 的各位数字按相反的顺序写出来,得到一个新的自然数N ′,试证明:|N-N ′|能被9整除.解答:解:令N=n a a a ⋅⋅⋅21,则N ′=11a a a n n ⋅⋅⋅-.所以,N 除以9所得的余数等于n a a a +⋅⋅⋅++21除以9所得的余数,而N ′除以9所得的余数等于11a a a n n ⋅⋅⋅++-除以9所得的的余数.显然,n a a a +⋅⋅⋅++21=11a a a n n ⋅⋅⋅++-.因此,N 与N ′除以9所得的余数相同,从而|N-N'|能被9整除.12.(1)证明:形如的六位数一定能被7,1l ,13整除.(2)若4b+2c+d=32,试问能否被8整除?请说明理由.解答:解:(1)=1001(100a+10b+c )=7×11×13(100a+10b+c ), ∴形如的六位数一定能被7,1l ,13整除. (2)=1000a+100b+10c+d=1000a+96b+8c+(4b+2c+d ) =1000a+96b+8c+32,以上各式均能被8整除,故若4b+2c+d=32,能被8整除.。

第一讲,整数和整除

第一讲,整数和整除

第一讲整数和整除主课题:1.1整数和整除的意义&1.2因数和倍数&1.3能被2、3、5整除的数教学目标:1. 掌握自然数、整数、整除、因数、倍数等概念2. 掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3. 掌握求一个整数在一定范围内的倍数,掌握整数的最小的倍数4、掌握能被2、3、5整除的数的特征,掌握能同时被2、5整除的数的特征5、掌握偶数、奇数的特征,以及它们的运算性质教学重点:1、自然数、整数、整除、因数、倍数;整除、整除的条件2. 掌握求一个整数的所有因数的方法,掌握整数的最小和最大的因数3. 掌握求一个整数在一定范围内的倍数,掌握整数的最小的倍数4、掌握奇数偶数的运算性质,会求能同时被2、3、5其中的两个或者三个数整除的数教学难点:1.掌握整数最小和最大的因数,整数最小的倍数2.奇数偶数运算性质的应用3.求能同时被2、3、5其中的两个或者三个数整除的数考点及考试要求:1.自然数、整数、正整数、负整数的分类2.给出算式判断是否为整除3.会在一定范围内求一个正整数的因数、倍数4.会运用奇数偶数的运算性质5.会求能被2、3、5整除的数以及能同时被其中的两个或者三个数整除的数★知识精要知识点1:整数的意义和分类自然数:零和正整数统称为自然数(n a tur a l num b er);整数:正整数、零、负整数,统称为整数(integer)。

整数知识点2:整除(1)整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a. (2)整除的条件(两个必须同时满足):①除数、被除数都是整数;②被除数除以除数,商是整数而且余数为零。

知识点3:除尽与整除的异同点相同点:除尽与整除,都没有余数,即余数都为0;除尽中包含整除不同点:整除中被除数、除数和商都为整数,余数为零;除尽中被除数、除数和商不一定为整数,余数为零。

知识点4:因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称为约数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 整数和整除教学目标1、整数和整除的意义2、因数和倍数3、能被2,3,5,9整除的数 重点和难点 能被2,3,5,9整除的数的意义因数、倍数等的相关概念,知识框架一、整数和整数的意义1、零和正整数统称为自然数。

正整数、零、负整数统称为整数2、整数a 除以整数b ,如果除得的商是整数而余数为零,我们就说a 能被b 整除,或者说b 能整除a 。

用式子表示:如果 a÷b=c(其中a 、b ,c 都为整数)称a 能被b 整除或b 能整除a 。

(区分两种表述)注意整除的条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。

注意:其实,整除是除尽的一种特殊形式。

被除数和除数 商 整除都是整数,除数不等于0 商是整数,余数为0 除尽不一定是整数,除数不等于0 商是整数或有限小数,没有余数3、整除的条件:1)除数,被除数都为整数2)被除数除以除数,商是整数而且余数为零。

