电磁场matlab仿真实验

合集下载

电磁场的Matlab仿真.

电磁场的Matlab仿真.

Matlab 与电磁场模拟一单电荷的场分布:单电荷的外部电位计算公式:qφ=4πε0r等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向外辐射的线。

MATLAB 程序:theta=[0:.01:2*pi]'; r=0:10;x=sin(theta*r; y=cos(theta*r; plot(x,y,'b' x=linspace(-5,5,100; for theta=[-pi/4 0 pi/4] y=x*tan(theta; hold on ; plot(x,y; end grid on单电荷的等位线和电力线分布图:二多个点电荷的电场情况:模拟一对同号点电荷的静电场设有两个同号点电荷, 其带电量分别为 +Q1和+Q2(Q1、Q2>0 距离为 2a 则两电荷在点P(x, y处产生的电势为:由电场强度可得E = -∇U, 在xOy 平面上, 电场强度的公式为:为了简单起见, 对电势U 做如下变换:。

Matlab 程序:q=1; xm=2.5; ym=2;x=linspace(-xm,xm; y=linspace(-ym,ym; [X,Y]=meshgrid(x,y;R1=sqrt((X+1.^2+Y.^2; R2=sqrt((X-1.^2+Y.^2; U=1./R1+q./R2; u=1:0.5:4; figure contour(X,Y,U,u grid onlegend(num2str(u' hold onplot([-xm;xm],[0;0] plot([0;0],[-ym;ym]plot(-1,0,'o' , 'MarkerSize' ,12 plot(1,0,'o' , 'MarkerSize' ,12 [DX,DY] = gradient(U; quiver(X,Y,-DX,-DY; surf(X,Y,U;同号电荷的静电场图像为:50403020100-22同理,将程序稍作修改,便可以得到异号电荷的静电场图像:403020100-10-20-30-4022.5三、线电荷产生的电位:设电荷均匀分布在从z=-L到z=L,通过原点的线段上,其密度为q(单位C/m,求在xy 平面上的电位分布。

MATLAB电磁场实验指导书

MATLAB电磁场实验指导书

电磁场实验仿真指导书1、Matlab 基础2、实验内容2.1 预习点电荷电场分布2.2 实验一电偶极子电场分布仿真2.3 实验二特殊边界条件的电场分布2.4 实验三直导线的磁场分布2.5 实验四磁偶极子的磁场分布1 MATLAB 基础1.1 简介MATLAB是一门计算机程序语言,取名源于Matrix Laboratory,意在以矩阵方式处理数据。

一般认为MATLAB的典型应用包括:数值计算与分析、符号运算、建模与仿真、数据可视化、图形处理及可视化、基于图形用户界面的应用程序开发。

MATLAB7.3.0启动后界面如图1所示。

图1 MATLAB7.3.0启动后界面命令窗口(Command Window):(1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。

(2) 在提示符后输入运算指令和函数调用等命令(不带“;”),MATLAB将迅速显示出结果并再次进入准备工作状态。

(3) 若命令后带有“;”,MATLAB执行命令后不显示结果。

(4) 在准备工作状态下,如果按上下键,MATLAB会按顺序依次显示以前输入的命令,若要执行它,则直接回车即可。

工作空间(Workspace):(1) 显示计算机内存中现有变量的名称、类型、结构及其占用子节数等。

(2) 如果直接双击某变量,则弹出Array Editor窗口供用户查看及修改变量内容。

(3) 该窗口上有工具条支持用户将某变量存储到文件中或者从文件中载入某变量。

命令历史记录(Command History):(1) 保存并显示用户在命令窗口中输入过的命令,以及每次启动MATLAB的时间等信息。

(2) 若双击某条命令记录,则MATLAB会再次执行该命令。

当前路径窗口(Current Directory):(1) 先是当前路径内的所有文件。

(2) 用户可以在这里新建或删除一个文件,也可以双击一个文件,在编辑/调试窗口中打开。

带电粒子在电磁场中运动的MATLAB仿真 (1)

带电粒子在电磁场中运动的MATLAB仿真 (1)

目录第一章概述 (1)第二章基本原理 (2)2.1 带电粒子在电磁场中运动的原理 (2)2.2质量较大的带电微粒在复合场中的运动 (2)第三章算法及仿真结果 (4)3.1具体算法 (4)3.2结果 (5)第四章结论 (7)参考文献 (8)附录 (9)第一章概述MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks公司出品的商业数学软件。

MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。

除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB具有其他高级语言难以比拟的一些优点,如编写简单、编程效率高、易学易懂等,因此MATLAB 语言也被通俗地称为演算纸式科学算法语言。

MATLAB是当今最优秀的科技应用软件之一,它以强大的科学计算与可视化功能、简单易用、开放式可扩展环境,特别是所附带的30 多种面向不同领域的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。

而其强大的图像绘制功能也使得它广泛用于各种数据背后现象的模拟仿真。

计算机数值模拟的研究方法已成为继实验研究和理论分析之外的第三种研究手段,在基础物理学习中适当引入计算机数值方法,有助于将一些高深的物理知识深入浅出、生动形象地学习。

随着计算机的普及,MATLAB在基础物理中的应用日益广泛。

在控制、通信、信号处理及科学计算等领域中,MATLAB 都被广泛地应用,已经被认为能够有效提高工作效率、改善设计手段的工具软件。

第二章 基本原理2.1带电粒子在电磁场中运动的原理带电粒子在磁场中运动时会受到洛伦兹力的作用,且随着初始运动方向和磁场分布的不同,其运动轨迹会发生不同的变化。

电磁场中matlab仿真实现工具箱

电磁场中matlab仿真实现工具箱

实验六:使用偏微分方程工具箱对电磁场的仿真一、实验目的与要求1.掌握微分方程工具箱的使用方法;2.掌握使用偏微分方程工具箱分析电磁场。

二、实验类型设计三、实验原理及说明偏微分方程的工具箱(PDE toolbox)是求解二维偏微分方程的工具,MA TLAB专门设计了一个应用偏微分方程的工具箱的演示程序以帮助使用者快速地了解偏微分方程的工具箱的基本功能。

操作方法是在MA TLAB的指令窗口键入pdedemos,打开Command Line Demos窗口,如图所示。

只要单击任意键就会使程序继续运行,直至程序运行结束。

单击信息提示按钮(Info)是有关演示窗口的帮助说明信息。

8个偏微分方程的演示程序分别是泊松方程、亥姆霍兹方程、最小表面问题、区域分解方法、热传导方程、波动方程、椭圆型方程自适应解法和泊松方程快速解法。

(一)偏微分方程的工具箱的基本功能偏微分方程的工具箱可以求解一般常见的二维的偏微分方程,其基本功能是指它能解的偏微分方程的类型和边值条件。

用户可以不必学习编程方法仅仅在图形用户界面窗口进行操作,就能得到偏微分方程的数值解。

1.工具箱可解方程的类型定义在二维有界区域Ω上的下列形式的偏微分方程,可以用偏微分方程工具箱求解:椭圆型()f au u c =+∇∙∇- 抛物型()f au u c tu d =+∇∙∇-∂∂ 双曲型()f au u c tu d =+∇∙∇-∂∂22 本征值方程()du au u c λ=+∇∙∇-式中,u 是偏微分方程的解;c 、a 、d 、f 是标量复函数形式的系数,在抛物型和双曲型方程中,它们也可以是t 的函数,λ是待求的本征值。

当c 、a 、f 是u 的函数时,称之为非线性方程,形式为()()()()u f u u a u u c =+∇∙∇-也可以用偏微分方程工具箱求解。

2.工具箱可解方程的边值条件解偏微分方程需要的边值条件一般为下面两种之一:狄里赫利(Diriclet)边值条件 hu=r广义诺曼(Generalized Neumann)边值条件 ()g qu u c n =+∇∙式中,n为边界外法向单位向量;h 、q 、r 、g 是在边界上定义的复函数。

MATLAB仿真平面电磁波在不同媒介分界面上的入射

MATLAB仿真平面电磁波在不同媒介分界面上的入射

MATLAB仿真平面电磁波在不同媒介分界面上的入射、反射和折射一、实验目的:1、进一步学习MATLAB,初步掌握GUI界面的编程。

2、通过编程实现电磁波仿真效果图。

3、进一步理解平面电磁波的入射、反射和折射现象二、实验要求:1、以电场为例,动态演示平面电磁波的传播情况。

2、可以任意设置媒介的介电常数和入射角。

3、考虑金属导体和空气的分界面平面电磁波的入射、反射情况。

三、实验原理:电磁波从一种媒质入射到第二种媒质时,分界面使一部分能量反射回第一种媒质,另一部分能量折射到第二种媒质中,反射波和折射波得大小和相位取决于分界面两侧的媒质特性、极化方向和入射角大小等,当电磁波入射到理想导体表面时,会发生全反射。

