转子串电阻调速

合集下载

异步电动机的串级调速

异步电动机的串级调速

2024年1月16日星期二
向低于同步速方向的串级调速
串附加电动势之前:电机匀速转动,I2,Te=Tl; 串附加电动势之后:
I2'
sE20 R2
E f jsX 20
I2'
I2
Te ' Te
n
s s' n s I2 ' I2 ' I2 n'
Te ' Te
电机在转速n′处实现平衡,转速调为n ′ 。
串级调速的原理与基本类型
一.串级调速的原理 二.串级调速的基本运行状态及功率关系 三.串级调速系统的基本类型
2024年1月16日星期二
绕线型异步电动机的转子
2024年1月16日星期二
绕线型异步电动机的转子
2024年1月16日星期二
集电环
三相绕线型异步电动机示意图
转子三相绕组接成 Y 形
2024年1月16日星期二
2024年1月16日星期二
4. 高于同步转速的回馈制动运行状态 s<0,Te<0。则
Pem Te0 0
PM (1 s)Pem 0 Ps s Pem 0
说通明 过电 定动 子机 回从馈轴给上电吸网收;机另械 一功 部率 分变PM为,转一差部功分率变P为s,电通磁过功产率生PemE•,f 装置回馈给电网。
迟一个角度 p 。
电流越大,这个强迫延时换相 角就越大,但有:
00 p 300
2024年1月16日星期二
3.转子整流器的故障状态 (Id过大,p 300
特征:
当重叠达到600、 强迫延时 换相角达到300时的电压电流波 形如右图所示。
如果负载电流继续增大, 重叠角又会大于600,但强迫延 时换相角会保持300不变。原因 是:即使前面两个管子换流未 换完,后面该导通的管子也会 承受正压而导通,这样,就会 出现共阴极管和共阳极管都在 换流,四个二极管同时导通---转子整流器短路的故障情况 。

绕线式异步电动机转子串电阻的调速控制

绕线式异步电动机转子串电阻的调速控制

一课题背景21启动前的准备32启动控制33制动控制34调速控制过程4二任务要求4三设计思路51主电路52.PLC接线图63. I/O分配64.程序梯形图75.程序调试86.调试完成错误!未定义书签。

总结10一课题背景绕线式异步电动机转子串电阻的调速控制线路,对调速无特殊要求的生产机械,可以采用绕线式异步电动机拖动,绕线式转子异步电动机转子串电阻调速控制电路,按照时间原则启动、能耗制动的控制线路如图所示:工作原理分析如下1启动前的准备先讲主令控制器SA的手柄置到“0”位,再合上电源开关QS1,QS2,则有:(1)零位继电器KV线圈通电并自锁。

(2)KT1,KT2线圈得电,其延时闭合的动断触点瞬时打开,确保KM1,KM2线圈断电。

2启动控制将SA的手柄推向3位,SA的触点SA1,SA2,SA3,均接通,KM线圈通电。

则有:(1)KM的主触点闭合,电动机接入交流电源,电动机在转子串两段电阻的情况下启动。

同时,KT线圈得电,KT延时断开的动合触点闭合。

(2)KM的动断触点打开,KT1线圈断点开始延时,当延时结束时,KT1动断触点闭合,KM1线圈通电,KM1的动合触点闭合切除一段电阻R1,同时KM1的动断触点断开,KT2线圈断电开始延时,当延时结束时,KT2的动断触点闭合,KM2线圈通电切除电阻R2,启动结束。

3制动控制进行制动时,将主令控制器SA的手柄扳回“0”位,KM,KM1,KM2线圈均断电,电动机切除交流电源。

同时,KT1,KT2线圈得电。

则有:(1)KM的动断触点闭合,KM3线圈通电,电动机接入直流电源进行能耗制动;同时,KM2线圈通电,电动机在转子短接全部电阻的情况下进行能耗制动。

(2)KM的动合辅助触点断开,KT线圈断电开始延时,当延时结束时,KT延时断开的动合触点断开,KM2,KM3线圈均断电,制动结束。

4调速控制过程当需要电动机在低速下运行时,可将主令控制器SA手柄推向“1”位或“2”位,则电动机的转子在串入一段电阻或不串入电阻的情况下以较高速度运转二任务要求绕线式转子异步电动机转子串电阻调速控制电路的PLC程序设计。

