实验1 刚体转动惯量的测定

合集下载

大学物理实验实验刚体转动惯量的测量

大学物理实验实验刚体转动惯量的测量
记录刚体初始的角 度。
测量转动周期
使用测量仪器记录 刚体转动的周期。
安装刚体
将刚体安装在支架 上,确保稳定和水 平。
施加扭矩
使用砝码或其他方 式施加扭矩,使刚 体转动。
重复测量
多次施加不同大小 的扭矩,并记录相 应的转动周期。
数据记录和处理
记录数据
将实验过程中测量的数据记录在实验报告中。
数据处理
根据测量数据,计算刚体的转动惯量。
学习测量刚体转动惯量的方法
扭摆法
通过测量刚体在摆动过程中周期的变化来计算转动惯量,利用单摆的周期公式 $T = 2pisqrt{frac{I}{mgh}}$,其中 $I$ 是刚体的转动惯量,$m$ 是刚体的质量,$g$ 是重力加速度,$h$ 是单摆的悬挂高度。
复摆法
通过测量复摆在摆动过程中周期的变化来计算转动惯量,利用复摆的周期公式 $T = 2pisqrt{frac{I}{mgh}}$,其中 $I$ 是刚体的转动惯量,$m$ 是刚体的质量,$g$ 是重力加速度,$h$ 是复摆的悬挂高度。
转动惯量在工程中的应用
在机械设计中,转动惯量的大小直接影响到机械系统的稳定性和动态响应;在航 天工程中,卫星的转动惯量对于其姿态控制和轨道稳定具有重要意义;在车辆工 程中,转动惯量的大小影响到车辆的操控性能和行驶稳定性。
02
实验原理
刚体转动惯量的定义和计算公式
转动惯量定义
描述刚体绕轴转动的惯性大小的物理量。
建议与展望
提出改进实验的建议和未来研究的方向,为 后续研究提供参考和借鉴。
05
实验注意事项
安全注意事项
实验前应检查实验装置是否稳 固,确保实验过程中不会发生 意外倾倒或摔落。
实验操作时应避免快速转动刚 体,以防因离心力过大导致实 验装置损坏或人员受伤。

刚体转动惯量的测定(共10张PPT)

刚体转动惯量的测定(共10张PPT)

3、学习用曲线改直的数据处理方法处理数据。 3、学习用曲线改直的数据处理方法处理数据。
00g,h= cm 保持h、r、x不变改变m(分别取m=10g,15g,20g,25g,30g)重复上述操作,分别测出相同半径下,不同质量的重物下落相同高度所需的时间t,每一 条件下,重复测量三次,将测量数据记入表一。 3、学习用曲线改直的数据处理方法处理数据。 保持h、r、x不变改变m(分别取m=10g,15g,20g,25g,30g)重复上述操作,分别测出相同半径下,不同质量的重物下落相同高度所需的时间t,每一 条件下,重复测量三次,将测量数据记入表一。 2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数据。 1、了解转动惯量的物理意义;
00g,h= cm 2、掌握转动惯量的测定方法; 1、了解转动惯量的物理意义; 3、学习用曲线改直的数据处理方法处理数据。
实验内容及操作
• 保持h、r、x不变改变m(分别取 m=10g,15g,20g,25g,30g)重复上述操作,分 别测出相同半径下,不同质量的重物下 落相同高度所需的时间t,每一条件下, 重复测量三次,将测量数据记入表一。
刚体转动惯量的测定
• 实验目的 • 实验仪器 • 实验原理 • 实验内容及操作 • 数据记录与处理
实验目的
1、了解转动惯量的物理意义; 2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数
据。
实验原理
设由塔轮、游码、横杆等组成的转动系统的转动惯量为J,系统受拉
3、学习用曲线改力直的作数据用处理力方矩法处为理数M据T。,阻力矩为Mμ,则有
2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数据。
1.00 1.50 2.00 2.50 3.00 t(s) r(cm) 3、学习用曲线改直的数据处理方法处理数据。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握用游标卡尺和秒表等仪器的使用方法。

