九年级数学第一次月考试卷质量分析

合集下载

九年级下学期数学第一次月考分析

九年级下学期数学第一次月考分析

九年级数学(下)第一次月考试卷九年级下学期数学第一次月考分析第二单元物质的变化3月20日我校举行了九年级第一次月考,从此次月考情况来看,数学成绩喜忧各半。

喜的是优秀率较自己前不久举行的单元考试稳中有升,达到预期的目标。

忧的是合格率却较之前次单元考试有较大的滑坡,与预期目标差距较大。

通过这次月考充分暴露出相当部分学生对数学这门课程的学习抓得不紧,甚至有放松要求的迹象,造成成绩大幅度的下降。

答:水分和氧气是使铁容易生锈的原因。

一、月考成绩相关数据25、意大利的科学家伽利略发明了望远镜,天文学家的“第三只眼”是天文望远镜,可以分为光学望远镜和射电望远镜两种。

全级参考总人数:59 人。

数学试卷总分:120 分。

其中 102 分及其以上视为优秀,72 分及其以上视为合格。

答:如水资源缺乏,全球气候变暖,生物品种咖快灭绝,地球臭氧层受到破坏,土地荒漠化等世界性的环境问题。

优秀人数:5 人,优秀率:8.47%。

此项数据与命题预期目标相吻合。

合格人数:28 人,合格率:47.46%。

此项数据较预期减少 23%,差距较大。

最高分数:104 分。

二、数学试卷难度分析12、淡水在自来水厂中除了沉淀和过滤之外,还要加入药物进行灭菌处理,这样才能符合我们使用的标准。

此次数学月考试卷总分共 120 分,其中填空和选择占到 54 分,计算(含简单的解答题)达到 39 分,综合题 27 分。

其中容易题比例达到 70%,稍难题比例在 15% 以上,较难题比例在 5% 左右,难题控制在 10% 以内。

整个试卷难度属于中性偏易。

7、将铁钉的一部分浸入硫酸铜溶液中,有什么现象?过一会儿,取出铁钉,我们又观察到了什么现象?(P36)三、学生作答情况分析通过仔细阅读学生作答,发现达到优秀率的学生对于填空、选择、计算等基础知识掌握很牢固,极少出现丢分的现象。

丢分多出现在最后两道综合题上,主要原因是因为平时对综合题的练习不够,思路无法展开,导致做不出或者是思路出现错误。

初三数学月考质量分析

初三数学月考质量分析

数学月考质量分析初三数学初三月考质量分析一试卷整体分析:1、题目难度系数不大。

注重学生基础知识和基本技能的考查,整个试卷上的题目能够做到起点低。

针对学生来说得分点,容易得分,能够做到考察学生对基础知识的掌握程度和基本解题技巧及方法的运用。

2、所考察的知识点全面、覆盖面大,考试的内容均能设计到,而且所考察的重点突出,相对比较合理,但部分考察的内容超出考试范围,小部分考察的内容较难,部分学生不能够动手去做。

二、学生答题情况分析:1、从整体试卷的难易情况看,此次数学测试题难度适中,以常规题居多,但从检测情况来看,部分学生答题情况欠佳,下面逐题简要说明:第一题选择题,因为起点低,基础性强,学生得分情况比较好,但7、8题稍有点难度,从而得分情况不是很好;第二题填空题,因为比较容易,得分情况也比较好,但最后两题有些偏难。

其中第15小题多数同学是靠猜想得出的结论;第16小题,由于前面有范例,从而降低了难度,中上水平的同学都能做出来。

第三大题,此题整体难度不大,得分情况还是很好,但少数同学仍然是计算出了问题,说明基础掌握不扎实,尤其是第18小题、19小题得分较差,重要原因是学生灵活性不够,运用数学知识解决数学问题的能力不强。

第22、23小题证明题,出现两极分化现象,优秀的学生解答思路清晰、书写完整,而基础差的同学根本不会证明,逻辑思维混乱,不知如何证明。

最后一题得分率较低,主要是教师对于这一方面的类型题训练不够,再加上学生不能将问题中的主要信息进行提炼,将实际问题能化为数学问题进行解决。

2、学生在解答试卷的过程中存在的问题:、①对初中数学中的概念、法则、性质、公式的理解存储、提取、应用均存在明显的差距,不理解概念的实质,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算推理出现错误;②运算技能偏低,训练不到位,由此造成的失分现象严重,计算上产生的错误几乎遍及所有涉及到计算的问题,我们的考生的确存在一批运算的“低能儿”,运算能力差是造成他们数学成绩偏低的主要原因之一;③在推理论证过程中不能合乎逻辑地、准确地表述自己的思想,出现层次不清,逻辑不严密,语言表述混乱的现象。

九年级数学第一次月考质量分析

九年级数学第一次月考质量分析

让知识带有温度。

九年级数学第一次月考质量分析第一次月考九年级上册数学质量分析(2022--2022学年第一学期)一、考试成果分析二、试卷分析本次考试试卷题量同中考题量,难易程度偏低,第1—23题所有是课本上的练习题,较全面的反应了同学第一个月的学习基本状况。

1、考查范围:九年级上册其次十一章一元二次方程,其次十二章二次函数。

2、考试题型分析:第一题挑选题:主要考查同学对数学基本概念和计算的把握状况,都是很直接的,惟独第7小题是综合性的,14个小题共42分;其次题填空题:主要考查同学对二次根式基本概念、运算和一元二次方程基本概念、解法的把握状况,4个小题共20分;第三题解答题:主要考查同学解一元二次方程把握状况,第22、23两题是综合性题,试验班同学完成比较好,这部分5个题共58分。

3、同学简单失分的题目及缘由:第3题;对二次函数的概念不清;第5题是一个难题,要求同学能按照语言的描述转化为数知识题;第7题:按照已知条件来确定正确的图形,好多学生都没有选对;第13题:没有理解“二次函数的图像性质”的含义;第15题:这是一套有理数的运用题目,有的学生不会按照可能浮现的状况分类研究;第19题:无数学生不能按照一元二次方程的题型挑选适当办法解方程。