4、能被2整除的数的特征:个位上的数是0,2,4,6,8能被5整除的数的特征:个位上的数是0,5能被10整除(既能被2整除又能被5整除)的数的特征:个位上的数是0能被3整除的数的特征:各位上的数字的和能被3整除能被9整除的数的特征:各位上的数字的和能被9整除【典型例题1】试证明“三个连续的正整数之和能被3整除”?【典型例题2】用0、1、5、6四个数字,按要求排成没有重复数字的四位数:(1)能被3整除,但不能被5整除。

(2)能被2整除,但不能被5整除。

(3)既能被3整除,又能被5整除。

(4)能同时被2、3、5整除。

思考:有最大的正整数吗?有最小的正整数吗?有最大的负整数吗?有最小的负整数吗?有最大的自然数吗?有最小的自然数吗?例题讲解1、下列算式中表示整除的算式是()(A)9÷18=0.5 (B)6÷2=3 (C)15÷4=3……3 (D)0.9÷0.3=32、下列各组数中,均为自然数的是()(A)1.1,1.2,1.3 (B)-1,-2,-3 (C)23 ,34 ,45 (D)2,4,6 3、下列说法正确的是……………………………………………()(A)最小的整数是0 (B)最小的正整数是1(C)没有最大的负整数(D)最小的自然数是14、判断:(1)零是整数,但不是自然数;(2)-1是最大的负整数;(3)32÷4=8,则4能被32整除;(4)整数中没有最大的数,也没有最小的数。

5、13、24、57、88四个数中能被2整除的数有哪几个?6、正整数36能被正整数a整除,写出所有符合条件的正整数a。

【拓展题1】1、三个连续自然数的和是306,求这三个自然数2、试证明:能被3整除的三位数各数位上数的和能被3整除。

二、因数和倍数1、整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数(也称为约数)因数、倍数是互相依存的。

不能说a是倍数、b是因数!一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身。

1只有一个因数1,除1以外的整数,至少有2个因数。

最大公约数:也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。

最小公倍数:几个数共有的倍数叫做这几个数的公倍数,其中最小的一个公倍数叫做这几个数的最小公倍数。

性质:一个整数既是它本身的约数又是它本身的倍数。

1是任何一个整数的因数,任何整数都是1的倍数。

0是任何一个不为0的整数的倍数,任何一个不等于0的整数都是0的因数。

【典型例题】能被18整除的数的因数至少有几个?为什么?1、下列说法正确的是()(A)1没有因数,也没有倍数(B)一个整数的因数的个数有限(C) 一个整数的倍数的个数有限(D)6的因数只有2和32、在80以内,24的因数和倍数分别有()(A)2,3,4,6,8,12;48,72 (B)2,3,4,6,8,12,48,72 (C)1,2,3,4,6,8,12,24,48,72(D)1,2,3,4,6,8,12,24; 24,48,723、24的因数有()个。

(A)6 (B)只有1和本身(C)无数多个(D)84、100以内(不包括100)5的倍数有()个。

(A)10 (B)18 (C)19 (D)205、一个数既是30的倍数,又是120的因数。

下列说法中,正确的是()。

(A)这样的数只有一个(B)这样的数有限个。

(C)这样的数有无数多个(D)这样的数不存在6、能被48整除的数一定是下列()的倍数。

(A)18 (B)24 (C)36 (D)967、正整数a既是甲的倍数,又是乙的因数。

下列说法中,正确的是()。

(A)甲乙两数大小相等(B)甲小于乙(C)甲是乙的因数(D)乙是甲的因数8、填空:50以内7的倍数有()9、对于任意整数m,有没有最大或最小的因数,如果有,它们各是什么数?10、下列说法错误的是 ( )A. 一个数的因数的个数是有限的,最小的是1,最大的是它本身B. 一个正整数的倍数的个数是无限的,最小的是它本身C. 12在100以内的倍数共有10个D. 一个数既是16的因数,又是16的倍数,这个数就是16三、奇数和偶数能被2整除的数叫做偶数,不能被2整除的数叫做奇数.举例常见的奇偶数:奇数 1,3,5,7,9,11,13,……… 偶数 2,4,6,8,10,12,14,…能被2、5整除的数的特征:个位上是0,2,4,6,8的数都能被2整除.个位上是0或者5的数都能被5整除1、两个连续的偶数的和是122,这两个数分别是。