二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。

当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。

设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。

当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。

由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。

又因为圆盘的摆动周期为 T,所以ω =2π/T。

联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。

三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。

四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。

2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。

3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。

4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。

5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。

五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。

实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。

实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。

根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。

2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。

实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。

(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。

(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。

(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。

(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。

(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。

(3)移动转轴的位置,直到平衡木重新平衡。

(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。

实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。

(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。

实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。

分析实验数据的偏差和不确定度,讨论实验结果的可靠性。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

刚体转动惯量测定实验

刚体转动惯量测定实验

四.实验方法和步骤
5.用手轻微转动上部圆盘,使三线摆产生一个初扭转 角,然后释放圆盘,三线摆发生扭转振动 6.点击“复位”按钮,再点击“开始”按钮,系统自 动记录扭转20次所需时间,取平均即为振动周期
7.重新稳定圆盘,按“开始”按钮连续测量6次 8.重新调整摆长约为700mm和500mm,重复3-7步骤,分 析不同摆长对转动惯量测试值的影响
刚体转动惯量测定实验刚体转动惯量的测定刚体转动惯量实验报告刚体转动惯量实验仪刚体转动惯量刚体的转动惯量三线摆测刚体转动惯量刚体转动惯量数据处理测量刚体的转动惯量刚体转动惯量误差分析
工程中常见非均质物体
一.实验目的
1.了解并掌握用“三线摆”测取物体转
动惯量的原理与方法 2.掌握用“等效法”简化并解决实际工
四.实验方法和步骤
(二)非均质物体转动惯量测定
1. 点击“非均质物体转动惯量测试”按钮,进入测试界 面 2.松开三线摆顶部固定螺栓,转动手轮,使三线摆长为 600mm,调整圆盘至水平状态 3.输入等效圆柱质量m=80g,直径d=16mm、摆长l=600mm 4.将非均质物体放入圆盘,使其转动中心与盘心重合, 转动上部圆盘产生扭转振动,记录振动周期
r B’
R
三.实验原理
设圆盘最大转角为θmax,当圆盘转
角为θ 时,有
A
C
B
r l , r max l max
设三线摆作初始转角等于0、转动角 速度等于ωn的简谐振动,则有:
d max sin n t , n max dt max
四.实验方法和步骤
(二)非均质物体转动惯量测定
6.使两等效圆柱中心间距s为30、40、50、60mm,测出 其扭转振动周期,并用平行移轴定理计算转动惯量 7.用插入法求得非均质物体转动惯量

刚体转动惯量测定

刚体转动惯量测定

θ=ω0t+1/2βt2
同一次转动过程中,时间分别为t1、t2的角位移可以表示为:
θ1=ω0t1+1/2βt12
(5)
θ2=ω0t2+1/2βt22
(6)
取θ1 =2π, θ2=6π并消去ω0,可以得到:
2 (6t1 2t2 )
t1t2 (t2 t1)
(7)
(二)验证平行轴定理
J=JC+md2
(2)
Mμ—阻力矩
Mμ =Jβμ
(3)
3、将(2)和(3)代入(1)式中,可得:
mfgr+Jβμ=J β 由此可得转动惯量的表达式:
J mf gr (4)

1. 承物台 2. 遮光细棒 3.
4、本实验的刚体转动可认为是匀变速转动,角位移公式:
图二 承物台俯视图
刚体转动惯量测定
1. 学习使用刚体转动惯量实验仪,测定规则物体的转动惯量,
2. 用实验方法验证平行轴定理。
二、实验原理
(一)转动惯量的测定
1、由转动定律可知: M=Jβ
其中: M—合外力矩 J—转动惯量 β—角加速度
2、本仪器转动时受到两个力矩的作用即:
M′+Mμ=Jβ
(1)
其中:M′—动力矩 M′ =Fr ≈mfgr
三、实验内容 (一)测圆环的转动惯量Jx 1. 测承物台的转动惯量J0 2. 测承物台加圆环的转动惯量J 3. 求圆环的转动惯量Jx=J-J0,并
与J理比较求相对误差 (二)验证平行轴定理
1.先将小圆柱放在孔(2,2′)位置, 测J1
2.后将小圆柱放在孔(1,3 ′ )位置, 测J2
3.验证:J2-J1=2mzd2

实验一 测量刚体的转动惯量

实验一  测量刚体的转动惯量

实验一 测量刚体的转动惯量【实验目的】1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。

2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。

3.学会使用通用电脑计时器测量时间。

【实验仪器】ZKY —ZS 转动惯量实验仪,ZKY —JI 通用电脑计时器。

【实验原理】1.恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1-1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体的角速度 β,则可计算出该刚体的转动惯量J 。

设以某初始角速度转动的空实验台转动惯量J 1,未加砝码时,在摩擦阻力矩M μ 的作用下,实验台将以角速度β1作匀减速运动,即:-M μ = J 1β1 (1-2 ) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。

