管路中流体的压力
第二节 流体流动的基本方程式
第二节 流体流动的基本方程式化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。
要解决这些问题,必须找出流体在管内的流动规律。
反映流体流动规律的有连续性方程式与柏努利方程式。
1-2-1 流量与流速一、流量单位时间内流过管道任一截面的流体量称为流量。
若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。
体积流量与质量流量的关系为:w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。
二、流速单位时间内流体在流动方向上所流经的距离称为流速。
以u 表示,其单位为m/s 。
实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。
流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17)式中 A ——与流动方向相垂直的管道截面积,m 2。
流量与流速的关系为:w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。
因此采用质量流速就较为方便。
质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为:ρρu A V A w G s s === (1-19)式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。
必须指出,任何一个平均值都不能全面代表一个物理量的分布。
式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。
一般管道的截面均为圆形,若以d 表示管道内径,则 24d V u s π= 于是 uV d sπ4=(1-20) 流体输送管路的直径可根据流量及流速进行计算。
2-5管内流动阻力
实际流动中的阻力计算
分别计算下列情况下,流体流过φ 76×3mm、长10m的水平钢管 的能量损失、压头损失及压力损失。(1)密度为 910kg/m3、粘度 为72cP的油品,流速1.1m/s;(2)20℃的水,流速为2.2 m/s。 解:(1)油品:首先判断流体流动形态 du 0.07 910 1.1 Re 973 2000 3 72 10
0.3164 0.25 Re
1
其适用范围为Re=5×103~105 。
考莱布鲁克(Colebrook)式
2 18.7 1.74 2 log d Re
此式适用于湍流区的光滑管与粗糙管直至完全湍流区。
23:21:03
1-5 流动阻力 (28)
14
管壁的绝对粗糙度和相对粗糙
进口 0.5
出口 1
u
23:21:03
1-5 流动阻力 (28)
22
流体流动系统中的局部阻力
当流体从管子直接排放到管外空间时,若截面取管出口内侧,则 表示流体并未离开管路,此时截面上仍有动能,系统的总能量损失不 包含出口阻力;若截面取管出口外侧,则表示流体已经离开管路,此 时截面上动能为零,而系统的总能量损失中应包含出口阻力。
阻力系数法:克服局部阻力所消耗的机械能,表示为动能的某一倍数
2 u h 'f 2
即
ζ 称为局部阻力系数,一般由实验测定。 常用管件及阀门的局部阻力系数见教材。
注意:当管截面突然扩大和突然缩小时,速度u均以小管中的速度计。
当流体自容器进入管内 进口 0.5 称为进口阻力系数;
出口 1 当流体自管子进入容器或从管子排放到管外空间, 称为出口阻力系数。
压力管路的水力计算
引言
• 压力管路:在一定压差下,液流充满全管的流动管路。 • 压力管路按照管路结构可以分为:
– 简单管路:等径无分支管路 – 复杂管路:串联、并联、分支及管网等 • 压力管路按照能量比例大小分为:长管和短管
压力管路的水力计算
2
• 长管:长输管线输送距离比较远,两端压差比较大,局部阻力和流速
–
V′
Re Vd
校核流态
验证假设:
– 如由 Q ′及Re ′得出的流态和假设流态一致,则 Q ′为所求Q;
– 如由 Q ′及Re ′得出的流态和假设流态不一致,则重新假设流态 ,重复计算。
压力管路的水力计算
14
• 试算法:
设定Q1,解得hf1。判断:若hf1 >hf,则减小流量,取Q2 <Q1,重新计
压力管路的水力计算
26
5). 在已建成的长输管线上改设串联变径管或并联副管以翻越高点。
O A B
H
C
串联变径或加副管后,Q(不变),OA段hfO-A(不变);主管AB段 经过变径管或加副管, d(↑),v (↓),hfA-B(↓) 。在所需压头不 大的情况下,采用此办法可使管线内液体具有翻阅高点的水头。
即:β= 4.15,m=1
– 紊流流态——水力光滑区:
0.3164 R e0.25
h f 0 .0 2 4 6 Q 1 .d 7 5 4 .7 0 5 .2 5 L 0 .0 2 4 6 Q 2 d 0 .5 2 5 0 .2 0 5 .2 5 L
即:β= 0.0246,m=0.25
压力管路的水力计算
水头所占能量比例较小。和沿程水头损失相比,流速水头和局部水头