浅谈绕线式三相异步电动机的调速控制

浅谈绕线式三相异步电动机的调速控制
功率绕线电机中多采用此启动器。 • 缺点:1、对电压稳定性要求高,稍低即难起动。
2、不能连续起动,连续启动时间间隔为1 分钟左右。
3、频敏包易烧毁,对绝缘要求高。
三、串极调速启动
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机 的转差,达到调速的目的。 • 原速理前:后假转定子异电步流电近机似的保外持不加变电。源若电在压转E0子不回变路,中负引载入转一矩个都频不率变与,转则子电电机势在相调 同,而相位相同或相反的附加电势E1则转子电流I0为:
I0=(E0±E1)/ R0 (式4) R0= (R2+X0)1/2 E0-转子开路相电势;R2-转子回路电阻;X0-转子旋转时每相漏抗; 当机电的机一在个正常常数运,行所时以,改转变差附率加s电很势小E,1就故可R2以>改X0变,转忽差略率X0s,,上从式而中实,现E调0取速电。动 实际E0±E1≈常数(式四) 势同相步设位串当相级E反调1=时速0时,(电小E动1于为机额负运定,行转改于数变额)E定1(的转即大速s小>,,0即)可n,在=当n额0附,s定=件s转0电,数当势以附与下件转调电子速势相,与电这转势称子相为相位低电相 同时,E1为正,改变E1的大小,可在额定转数以上调速,这称为超同步串级 调速(大于额定转数)(即s<0)。
P
sP
M
KM
KM1
逆变器
整流器
R
图能实现无级平滑调 速,低速时机械特性也比较硬,但是在运行中也必须要注 意以下两点:
• 1、必须有严格的启动和切换顺序,由于硅原件的赖压 和额定电流的影响,必须保证电机转速达到规定的最低转 速以上时才允许切换至串级调速运行状态,启动顺序是: 给控制回路送电,接通逆变器主电源转子接入频敏变阻器 (起保护作用),接通定子电源,启动电机,电机加速至 规定转速时切换至串调运行,此后立即切断频敏变阻器。

三相电机七种调速方式

三相电机七种调速方式

三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

异步电动机转子回路串电阻调速—归于改动转差率调速Sm改动

异步电动机转子回路串电阻调速—归于改动转差率调速Sm改动

异步电动机转子回路串电阻调速—归于改动转差率调速Sm改动
这种调速办法只适用于绕线式异步电动机。

从图1可见,当恒转矩负载时,因为转子回路串入调速电阻Rt,使sm增大,机械特性变软,从曲线1成为曲线2,所以电动机从a点作业到b点,其转速由n1(1-s1)降到n1(1-s2),然后到达调速的意图。

带恒转矩负载调速时,因为Tem=TL为常值,即坚持不变,转子电流I2不变,功率因数不变,则有:
(1)
式(1)阐明,绕线式异步电动机选用转子回路串电阻办法带恒转矩负载调速时,其转差率将跟着转子回路总电阻(R2+Rt)成正比改动,而且调速前后,定转子电流、输入功率、气隙磁场和电磁功率皆不改动。

转子回路串入电阻越大,转子铜耗越大,电动机作业功率越低。

故这种调速办法又称为能耗调速,功率低。

此法调速虽不经济,但简略便当,带必定负载时调速计划也较好(空载时用此法调速,计划小;重载时,电机特性太“软”,易不安稳),故在中、小型电机中运用较广泛。

1。

第3章 第3节 绕线式异步电动机的调速

第3章 第3节 绕线式异步电动机的调速
3.3 绕线式异步电动机的调速
可直接控制转子回路内的滑差功率 实现转子串电阻调速和串级调速等调速方式 串级调速--变流装置在转子侧 调节滑差功率,调速装置容量小 3.3.1 绕线式异步电动机转子串电阻调速 1、转子串电阻调速原理 转子回路接三相附加电阻 机械特性从自然特性变为人工特性 最大转矩不变
临界转差率将随外加电阻的增大而增加
改变值,逆变器输出电压变化,实现调速
19
①第1工作区
( p 0
600 )
转子整流输出电压(考虑换流压降及电机转子侧电阻Rd):
U d 2.34sE 2 ( 3sX d