若砝码的加速度为a ,则细线所受张力为T = m (g -a )。

若此时实验台的角加速度β2,则有a = R β2。

细线施加给实验台的力矩为TR = m (g -R β2) R ,此时有:m (g -R β2)R - M μ= J 1β2 (1-3) 将(1-2)、(1-3)两式联立消去M μ后,可得:J 1=122)(βββ--R g mR (1-4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:J 2=344)(βββ--R g mR (1-5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:J 3= J 2-J 1 (1-6)测得R 、m 及β1、β2、β3、β4,由(23-4)、(23-5)、(23-6)式即可计算被测试件的转动惯量。

2.β 的测量实验中采用ZKY-JI 通用电脑计时器记录遮挡次数和相应的时间。

固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮挡次数K 和相应得时间t 。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

实验一刚体转动惯量的测量

实验一刚体转动惯量的测量

第二单元实验1 用扭摆法测刚体转动惯量转动惯量是刚体转动时惯性大小的量度。

刚体的转动惯量与刚体的总质量、形状大小和转轴的位置有关。

对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。

但是对于形状较复杂的刚体,应用数学方法计算它的转动惯量非常困难,故大都用实验方法测定。

刚体的转动惯量在机械动平衡方面有着广泛的应用,凡是涉及往复式直线运动与旋转运动的相互转换,都必须借助具有较大转动惯量的“飞轮”才能实现,其中典型的例子是蒸汽机和内燃机。

此外,为了让机械转动更平稳,最简单的方法就是在其转动轴上加上一个形状规则、质量分布均匀,且具有一定转动惯量的飞轮。

因此,学会刚体转动惯量的测定方法,具有重要的实际意义。

【实验目的】1. 了解ZG-2型转动惯量测定仪测刚体转动惯量的原理和方法。

2. 测定弹簧的扭转常数及几种不同形状刚体的转动惯量。

3. 验证刚体转动的平行轴定理。

【实验原理】1. 弹簧的扭转常数及刚体的转动惯量图1 ZG-2转动惯量测定仪将待测物体在水平面内转过一定角度θ后,在弹簧恢复力矩的作用下,物体就开始绕垂直轴作往返扭转运动。

忽略轴承的摩擦阻力矩,根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -=(1)式中K 为弹簧的扭转常数。

根据转动定律βI M =式中I 为物体绕转轴的转动惯量,β为角加速度,由此可得θβIK -= (2)令ω2=IK,由(2)式得 -=-==θθβI Kdtd 22ω2θ上述微分方程表示转动惯量仪运动具有角谐振动的特性,即角加速度β与角位移θ成正比,并且方向相反。

此微分方程的解为:)cos(ϕωθ+=t A式中θ为角位移,A为谐振动的角振幅, ϕ为初相位角,ω为圆频率。

此谐振动的周期为KI T πωπ22==则 224T I K π= (3)根据(3)式,只要测得转动惯量仪的摆动周期T ,在I 和K 中任何一个量已知时就可计算出另一个量。

刚体转动惯量的测定 一、实验目的

刚体转动惯量的测定 一、实验目的
刚体转动惯量的测定
一、实验目的:
1.学习测量刚体转动惯量的方法 2.学习用作图法处理数据 3.观测刚体转动惯量与质量分布的关系
二、实验仪器:
刚体转动惯量实验仪,通用电脑式毫秒计,铝环,铝 盘,牵引砝码等。
三、实验原理:
1. 基本概念 1)刚体 在任何情况下形状和大小都不 发生变化的物体称为刚体。
2)刚体的定轴转动 刚体的各质元在运动中都绕一 固定轴作圆周运动,称刚体作 定轴转动。 3)刚体的对某转轴的转动惯量(J)
2
上两式联立,得系统匀加速转动时的角加速度:
2 [( K1 1)t 2 ( K 2 1)t 2 ) 2 2 t1 t 2 t 2 t1
当绳子一端的砝码m1落地,转台在摩擦力矩作用下, 做匀减速转动。同理:可以求出匀减速转动的角加速 度
( K 2 1)t1 ] 2 [( K1 1)t 2 2 2 t1 t 2 t 2 t1
z O θ x
2. 刚体定轴转动定律 : M z J z
1 2 J mr 2
3 转动惯量对同轴叠加原理:
空实验台的转动体系对转轴的转动惯量记为J0 。本实 验的待测物体为圆环环、圆盘,要测其对中心轴的转 动惯量Jx,可以将其放在载物台上。这时转动体系的 转动惯量记为J,J =J 0 + Jx , Jx = J - J0
rj
z
mj
o O
ri
mi
rij
θ
x
刚体的对某转轴的转动惯量是刚体对该转轴保持 静止或匀速转动状态的量度。 刚体受到的对某转轴的力矩是改变刚体对该转轴 转动状态原因。
4)决定刚体转动惯量(J)大小的因素 A. 刚体的质量,B. 转轴的位置,C. 刚体质量的分布