这一过程中包括的主要原理有以下三点。

1、正弦平面波在媒质分界面的反射和折射规律波对分界面的入射是任意的,但为了方便,我们假设入射面与zox面重合。

波在z>0时发生入射和反射,在z<0时发生折射并令空间任意一点r处的入射波、反射波和折射波场强为:111(sin cos )00(sin cos )00(sin cos )00i i i i r r i t t jK r jK x z i i i jK r jK x z r r r jK r jK x z tt t E E e E e E E e E e E E e E e θθθθθθ--+--+--+⎧==⎪==⎨⎪==⎩图表 1 正弦波斜入射示意图根据在z=0的界面上电场强度的切线分量相等的边界条件,有(,,0)(,,0)(,,0)i r t E x y E x y E x y ==故必有 112sin sin sin i r t k k k θθθ== 反射定律: i r θθ= 折射定律: 12sin sin i r k k θθ= 2、 正弦平面波对理想介质的斜入射 ① 垂直极化波垂直极化波对理想介质斜入射如图所示,由折射和反射定律,我们可以得到在任意媒质中的场强。

利用MATLAB软件仿真电荷在变化磁场中的运动 (2)

利用MATLAB软件仿真电荷在变化磁场中的运动 (2)

利用MATLAB软件仿真电荷在变化磁场中的运动摘要:MATLAB是美国Mathworks公司于80年代推出的大型数学软件,通过多年的升级换代,现在已发展成为集数值计算、符号计算、可视化功能以及诸多的工具箱为一体的大型科学计算软件,它已广泛应用于科研院所、工程技术等各个部门,并成为大学生、研究生必备的工具软件。

本文通过MATLAB软件工具,对仿真电荷在变化磁场中的运动问题给出了直观形象的的仿真图,实现了可视化学习,丰富了学习内容,提高了对电磁场理论知识的兴趣。

关键词:MATLAB 电磁学仿真计算机模拟一、可视化的意义MATLAB是大型的数据软件,它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案。

MATLAB拥有强大的数值计算功能,但抽象的数据对于普通的用户来说往往是比较难懂的,针对这一问题,MATLAB为用户提供了更加强大的数据可视化功能,用户可以通过MATLAB的绘图函数和图形编辑窗口方便的绘制二维、三维甚至多维的图形。

MATLAB还为用户提供了各种不同的曲线元素,使图形更具表现力,更加清晰易懂。

电磁学是物理学的一个分支,是研究电场和电磁的相互作用现象。

电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于电流的磁效应和变化的磁场的电效应的发现。

这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。

针对电磁场学习理论性强、概念抽象等特点,利用MATLAB强大的数值计算和图形技术,通过具体实例进行仿真,绘制相应的图形,使其形象化,便于对其的理解和掌握。

将MATLAB引入电磁学中,利用其可视化功能对电磁学实验现象进行计算机模拟,可以提高学习效率于学习积极性,使学习效果明显。

MATLAB实验电磁实验仿真

MATLAB实验电磁实验仿真

实验四 电磁实验仿真 —点电荷电场分布的模拟一. 实验目的电磁场是一种看不见摸不着但又客观存在的物质,通过使用Matlab 仿真电磁场的空间分布可以帮助我们建立场的图景,加深对电磁理论的理解和掌握。

按照矢量分析,一个矢量场的空间分布可由其矢量线(也称力线)来形象表示。

点电荷的电场就是一个矢量场,模拟其电力线的分布可以得到电场的空间分布。

通过本次上机实验希望达到以下目的:1. 学会使用MATLAB 绘制电磁场力线图和矢量图的方法;2. 熟悉二维绘图函数contour 、quiver 的使用方法。

二. 实验原理根据库仑定律,真空中的一个点电荷q 激发的电场3r E q r=v v (高斯制) (1) 其中r 是观察点相对电荷的位置矢量。

考虑相距为d 的两个点电荷q 1和q 2,以它们的中点建立坐标(如图),根据叠加原理,q 1和q 2激发的电场为:12123312r r E q q r r =+v v v (2) 由于对称性,所有包含电荷的平面上,电场的分布一样,所以只需要考虑xy 平面上的电场分布,故121233331212(/2)(/2)ˆˆˆˆ()[]x y E E q x q x q y d q y d E j j r r r r i i -+==++++v (3)其中12 r r ==。