损失可以忽略的管路称为长管。有时近似取 hj (5%~10% )hf。
第一章 流体流动
气体密度 一般温度不太低,压强不太高时气体可按理想气 体考虑,所以理想气体密度可由理想气体状态方程 导出: T0 p M pM m
v
RT
0
Tp 0
0 22.4 ,kg / m
3
混合气体密度
ρm= ρ1y1+ ρ2y2+ …+ ρnyn
MT0 p 22.4Tp 0
式 y1、y2……yn——气体混合物各组分的体积分数 ρ1、 ρ2、…、 ρn—气体混合物中各组分的密度,kg/m3; ρm——气体混合物的平均密度,kg/m3;
2.2 流体静力学基本方程的应用
1、压力的测量 (1) U型管压差计 构造: U型玻璃管内盛指示液A 指示液:指示液A(蓝色)与被测液B(白)互不相溶,且ρA>ρB 原理:图中a、b两点在相连通的同一静止流体内,并且在 同一水平面上,故a、b两点静压力相等,pa=pb。 对a、b两点分别由静力学基本方程,可得 pa= p1+ρB· g(Z+R) pb= p2+ρB· gZ+ρAgR
三、流体的研究方法
连续介质假说:流体由无数个连续的质点组
成。﹠质点的运动过程是连 续的 质点:由许多个分子组成的微团,其尺寸比 容器小的多,比分子自由程大的多。 (宏观尺寸非常小,微观尺寸又足够大)
四、流体的物理性质
◆密度ρ 单位体积流体的质量,称为流体的密度,其表 m 达式为
V
式中 ρ——流体的密度,kg/m3; m——流体的质量,kg; V——流体的体积,m3。 流体的密度除取决于自身的物性外,还与其温 度和压力有关。液体的密度随压力变化很小,可 忽略不计,但随温度稍有改变;气体的密度随温 度和压力变化较大。
pA=p0+ ρgz pB=p0+ ρi gR 又∵ pA=pB
压力和流量的关系(2)
压力和流量的关系刚才看到一个问压力变化了泵的摆角怎么样的问题,所以想讨论一下压力和流量的关系,大家随便说说吧。
由功率的公式可知:在原动机功率一定的情况下,压力和流量是成反比的。
但也有个矛盾的统一性。
如果流量降到零的话又哪有压力呢?实际在使用中,许多压力不够都是由于流量不足造成的。
对于公式也要活学活用才行。
针对楼上的理解,功率是直接和压力流量有直接关系,同时和外负载的驱动功率也有很大关系,这里指的是最大功率,在最大功率的情况下压力和流量成反比,在没有达到极限功率的情况下会有好多情况:恒压系统(流量是变量),恒流量系统(压力是变量),在这种情况下压力和流量没有太大关系。
在相同通径下压力高流量就大;我觉得流量是生成压力的主要原因。
流量:是指单位时间内流过管道或液压缸某一截面的油液体积Q=V/t压力:垂直压向单位面积上的力p=F/A压力和流量没有太大关系压力取决于外负载,流量决定速度。
二者本质上没有关系。
那如果没有流量,压力又怎么能建立起来呢?楼主所说的可能是恒压变量泵吧,有两种情况:1:系统/负载压力未达到泵设定值时,泵全流量工作,压力取决于负载;2:系统/负载压力达到泵设定值时,泵变为零流量,压力在设定点被限制住(此时负载压力可能大于设定值)。
以上是理想情况变量油泵会随着压力的升高,流量逐渐变小,低压大流量高压小流量的自动变量油泵现在应用的很广泛.我想是在高压时泵的内部泄漏和小摆角时的小排量相等时看似没有流量了。
实际上液压系统或元件的控制原理和压力与流量是分不开的,最基本的柏努利方程中有压力与速度,而速度就是流量除以过流面积;先导式溢流阀、调速阀、许多变量泵等等的工作原理也说明了压力与流量的关系,考虑液压问题不能把压力与流量独立分开,要综合起来考虑。
管路压力损失公式
管路压力损失公式管路压力损失公式是在管道流动设计中,用来计算管路中流体的压力损失的一种公式。
它可以帮助设计者对流体流动有一个更深入、更准确的了解,让设计者在任何具体的情况下都能够有效地利用管路来达到流体流动的最佳效果。
管路的压力损失公式有多种不同的形式,其中最经典的是法拉第定律。
法拉第定律是绝热流体在无重力作用下,在管路中流过时受到的压力损失,公式为:H = f*(L/D)*V/2g其中:H 为管路压力损失,f 为管路通阻系数,L 为管路长度,D 为管路内径,V 为管路平均流速,g 为重力加速度。
法拉第定律表明,管路压力损失主要取决于管路长度和管路内流体流速,即流体在管路中会受到的压力损失主要取决于管路的长度以及管路内的流体流速。
如果流体在管道中流动,出于安全考虑,压力损失不能过大,一般情况下,流体压力损失一般不能超过10kPa,否则就会影响流体的安全。
因此,在设计管路的时候,需要注意控制压力损失,同时还要考虑管路内流体的流速,避免压力损失过大。
管路压力损失的计算包括多种因素,最重要的因素是管路中夹杂在流体中的气泡。
这种气泡会使管路内的流速降低,从而大大增加管路压力损失。
因此,在设计管道时,必须考虑管路中气泡的数量、大小、位置以及管路外部气压等因素,以免增加管路压力损失。
物理上可以认为,管路压力损失主要取决于流体在流动过程中的阻力。
为了减少流体的压力损失,必须减少流体流动过程中的阻力,从而提高流体流动的效率。
具体来说,可以采取一些措施来降低流体阻力,如改变流体流动方向、改变管路管径、降低流体流速等。