1.转动惯量的测定

1.转动惯量的测定

J T = 2p K
– 如果已知 K,则测得周期 T 就可以得转动惯量 J。
办法
– 空载时测量一次周期,加已知转动惯量的刚体再测
一次周期,这样就可以同时确定 K 和托盘支架的转 动惯量了。
9
测定扭摆的扭转系数
ì ï ï T 0 = 2p J 0 ï ï K ï Þ í ' ï ï T = 2p J 0 + J 1 ï 1 ï K ï î
11
注意事项
– 由于弹簧的扭转常数K值不是固定常数,它与摆角
略度变化过大 带来的系统误差,在测定各种物体的摆动周期时, 摆角不宜过小,摆幅也不宜变化过大。 – 光电探头宜放置在挡光杆的平衡位置处,拦光杆不 能和它相接触,以免增大摩擦力矩。 – 机座应保持水平状态。 – 圆柱、圆筒放置时要放正不可斜放。
12
数据处理提示
参考表格1
13
数据处理提示
参考表格2
14
实验一 转动惯量的测定 转动惯量的测定一 扭摆法测定物体转动惯量 【预习思考题】 1.如何测量任意形状物体对特定轴的转动惯量? 答:先在载物盘上装上几何规则的物体,测量其摆动周期,计算出弹簧的扭转常数K值。再将任意形状物体装在载物盘上或直接装在垂直轴上,绕特定轴转动,测 量出转动惯量。 若绕过质心轴转动,测量出过质心轴转动惯量,利用平行轴定理计算出绕特定轴转动惯量。 2.扭摆启动时摆角要在90°左右,为什么? 答:由于弹簧的扭转常数值不是固定常数,它与摆动角度略有关系,在小角度时变小,摆角在90°左右基本相同。 【分析讨论题】 1.扭摆在摆动过程中受到哪些阻尼?它的周期是否会随时间而变? 答:空气的阻尼,转轴与轴承间的摩擦阻尼。由于弹簧的扭转常数值不是固定常数,在小角度时变小,因此它的周期会随时间而变。 2.扭摆的垂直轴上装上不同质量的物体,在不考虑阻尼的情况下分析对摆动周期大小的影响。 答:同样形状、同样质量分布的物体,质量大的物体,其摆动周期大。 转动惯量的测定二 三线摆法测定物体转动惯量 【预习思考题】 1.对下圆盘的摆角有何要求?为什么? 答:下圆盘的摆角要小于10°。因为在三线摆法测定物体转动惯量公式推导过程中应用了。 2.怎样启动三线摆才能防止下圆盘出现晃动? 答:让已调水平的三线摆保持静止,用手轻轻扭动上圆盘上的扭动杆,使下圆盘摆动角度小于10°,随后将扭动杆退到原处。 【分析讨论题】 1.三线摆在摆动过程中要受到空气的 三线摆在摆动过程中要受到空气的阻尼,振幅越来越小,它的摆动周期是否会随时间而变化? 三线摆在摆动过程中要受到空气的 答:它的摆动周期是不会随时间而变化。 2.加上待测物体后三线摆的摆动周期是否一定比空盘的周期大?为什么?答:加上待测物体后三线摆的摆动周期不一定比空盘的周期大。由下圆 盘对中心轴转动惯量公式可知,若J/m>J0/m0 加上待测物体 后三线摆的摆动周期变大;若J/m<J0/m0 加上待测物体后三线摆的摆动周期变 小。 3.如何用三线摆验证转动惯量的平行轴定理? 答:将两个完全相同的小圆柱体m分别置于下圆盘的中心,测出绕圆柱体质心的转动惯量J;再将两个完全相同的圆柱体对称置于下圆盘的中心两侧,圆柱体质心与 下圆盘的中心l,测出两个圆柱体对中心轴的转动惯量Jˊ。验证式子Jˊ=2ml2+2J 成立。