根据电动力学知识(参见谢处方,《电磁场与电磁波》,1.4.1节),电场矢量线(或电力线)满足微分方程: yx E dydx E = (4) 代入(3)式解得电力线满足的方程 1212(/2)(/2)q y d q y d r r C -++= (5) 其中C 是积分常数。

每一个C 值对应一根电力线。

电场的分布也可以由电势U 的梯度(gradient ,为矢量)的负值计算,根据电磁学知识,易知两点电荷q 1和q 2的电势1212q q U r r =+(6)那么电场为 E gradU U =-=-∇v (7)或者 ()(),x y x y E U E U =-∇=-∇ (8)在Matlab 中,提供了计算梯度的函数gradient()。

电磁场仿真matlab

电磁场仿真matlab
电磁场边值问题求解
一、实验目的
一个二维静电场,电位函数为 ,边界条件如题4.29图所示,将正方形场域分成20个正方形网格。有16个内部网格点。假定16个网格点的初始值都定为零,试用超松弛法确定16个内网格点的电位值。
100V
Matlab程序如下:
M=6;
N=6; %网格节点数6*6=36个
U1=ones(N,M); %行列二维数组
U2=U1; P=1;T=0; %初始化
k=0
while(P>1e-5) %由v1迭代,算出v2,迭代精度1e-5
k=k+1; %计算迭代次数
P=0;
for i=2:N-1; %行循环
for j=2:M-1; %列循环
U2(i,j)=U1(i,j)+(U1(i,j+1)+U1(i+1,j)+U2(i-1,j)+U2(i,j-1)-4*U1(i,j))*w/4; %差分方程
hold off
三、
1、场域内等电位线、电场线分布图
所求16个内网格点电位值如下表(精度1e-5)
四、
通过这次使用matlab编写程序求解电磁场的实验,对电磁场这门课程的我有了更加直观的图形理解和计算机求解的认识。实验用超松弛法求解有界电场内的16个内网格点的过程让我亲身实践了电磁场理论计算的形象化结果,加深了我对电磁场边值问题的理解,特别是超松弛方法和简单迭代的运用。
x=1:1:M; y=1:1:N
[xx,yy]=meshgrid(x,y); %栅格
[Gx,Gy]=gradient(U2,0.6,0.6); %梯度
quiver(xx,yy,Gx,Gy,-1.0,'r'); %根据梯度画箭头

电磁场matlab仿真实验

电磁场matlab仿真实验

电磁场matlab 仿真实验一实验一:[例7-5]试分析一对等量异号的电荷周围空间上的电位和电场分布情况。

分析:将等量异号的电荷的几何中心放置于坐标原点位置,则它们在空间某点p 处产生的点位为:()G q g g q r r q r q r q02102102010*******πξπξπξπξπξϕ=-=⎪⎪⎭⎫ ⎝⎛-=-=其中G 为格林函数()()22222cos 2/cos 2/1r dr d r r dr d r +-=+-=θθ将G 用片面积坐标表示为⎪⎪⎭⎫⎝⎛=12ln g g G 在编程时,将G 当作点位函数处理,并利用梯度求出唱腔E=-▽φ。

用matlab 的m 语言编写的程序如下:[x,y]=meshgrid(-10:0.1:10);[Q,R]=cart2pol(x,y);R(R<=1)=NaN;q=input('请输入电偶极子的电量q =')%原程序有误,以此为准d=input('请输入电偶极子的间距d =')%原程序有误,以此为准E0=8.85*1e-12;K0=q/4/pi/E0;g1=sqrt((d./2).^2-d.*R.*cos(Q)+R.^2);%原程序有误,以此为准g2=sqrt((d./2).^2+d.*R.*cos(Q)+R.^2);%原程序有误,以此为准G=log(K0*g2./g1);contour(x,y,G,17,'g');hold on[ex,ey]=gradient(-G);tt=0:pi/10:2*pi;%原程序未定义tt ,以此为准sx=5*sin(tt);sy=5*cos(tt);streamline(x,y,ex,ey,sx,sy);xlabel('x');ylabel('y');hold off;当运行此程序后,按提示输入电偶极子电量和嗲耨集子间距如下:请输入电偶极子的电量q =0.5*1e-10请输入电偶极子的间距d =0.01即可汇出入图说使得嗲耨集资周围的长的分布图。