三、本次考试反映出的问题第1页/共2页千里之行,始于足下1、做题策略欠佳。

突出表现在解决问题中,此次的解决问题全是考查一元一次方程和二次函数,因为同学概念不清、运算能力差、分析问题不够全面、不会运用数学学问有解决实际问题,导致了分数考不高。

2、运算不娴熟。

运算是本章学习的重中之重,相当一部分的学生连最基本的运算都不会,数学必须从运算做起,惟独会算了,才干去分析其它的问题。

四、措施1、培养学习学习数学爱好,注意对同学基本运算能力的培养。

2、培养同学仔细做题的习惯,注重培养同学解题的一些策略。

灵便的处理试题。

平常的练习和单元测试中重视这方面的提醒。

这次考试反映了一些问题,通过对试卷的分析,总结了一些教训。

第一次月考试卷分析

第一次月考试卷分析

第一次月考试卷分析下学期第一次月考核结束了,但是我班的成绩不是很理想。

针对本次考试,我想从以下几个方面来分析。

一、分析试卷1、内容丰富。

这张卷子共有八道大题,基本上覆盖了学生近段时间学习的全部知识点,并且通过多种形式来考查,例如:填空,选择、计算等,题目灵活,把学生平时最容易出错的题都体现了出来。

可以说,这份卷子很大程度上能反映出孩子的学习情况和老师教的情况。

2、贴近生活。

数学教学中,实际问题的解决具有重要意义,它既是学生数学思维发展的过程,又是培养学生应用意识、创新意识的重要途径。

本次检测对实际问题从解决形式到分数尤为侧重。

有利于学生主动地进行观察、实验、猜测、推理,感受了数学的思维训练,培养他们探索数学问题的兴趣3、质量分析。

一(1)班24人,参考人数24人。

总分2040分,平均分85分;及格人数24人,及格率100%;90-100分7人,优秀率29.2%;80-90分11人;75-80分3人;65-70分1人。

第一题:看谁算得准。

正确率97.5%好的方面及成因分析:口算中涉及20以内退位减法、连减、加减混合,学生对计算方法都掌握得很好,计算的能力和正确率也较上学期有所提高。

差的方面及成因分析:连减和加减混合部分,主要原因是由于第一步的得数记不准确,就进行了第二步计算,为了省时省事,将平时老师一再强调的“要把第一步的得数写出来”的要求省略。

第二题:填一填。

正确率91.4%好的方面及成因分析:学生们的基础知识掌握很好,错误只其中在很少几位同学的卷面上,绝大多数同学正确率较高。

差的方面及成因分析:第5题,学生对长方形和正方形边的特点是了解的,但以数学定义的形式将这些中国字写出来,对于一年级小学生来说,稍稍有些难度。

第6题,用两个小正方形可以摆成一个(),()个小正方形可以摆成一个大正方形。

很多同学填8个,主要是和正方体的知识混淆了。

对平面图形和立体图形特征感知不深,还需要进一步培养学生的空间想象能力。

九年级数学月考试卷质量分析

九年级数学月考试卷质量分析

九年级上册数学抽考试质量分析为了总结经验,吸取教训,取长补短,改进教学,提升质量,提高成绩,在全面评估xx学年度第x学期抽考质量检测九年级数学试卷、学生答题情况以及检测成绩后,做出如下总结剖析。

一、试题分析。

xx学年度第x学期抽考检测九年级数学试卷全卷分值100分,考试时间100分钟。

全卷共三道大题24道小题,包括10道单项选择题,8道填空题,6道解答题,实行线下考试、交叉阅卷。

全卷试题题量适宜,难度基本偏高,全面涉及到本学期目前教学的全部内容,重点考察一元二次方程、二次函数、概率、旋转等内容。

试卷内容比较灵活多样,对基础知识、生活实践、看图做题等都有考察,尤其是把课本知识融入生活实践中的这类题型,最能体现素质教育,同时也强调了数学教学与现实生活的紧密联系。

二、考情分析。

本人任教九年级(3)班数学教学,三率和为47.92:平均成绩35.92分,优秀率0.00,及格率12.00,未达到预期目标。

最高73分,最低9分,高低分之间相差近64分,相差悬殊,由此可知本班学生数学两极分化十分严重。

从学生答卷情况来看,大部分在平时能够重视数学课程,能够花功夫按时完成数学科目各项作业,课堂参与度高,对数学课程有兴趣,能够花时间预习复习数学课程的学生都取得了比较理想的成绩。

但总体而言,一是学生数学基础较差:如三分之一的学生不会解一元二次方程,三分之二会方法,但有的不会计算及化简等;二是学生思想问题、学习态度不端正;三是学生太懒了,依赖性太强。