刚体转动惯量的测量Ⅰ

刚体转动惯量的测量Ⅰ
3
4
J2 =
m R (g -R 4 )
4 3
由转动惯量的迭加原理可知,被测试件 的转动惯量 J 3为
J 3 = J 2 J1
如何求得角加速度 ?
采用计时器计录遮挡次数和相应的时间。 固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡 一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计 下遮档次数k和相应的时间t。 从第一次挡光(k=0,t=0)开始计次、计时,且初始角速度为ω0, 对于匀变速运动,测量得到任意两组数据(km,tm),(kn,tn),对应 的角位移θm、θn分别为:
实验步骤
(1) 测量β1(匀减速测量):
直接转动实验台,获得8组数据;
(2) 测量β2 (匀加速测量): 选择塔轮半径R及砝码质量,将1端打结的细线沿 塔轮上开的细缝塞入,并且不重叠的密绕于所选定 半径的轮上,细线另1端通过滑轮后连接砝码托上 的挂钩,用手将载物台稳住; 按“复位”键,进入设置状态后再按 “0109”, 使计时器进入工作等待状态; 释放载物台,砝码重力产生的恒力矩使实验台产 生匀加速转动。
m K m 0 tm
1 2
tm
2
n K n 0 t n
1 2
tn
2
两式中消去 0 ,可得到:

2 π (K n t m - K m t n ) tn tm tm tn
2 2
即:只要从计时器测得遮挡次数 k 和对应的时间 t ,就 可以算出角加速度 。
-M = J 1 1
合外力矩 M 主要是由引线的张力矩M 和磨擦力矩 M 构成,即:

M -M = J 1 2
可以解得:

大学物理(精品本科)1刚体的转动惯量测定

大学物理(精品本科)1刚体的转动惯量测定

刚体转动惯量的测量一、实验目的1.学习测量刚体转动惯量的方法。

2.用实验方法验证平行轴定理。

3.用最小二乘法处理数据,进一步熟悉各种数据处理方法。

二、实验仪器刚体转动惯量实验仪,TH-4通用电脑式毫秒计,铝环,铝板,小钢柱,牵引砝码等。

1.刚体转动惯量实验仪刚体转动惯量实验仪如图1所示。

它不但能测定质量分布均匀、断面形状规则刚体的转动惯量,而且能测定质量分布不均匀、断面形状不规则刚体的转动惯量,并可验证物理学的转动定律、平行轴定理等。

它的转动体系由十字形承物台和塔轮组成,可绕它的垂直方向对称轴进行平稳的转动。

两根对称放置的遮光细棒随刚体系统一起转动,依次通过光电门不断遮光。

光电门由发光器件和光敏器件组成,发光器件的电源由毫秒计提供,它们构成一个光电探测器,光电门将细棒每次经过时的遮光信号转变成电脉冲信号,送到通用电脑式毫秒计。

毫秒计记录并存储遮光次数和每次遮光的时刻。

塔轮上有五个不同半径的绕线轮,以提供不同的力臂,从下到上分15mm、20 mm、25 mm、30 mm、35 mm五档。

砝码钩上可以放置不同数量的砝码来改变对转动体系的拉力。

在实验仪十字形承物台每个臂上,沿半径方向等距离d有三个小孔,如图2所示。

小钢柱可以放在这些小孔上,小钢柱在不同的孔位置就改变了它对转动轴的转动惯量,因而也就改变了整个体系的转动惯量,所以可用来验证平行轴定理。

图1 图23通用电脑式毫秒计(左:前面板;右:后面板)2.通用电脑式毫秒计通用电脑式毫秒计是为测量刚体转动惯量而设计的,也可用于物理实验中各种时间测量和计数。

本仪器使用了微电脑(单片机)作为核心器件,它具有记忆功能,最多可记忆九十九组测量时间,并可随时把需要的测量结果取出来。

时间测量有几种方法,可根据需要选择一种。

计时范围0-99.9999s ,计时精度0.1ms 。

两路2.2V 直流电源输出;两路光电门信号或TTL/CMOS 信号电平输入通道;可与计算机通过标准RS232串口通信。

刚体转动惯量的测定

刚体转动惯量的测定
三、实验原理 四、实验内容 五、数据记录 六、数据处理 七、思考题
一、试验目旳
一、实验目的
1、测定刚体旳转动惯量并观察刚体旳转动 惯量随质量及质量分布而变化旳情况。
2、研究刚体转动时合外力矩与刚体转动角加速 度旳关系。
3、验证平行轴定理
二、试验仪器
七、思考题
思索题
1、怎样安装和调整刚体转动试验仪?
2、本试验过程中应该注意哪些问题?
(2-6-7)
(2-6-8)
三、实验原理
从(2-6-6)、(2-6-8)两式中消去 ,可得:
由式(2-6-9)即可计算角加速度 。
(2-6-9)
三、实验原理
3、考察刚体旳质量分布对转动惯量旳影响
理论分析表白,质量为
旳物体围绕经过质心O旳转轴转动时旳转动惯量
行移动距离 后,绕新转轴转动旳转动惯量为:
最小。当转轴平
(2-6-10)
四、试验内容
四、实验内容及步骤 1、试验准备
2、测量并计算试验台旳转动惯量 (1)测量 (2)测量
3、测量并计算试验台加待测物旳转动惯量
其中
圆环外径 =120 ,内径 =105 ,质量
圆盘半径 =120 ,质量
=465 ;
半径 =15 ,质量
=332 ;
=436 ;
六、数据处理 圆盘、圆柱绕几何中心轴转动旳转动惯量理论值为
圆围绕几何中心轴旳转动惯量理论值为
(2-6-11) (2-6-12)
计算试样旳转动惯量理论值并与测量值 比较,计算测量值旳相对误差
(2-6-13)
六、数据处理
2、平行轴定理验证 按照转动惯量测量计算措施求出测量值,并与由式(2-6-10)、(2-6-11)所得 旳计算值进行分析比较,得出结论。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握使用秒表、游标卡尺、米尺等测量工具。

二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。

当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。

根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。

三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。

四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。

2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。

3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。

4、测量下盘质量\(m_0\)。

5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。

6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。

五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。

刚体转动惯量测定实验(精)

刚体转动惯量测定实验(精)
数据处理时注意作图法处理数据的基本要求数据处理1测量刚体转动测试仪空台圆环和圆盘的转动惯量测量值与理论值相比较得出测量误差将小圆柱分别放在离转轴5cm75cm10cm处测得此时系统的转动惯量j值并将其与比较从而验证平行轴定理
物理系实验中心
刚体转动惯量测定实验
刚体转动惯量简介 实验装置 理论基础 实验原理
§2-3 作图法处理实验数据
2. 标明坐标轴:
用粗实线画坐标轴, 用箭头标轴方向,标坐标 轴的名称或符号、单位, 再按顺序标出坐标轴整分 格上的量值。
I (mA)
20.00 18.00 16.00 14.00 12.00 10.00 8.00 6.00
3.标实验点:
实验点可用“ ”、 “ ”、“ ”等符号标 出(同一坐标系下不同曲 线用不同的符号)。
实验原理
1、空实验台的转动惯量
1 T r L J 0 2 2 a r2 3 L J0 1 4
mg T ma
J1
2 mgr 2 J0 mr 2 1 2 1
2、加试样后实验台的转动惯量J 2 为:
mR( g R 4 ) J2 4 3
U (V)
至此一张图才算完成
电阻伏安特性曲线
§2-3 作图法处理实验数据
●不当图例展示:
图1
n
1.7000 1.6900 1.6800 1.6700 1.6600 1.6500 400.0
曲线太粗,不 均匀,不光滑。
应该用直尺、曲 线板等工具把实 验点连成光滑、 均匀的细实线。
500.0
600.0
I (mA)
20.00 18.00 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00

刚体转动惯量的测定实验报告2篇

刚体转动惯量的测定实验报告2篇

刚体转动惯量的测定实验报告2篇实验一:采用悬挂法测定刚体转动惯量一、实验目的1. 学习测量刚体的质心位置和转轴的位置。

2. 学习借助实验数据推导直线密集分布的质点转动惯量公式。

3. 通过实验学习刚体转动惯量的测量方法。

二、实验原理1. 刚体的转动惯量物体围绕旋转轴转动时,物体的惯性越大,物体的转动越难。

当物体惯性越大时,转动惯量也越大。

物体围绕旋转轴转动时,物体转动惯量的定义为:I = Σmiri²其中,m表示物体的质量,r表示物体的质心离旋转轴的距离。

2. 直线密集分布的质点转动惯量公式一个质量为m,长为L的物体中,满足密集分布的质点,它们的质心离旋转轴的距离为r,那么此物体的转动惯量公式为:I = Σmiri² = mΣri² = m(Σr²)Σr²表示每个质点到旋转轴的距离平方和。