2、100以内11的倍数有。

3、一个偶数与一个奇数的和是;差是;积是;4、能同时被5、7 整除的最小的偶数是;能同时被3、11整除的最小偶数是5、一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有().(A) 120个(B) 90个(C) 60个(D) 30个6、20以内的自然数中,奇数共有()(A)7个(B)8个(C)9个(D)10个7、下列说法正确的是()(A)奇数不可能被2整除(B)5不可能整除偶数(C)25.5的末位数是5,故它能被2整除(D)0.4÷2=0.2,没有余数,所以0.4是偶数8、下列个数中既能被2整除又能被5整除的数是()(A)120 (B) 45 (C)16 (D)249、下列说法正确的是()(A)只有末位数是5的整数才能被5整除(B)不能被2除尽的数是奇数(C)偶数能被2整除(D)偶数不可能被5整除10、既能被2整除又能被5整除的最大的三位数是()(A)900 (B)990 (C)995 (D)99811、下列说法正确的是()(A)两个偶数之和为奇数(B)两个奇数之和为奇数(C)偶数一定能被2整除(D)两个奇数与奇数之积为偶数12、下列说法中错误的是()(A)任何一个偶数加上1之后,得到的都是一个奇数;(B)一个正整数,不是奇数就是偶数;(C)任何一个奇数加上1之后,得到的都是一个偶数;(D)偶数不能被任何一个奇数整除13、3569加上()就能被2、3、5整除。

(A)0 (B)1 (C)2 (D)314、既能被2又能被5整除,但不能被3整除的最大的二位数是()。

(A)95 (B)90 (C)85 (D)8015、三个连续的偶数中,最大的是a,最小是().【拓展题】1、找出50以内能被6整除,且被5整除余2的数?2、一个两位数,它的两个数位上的数之差是2,且能同时被2,3整除,这个两位数最小是多少?最大是多少?3、228减去一个数后,能同时被2,3,5整除,减去的这个数最小的是几?4、教室里有男女同学若干人,男生校服上有5粒纽扣,女生校服上有4粒纽扣.如果学生人数是奇数,纽扣总数是偶数,那么女生人数是奇数还是偶数?为什么?课后练习题1、用36个相同大小的正方形,拼成长方形,有多少种不同的拼法?2、48名同学参加义务植树,需平均分成若干组,每组不少于两人,也不多于30人,应该怎样分组?3、小纪念册每本5元,大纪念册每本7元,张军买了这两种纪念册共花了142元,求两种纪念册最少买了几本?4、一个三位数,十位上的数字是3,而且这个数能同时被2,3,5整除,则这个三位数可以是_____5、三位数A2A能同时被2 ,3整除,求数字A6、已知一个三位数能被2整除,且各个数位上的数之和为8的倍数,那么这个三位数最大是几?7、夏令营活动,午餐时每人发一个饭碗,恰好能每两人发一个菜碗,每三人发一个汤碗,一共用去88个碗,这次夏令营共有多少人参加?8、用91个苹果分给十几人,如果没人得到的苹果个数都相等,那么每人拿到______个苹果。

9、如果(m)表示m的全部因数的和,如(4)=1+2+4=7,则(18)-(21)=___________10、一堆水果,3个一份多一个,4个一份还多一个,5个一份也多一个,则这堆苹果至少有______个。

11、某年级人数在200`~300之间,若3让你一组余1人,若5人一组余2人,若7人一组余3人,该年级有_____名学生。

12、已知:A=2×3×5,B=3×3×5,则A和B相同的因数有哪些?13、用0、3、4、5四个数字,按下列要求排成没有重复数字的四位数,并请指出满足条件的这些四位数中最大的四位数。

(1)能被2整除,但不能被5整除;(2)能被5整除,但不能被2整除;(3)既能被2整除,又能被5整除;14、如果一个长方形的长和宽都是整数厘米,并且这个长方形的面积是24平方厘米,想一想,这个长方形的周长可以多少?15、一个数既是100的因数,又是10的倍数,它不能被4整除,那么这个数是什么?16、有一批零件,设计了三种不同的方法装箱,第一种每箱装18个,第二种每箱装24个,第三种每箱装42个,结果都没有多余。

这批零件最少有多少个?。

相关文档
最新文档