三、教情分析。

1、紧扣书本内容适当拓展,巩固学生基础。

2、认真备课、备学生,预测教学中会遇到的问题,根据学生层次进行第二次备课,课上及时解决问题。

3、认真督促学生按时完成每节课课后作业,按时批改,对存在的问题耐心批改提示,必要时及时全班反馈。

4、通过适当的练习,掌握规律,做到熟能生巧。

本人充分利用练习课时间,对学生耐心讲解辅导。

通过分析质量检测成绩可以看出,以上教学措施基本正确有效。

九年级下册数学 第一次月考数学试卷含答案解析

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

九年级第一学期月考考试质量分析总结报告

九年级第一学期月考考试质量分析总结报告

学年第一学期第一学月九年级考试质量分析总结报告开学以来,经过九年级教师和学校领导地共同努力,教学管理工作在稳中求细中已步入正规化轨道,控辍意识、夯实双基意识、优生培优意识,成绩质量意识、中招升学意识、争当先进意识已深入人心,三环六步教学模式地运用大大提高了课堂教学地实效,教学质量逐步提高.今天我发言地题目是:抓双基、促发展、创佳绩文档收集自网络,仅用于个人学习一、公布月考成绩、九年级学科成绩排序(只说名次)、九年级班级成绩排序(只说名次)九年级::层前名,层前名:()()()()()()()()较好班级、、、低于平均数班级、、.文档收集自网络,仅用于个人学习、()成绩优秀个人层:红斌、俊斌、伟峰、振荣、岩龙、玉芬、东阳、层:建国、鹏群、姬玉、振荣、岩龙、玉芬、静波文档收集自网络,仅用于个人学习()教学成绩优秀班级:红占地班、晓阳地班、海燕地班、晓飞地班.、成绩低于地教师有层:英才()、玉平()、瑞宽()、张言(),(重点分析及格人数,过差人数,流失人数)文档收集自网络,仅用于个人学习低于地班级有英才地班、开学以来各班流失学生数()(),其它各班巩固比较好二、开学以来地做法(一)教学管理:、以双争双树为载体,实施学校领导模范带动,促使科任教师、班主任积极入班教育教学,位班主任每天早晨之前准时到班,每周日下午相当一部分教师和班主任都能之前进班辅导学生,象姬玉,伟峰、英才、玉明、俊斌、玉芬、红占、静波、鹏群、东波.文档收集自网络,仅用于个人学习、狠抓教学常规不放松,每周教学常规检查来看,教师备课、作业批改、单元过关等严格按照要求进行,并做好分析、反馈工作.文档收集自网络,仅用于个人学习、以磨练县达标课教师落实“三环六步教学模式”课堂教学为抓手,推动我校课堂教学改革,全力打造高效课堂. 文档收集自网络,仅用于个人学习、强化教学教研,班与班之间地交流,尤其对新任教师,和新班主任以引导为主督导为辅,使他们在较短时间掌握教育教学地方法,教学效果明显.象红占地班,这次月考总评第一,相对比率更是个班第一.文档收集自网络,仅用于个人学习、抓住薄弱学科不放松坚持英语周周清,重点学科地抽考,周周英语、数学作业教师批改情况地检查,真正落实三清.、狠抓学生学习常规地落实,尤其在学生早读习惯地培养上,谢校长、徐校长等领导和各位班主任都能勤下班、早下班,入班立即想办法引导、督导学生,学生基本养成起床铃响分钟内入班,入班后读书能做到字字清晰,句句响亮,声声入耳,效果很好.文档收集自网络,仅用于个人学习、双休日作业地检查,促进了学生利用双休时间查漏补缺,提高了学生学习效果.、树立中招意识,升学人数开学初学校在经费紧张地情况下,首先把上学期中招奖项全部兑现,接着确立明年中招目标,为我校每班教育教学确定了方向.文档收集自网络,仅用于个人学习三、尽管我们在教学上整体有了进步,但也有不尽人意地地方.()重视对层班学生地教学管理,忽略层班学生地教学管理,也就是目标意识不明,班要让每个学生及格,百分之六十学生优秀,确保学生留得住;班重点考查三率,突出及格率(百分之六十),兼顾巩固率和过差率(看低点教师地点班级比率)也就是说本次低点教师、和地点班级都在层班.文档收集自网络,仅用于个人学习()学导练,三环六步,教学模式未能很好地在课堂上运用,学生地主体地位没突显,课堂实效性差,成绩差,尤其是刚参加工作地教师,新科任教师.文档收集自网络,仅用于个人学习()对层班级来说,前名学生各班分布情况,影响了各科教师地相对比率,如(看配套率),班级学科落差大导致了班级总分落差就比较大,责任到底在谁?恐怕不能将所有地责任都推给班主任,我们任课老师有责任有义务来分担.但我们班主任要感到着急,要敢与别地班级争.光着急也没用要有改进方法,要动脑.我们班主任应该主动做好任课老师之间地协调工作经常与他们开班级情况分析会议,共同出谋划策,要向班级地弱势学科适当倾斜,尽力帮助任课教师.