管路压力损失公式可以帮助设计者更好地理解流体流动的特性,从而设计出更有效的管路系统。
此外,该公式还可以用于计算不同管路系统中流体流动的压力损失,并计算出压力损失最小的管路系统,从而提高流体流动的效率。
总的来说,管路压力损失公式是一个重要的工具,在流体流动设计中有着重要的作用。
它可以准确地衡量管路中流体流动时受到的压力损失,从而帮助设计者设计出更有效的管路系统。
新版化工原理习题答案(01)第一章 流体流动
第一章 流体流动流体的重要性质1.某气柜的容积为6 000 m 3,若气柜内的表压力为 kPa ,温度为40 ℃。
已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、CH 4 1%,大气压力为 kPa ,试计算气柜满载时各组分的质量。
解:气柜满载时各气体的总摩尔数()mol 4.246245mol 313314.860000.10005.53.101t =⨯⨯⨯+==RT pV n 各组分的质量:kg 197kg 24.246245%40%4022H t H =⨯⨯=⨯=M n m kg 97.1378kg 284.246245%20%2022N t N =⨯⨯=⨯=M n mkg 36.2206kg 284.246245%32%32CO t CO =⨯⨯=⨯=M n m kg 44.758kg 444.246245%7%722CO t CO =⨯⨯=⨯=M n m kg 4.39kg 164.246245%1%144CH t CH =⨯⨯=⨯=M n m2.若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起,试求混合油的密度。
设混合油为理想溶液。
解: ()kg 120kg 606021t =+=+=m m m331221121t m 157.0m 7106083060=⎪⎪⎭⎫ ⎝⎛+=+=+=ρρm m V V V 33t t m m kg 33.764m kg 157.0120===V m ρ 流体静力学3.已知甲地区的平均大气压力为 kPa ,乙地区的平均大气压力为 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。
若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同 解:(1)设备内绝对压力绝压=大气压-真空度= ()kPa 3.65Pa 1020103.8533=⨯-⨯ (2)真空表读数真空度=大气压-绝压=()kPa 03.36Pa 103.651033.10133=⨯-⨯4.某储油罐中盛有密度为960 kg/m 3的重油(如附图所示),油面最高时离罐底9.5 m ,油面上方与大气相通。
液压系统的压力冲击现象及处理措施
液压系统中出现液压冲击的原因1、管路中阀口突然关闭当阀门开启时设管路中压力恒定不变,若阀门突然关死,则管路中流体立即停止运动,此时油液流动的动能将转化为油液的挤压能,从而使压力急剧升高,造成液压冲击。
即产生完全液压冲击。
液压冲击的实质主要是,管路中流体因突然停止流动而导致其动能向压能的瞬间转变。
(2)高速运动的部件突然被制动高速运动的工作部件的惯性力也会引起系统中的压力冲击,例如油缸部件要换向时,换向阀迅速关闭油缸原来的排油管路,这时油液不再排出,但活塞由于惯性作用仍在运动从而引起压力急剧上升造成压力冲击。
液压缸活塞在行程中途或缸端突然停止或反向,主换向阀换向过快,均会产生液压冲击。
(3)某些元件动作不够灵敏如系统压力突然升高,但溢流阀反应迟钝,不能迅速打开时便会产生压力超高现象。
液压冲击的危害1)冲击压力可高达正常工作压力的3~4倍,使液压系统中的元件、管道、仪表等遭到破坏;2)液压冲击使压力继电器误发信号,干扰液压系统的正常工作,影响液压系统的工作稳定性和可靠性;3)液压冲击引起震动和噪声、连接件松动,造成漏油、压力阀调节压力改变。
2液压冲击产生的原因1)管路内阀口快速关闭如图1所示,在管路A的入口端装有蓄能器,出口端B装有快速换向阀。
当换向阀处于打开状态(图示位置)时,管中的流速为V0,压力为P0。
若阀口B突然关闭,管路内就会产生液压冲击。
直接冲击(完全冲击)时(t<T),管内冲击压力最大升值ΔP为ΔP=ρCΔV=ρL/(tV0)间接冲击(非完全冲击)时(t>T),管内冲击压力最大升值为ΔP=ρCΔVT/t=ρC(V0-V1)T/t式中:t——换向时间,即关闭或开启液流通道的时间;T=2L/c——当管长为L时,冲击波往返所需时间;ρ——液体密度;ΔV——阀口关闭前后,液流流速之差;C——管内冲击波在管中的传播速度,且。
化工原理——流体流动
第一章 流体流动知识目标:本章要求熟悉流体主要物性(密度, 黏度)数据的求取及影响因素, 压强的定义、表示方法、单位及单位换算,连续性和稳定性的概念,管内流体速度分布,流体的流动类型, 雷诺准数及其计算。
理解流体在管内流动时产生阻力损失的原因,测速管、孔板流量计、转子流量计的基本结构, 测量原理及使用要求。
掌握静力学方程, 连续性方程,柏努利方程, 管路阻力计算公式,简单管路的计算方法。
了解湍流时的流速分布, 复杂管路计算。