电磁波仿真实验

电磁波仿真实验

电磁波仿真实验实验内容1.本次实验介绍了matlab的安装过程2.初步对于MATLAB有了基本的认识与了解3.熟悉MATLAB软件的基本操作有时,为了使图形具有可读性,需要在所绘制的图形中,加上一些网格线来反映信号的幅度大小。

在MATLAB中使用grid函数可实现在图形中加网格线。

gridon%在图形中加网格线gridoff%取消图形中的网格线holdon%图形显示窗口原来的图像保持holdoff%关闭图形保持功能figure%打开新的显示窗口MATLAB的工作环境主要由工具栏、文件路径,当前文件夹,命令窗口以及工作变量区构成(由于设置不同,软件中也会显示历史窗口,记录的是在命令窗口的历史输入),如图1所示。

工具栏也就是如下图所示的部分,它是用来对软件进行一系列操作的区域。

命令窗口是进行一系列命令输入的地方,当有指令输入并按下Enter 键时,软件会自动执行该条指令,并执行出该命令的结果。

文件路径是当前文件夹的地址,在该区域可以实现文件路径的切换。

当前文件夹是显示当前文件路径下所有文件的窗口,可以在此双击打开所需要的.m等不同格式的文件。

工作变量区是存放所执行程序中涉及到的所有变量值的空间,可以在该区域双击某变量查看该变量具体表示情况。

MATLAB使用中的部分注意事项如下:1、变量不需要先定义,随时用随时起名字即可;2、用文本编辑器编写的程序、函数的文件扩展名均为“.m”;3、程序文件在起名字时要注意不能用数字和中文作为文件名;4、函数文件在保存时会自动以定义的函数名作为其文件名,不允许修改,否则函数无法运行;5、变量和常量的标识符中的第一个字符必须是英文字符;6、MATLAB变量区分大小写;7、如果不想在命令行窗口输出运行结果,只需在代码后面加上分号即可;8、plot是绘图的意思,ub是子的意思。

ubplot(m,n,p)表示生成m某n个子图,当前激活第p个子图;9、程序某=input(‘Typeinignal某(t)incloedform:’),表示接收键盘输入值并赋值给某。

电磁场与电磁波 【matlab】实验三 平面电磁波的反射和干涉实验

电磁场与电磁波 【matlab】实验三  平面电磁波的反射和干涉实验

电磁场与电磁波实验实验三平面电磁波的反射和干涉实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。

实验三平面电磁波的反射和干涉实验一、实验目的:1.通过虚拟仿真观察并理解平面电磁波的传输特性。

2.利用平面线极化电磁波投射到介质板上产生反射波和透射波的干涉现象来了解平面电磁波传播的一些基本特性。

3.利用干涉条纹(即空间驻波)的分布学习一种测量微波波长的方法,观察在介质中电磁波的传播从而测量其相对介电常数。

二、实验装置:实验装置如图1所示,微波源与各透射板、反射板有足够的距离以保证近似为平面波。

分束板应与入射电磁波成45°,与两反射板也成45°,A、B两反射板互相垂直。

图1微波干涉仪三、实验原理:1.平面电磁波的传播、反射及透射电磁波在传播过程中遇到两种不同波阻抗的介质分界面时,在介质分界面上将有一部分电磁能量被反射回来,形成反射波;另一部分电磁能量可能透过分界面继续传播,形成透射波。

设分界面为无限大平面,位于z=0处。

入射波的电场和磁场分别依次为:10ˆjk z i x i E aE e -= 1011ˆjk z i y i H a E e η-= 其中,0i E 是z=0处入射波的振幅,k 1和η1为介质1的相位常数和波阻抗,且有:1k =,1η=(1)当平面电磁波向理想导体垂直入射时如图2所示,因为介质2为理想导体,其中的电场和磁场均为零,即:20E = ,20H = 。