2 Rd ) I d
逆变电压:
U 2.34U 2T cos ( 3X T

2 RT )I d
1)亚同步系统--交直交 静止变流器作用: 回收利用转子绕组中的转差功 率--传递有功功率 二极管不可控整流桥把转差频率 的交流变成直流 有源逆变器把直流变成电网频 率的交流回馈电网 PCU—Power Converter Unit
2)超同步系统--交-交变流器
静止变流器能双向传递有功功率 既能运行于亚同步速度,又能运行 于超同步 同时相位能随意变化,传递无功 功率,改善功率因数
) cos1 (1
2X d Id 6 E2
)
Xd--转子不动时折算到转子侧的总漏抗 Id--负载电流即整流输出电流
E2--电机静止时转子绕组相电势
γ角与转差率s无关 随着负载电流Id的增加而增加
当 Id 6E2 4Xd 时
60
14
2、转子整流电路3种工作状态 ①第1工作状态 负载不很大,换流重叠角γ随负载上升而增大,变化范围:
忽略分母中 有

异步电动机的几种调速方法 ——转子回路串电阻调速

异步电动机的几种调速方法 ——转子回路串电阻调速

• 此外,在恒转矩调速时,从电磁转矩参数 表达式(略)可知,恒转矩调速时转差率s 将随转子回路总电阻成正比例变化,总电 阻增加一倍,则转差率也增加一倍,于是 根据等效电路可见:恒转矩调速时,定、 转子电流、输入功率、气隙磁场和电磁功 率皆不变,而与转子回路串入电阻的大小 无关。于是,如果把转速调得愈低,即转 差率愈大,就需要在转子回路串入愈大的 电阻,随之转子铜耗就愈大,电动机效率 就愈低。
• 当转子回路串入调速电阻时,若电动机总 负载转矩保持不变,电动机从一个运行点 到另一个运行点,相应地转差率从S1增加 到S2,转速则从n1(1-S1)降到n1(1-S2)。 增加调速电阻,转速便越下降。
• 从转子回路串电阻调速曲线图(略)可见 在一定的调速电阻变化范围内,调速范围 的大小随负载的轻重而变化;在空载下调 速,则调速范围甚小,实际上达不到调速 的目的。
• 可见这种调速方法很不经济,降低转速所 减少的输出功率全部消耗于调速电阻的铜 耗上。另一缺点是转子加电阻后电动机的 机械特性变软,即负载变化时转速将发生 显著变化。
• 由此可见在转子回路串电阻调速存在很多 缺点,但由于比较简单,又可平滑调速, 在中小容量的绕线式电动机还是用得不少, 例如交流电源的桥式起重机几乎都用到这 种方法调速。
• 在变阻器的电阻增加最初瞬间,电动机的 的转速还来不及改变,因此转子电流减小, 相应地电磁转矩也减小,电动机的转速开 始下降,而转子的电势开始增加流增加到与其 对应的电磁转矩和总负载转矩互相平衡为 止,这时电动机在一个较低转速下稳定运 行。
电动机保护器 www.cx-jl
异步电动机的几种调速方法 — —转子回路串电阻调速
• 在转子回路串一变阻器调速只适用于绕线 式异步电动机。调速时的接线图和起动时 的一样,所不同的是:一般起动变阻器都 是短时工作的,而调速用的变阻器应为长 期工作的。

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

属有级调速,机械特性较软.1、串电阻启动增加起动转矩,降低起动电流,起动达速后切除启动电阻(就是短接转子回路)全速运行.2、串电阻启动(电阻最大值起动),根据需要调整电阻的阻值,可以改变电机的运行速度,达到调速的目的(是有范围的调速)。

绕线式电机的启动电流是可调的,通过调整转子串联的电阻大小,可以调节绕线式电机的启动电流!原理:对于绕线式异步电动机,当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流,电阻一般接为星形接法,根据公式:I0=U0/R0当转子串接电阻时R0↑,在U0不变的情况下,I0↓,此分析忽略电机感抗的损耗.启动前将电阻全部接入转子回路,随着启动过程的结束,启动电阻被逐级短接,KM1,KM2,KM3逐级吸合,保证始终有较大的起动转矩,短接方式可以遵循时间和电流调节原则,KA1,KA2,KA3中间继电器可以根据实际工作情况而定.RN=E N÷I N÷√3 R N:电机转子额定电阻E N:电机转子额定电压I N:电机转子额定电流例:240KW—6极电机,定子电流436A,定子电压380V。