能力目标:通过对本章的学习,学会能应用静力学原理和动力学原理处理工程过程的设计型计算和操作型计算。
气体和液体通称为流体,原来是固体的物料,有时也可以做成溶液以便于输送或处理。
流体具有流动性,其形状随容器的形状而变化,一般将液体视为不可压缩性流体,与此相反,气体的压缩性很强,受热时体积膨胀很大,因此将气体视为可压缩的流体。
流体流动是化工生产过程中是普遍的现象,研究流体流动的目的是要能解决以下几个工程问题:(1)流体的输送、输送管路的设计与所需功率的计算、输送设备的选型与操作;2)流速、流量的计算,系统中的压强或压强差的测量,设备液位及液封高度的确定;(3)根据流体流动规律减少输送能耗,强化化工设备中传热、传质过程等。
工程上研究流体流动的方法是:只研究流体的宏观运动,不考虑流体分子间的微观运动,也就是说,将流体视为有许多分子组成的“微团”,又把“微团”称作质点,质点的大小与它所处的空间相比是微不足道的,但比分子运动的自由程度要大得多。
在流体的内部各个质点相互紧挨着,他们之间没有任何空隙而成为连续体。
因此将流体视为有无数质点组成的其间无任何空隙的连续介质,即所谓的连续性假定。
第一节 流体静力学流体静力学是研究流体在外力作用下处于静止或相对静止状态下的规律,本节讨论静止流体在重力场中内部的压力变化规律,在讨论此规律之前,先对与此有关的物理量做些说明。
一、密度单位体积流体所具有的质量称为流体的密度,其表示式为mv ρ=(1-1)式中: m —— 流体的质量,kg ; v —— 流体的体积,m 3。
减压表原理 -回复
减压表原理 -回复减压表原理减压表,顾名思义就是测量减压的仪器。
它主要是用来测量气体或液体在管路、容器中流动时的压力,并将其转化成标准的电信号输出。
随着实验技术的发展,减压表的应用越来越广泛,如化工、电力、石油等领域都需要使用减压表。
减压表的工作原理可以引用伯努利定理,它表明在管路中流体速度增加时,压力会降低,流体速度减小时,压力会增加。
在减压表中,我们利用伯努利原理来测量流体流速。
其主要功能是将流体中的压力转化为流体的流速,从而得出流体在管道或容器中的流量和压力。
下面我们来详细了解一下减压表的原理。
1.减压表的结构减压表的结构是由压力特性、传感器、放大器、指针机构和显示屏等组成。
其中压力特性主要包括连接、洁净度、精度等特性,传感器部分是用来接收压力信号的,它可以分为压阻型传感器和压电型传感器两种。
放大器部分主要是将传感器输出的微弱信号放大,以便于后续处理。
指针机构是将放大后的信号转换为物理指示,显示器部分则用于显示测量结果。
2.减压表的工作原理减压表的工作原理基于伯努利原理,即在管道中流体速度增加时,压力会降低,流体速度减小时,压力会增加。
在一定流量下,流速增加,压力降低,压差随之增大,减压表就可以依据压差值得到流量和压力。
压差是在两个端口之间测得的差值,它反映了流体流动的速度和阻力。
根据伯努利原理,压力与流体速度成反比例关系。
在减压表中,我们通过一定的传感器和放大器,将压差值转换成电信号。
减压表的传感器通常采用压阻电阻和电容式传感器。
压阻传感器通常由电阻器和弯曲的膜片组成,通过将压力施加到膜片上,形成弯曲,从而改变电阻值来测量压差。
电容式传感器则是利用电容值与电极之间的空气散射距离有关,压力变化时电容值也会相应地改变。
减压表中的放大器主要是用来放大传感器输出的微弱信号,以便于后续处理。
放大器通常采用操作放大器和仪表放大器两种。
操作放大器主要是用来放大信号并控制输出的电流和电压,而仪表放大器主要是用来放大信号,并将其转换为直流电机的旋转力矩,使得指针机构能够正常工作。
化工原理 流体流动 湖北大学 郭立
4
理想气体标准状态密度: 0 22.4
M
已知ρ0求任意P、T下的该气体密度:
混合气体的密度: 混合液体的密度: 1
0
m 1 y1 1 y2 n ynm w1Fra bibliotekT0 P TP0
1
w2
2
wn
n
(2)比容(比体积): 单位质量流体具有的体积,是密度的倒数。
p2 p1 g( z1 z 2 )
p p0 gh
压力形式
——静力学基本方程
9
注意:
p p0 gh
1、适用于重力场中静止流体; 2、适用于不可压缩的流体。 置于容器中的气体,可视为不可压缩流体。 3、液体上方的压力一定时,静止液体内某一点的 静压强的大小与液体本身的密度与该点的位置有关。 4、在静止的、连续的同种流体内,处于同一水平 面上各点的压强处处相等。压强相等的面称为等压 面。 5、压力具有传递性(巴斯加定律):液面上方压 力变化时,液体内部各点的压力也将发生相应的变 化。
例1-7 某厂要求安装一根输水量为30 m3/h的管 路,试选择合适的管径。
26
二
稳定流动与不稳定流动
稳定流动:各截面上的温度、压力、流速等物理量 仅随位置变化,而不随时间变化; 不稳定流动:流体在各截面上的有关物理量既随位 置变化,也随时间变化。
27
三 连续性方程(质量衡算)
对于稳定流动系统,在
10
第一章、流体流动
3、压强用柱高表示:
p p0 h g
11
三、流体静力学基本方程式的应用
1、静压强的计算(举例): 例题 流力(周谟仁)p19 2-2
化工原理-流体在管内的流动.