因此,介质2中没有透射波,电磁波不能透过理想导体表面,而是被分界面全部反射,在介质1中形成反射波r E 和r H。

图2平面电磁波向理想导体垂直入射则反射波的电场和磁场为:0r x r 1011ˆjk z r y r H a E e η=- 其中,0r E 为z=0处反射波的振幅,负号表示磁场方向发生了变化。

在分界面两侧,电场强度E 的切向分量连续,即:001r i E E Γ==-在z<0区域,也就是区域I 中,复振幅表示的合成电场和磁场分别为:()111001ˆˆ()2sin jk z jk z x i x i E aE e e a jE k z -=-=- ()110101111ˆˆ()2cos jk z jk z i y i y E H a E e e a k z ηη-=+= (2)当平面电磁波向理想介质垂直入射时如图3所示,均匀平面电磁波向理想介质的垂直入射时,因介质参数不同,到达分界面上的一部分入射波被分界面反射,另一部分入射波透过分界面进入区域II 传播。

matlab仿真平面电磁波的反射和干涉实验

matlab仿真平面电磁波的反射和干涉实验

电磁场与电磁波实验实验三平面电磁波的反射和干涉实验学院:电子工程学院班级:姓名:秦婷学号:理论课教师:实验课教师:同做者:实验日期:2020 年 5 月19 日请务必填写清楚姓名、学号、班级及理论课任课老师。

实验三平面电磁波的反射和干涉实验一、实验目的:1.通过虚拟仿真观察并理解平面电磁波的传输特性。

2.利用平面线极化电磁波投射到介质板上产生反射波和透射波的干涉现象来了解平面电磁波传播的一些基本特性。

3.利用干涉条纹(即空间驻波)的分布学习一种测量微波波长的方法,观察在介质中电磁波的传播从而测量其相对介电常数。

二、实验装置:实验装置如图1所示,微波源与各透射板、反射板有足够的距离以保证近似为平面波。

分束板应与入射电磁波成45°,与两反射板也成45°,A、B两反射板互相垂直。

BAmA图1微波干涉仪三、 实验原理:1. 平面电磁波的传播、反射及透射电磁波在传播过程中遇到两种不同波阻抗的介质分界面时,在介质分界面上将有一部分电磁能量被反射回来,形成反射波;另一部分电磁能量可能透过分界面继续传播,形成透射波。

设分界面为无限大平面,位于z=0处。

入射波的电场和磁场分别依次为:10ˆjk z i x i E aE e −= 1011ˆjk z i y i H a E e η−=其中,0i E 是z=0处入射波的振幅,k 1和η1为介质1的相位常数和波阻抗,且有:1k =,1η=(1) 当平面电磁波向理想导体垂直入射时 如图2所示,因为介质2为理想导体,其中的电场和磁场均为零,即:20E =,20H =。

因此,介质2中没有透射波,电磁波不能透过理想导体表面,而是被分界面全部反射,在介质1中形成反射波r E 和 r H 。

图2平面电磁波向理想导体垂直入射则反射波的电场和磁场为:10ˆjk z r x r E aE e = 1011ˆjk z r y r H a E e η=−其中,0r E 为z=0处反射波的振幅,负号表示磁场方向发生了变化。

电磁场的matlab仿真实验--m语言1

电磁场的matlab仿真实验--m语言1

实验三:等量异号点电荷的电势分布一、实验目的与要求1.掌握命令窗口中直接输入语句,进行编程绘制等量异号点电荷的电势分布图;2.掌握二维网格和三维曲面绘图的语句。

二、实验类型设计三、实验原理及说明这里在命令窗口中直接输入简单的语句进行编程设计。

MATLAB有几千个通用和专用五、实验内容和步骤(一)建立等量异号点电荷的电势方程物理情景是oxy平面上在x=2,y=0处有一正电荷,x= -2,y=0处有一负电荷,根据计算两点电荷电场中电势的分布,由于(二)利用MA TLAB的函数, 绘制等量异号点电荷的电势分布图首先选定一系列的x和y后,组成了平面上的网络点,再计算对应每一点上的z值。