转子电流376A,转子电压407VRN=(E N÷IN)÷√3=(407÷376)÷√3=(1.0824)÷√3=0。

624Ω△RY1=1。

4 RN = 1.4×1.0824 = 1.515Ω△RY2=0。

5RN = 0.5×1.0824= 0.5412Ω△R1=0。

3RN = 0.3×1。

0824 = 0。

3247Ω△R2=0.2 RN = 0。

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻调速方法2011-06-12 11:06:41| 分类:电子线路图|字号订阅三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

论述绕线式异步电机转子回路串电阻调速

论述绕线式异步电机转子回路串电阻调速

论述绕线式交流异步电动机转子回路串电阻调速原理兰州理工大学操纵理论与操纵工程谯自健 1220811010150 引言绕线式交流异步电动机转子回路串电阻调速是传统调速方式之一,其结构简单,易于实现。

本文通过对绕线式交流异步电动机转子回路串电阻调速的原理、效率和缺点方面作出分析。

1 绕线式交流异步电动机转子回路串电阻调速原理转子串电阻调速的线路图和机械特性如图(a)和(b)所示,拖动恒转矩负载时,能够取得几级不同的速度。

图(a)转子回路串电阻调速线路图图(b)机械特性曲线依照电机学原理知:60-S f n p =极对数(1) 其中n 为电动机转速,f 为电源频率,S 为转差率(1)Pm S Pe =-(2) *Pa S Pe = (3)其中Pe 为异步电动机电磁功率,Pm 为异步电动机机械功率,Pa 为转子铜耗即转差功率因此得::1:(1):Pe Pm Pa S S =- 由式(4)能够看出SPm 减小,相反转差功率Pa 在增大,而转速n 随S 的增大而减小。

因此所绕线式异步交流电动机转子回路串电阻调速的实质是通过改变转差功率或转差率的大小来调剂转速n 的。

当串入的电阻阻值越大那么转差功率增大,随之转差率S 变大,从而使转速n 下降。

2 绕线式异步交流电动机转子回路串电阻调速的优缺点 绕线式转子异步电动机,通过转子回路串入不同数值的电阻R ,改变转差率S 调速的传统方式,能够取得不同斜率的机械特性,从而实现速度的调剂。

这种调速方式简单方便,但存在如下缺点:(1)调速是有级的,不滑腻。

(2)在深度调速机会械特性很软,致使负载有较小转变,即可引发转速的专门大的波动,降低了静态调速精度。

(3)转差功率Pa 消耗在电阻发烧上,效率低。

由于是通过增大转子回路的电阻值来降低电动机转速的,当拖动恒转矩负载时,转速n 越低,转差率S 就越大,从而使得转差功率也愈大,电能消耗大,效率更低。

当转差功率S=0.5时,效率η<0.5。

相异步电动机的七种调速方法及特点:

相异步电动机的七种调速方法及特点:

三相异步电动机分类特点以及调速方法三相异步电动机分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。

不改变同步转速的调速方法在生产机械中广泛使用。

2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

我们清楚三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。

一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

电力拖动自动控制系统-运动控制系统答案,完整版

电力拖动自动控制系统-运动控制系统答案,完整版

事情是这样的,一个月前我的同事小度找到我吐槽……当时一听这话直接吓的我都坐地上了完蛋了,莫不是要我卷铺盖了…但听完接下来的话我又爬了起来(老板拜托你说话不要大喘气好不好!)领导指着电脑:哧,还以为什么事儿呢。

我镇定地捋了捋头发站好:“老板你放心,不就是发福利么,这事儿包我身上了。

”虽然话放出去了,但说实话这一大堆福利具体怎么发心里还真没底。

但毕竟小度好歹是全国新媒体编辑里机智程度排名前一万的人,经过好几夜的苦思冥想后…哦呵呵呵…第五章思考题5-1 对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗?答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0<S<S m 所以调速范围不大。

电动机机械特性越软,调速范围不变,因为S m不变。

5-2 异步电动机变频调速时,为何要电压协调控制?在整个调速范围内,保持电压恒定是否可行?为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定?答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电动机。