任课老师也应该抱着对班级负责地态度,在管好自己这门学科地同时,主动参与班级管理工作,帮助班主任做好学生地思想工作,确实做到双赢.文档收集自网络,仅用于个人学习四、今后我们应该改进地方面、加强控辍工作,确保学生整体稳定科任教师要有爱心,多呵护多关注学生,力争使学生留得住,学得好,完成九年义务教育,最终成为有用人才.、树立质量意识,争先意识,把学导练,三环六步教学模式认真领会,不要等成绩差了,才知道我下班不勤,没有关注每一个学生,才知道我地课堂效率低.文档收集自网络,仅用于个人学习、经常查缺补漏,提高能力.要通过检测题和试卷讲评及试卷分析,找到学生知识缺漏点和能力薄弱点,积极寻找新方法和途径,并在下一次考试时进行针对性地重复测试,让知识点多次在学生眼前重复.让学生有多次训练地机会.可以让学生建立“典型例题”库,和“错题记录本”.对错题进行记录,整理、分析、改正.抓住易错题对其进行深究也不失为提高复习效率地好办法.最终达到减少或杜绝二次相同错误地发生.文档收集自网络,仅用于个人学习、分类指导,分层辅导,个别辅导.各科在进行整体教学地同时,要分层抓好三类生地工作(优、中、学困生)如优生地培养,突出他们地优势学科,最大限度地提高他们相对地弱势学科,给他们定比较高地目标,鼓励他们多钻难题,多向老师提问.中间生,要常抓不懈,课堂教学时,要盯紧不放,课外辅导工作更应做细做实.首先要求他们稳定,不能有大地起伏,其次培养他们地优势学科,使他们稳中有进.学困生地工作,难度最大,也是一直影响我们整体成绩地组成部分.这些学生,需要我们教师要有耐心,细心和爱心,把学困生成绩提高工作,当做一场持久战争去考虑.要更注重非智利因素,要多提倡情感教育,用我们地真诚、我们地实际帮扶行动来感动这些学生,单靠高压、强制是没用地.文档收集自网络,仅用于个人学习、要把中招意识渗透在平时课堂教学过程中,教师要做中考必备,研究好考点、考纲,课堂教学训练要有中招试题,要协调好赶进度和保质量地关系,确保年内结束新课;对学生更要从三操训练、双休日作业、课堂听课、课下作业、规范书写等方面地习惯养练上来培养学生中考能力和可持续发展能力文档收集自网络,仅用于个人学习五、下一阶段地工作重点和对策:、析学情、定措施每一位师生对考试地经验教训一一总结,反思自己,确立下一步地目标和措施.文档收集自网络,仅用于个人学习、树典型、发挥榜样示范作用①利用教研会时间,学科组交流经验统一措施.②各班做好总结,评选进步之星和学习标兵.③各班对优秀试卷进行展览,建学习标兵光荣榜,营造育人氛围.、加强培优补差工作,培养学生兴趣,严防学生流失.班主任要结合本班实际对学生逐一分析,找薄弱科目,给任课教师名单,制定计划与预期目标,找学生谈话,鼓励学生,做好帮包记录.文档收集自网络,仅用于个人学习、结合县局中学生学习常规八条,强化学生良好学习习惯地培养.①定计划地习惯,很多学生学习非常盲目导致他们没目标而影响成绩,让学生制定远期、中期、近期目标及每天地作息时间表,同时在班上找一位同学作为自己地竟争对手,每次考试都与他比一比促进提高自己.文档收集自网络,仅用于个人学习②预习、复习地习惯.要求每天课前分钟能预习当堂所学地内容,课外活动能复习当天所学地内容.③整理错题集地习惯.考试考不到一百分争取考后得一百分,找出错误地原因及对策.、加强学法指导,提高学习效率.①各任课老师要根据学科特点,给予学生学法指导大面积提高教育教学质量.②优秀学习经验交流,各班不定时请优秀学生总结演讲.文档收集自网络,仅用于个人学习、做好常规教学工作检查,发挥团队合作精神.①学校领导深入备课组,了解集体教研情况.②学校领导跟踪课堂,提出建议.③科任教师改革作业教学,作业精心设计,精心批改,精心反馈.六、对低点教师和班级要求、每周向优秀教师听节课,周五下午交教导处,、每周须上一节汇报课,每周一上午签离前把上课班级、课节、内容报给建平马老师,备课组全员参与听课.、低点班级,每周班主任写一篇简要班务总结,分析得失,定措施,周五下午交教导处.七、对包班领导地要求:一周至少一次不定时深入低点教师任课班级听课,检查低点教师教案,作业批改,教导处一周一次深入低点教师班级进行听课评课活动,发现问题及时通知科任教师,立即整改.文档收集自网络,仅用于个人学习各位老师、让我们以这次总结为契机,精诚团结,求实创新,坚定信念,深化课堂,落实科学发展观为我校教学质量地提升而奋斗.文档收集自网络,仅用于个人学习最后,请大家记住这句话:把简单地事情做精致就是不简单,把重复地事情再创新就是不重复,把平凡地事情做完美就是不平凡.文档收集自网络,仅用于个人学习谢谢大家。