3. 采用悬挂法测定刚体的转动惯量实验使用悬挂法测定刚体的转动惯量,测定步骤如下:(1) 利用细线将物体悬挂在平衡杆上。

(2) 利用相应的杠杆称来测量物体的重量,此时物体的质心在杆的下方。

(3) 将物体沿竖直方向旋转,并用底部的指示器(如图)记录物体的振动周期。

(4) 将物体沿竖直方向旋转,记录下物体在两个位置的转动周期,用于计算旋转轴的位置。

(5) 用距离表测量出物体质心到旋转轴的距离。

(6) 计算物体的转动惯量。

三、实验器材1. 刚体(统一物体):统一吊杆、金属球、转轴、细线、竖直级尺等。

2. 实验仪器和设备:相应的计时器、杠杆称、距离表、指示器等。

3. 实验环境:采用教学实验室。

四、实验步骤和实验数据处理1. 准备工作(1) 将距离表和指针从竖直级尺上挂起,调整它们的位置和高度,以便将它们分别与转动轴和统一吊杆的下端对准。

(2) 将一根平衡杆垂直地悬挂在旋转轴的上方,小球挂在平衡杆下方的细线上。

2. 测量物体质心位置(3) 抬起小球,使其与距离表的指针、旋转轴及统一吊杆的下端对齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1:
刚体转动惯量的测定
教师:徐永祥1.前言:转动惯量(Moment of inertia)是表征物体转动惯性大小的物理量,它与
物体平动的质量是完全对应的。

转动惯量和物体的形状、大小、密度以及转轴的位置等因素有关,密度均匀形状规则的刚体(Rigid body),其转动惯量可以方便地计算出来,但不符合此条件的刚体的转动惯量一般需要通过实验的方法测出。

目前,测量转动惯量的方法有多种,如动力学法、扭摆法(三线扭摆法、单线摆法)及复摆法等等。

本实验采用动力学方法测量被测物体的转动惯量。

2.教学方式与时间安排
教师讲解、示范及与学生互动相结合;总实验时间:120分钟左右。

3.实验基本要求
1) 会通过转动惯量实验仪的操作测量规则物体的转动惯量,并与理论值比较进行误差分析;
2) 学会用实验方法验证平行轴原理;
3)学会用作图法处理数据,熟悉并掌握用作图法处理数据的基本要求。

4.实验仪器与部件
转动惯量实验仪,电子毫秒计,可编程电子计算器,铝环,小钢柱等。

5.仪器介绍
转动惯量实验仪的主体由十字形承物台和塔轮构成。

塔轮带有5个不同半径的绕线轮(半径r分别为15,20,25,30,35mm共5挡),使轻质细线通过滑轮连着砝码钩;砝码钩上挂着不同数量的砝码,以改变转动体系的动力矩。

承物台呈十字形,它沿半径方向等距离地排有三个小孔,这些孔离中心的距离分别为45,60,75,90,105mm,小孔中可以安插小钢珠,籍以改变体系的转动惯量。

承物台下方连有两个细棒,它们随承物台一起转动,到达光电门处产生遮光并通过脉冲电路引起脉冲触发信号,从而便于计算遮光次数及某两次遮光之间的时间间隔,并最终由数字毫秒计显示出来。

关于数字毫秒计使用方法,请参见本实验讲义P66“数字毫秒计”部分。

6. 实验原理
1)转动惯量的测定
由刚体转动的动力学定律得到:
βJ
M=(1)式中,M为转动体系所受的合外力矩,包括细绳作用于塔轮的力矩以及阻力矩;J为系统绕竖直轴的转动惯量。

本实验中需要测出铝环绕转轴的转动惯量,这只要分别测出系统空转时的转动惯量及铝环与转动体系构成系统的转动惯量,两者的差值即为铝环绕中心轴的转动惯量。

β为转动系统在合外力矩作用下转动的角加速度。

将砝码盘上放置质量为mf=40 g的砝码,使系统开始转动,则对砝码而言:
F
a m g m f f =- (2)
式中,F 为细绳作用于砝码的力。

由于实际设计中保证了a<<g 的条件,加上滑
轮(质量忽略)两侧绳子中的张力近似相等(F 1≈F ),于是: gr m Fr r F M f ≈≈='1 (3) 利用下述方程组
⎩⎨⎧==+'u u u J M J M M ββ (4)
并联立(3)式即得被测转动惯量的表式: u
f gr
m J ββ-=
(5)
根据(5)式,要测某一转动体系的转动惯量,只要分别测出它在有动力矩
及仅有阻力矩下的角加速度β和βu 即可。