由此可见,最好是保持每极磁通量为额定值不变。

当频率从额定值向下调节时,必须同时降低E g 使14.44常值SgS N mN E N K f ϕ=⨯⨯=,即在基频以下应采用电动势频率比为恒值的控制方式。

然而,异步电动机绕组中的电动势是难以直接检测与控制的。

当电动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压s g U E ≈。

在整个调速范围内,保持电压恒定是不可行的。

在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变,这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态。

5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式?为什么?所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定?若不是,那么恒功率或恒转矩调速究竟是指什么?答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。

转子串电阻调速原理

转子串电阻调速原理

转子串电阻调速原理转子串电阻调速是一种常见的电机调速方式,通过改变转子电阻来控制电机的转速。

在工业生产中,电机调速是非常重要的,可以根据不同的工艺要求来调整电机的转速,以满足生产的需要。

下面我们将详细介绍转子串电阻调速的原理和工作过程。

1. 原理概述。

转子串电阻调速是通过改变电机转子绕组的串联电阻来改变电机的电磁转矩和转速。

当串联电阻增加时,电机的励磁电流减小,电机的电磁转矩也随之减小,从而使电机的转速增加;反之,串联电阻减小时,电机的转速也随之减小。

这种调速方式适用于对转速要求不高,负载变化较小的场合。

2. 调速原理。

在电机运行时,通过调节转子绕组的串联电阻,可以改变电机的励磁电流,从而改变电机的转速。

当串联电阻增加时,电机的励磁电流减小,电机的电磁转矩也随之减小,从而使电机的转速增加;反之,串联电阻减小时,电机的转速也随之减小。

这种调速方式可以满足一定范围内的转速调节需求。

3. 工作过程。

在实际应用中,转子串电阻调速通常通过手动或自动方式进行。

手动方式是通过人工操作来改变串联电阻的大小,从而实现电机的转速调节;自动方式则是通过控制系统来监测电机的转速和负载情况,根据设定的转速要求来自动调节串联电阻的大小,以实现电机的自动调速。

4. 适用范围。

转子串电阻调速适用于对转速要求不高,负载变化较小的场合,例如风机、水泵等设备。

在这些设备中,转子串电阻调速可以满足工艺要求,同时也可以节约能源,提高设备的使用效率。

5. 发展趋势。

随着电机调速技术的不断发展,转子串电阻调速已经逐渐被新型调速技术所取代,例如变频调速、电机直接驱动等。

这些新型调速技术具有调速范围广、精度高、效率高等优点,逐渐成为工业生产中的主流调速方式。

总结:转子串电阻调速是一种简单、经济的电机调速方式,通过改变转子绕组的串联电阻来实现电机的转速调节。

在特定的工业生产场合,转子串电阻调速仍然具有一定的应用前景,但随着新型调速技术的不断发展,转子串电阻调速将逐渐被淘汰,让我们拭目以待,看看未来电机调速技术的发展方向。

绕线转子异步电动机的串级调速系统

绕线转子异步电动机的串级调速系统
n n0 0
s
串电阻调速可通过分析转子回路电流来认识其调速的物 理过程 异步电动机电磁转矩的物理表达式
M
nT
3~
T CTm I 2 cos 2
I2
电磁转矩T只与转子回路中的有功电流 成正比
I 2T I 2 cos 2
R 绕线转子异步电动机转子回路串电阻调速
a)电路图
1 b)机械特性 0 TL T
E2s
输出 E add 有功功率
5
电机达到超同步 速的新稳态工作 点
由正转变成反转
反向串联
6.1 串级调速的原理与类型(续3)
3.附加电势获得的方法
~
M A TI E 2S VR i2 U do U i VI
控制系统
次同步速串级调速系统主电路 附加电势吸收电机转子送来的转差功率 Ps 这部份能量可通过有源逆变送回电 网
~
MA
TG
Ld Id
R Ld R1
n f T | 1
Ud 0 2.34s0 E20
Ui 0 2.34U2T cos 1
S
0
U cos 1 s0 | 1 2T E20 空载时I d 0
1
下的人为机
Ud
Ui
+ 负载
+ -
U i0
U d 0 Ui 0
S0=0 90
15
6.2 次同步速串级调速系统(续4)
1.能量传递关系
四.串调系统的能量传递关系与效率
a)
Pin
P1
Pm
pCu 2 pFe Ps PF P1 Pm
Pmec
pCu 2 ps p
P2 pmec