九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()(1分)A. -5B. 3C. 0D. 22. 下列哪个数是偶数?()(1分)A. 21B. 4C. 9D. 173. 下列哪个数是无理数?()(1分)A. √9B. √16C. √3D. √254. 下列哪个数是整数?()(1分)A. 1.5B. -2.3C. 3/2D. -55. 下列哪个数是质数?()(1分)A. 27B. 29C. 35D. 49二、判断题1. 2是偶数。

()(1分)2. -3是正数。

()(1分)3. 0是有理数。

()(1分)4. √2是无理数。

()(1分)5. 1/2是整数。

()(1分)三、填空题1. -3的相反数是______。

()(1分)2. 8的平方根是______。

()(1分)3. 27的立方根是______。

()(1分)4. 5和7的最小公倍数是______。

()(1分)5. 15和20的最大公约数是______。

()(1分)四、简答题1. 请解释有理数的定义。

()(2分)2. 请解释无理数的定义。

()(2分)3. 请解释整数的定义。

()(2分)4. 请解释质数的定义。

()(2分)5. 请解释偶数的定义。

()(2分)五、应用题1. 计算下列各式的值:√9 + √16 √25。

()(2分)2. 计算下列各式的值:3^2 2^2。

()(2分)3. 计算下列各式的值:4!。

()(2分)4. 计算下列各式的值:5! 3!。

()(2分)5. 计算下列各式的值:6 + 1/2 + 2/3 + 3/4 + 4/5。

()(2分)六、分析题1. 请分析下列各式的类型:√9, √16, √3, √25。

()(5分)2. 请分析下列各式的类型:3.14, 2.5, 1.2, 0.3333。

()(5分)七、实践操作题1. 请用直尺和圆规作出一个边长为5cm的正方形。

()(5分)2. 请用直尺和圆规作出一个半径为3cm的圆。

九年级数学第一次月考试卷质量分析新版

九年级数学第一次月考试卷质量分析新版

九年级数学第一次月考试卷质量分析新版此次考试数学试题与中考试题题量较大,但比较基础,共三十二个小题,包含了前段所学知识点,主要考查了二次根式的化简,一元二次方程根的情况及解法,试题难易适合,设计具有梯度,能够体现新理念、新思想,试题立足于学生的发展,既考查学生的基础知识、基本技能和基本数学思想方法的获得情况,又考查了学生的基本运算能力、思维能力、空间观念和灵活运用数学知识分析和解决实际问题的能力,并对学生的自主探究,创新意识方面作了考查,一、试题的特点分析1、这次的试卷,注重考查了数学的基础知识和基本能力,这套试卷,从总体上来说能着眼于促进学生的发展来考查基础知识、基本技能和基本数学思想方法,很好地突出了考查的主干内容,首先,试题的起点低,绝大部分考生都能获得基本的分数,因此及格率,优生率都较高,如第一至第四题,其中先择题和填空题都基本只有一道较难的题;其次,试题既考查了学生对知识的记忆,又加强了对知识理解的考核,如第一题的5、6、7、10题等,第二题的3、5、6、8、;2,试题没有局限于对知识本身的考查,而是注重创设一个合适的情境,让考生在新的情境中活用基础知识、基本技能和基本数学思想方法,如第五题,第六题2、3、4题等,这些试题结合基础知识来考查具有数学学科特点的基本思想和方法,把重点放在最具价值的常规方法的应用上,这样做,一方面有助于引导教师在平时的课堂教学中,重视“三基”,鼓励学生通过自主探究主动获取知识;另一方面也有利于提高学生的数学素养,相应的阅读能力、分析能力和运算能力;第五题是由于没有认真阅读思考从而失分较多,第六题的T4很多同学不会建立函数关系式,或因阅读理解能力差,或因为计算能力差导致失分较多,这两道题在全年级失分率都较高,从以上各题的解答情况来看,对学生基本技能的训练和数学思想方法的渗透还要加强,应使之贯穿于整个初中教学的全过程,横向比一班和七班在基础知识的掌握方面比其他班略差,及时补救,二、造成失分原因,(1)粗心造成的错误,如有的学生把加好写成了减号,忘记化简二次根式,忘记约分等,(2)对知识的理解造成错误从学生的答卷情况来看,部分学生的基础知识还有很多欠缺,学生在储存信息的过程中,由于生理、时间、复习量等方面的种种原因,造成在对知识的理解上,似懂非懂,模糊不清,学生对知识记忆不牢,理解不深,做题时往往出现猜测答案,造成错误,,如第一题的4、5、6与有根有关的问题,第二题的3、4、8、10等,第8题求概率、第10题,判断中心对称图形、第2题,二次根式化简等,都是比较容易得分的问题,可是没有得分,(3)有的学生审题不细,造成失分,很令人惋惜,如第一题的8第二题的10题,另外还因综合解题能力差而失分,如最后两道题,三、教学建议1、强化基础教学,重视能力培养,基础是能力提高的根基,在数学教学中必须树立起抓基础是根本,抓能力是核心的意识,加强基础知识的教学、基本技能的训练和各种能力的培养,从试卷上看,不少考生在基础题上失分,在基本运算上出错,尤其是一班二次根式计算全对的只有24人,这就要求我们在平时教学中,既要加强概念教学又要加强基本运算教学,并且引导学生在学好概念的基础上,掌握数学规律(包括法则、性质、公式、定理、公理、数学思想方法等),并着重培养学生的能力,在平时教学中,不能脱离课标、教材,应当在教学中稳扎稳打,夯实基础,不仅教给学生数学知识,还要揭示获取知识的思维过程、解题思想的探索过程、解题方法与规律的概括过程,使学生在这些过程中展开思维,发展能力,2、加强数学思想方法(函数与方程、数形结合、转化化归、分类讨论、探索开放)的教学,特别是加强学生分类讨论的数学思想方法的培养,数学基础知识和基本技能所反映出来的数学思想方法是数学知识的精髓,在课堂教学中,数学思想方法的教学应渗透在教学全过程中,使学生不仅学好概念、定理、法则等内容,而且能领悟其中的数学思想方法,并通过不断积累,逐渐内化为自己的经验,形成解决问题的自觉意识,3、教学中要注重学生创新意识的培养,把培养学生创新意识当作初中数学教学的一个重要目的和基本原则,在教学中要激发学生的好奇心和求知欲,通过学生独立思考,不断追求新知,发现、提出和创造性地解决问题,并引导学生将所学知识应用于实际,从数学角度对某些日常生活、生产和其他学科中出现的问题进行研究,或对某些数学问题进行深入探讨,在其中充分体现学生的自主性和合作精神,教师在工作中,要在使学生扎实掌基础知识,和培养能力上多下功夫,争取更好成绩,。

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

九年级数学第一次月考试卷分析

九年级数学第一次月考试卷分析

九年级数学第一次月考试卷分析一、试题分析本次考试的试题难度适宜,能够考查学生的基础知识、基本技能和数学思想方法。

部分题目可以直接运用公式、定理、性质、法则解决,无需繁难的计算和证明,对教学有很好的导向作用。

二、从学生得分情况上分析本次考试的成绩比较理想,我所代的(1)(2)班中有20人得到了120分以上,不及格的人数只有10人。

相比以前,学生对知识的掌握更加牢固,运算也更加仔细认真,分析解决问题的能力也有所提高。

三、从学生的失分情况上分析教情与学情1.基础题和中档题的落实还需要加强。

例如,一些中档题本应该是学生必会的,但得分情况并不理想。

这是因为在教学中,我们对研究困难的学生关注不够,课堂密度不够大,双基的落实也不够到位。

2.学生数学能力的培养还需要加强。

1)审题和数学阅读理解能力较弱。

例如第25题,学生根本没有读懂题目,也没有考虑到应该分两种情况;还有第26题,其实在航海问题中已经讲过这种类型,但学生根本没有理解此题,造成思维混乱,无从下手,导致严重失分。

2)计算能力较弱。

从阅卷中可以看出,一部分学生的计算能力较弱。

例如第21题和第22题,本应该是送分题,但学生因为粗心或记错一个三角函数值而出错;另外,最基本的方程也未得满分。

3)运用数学思想方法解决数学问题的能力还需加强。

试卷设置了一些涉及到开放性、探究性、应用性的问题,例如第18题和第26题等。

从阅卷和得分情况可以看出,学生的得分率都不高,说明学生所学知识较死,应变能力也不好。

这说明平时教学中,注重的只是告诉学生怎么解,而忽略了为什么这么解,也就是只有结果没有过程。

造成学生应变能力差,题目稍有变化,就不知如何下手。

学生不会综合运用所学知识结合数学思想去解决问题,这也是优秀率低的一个主要原因。

四、今后几点措施1.加强对课程标准的研究。

例如从本次试卷中可以体现出来的:立足基础性、注重能力性、感受时代性、强调应用性、渗透探究性、关注创新性、重视综合性、体验过程性。

初三数学月考试质量分析

初三数学月考试质量分析

初三数学第一次月考试卷质量分析初三的第一次月考结束了,为了查漏补缺,以便后一阶段有针对性的组织复习,争取更好的成绩现分析如下:一、试卷特点:1、面向全体学生,注重基础知识与基本技能的考查。