(1)热 设换热器向1kg流体供应的或从1kg流体取出的热量为Qe,其单位为J/kg. 若换热器对所衡算的流体加热,则Qe为正。冷却为负。
(2)外功1kg流体通过泵(或其他输送设备)所获得的能量,称为外功或净功,有 时还称为有效功,以We表示,其单位为J/kg。
对不可压缩流体: u1A1= u2A2=······= uA=常数 圆管内不可压缩流体:u1d12= u2d22=······= ud2=常数
5
2.4 柏努利(Bernoulli)方程
柏努利导出原理:能量衡算(主要是机械能)。 图示 衡算范围:内壁面、1-1′、2-2′ 间所围成的体系。 衡算基准:1kg流体。 基准水平面:0-0平面。
第二节 流体在管内的流动 Flow of Fluids in Pipes
流动着的流体内部压强变化的规律,主要遵循连续性方程式与柏努 利方程式。 2.1 流量与流速 1)定义、符号、单位:
单位时间内流过管道任一截面的流体量,称为流量。若流量用体 积来计量,则称为体积流量,以VS表示,其单位为m3/s。若流量用质量 来计量,别称为质量流量,以wS表示,其单位为kg/s。 单位时间内流体在流动方向上所流过的距离,称为流速,以u表示,其 单位为m/s。 由于气体的体积流量随温度和压强而变化,显然气体的流速亦随之而 变。因此,采用质量流速就较为方便。质量流速的定义是单位时间内 流体流过管道单位截面积的质量,亦称为质量通量,以G表示,单位 为kg/(m2·s)。
提示:为计算管内各截面的压强,应首先计算管内水的流速。
先在贮槽水面1-1及管子出口内侧截面6-6间列柏努利方程式。
并以截面6-6为基准水平面。由于管路的能量损失不计,可应用
答案化工原理(1-5)章复习题
化工原理(1~5章)复习题绪论1、单元操作的定义?答:艺过程中遵循相同的基本原理,只改变物料状态或物理性质,不改变物料化学性质的过程。
2、列举化工生产中常见的单元操作(至少3个),并说明各自的过程原理与目的?答:流体输送:输入机械能将一定量流体由一处送到另一处。
沉降:利用密度差,从气体或液体中分离悬浮的固体颗粒、液滴或气泡。
过滤:根据尺寸不同的截留,从气体或液体中分离悬浮的固体颗粒。
换热:利用温度差输入或移出热量,使物料升温、降温或改变相态。
蒸馏:利用各组分间挥发度不同,使液体或汽液混合物分离。
吸收:利用各组分在溶剂中的溶解度不同,分离气体混合物。
萃取:利用各组分在萃取剂中的溶解度不同,分离液体混合物。
干燥:加热湿固体物料,使之干燥。
3、研究单元操作的基本工具?(不考)答:①物料衡算:质量守恒定律—在一个单元过程中,进入的物料量等于排出的物料量与积累的物料量之和。
②能量衡算:能量守恒定律。
③物系的平衡关系—指物系的传热或传质过程进行的方向和达到的极限。
④过程速率—过程由不平衡状态向平衡状态进行的快慢。
⑤经济核算:化工过程进行的根本依据。
第一章流体流动一、填空及选择题1、某设备的真空表读数为200mmHg,则它的绝对压强为(560 )mmHg。
当地大气压为101.3×103Pa。
2、孔板流量计均属于(节流)式流量计,是用(压差)来反映流量的。
转子流量计属于(定压)式流量计,是通过(环隙面积的变化)来反映流量的。
3、根据流体力学原理设计的流量(流速)计中,用于测量大直径气体管路上速度分布的是( C );能量损失最大的是( A );对流量变化反映最灵敏的是( A )。
A、孔板流量计;B、文丘里流量计;C、测速管;D、转子流量计4、测量管内流体流动参数(如流速、流量、压力等)时,测量点一般应选在管路的( A )。
A、稳定段长度之后;B、稳定段长度之前;C、流量调节阀之后;D、流量调节阀之前5、测流体流量时,随着流体流量的增大,转子流量计两端压差值(不变);孔板流量计两端压差值(增大)。
流体在管内的流动阻力 (2)
流体在管内的流动阻力默认分类2008-01-13 08:58:10 阅读194 评论0 字号:大中小订阅一、计算圆形直管阻力的通式流体在管内以一定逮度流动时,有两个方向相反的力相互作用着。
一个是促使流动的推动力,这个力的方向和流动方向一致,另一个是由内摩擦而引起的摩擦阻力,这个力起了阻上流体运动的作用,其方向与流体前流动方向相反。