例如-5:0.2:5,-4:0.2:4分别是选取横坐标与纵坐标的一系列数值,meshgrid是生成数据网格的命令,[x,y]是xy平面上的坐标网格点。

z是场点(x ,y)的电势,要求写出z的表达式。

这里用到MA TLAB的函数mesh()描绘3D网格图,meshgrid()描绘在3D图形上加坐标网格,sqrt()求变量的平方根。

mesh()是三维网格作图命令,mesh(x,y,z)画出了每一个格点(x,y)上对应的z值(电势)。

在命令窗口中直接输入简单的语句,如下。

解1解2当场点即在电荷处时,会出现分母为零的情况,因此在r里加了一个小量0.01,这样既可以完成计算,又不会对结果的正确性造成太大影响。

另外需要注意的是表达式中的“./ ”、“.^ ”是对数组运算的算符,含义与数值运算中的“./ ”、“.^ ”相同,不同之处是后者只对单个数值变量进行运算,而前者对整个数组变量中的所有元素同时进行运算。

解2为了减少计算量,增加精确度,与先前的示例相比,计算范围由原先的-5<x<5 ,-4<y<4改为-2<x<2 ,-2<y<2 ;步长由0.5改为0.1,电荷位置也改在(-1,0)和(1,0)处。

电磁场与电磁波 【matlab】实验一 带电粒子在电磁场中的受力与运动特性研究实验

电磁场与电磁波 【matlab】实验一 带电粒子在电磁场中的受力与运动特性研究实验

电磁场与电磁波实验实验一带电粒子在电磁场中的受力与运动特性研究实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。

一带电粒子在电磁场中的受力与运动特性研究实验一、实验目的:1.通过虚拟仿真,观察带电粒子在电磁场中的运动行为。

2.学习运用Matlab 对电磁场进行数值模拟的方法。

二、实验原理带电粒子在磁场中运动会受到磁场力的作用,且随着初始运动方向和磁场分布的不同,其运动轨迹会发生不同的变化。

设带电粒子电量为q,以速度v 运动,则受到外磁场的作用力为:F qv B=⨯ 该公式表明:(1)磁场作用力同时垂直于磁感应强度和粒子运动速度;(2)磁场作用力只作用于运动的带电粒子,且永远不对带电粒子做功,只改变其运动方向。

若带电量为q 的运动电荷所在空间同时存在电场和磁场,则它所受的电场力和磁场力的综合即为洛伦兹力:()F q E v B =+⨯ 若不考虑粒子所受重力的作用,上式综合牛顿运动定律就可以精确确定带电粒子在电磁场中的运动轨迹。

设带电粒子质量为m,电量为q,进入电场E 与磁场B 方向正交的叠加电磁场中。

以电磁场中某点为原点,以电场E 为OY 方向,以磁感应强度B 为OZ 方向建立直角坐标系O-XYZ,则电场E 只有Y 分量,磁感应强度B 只有Z 分量,带电粒子在该电磁场中的运动微分方程为:22()d r m q E v B dt=+⨯ 上式可以在直角坐标系中展开为如下形式:2222220d x qB dy dtm dt d y qE qB dx dtm m dt d z dt⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩令1w x =,2dx w dt =,3w y =,4dy w dt =,5w z =,6dz w dt =,则上式可以化简为如下一阶微分线性方程组:12243442566dw w dt dw qB w dt m dw w dt dw qE qB w dt m m dw w dt dw dt ⎧=⎪⎪⎪=⎪⎪⎪=⎪⎨⎪=-⎪⎪⎪=⎪⎪=⎪⎩通过Matlab 编写程序,即可求解上述微分方程组。

电磁场与电磁波 【matlab】实验四 电磁波的极化实验

电磁场与电磁波 【matlab】实验四 电磁波的极化实验

电磁场与电磁波实验实验四电磁波的极化实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。

实验四电磁波的极化实验一、实验目的:1.通过虚拟仿真观察并理解电磁波极化的概念2.学习电磁波极化的测量方法3.学会判读线极化波,圆极化波的方法二、实验装置实验装置如图1所示。