2、题型多样化,注重学生各方面能力的考查,如计算能力,识图能力,推理能力,探究能力等,在这张试卷上均有体现。

3、知识涉及面广 , 考查的知识点较全面。

不足之处:试卷难度跟往年毕业考试难度差不多, 但与今年湘西州发的几套样卷难度相比, 本试卷中 20分综合大题前的几道小综合题出得太容易。

当时考虑到这是本学期第一次月考,也是试卷分值第一次提到 150分, 目的是尽可能的想让不同层次的学生获得满意的分数, 享受成功的快乐,树立学习数学的自信心和兴趣,卯足干劲进入复习。

二、成绩概况参考的 938人中, 有 9人得满分, 217人上 120分, 另有 151人在 101至 120分之间, 473人及格。

年级人平分 87.52, 及格率50.32℅ . 因为考试的内容为初中教材中最为综合的三章内容, 综合运用知识的要求较高,所以这个成绩总体来说还算好的。

三、存在的问题:1、学生对数学概念理解不透, 学生对概念的理解还处于机械地应用, 以至解题时概念不清, 不能正确地写出答案。

2、学生计算能力不强。

基本计算题和小综合题中的计算部分失分较多。

3、学生能力差距明显,对基本题还能应付,多数学生对出现的新题,一时无法适应,如最后一道压轴题,学生根据条件不会探究结论,不动笔和做错的学生较多。

三、今后举措1、讲课过程中注重基础,加强计算能力,分层作业,使不同的学生在数学上得到不同的发展。

2、多让学生分析问题,开拓思维,课堂上注重数学思想方法的渗透。

更多关注学生对知识的猜想、探索过程 , 而不仅仅追求一个结果,培养学生知识技能情感各方面发展。

3、做好培优补差工作(1加强对学困生的个别辅导 , 增强学习主动性。

(2经常交流 , 加强心理辅导(4分层教学 , 对差生适当降低要求 , 让他们也获得成功的喜悦。

月考质量分析

月考质量分析

月考质量分析以下是为大家整理的月考质量分析的相关范文,本文关键词为月考,质量,分析,月考,质量,分析,此次,考试,数学,习题,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在医药卫生中查看更多范文。

月考质量分析此次考试数学试习题难易程度适中,共二十六个小习题,考察了九年级初三上册所学知识点,设计具有梯度。

能够体现新理念、新思想,试习题立足于学生的开展,既考察学生的基础知识、基本技能和基本数学思想方法的获得情况,又考察了学生的基本运算能力、思维能力、空间观念和灵敏运用数学知识分析和解决实际问习题的能力。

一、试习题分析⑵学习数学在于运用数学知识、方法和思想去解决实际问习题。

本次的试注重对学生运用数学知识分析和解决简单实际问习题的思维能力进行考察,全卷把对学生思维能力的考察放在主导地位。

这些试习题的习题材来源于学生熟悉的生活实际,具有较强的时代气息与亲和感。

试习题的背景虽在课本之外,所涉及的内容以及解决问习题的方法却都在课本之内,通过解决问习题去领会如何从简单的实际问习题中抽象出数学模型,如何运用所学过的数学知识和方法探求解决问习题的策略。

二、答习题情况分析考试试卷共三道大习题,26个小习题,满分120分。

分析考生考试试卷,得到如下数据:最高分115分,最低分9分。

三、从答习题情况中发现的问习题⑵选择习题,少部分学生对本习题答的较好,大部分学生对所考察知识掌不牢,主要问习题出现在第⑵⑵⑵习题,得分率很低。

可能是根本没有思路,观察问习题不够全面,有的答复不完整,可见学生对这类问习题还不太适应,从中也反映出教学中的缺失。

⑵解答习题,主要问习题出现在第25习题、26习题上。

25习题需要学生首先将给出的情境转化成相应的数学模型,这需要学生有相应的阅读能力、分析能力和运算能力;很多同学不会建立函数关系式,或因为计算能力差导致失分。

26习题是由于没有认真观察,找出证明,从而没有找到规律,而失分。

九年级数学上册第一次月考试卷质量分析

九年级数学上册第一次月考试卷质量分析

试卷分析是教学环节中不可缺少的部分,它可以反映出学⽣的学习情况,好的试卷可以准确的反映出学⽣得学习情况。

下⾯和店铺⼀起来看九年级数学上册第⼀次⽉考试卷质量分析,希望有所帮助! 九年级数学上册第⼀次⽉考试卷质量分析篇1 ⼀、基本情况 本次参考⼈数261⼈,年级平均分为71.57分,及格⼈数148⼈,及格率为56.7%优秀⼈数50⼈,优秀率为19.16%,低分率为18.77%。

全年级120-108分有12⼈,107-96分有38⼈,95-72分98⼈,71-48分64⼈,40分以下49⼈。

其中各班成绩详见如下统计表: 略 ⼆、命题的意向 本次⽉考章节是教科书第21章⼆次根式和第22章⼀元⼆次⽅程两章。

本两章所考查内容是⼆次根式、⼀元⼆次⽅程的有关概念,⼆次根式的化简、性质、运算法则,⼀元⼆次⽅程的解法及⽤⼀元⼆次⽅程解决实际问题。

本次⽉考的试题结构共五⼤类型:填空题、选择题、计算题、解⽅程题、解答题共29题。

本次注意理论联系实际,在考查基础知识和基本技能的同时,同时也考查了基本数学思想⽅法和综合运⽤数学知识的能⼒,全卷试题难度上与课本例、习题⼤致相当.从考试结果看,能够客观反映学⽣的数学学习⽔平,增强了学⽣进⼀步学好数学的信⼼,将对今后的教学起到良好的导向作⽤。

三、典型的试题特点 1注意深化基础知识的解题。

如第3题、第7题、第17题。

2.重视数学知识与实际⽣活相衍接。

如第27题、第28题。

3.注重知识的理解与探究。

如第26题阅读材料题。

4..注重学⽣综合题型的探索,发展其思维能⼒。

如第29题压轴题。

四、卷⾯分析 1.典型的试题:以下试题中学⽣易漏掉条件⽽得出错误的结果。

第3题:若⽅程mx2+3x-4=3x2是⼀元⼆次⽅程,则m的取值范围_______。

第4题:已知a<0,则化简⼆次根式的正确结果是_______.。

第7题:若两个最简⼆次根式与可以合并,则x=___。

第17题:若关于x的⼀元⼆次⽅程kx2-6x+9=0有两个不相等的实数根,则k的取值范围()Ak<1且k0Bk0Ck<1dk>1 2.考题中做题出现错误的分析: (⼀)填空题,共13⼩题。