只有在推动力与阻力达平衡的条件下,流动速度才能维持不变,即达到稳态流动。
图1-23 直管阻力通式的推导如图1-23所示,流体以速度。
在一段水平直管内作稳定流动,对于不可压缩流体可写出截面1-1′,与2-2′间的柏努利方程式为:因是直径相同的水平管,左翼Z1=Z2,u1=u2=u,上式可筒化为:(1-39)现分析流体在一段直径为d、长度为l的水平管内受力的情况:垂直作用于截面1-1′上的压力P1=p1A1-p1πd2/4垂直作用于截面2-2′上的压力P2=p2A2-p2πd2/4P1与P2的作用方向相反,所以有一个净压力(P1-P2)作用于整个流体柱上,推动它向前运动,这就是流动的推动力,它的作用方向与流动方向相同,其大小为:平行作用于流体柱表面上的摩擦力为:摩擦力阻止流体向前运动,这就是流动的阻力,它的作用方向与流动方向相反。
根据牛顿第二运动定律,要维持流体在管内作匀速运动,作用在流体柱上的推动力应与阻力的大小相等,方向相反,即:则以式1-39代入上式得:(1-40)上式就是流体在圆形直管内流动时能量损失与摩擦应力关系式,但还不能直接用来计算hf ,因为内摩擦应力所遵循的规律因流体流动类型而异,直接用τ计算hf 有困难,且在连续性方程式及柏努利方程式中均无此项,故式1-40直接应用于管路的计算很不方便。
下面将式1-40作进一步的变换,以消去式中的内摩擦应力τ。
由实验得知,流体只有在流动情况下才产生阻力。
在流体物理性质,管径与管长相同情况下,流速增大,能量损失也随之增加,可见流动阻力与流速有关。
管径选择与管道压力降计算
管径选择与管道压力降计算第一部分管径选择1.应用范围和说明1.0.1本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。
1.0.2对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。
本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。
1.0.3当按预定介质流速来确定管径时,采用下式以初选管径:d=18.81W0.5 u-0.5ρ-0.5(1.0.3—1)或d=18.81V00.5 u-0.5(1.0.3—2)式中d——管道的内径,mm;W——管内介质的质量流量,kg/h;V0——管内介质的体积流量,m3/h;ρ——介质在工作条件下的密度,kg/m3;u——介质在管内的平均流速,m/s。
预定介质流速的推荐值见表2.0.1。
1.0.4当按每100m计算管长的压力降控制值(⊿Pf100)来选择管径时,采用下式以初定管径:d=18.16W0.38ρ-0.207 µ0.033⊿P f100–0.207(1.0.4—1)或d=18.16V00.38ρ0.173 µ0.033⊿P f100–0.207(1.0.4—2)式中µ——介质的动力粘度,Pa·s;⊿P f100——100m计算管长的压力降控制值,kPa。
推荐的⊿P f100值见表2.0.2。
1.0.5本规定除注明外,压力均为绝对压力。
2.管道内流体常用流速范围和一般工程设计中的压力降控制值2.0.1管道内各种介质常用流速范围见表2.0.1。
表中管道的材质除注明外,一律为钢。
该表中流速为推荐值。
2.0.2管道压力降控制值见表2.0.2-1和表2.0.2-2,该表中压力降值为推荐值。
化工原理(上)课后习题解答-天大柴诚敬主编 (1).
m 3049.0ft 1=
((s m
kg
10
356.1h ft
lb
12
3
2
⋅⨯=⋅- (见1
α量纲为一,不必换算
s Pa 10
1cp 13
⋅⨯=-
13lb
ft =13
3lb 1kg 3.2803ft ft 2.2046lb 1m ⎛⎫⎛⎫⎛⎫
真空度=大气压-绝压=(kPa 03.36Pa 103.651033.10133=⨯-⨯
4.某储油罐中盛有密度为960 kg/m 3
的重油(如附图所示,油面最高时离罐底9.5 m ,油面上方与大气相通。在罐侧壁的下部有一直径为760 mm的孔,其中心距罐底1000 mm ,孔盖用14 mm的钢制螺钉紧固。若螺钉材料的工作压力为39.5×106 Pa ,问至少需要几个螺钉(大气压力为101.3×103 Pa ?