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。

三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。

相对其他类型电动机而言故障率较低。

我厂500多台电动机基本均为三相异步电动机。

工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。

转速的大小由电动机极数和电源频率而定。

转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。

转子铜条(铝条)是短路的,有感应电流产生而产磁场。

在磁场中受到力的作用。

转子就会旋转起来。

电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。

起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。

2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。

(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。

3、变频起动及分段变频起动。

直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将负荷较重的电机也采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

转子电路串电阻调速实例

转子电路串电阻调速实例

转子电路串电阻调速实例
图6-18是转子电路串电阻调速的一个有用掌握线路,用于掌握重物的提升与下放。

它由主令掌握器和磁力掌握盘等组成。

图中KM2用于使电动机正传;KM1用于电动机反转。

KM3用于接通制动电磁铁抱闸YA(常闭)。

电动机转子电路共串有七段电阻(R1~R7),其中R7为常串电阻,用于软化机械特性。

其余各段电阻的接入与切除分别由KM4~KM9来掌握。

主今掌握器本身有12对触头,按肯定的组合对电动机进行掌握。

可完成:①停止(位置0);②上升(位置1,2,3,4,5,6);③下降(位置c,1,2,3,4,5)。

停止时KA吸合,为电动机起动运行做好预备;上升时,位置1~6分别短接电阻R1~R6,得到不同的提升速度;下降时,处于位置c时,KM2吸合,电动机正转,但KM3没接通,YA失电,使电动机不能转动,这是一种预备档;当处于下降位置“1”时,KM2吸合,电动机正转产生向上提升力,KM3吸合打开抱闸,此时如负载较重,重力大于提升力,电动机处于倒拉反转制动状态,以低速下放重物;当处于下降位置“2”时,与“1”状态基本相同,只是串联的电阻值大些,可获得比“1”快些的下降速度;当处于下降位置“3”、“4”、“5”时,KM1吸合,电动机反转,可获得更快的下降速度。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绕线转子异步电动机转子串电阻电感起动与调速方
法的研讨
绕城转子异步电动机能够通过转子串电阻进行起动与调速,但电阻上能耗大;如果转子串频敏变阻器,虽能减少损耗,但只能起动而不能调速。

本文提出一种转子串电阻、电感的方法,既能用于起动与调速,又能较大程度地节能。

IJ作原理如图1,在绕线电机转于绕组每相串入相同的电阻与电感。

首先我们考虑只串电感L的情况,电机运行时的临界转差率式中r;——定子绕组的电阻X;——定于绕组的电抗r二。

——转子绕组电阻的折算值X二——转子回路电抗的折算值teZ。

H。

0+XL其中X二。

——转子绕组电抗的折算值X、——转子串电感L的电抗折算值由于r;<<x。

,x;Wx。

,略去r;、x;,则即Sm与人成反比,与固有特性相比,临界转差率的值减少。

电机运行时的最大转矩为同理略去r;、x;,则式中m;——电机定子相数V;——电机定子相电压。

——电机同步角速度由式(2)可知,凡人与Xb也成反比,与固有特性相比,最大转矩减少。

由以上分析可知,转子串电感时的机械特性如图2中的曲线1(曲线0为电机的固有特性)。

在此基础上转子绕组再串入电阻Rnl 与Rn。

,由式(l)、式(2)可知:临界转差率随转子回路电阻的增加而增大,而最大转短不变,其机械(本文共计3页)......[继续阅读本文]
转子上串联电阻可以降低启动电流增大启动转矩,同样也可以用于调速,但转子回路串联电阻调速的方式不理想,在电机轻载和空载的时候几乎起不到调速的作用,串联电抗器也可以减小起动电流,但是起动转矩也会减小很多,所以不采用串联电抗器来启动。

不是说三项绕线转子异步电动机转子回路串入电阻,可以增大起动转矩,串入电阻值越大,起动转矩越大?要合适
是应该三相都串的,以保持三相平衡。

所串电阻增大,转速变低。

因为电阻增大,相当于电机端电压降低,电机机械特性变软,转差率增大。

负载恒定的时候,电机的电流会增大的。

相关文档
最新文档