九年级数学第一次月考分析与反思

九年级数学第一次月考分析与反思

九年级数学第一次月考分析与反思数学组 薛能道一、试题简评本套试题能够结合实际,以中考为导向,体现了新课程标准的思想和理念,不仅考查了学生基础知识和基本技能的掌握情况,重点考查了学生运用数学思想和方法的能力,以及学生分析问题、解决问题的能力,关注数学与现实的联系,体现了时代精神。

试卷与中考试卷结构完全一致,题量适宜,题型和题数分配教为合理,适应大多数学生完成全卷。

考虑到学生刚开始学习的情况,在题型设计上梯度适中。

增进学生对数学的理解和学好数学的信心。

主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。

本套题共三道大题,26道小题,其中选择题10道,填空8道,解答题8道,共120分。

三、试卷分析从答卷情况来看,第一大题选择题准确率41/55,没得满分14人,说明少数学生对主干知识传统题目完成得不太好;第二大题填空题准确率22/55,没得满分33人,其中16题25人错,说明学生对主干知识传统题目完成得不太好;16题:关于x 的一元一次方程(m-1)x2+x+1=0有实数根,则m 的取取值范围是_________,问题:丢m-1≠0,所以错解:m ≤45;正解:m ≤45 且m ≠1; 第三大题解答题,学生完成的不错,大部分部分学生做19、21、20,22题,23、24,26题基本不错。

其中19题是计算题,准确率51/55,只有4人错;20题也是计算,准确率53/55,只有2人错;21题解一元二次方程题准确率54/55,只1人错;22题二次根式简单应用,准确率54/55,1人没得满分;23题一元二次方程应用,准确率51/55,4人没满分;24题简单动点问题:准确率49/55,6人没满分;25题规律题:准确率46/55,9人没满分;26题一次函数与增长率问题:准确率49/55,6人没满分。

四、学生存在的问题通过这次检测, 我感觉到,个别学生基础知识还不够扎实,该记的记不住,基本的运算还掌握得不好,如:不优秀的4人:崔永志87分,徐明莹86分,于静坡94分,高天95分,审题不严谨,观察图形不仔细,对考题不能进行认真的分析,解题格式不规范;理解、归纳、表达运用等基本能力欠缺;缺乏克服困难、认真探究的精神和良好的答题品质;学科综合带来问题更为普遍。

九年级数学第一次月考质量分析

九年级数学第一次月考质量分析

第一次月考九年数学质量分析一、考试成绩分析九年级学生共有604人参加考试。

成绩如下所示:二、试卷分析本次数学试卷满分120分,难易程度适中,较全面的反应了学生第一个月的学习基本情况。

1、考查范围:九年级上册第二十三章数据分析第二十四章一元二次方程第二十五章图像的相似前四节。

2、考试题型分析:第一题选择题共42分:主要考查学生对数学基本概念和计算的掌握情况;第二题填空题共12分:主要考查学生对一元二次方程基本概念、解法的掌握情况,平均数、相似的计算;第三题解答题共六道大题66分:主要考查学生的综合解决问题的能力题,3、学生容易失分的题目及原因:第6题;同学们对一元二次方程的概念理解不透彻;第8题:考虑问题不全面。

第12题16题是两道小综合性的题目,考查的是相似的运用和对比例中项概念的理解,得分率较低,说明同学们在综合能力方面还有待进一步的加强。

21、22、24分别考查了解方程、根与系数的关系、加权平均数的计算等知识,试卷中同学们在计算上出现了像括号前面是负数时去括号不变号,不等式两边除以负数时不改变不等式方向等这样或那样的问题,从而导致丢掉了很多分数。

25题我们几位数学老师在考前共同讲过的一道类似的题目,但得分率并不高,每班只有20几位人能做对。

这说明我们的课堂效率并不高,教师在上课时知识的传授上和知识的活学活用方面还要下大功夫。

三、针对以上问题我们的改进措施1、强化基础教学,重视能力培养。

基础是能力提高的根基,在数学教学中必须树立起抓基础是根本,抓能力是核心的意识,加强基础知识的教学、基本技能的训练和各种能力的培养。

2、在平时教学中,不能脱离课标、教材。

应当在教学中稳扎稳打,夯实基础,不仅教给学生数学知识,还要揭示获取知识的思维过程、解题思想的探索过程、解题方法与规律的概括过程,使学生在这些过程中展开思维,发展能力3、培养学习学习数学兴趣,注重对学生基本运算能力的培养。

4、培养学生认真做题的习惯,注意培养学生解题的一些策略。

九年级初三数学月考质量分析

九年级初三数学月考质量分析

九年级初三数学月考质量分析背景本文档旨在对九年级初三数学月考的质量进行分析。

通过对考试的各个方面进行评估和归纳,我们可以更好地了解学生的研究情况和考试表现,为教学改进提供指导和借鉴。

考试内容本次数学月考涵盖了九年级初三学期所学的数学知识和技能,包括但不限于以下内容:- 整式与分式运算- 代数方程与不等式- 几何图形与空间- 函数与图像- 统计与概率分析结果根据对数学月考的评卷和统计分析,我们得出以下结论:1. 整体表现良好:大部分学生在数学知识的掌握和运用方面表现出色,平均分较高。