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
=16.01 kg/m 2 (2将原符号加上“′”以代表新单位的符号,导出原符号的“数字”表达式。下面以H E为例:
m ft E
E H H '=则E
E
E
E 2803.3m
ft
2803.3ft
m ft
m H H H H '=⨯
'='=同理(G G G '=⨯'=-5.73710356.13
大学课后习题解答之
化工原理(上-天津大学化工学院-柴诚敬主编(普通高等教育“十五”国家级规划教材
部分重点章节绪论
1.从基本单位换算入手,将下列物理量的单位换算为SI单位。(1水的黏度μ=0.00856 g/(cm·s (2密度ρ=138.6 kgf ·s 2/m 4
化工原理 第二章 流体的流动和输送超详细讲解
1)判断下列两关系是否成立
PA=PA’,PB=P’B。 2)计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同一水平面上
PA PA'
因B,B’虽在同一水平面上,但不是连通着的同一种液
10001.0 13600 0.067 1000 820
0.493m
作业 P71:3、5
要求解题过程要规范:
1、写清楚解题过程——先写公式,再写计算过程, 追求结果的准确性;
2、计算过程中注意单位统一成SI制。
第二节 流体稳定流动时的物料衡算和能量衡算
一、流速与管径的关系 1、流速v =qv/A
解:气压管内水上升的高度
P(表压) P(真空度) h ρ水g ρ水g 80103
1000 9.81 8.15m
3、液位的测定
液柱压差计测量液位的方法:
由压差计指示液的读数R可以计算 出容器内液面的高度。 当R=0时,容器内的液面高度将达 到允许的最大高度,容器内液面愈 低,压差计读数R越大。
流体的单位表面积上所受的压力,称为流体的静压强,
简称压强。
p F A
SI制单位:N/m2,即Pa。1 N/m2 =1Pa
工程制: 1at(工程大气压)= 1公斤/cm2 =98100Pa
物理制: 1atm (标准大气压)=101325Pa
换算关系为:
1atm 760mmHg 10.33mH2O 1.033kgf / cm2 1.0133105 Pa
在1-1’截面受到垂直向下的压力: 在2-2’ 截面受到垂直向上的压力: 小液柱本身所受的重力:
新版化工原理习题答案(01)第一章流体流动资料讲解
新版化工原理习题答案( 01) 第一章流体流动第一章流体流动流体的重要性质1 •某气柜的容积为6 000 m2 3,若气柜内的表压力为5.5 kPa,温度为40 C 。
已知各组分气体的体积分数为: H 40%、N 20%、CO32%、CO 7%、CH 4 1%,大 气压力为101.3 kPa,试计算气柜满载时各组分的质量。
解:气柜满载时各气体的总摩尔数n t 空 101・3 5.5 1000.° 60%1 246245.4mol RT各组分的质量:m H 240% n t M H 2 40% 246245.4 2kg 197kg m N 220% n tMN 220% 246245.4 28kg1378.97kg mCO32% m M CO 32% 246245.4 28kg 2206.36kg m co 27%n t M CO 2 7% 246245.4 44kg 758.44kg mCH 41%mMCH 41% 246245.4 16kg 39.4kg1203kg m 0.157流体静力学3.已知甲地区的平均大气压力为 85.3 kPa,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPc t 若改在乙地2 •若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起, 试求混合油的密度。
设混合油为理想溶液。
解:m tm , m , 60 60 kg 120kg60 60 710830!m 3 0.157m 38.314 313764.33 kg区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同?解:(1)设备内绝对压力绝压=大气压-真空度=85.3 10320 103Pa 65.3kPa(2)真空表读数真空度=大气压-绝压=101.33 10365.3 103Pa 36.03kPa4.某储油罐中盛有密度为960 kg/m3的重油(如附图所示),油面最高时离罐底9.5 m,油面上方与大气相通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 学习指导
• 一、基本要求: • 了解流体流动的基本规律,要求熟练 掌握流体静力学基本方程、连续性方程、 柏努利方程的内容及应用,并在此基础 上解决流体输送的管路计算问题。
• 二、掌握的内容