那么,如何测量β和βu 呢? 这可采用运动学的方法。

A β的测量方法。

对于系统在有动力矩下的任一次运动,设光电门第一次被遮光的时刻为时间零点,第N 1次和第N 2次被遮光的时刻分别为t 1、t 2,(根据实际条件,本实验中预先设定N 1=3,N 2=7),于是
⎪⎩⎪⎨⎧+=+=2
22022
110121
21t t t t βωθβωθ (6)
式中,210θθω、、的意义分别为:
0ω:塔轮的初始角速度;
θ1:第一次到第N 1次遮光之间塔轮转过的角度;
θ2:第一次到第N 2次遮光之间塔轮转过的角度; 联立解得
1
2
22211221)
(2t t t t t t --=
θθβ (7) 同时θ1,θ2还满足下述关系:
⎩⎨⎧-=-=)1()
1(2211N N πθπθ (8)
将(8)式代入(7)式即得 1
2
222
11221]
)1()1[(2t t t t t N t N ----=
πβ (9)
根据(9)式,只要测出t 1和t 2即可得到在有砝码重力矩作用下转动体系的
角加速度。

B βu 的测量方法:与β的测量方法完全类似,计算公式为: 1
2
222
11221]
)1()1[(2u u u u u u u t t t t t N t N ----=
πβ (10)
2)验证平行轴原理
平行轴原理的表式:2md J J c +=,式中m 为转动体系的质量,Jc 表示转动体系绕过质心的轴的转动惯量,J 则为它绕另一平行轴转动的转动惯量,d 为两
平行轴之间的距离。

7.实验内容与步骤(方式:边讲解边示范)
1. 测承物台和塔轮体系(空转时)的转动惯量J 0
(1)选择塔轮上绕线轮的半径r =2.5 cm ,砝码质量m f =40g, 遮光次数设置N 1=3,N 2=7,使体系产生转动,由数字毫秒计读出对应于N 1和N 2下的t 1和t 2值。

(2)砝码脱落后转动力矩仅剩M u ,此时迅速按下复位键,让毫秒计重新计时,并读出对应于N 1和N 2的t u1、t u2值。

重复过程(1)、(2),读出三组t 1、t 2及t u1、t u2的值。

2.测铝环对中心轴的转动惯量J x
将铝环置于承物台上,按步骤1测出此时总系统的转动惯量J ,由J x =J -J 0即得铝环绕中心轴的转动惯量。

3.计算铝环的理论转动惯量并分析实验误差。

理论转动惯量表式为:
)(2
2
2外内理=R R M J x + (11)
4.验证平行轴原理
先将两个质量均为m z 的小钢柱分别插入承物台上的小孔2和2′上,按步骤1测出两个小钢柱绕中心轴的转动惯量Jc (=J-J 0); 再将两个小钢柱挪到小孔1、3′或(1′、3)位置上,扔按步骤1测出钢柱和塔轮承物台系统的转动惯量J 2,由J=J 2-J 0得小钢柱在1、3′(或1′、3)位置时绕轴线的转动惯量J 。

按平行轴定理,应有:J=J c +2m z d 2. 8.实验数据与处理结果
砝码总质量m=50.0g ;绕线轮半径r=2.50 cm ;g=979.4 cms -2
于是,=-=
μ
ββmgr
J 00.403×105g.cm 2
2、测定铝环的转动惯量
铝环加承物台的转动惯量J =1.901×105 g.cm 2;J 环理=)(2
2
2外内+R R m =1.567×105
g.cm 2 相对误差%理
环环理
环4=-=
J J J E
3、验证平行轴定理
22
2
122221.4028.68700.64672cm g J J cm g J cm g J =-==;;验证:2122d m J J 柱=-关系是成立? 结论:大致成立,相对误差:%23960
3960
4028=-=
E
9.参考教材
1) 郑庚兴&王和平,大学物理实验,上海科学技术出版社,藏书号:53.057/8709.
2) 朱俊孔等,普通物理实验,济南:山东大学出版社,2001年8月,53.057/2521.
3) 梁为民等,大学物理实验,北京:航空工业出版社,2001年9月,53.057/3337. 10.思考题:
1.本实验中为什么取N 1=3,N 2=7?预置数设置对测量误差有无影响? 2.本实验是如何检验平行轴定理的?
3.本实验如何采用作图法测定铝环绕中心轴的转动惯量及塔轮与转轴间的摩擦力矩?。

相关文档
最新文档