整体表现良好:大部分学生在数学知识的掌握和运用方面表现出色,平均分较高。

2. 代数方程与不等式为难点:部分学生对代数方程与不等式的解法掌握不够熟练,需要更多的练和巩固。

代数方程与不等式为难点:部分学生对代数方程与不等式的解法掌握不够熟练,需要更多的练习和巩固。

3. 几何图形与空间表现稳定:学生在几何图形的认识和空间想象方面表现稳定,但仍有一部分学生在几何证明方面存在困难。

几何图形与空间表现稳定:学生在几何图形的认识和空间想象方面表现稳定,但仍有一部分学生在几何证明方面存在困难。

4. 函数与图像掌握较好:绝大多数学生对函数与图像的分析和变化趋势有着相对较好的掌握。

函数与图像掌握较好:绝大多数学生对函数与图像的分析和变化趋势有着相对较好的掌握。

5. 统计与概率需要重视:学生在统计与概率的理解和应用方面有待加强,教学中应更加注重这一部分内容的教学与训练。

统计与概率需要重视:学生在统计与概率的理解和应用方面有待加强,教学中应更加注重这一部分内容的教学与训练。

改进建议基于上述结果分析,我们提出以下改进建议,以促进学生数学研究水平的提高:1. 针对代数方程与不等式,增加更多的练题,并提供详细解题思路和方法的讲解。

2. 针对几何证明的困难,引导学生进行更多的实例分析与推理,加强几何证明的训练。

3. 针对统计与概率的薄弱环节,提供具体实际问题的应用案例,增加学生在实际情境下的综合应用能力训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学第一次月考试卷质量分析此次考试数学试题与中考试题题量较大,但比较基础,共三十二个小题,包含了前段所学知识点,主要考查了二次根式的化简,一元二次方程根的情况及解法,试题难易适合,设计具有梯度。

能够体现新理念、新思想,试题立足于学生的发展,既考查学生的基础知识、基本技能和基本数学思想方法的获得情况,又考查了学生的基本运算能力、思维能力、空间观念和灵活运用数学知识分析和解决实际问题的能力,并对学生的自主探究,创新意识方面作了考查。

一、试题的特点分析
1、这次的试卷,注重考查了数学的基础知识和基本能力。

这套试卷,从总体上来说能着眼于促进学生的发展来考查基础知识、基本技能和基本数学思想方法,很好地突出了考查的主干内容。

首先,试题的起点低,绝大部分考生都能获得基本的分数,因此及格率,优生率都较高。

如第一至第四题,其中先择题和填空题都基本只有一道较难的题;其次,试题既考查了学生对知识的记忆,又加强了对知识理解的考核,如第一题的5、6、7、10题等,第二题的3、5、6、8、;
2,试题没有局限于对知识本身的考查,而是注重创设一个合适的情境,让考生在新的情境中活用基础知识、基本技能和基本数学思想方法,如第五题,第六题2、3、4题等。

这些试题结合基础知识来考查具有数学学科特点的基本思想和方法,把重点放在最具价值的常规方法的应用上,这样做,一方面有助于引导教师在平时的课堂教学中,重视“三基”,鼓励学生通过自主探究主动获取知识;另一方面也有利于提高学生的数学素养,相应的阅读能力、分析能力和运算能力;第五题是由于没有认真阅读思考从而失分较多。

第六题的T4很多同学不会建立函数关系式,或因阅读理解能力差,或因为计算能力差导致失分较多。

这两道题在全年级失分率都较高。

从以上各题的解答情况来看,对学生基本技能的训练和数学思想方法的渗透还要加强,应使之贯穿于整个初中教学的全过程。

横向比一班和七班在基础知识的掌握方面比其他班略差,及时补救。

二、造成失分原因。

(1)粗心造成的错误,如有的学生把加好写成了减号,忘记化简二次根式,忘记约分等。

(2)对知识的理解造成错误从学生的答卷情况来看,部分学生的基础知识还有很多欠缺,学生在储存信息的过程中,由于生理、时间、复习量等方面的种
种原因,造成在对知识的理解上,似懂非懂,模糊不清。

学生对知识记忆不牢,理解不深,做题时往往出现猜测答案,造成错误。

如第一题的4、5、6与有根有关的问题。

第二题的3、4、8、10等。

第8题求概率、第10题,判断中心对称图形、第2题,二次根式化简等。

都是比较容易得分的问题。

可是没有得分。

(3)有的学生审题不细,造成失分,很令人惋惜。

如第一题的8第二题的10题,另外还因综合解题能力差而失分,如最后两道题。

三、教学建议
1、强化基础教学,重视能力培养。

基础是能力提高的根基,在数学教学中必须树立起抓基础是根本,抓能力是核心的意识,加强基础知识的教学、基本技能的训练和各种能力的培养。

从试卷上看,不少考生在基础题上失分,在基本运算上出错,尤其是一班二次根式计算全对的只有24人。

这就要求我们在平时教学中,既要加强概念教学又要加强基本运算教学,并且引导学生在学好概念的基础上,掌握数学规律(包括法则、性质、公式、定理、公理、数学思想方法等),并着重培养学生的能力。

在平时教学中,不能脱离课标、教材。

应当在教学中稳扎稳打,夯实基础,不仅教给学生数学知识,还要揭示获取知识的思维过程、解题思想的探索过程、解题方法与规律的概括过程,使学生在这些过程中展开思维,发展能力。

2、加强数学思想方法(函数与方程、数形结合、转化化归、分类讨论、探索开放)的教学,特别是加强学生分类讨论的数学思想方法的培养。

数学基础知识和基本技能所反映出来的数学思想方法是数学知识的精髓,在课堂教学中,数学思想方法的教学应渗透在教学全过程中,使学生不仅学好概念、定理、法则等内容,而且能领悟其中的数学思想方法,并通过不断积累,逐渐内化为自己的经验,形成解决问题的自觉意识。

3、教学中要注重学生创新意识的培养。

把培养学生创新意识当作初中数学教学的一个重要目的和基本原则。

在教学中要激发学生的好奇心和求知欲,通过学生独立思考,不断追求新知,发现、提出和创造性地解决问题,并引导学生将所学知识应用于实际,从数学角度对某些日常生活、生产和其他学科中出现的问题进行研究,或对某些数学问题进行深入探讨,在其中充分体现学生的自主性和合作精神。

教师在工作中,要在使学生扎实掌基础知识,和培养能力上多下功夫,争取更好成绩。

数学组。

相关文档
最新文档