图中:①为微波源;②为隔离器;③为负载;④为可变衰减器;⑤为T 型接头;⑥和⑦为发射天线;⑧为可变相移器;⑨为接收天线;⑩为检波器;⑪为指示电流表。

图1电磁波极化实验系统T 型接头用以将传来的微波功率分成等强度的两束波。

衰减器用于调节支路中的功率强弱。

相移器用以调节支路中的初相位φ,从而产生相位的变化。

三、实验原理:平面电磁波沿轴线前进没有z E 分量,一般情况下,存在x E 分量和y E 分量,如果y E 分量为零,只有x E 分量我们称其为X 方向线极化。

如果只有y E 分量而没有x E 分量我们称其为Y 方向线极化。

在一般情况下,x E 和y E 都存在,在接收此电磁波时,将得到包含水平与垂直两个分量的电磁波。

如果此两个分量的电磁波的振幅和相位不同时,可以得到各种不同极化形式的电磁波。

1.如果电磁波场强的X 和Y 分量为:()1cos x xm E E t kz ωϕ=+-\*MERGEFORMAT (1)()2cos y ym E E t kz ωϕ=+-\*MERGEFORMAT (2)其中1ϕ、2ϕ为初相位,2k πλ=。

若1ϕ等于2ϕ,或1ϕ与2ϕ相位差为2n π时,其合成电场为线极化波,其幅度为:()1E t kz ωϕ==-+\*MERGEFORMAT (3)电场分量与X 轴的夹角为:arctan arctan yym x xm E E E E α===常数\*MERGEFORMAT (4)2.如果1ϕ与2ϕ相位差90°或270°,则:()1cos x xm E E t kz ωϕ=-+\*MERGEFORMAT (5)()2cos y ym E E t kz ωϕ=-+\*MERGEFORMAT (6)合成电磁场为:E ==常数\*MERGEFORMAT (7)它的方向是:()1tan tan yx E t kz E αωϕ==-+\*MERGEFORMAT (8)1t kz αωϕ=-+\*MERGEFORMAT (9)表示合成场振幅不随时间变化,其方向是随时间而旋转的圆极化波。

应用MATLAB设计电磁场与电磁波模拟仿真实验

应用MATLAB设计电磁场与电磁波模拟仿真实验

应用MATLAB设计电磁场与电磁波模拟仿真实验在当今科技飞速发展的时代,电磁场与电磁波在通信、电子工程、无线电技术等众多领域中发挥着至关重要的作用。

为了更深入地理解和研究电磁场与电磁波的特性和行为,借助先进的工具进行模拟仿真是一种极为有效的方法。

其中,MATLAB 凭借其强大的数学计算和图形处理能力,成为了设计电磁场与电磁波模拟仿真实验的理想选择。

一、MATLAB 简介MATLAB 是一种广泛应用于科学计算、数据分析和可视化的高级编程语言和交互式环境。

它提供了丰富的函数库和工具箱,使得用户能够轻松地进行数值计算、矩阵运算、信号处理、图像处理等各种复杂的任务。

对于电磁场与电磁波的研究,MATLAB 中的数值计算和绘图功能尤为重要。

二、电磁场与电磁波基础在开始设计模拟仿真实验之前,我们需要先了解一些电磁场与电磁波的基本概念和理论。

电磁场是由电荷和电流产生的物理场,包括电场和磁场。

电磁波则是电磁场的一种运动形式,它以光速在空间中传播,具有电场分量和磁场分量,并且两者相互垂直。

电磁波的特性可以用频率、波长、波速、振幅等参数来描述。

不同频率的电磁波在传播过程中会表现出不同的特性,例如在介质中的折射、反射、吸收等。

三、设计思路在利用 MATLAB 进行电磁场与电磁波模拟仿真实验时,我们的设计思路通常包括以下几个步骤:1、问题定义:明确要研究的电磁场与电磁波现象,例如电磁波在自由空间中的传播、在介质中的折射和反射等。

2、数学模型建立:根据电磁学理论,建立描述该现象的数学方程。

这可能涉及到麦克斯韦方程组的应用以及边界条件的设定。

3、数值求解:使用 MATLAB 提供的数值计算方法,如有限差分法、有限元法等,对数学方程进行求解,得到电磁场的数值解。

4、结果可视化:将求解得到的数值结果通过图形的方式展示出来,以便直观地观察和分析电磁场与电磁波的特性。

四、具体实验案例下面我们通过一个简单的例子来展示如何使用 MATLAB 设计电磁场与电磁波的模拟仿真实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档