• • • • • • • • • • 压强的定义、表示法及单位换算; 流体静力学基本方程、连续性方程、柏努利方程的内容及 应用; 流动型态及其判断,雷诺准数的物理意义及计算; 流动阻力产生的原因,流体在管内流动时流动阻力(直管 阻力和局部阻力)的计算; 简单管路的设计计算及输送能力的核算; 管路中流体的压力、流速及流量的测量:液柱压差计、测 速管(毕托管)、孔板流量计、转子流量计的工作原理、 基本结构及计算; 因次分析法的原理、依据、结果及应用。 3、了解的内容 牛顿型流体与非牛顿型流体; 层流内层与边界层,边界层的分离。
第一节 流体的重要性质
• 1.1.1连续介质假定
气体 流体 液体
把流体视为由无数个流体微团(或流体 质点)所组成,这些流体微团紧密接触, 彼此没有间隙。这就是连续介质模型。 流体微团(或流体质点):
u
宏观上足够小,以致于可以将其看成一个几何上没有维度的点; 同时微观上足够大,它里面包含着许许多多的分子,其行为已 经表现出大量分子的统计学性质。
体积力(质量力):
如重力、离心力等,属 于非接触性的力。
法向力 切向力
Fg Vg 如重力:
dFt 切向应力: 1 dA
与流体的质量成正比;
表面力(机械力):与力作用的面积成正比。
dFn n 切向应力: dA
1.2.2 静止流体的压力特性 压力:流体垂直作用于单位面积上的力,称为流体的 静压强,习惯上又称为压力。 1 . 压力的单位 SI制:N/m2或Pa; 或以流体柱高度表示 :
1.1.2 流体的密度
密度——单位体积流体的质量。
m V
kg/m3
f ( p, T )
1 .单组分密度
液体 密度仅随温度变化(极高压力除外),其变 化关系可从手册中查得。
气体 当压力不太高、温度不太低时,可按理想 气体状态方程计算:
pM RT
注意:手册中查得的气体密度均为一定压力与温度 下之值,若条件不同,则需进行换算。
u x A y
剪应力:单位面积上的内摩擦力,以τ表示。
u x F y A
适用于u与y成直线关系
当取极限,即△y →0时,有:
du dy
——牛顿粘性定律 式中: 速度梯度
: 比例系数,它的值随流体的不同而不同,流
体的粘性愈大,其值愈大,称为粘性系数或动力粘度,简 称粘度。
p gh
其它 常 用单 位 有: atm (标 准 大气 压 )、 工 程大 气 压 kgf/cm2、bar;流体柱高度(mmH2O,mmHg等)。 注意:用液柱高度表示压力时,必须指明流体的种类, 如600mmHg,10mH2O等。
m3/kg
比重(相对密度):某物质的密度与4℃下的水的密 度的比值,用 d 表示。
d
4 C水
,
4C水 1000kg / m
3
1.1.3流体的可压缩性与不可压缩流体
• 一、液体的可压缩性 ——在一定温度下,外力每增加一个单位时, 流体体积的相对缩小量。 1 d 1 d dp dp 二、不可压缩流体 密度为常数的流体。 三、流体的流动性——流体不能承受拉力
1.1.4流体的黏性
• 一、牛顿黏性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。 ——流体阻力产流动较 慢)时,力F与△u、面积A成正比,与△y成 反比,如加一比例系数μ,则可表示为:
F u x A y
F
y1 , y 2 yn ——气体混合物中各组分的摩尔(体积)分数。
混合液体 假设各组分在混合前后体积不变,则有
1 2 n m 1 2 n
1
1 , 2 n ——液体混合物中各组分的质量分数。
V 1 v m
比容 —— 单位质量流体具有的体积,是密度的倒数。
SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 1000CP 10P
4) 混合物的粘度 对常压气体混合物:
yi u i M i m 1 yi M i 2
1 2
对于分子不缔合的液体混合物 :
lg m xi lg ui
5)运动粘度
v
单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
在SI制中:
N .S N / m 2 ( m / s ) m du / dy
m
2
Pa.S
在物理单位制中,
2 dyn / cm dyn.s g P(泊) cm s 2 cm du / dy cm.s cm
2 . 混合物的密度 混合气体 各组分在混合前后质量不变,则有
m 11 12 nn
1 , 2 n ——气体混合物中各组分的体积分数。
或
Mm
m
pM m RT
——混合气体的平均摩尔质量;
M m M1 y1 M 2 y 2 M n yn
1St 100cSt 104 m 2 / s
三、理想流体与黏性流体
• 黏性流体(实际流体):具有粘性的流体; • 理想流体:完全没有黏性(μ =0)的流体。
(是假设存在的)
1.2流体静力学
• • 本节重点:静力学基本方程式及其应用。
• 难点:U形压差计的测量。
1.2.1流体的受力
体积力 流体所受的力 表面力
二、流体的黏度
• 1)物理意义
du dy
:促使流体流动产生单位速度梯度的剪应力。
粘度总是与速度梯度相联系,只有在运动时才 显现出来 2)粘度与温度、压强的关系 a) 液体的粘度随温度升高而减小,压强变化时, 液体的粘度基本不变。 b)气体的粘度随温度升高而增大,随压强增加而 增加的很少。
3)粘度的单位