601《高等数学》考试大纲.pdf
601高等数学三考试大纲
![601高等数学三考试大纲](https://img.taocdn.com/s3/m/780dcb59866fb84ae45c8dc3.png)
系的建立;数列极限与函数极限的定义及其性质;函数的左极限和右极限;无穷
小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较;极限的四
则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限:
lim sin x 1 x0 x
lim
x
1
1 x
x
e
函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函
(6) 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌
握利用两个重要极限求极限的方法。
(7) 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷
大量的概念及其与无穷小量的关系。
(8) 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(9) 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性
解答题(包括证明题)
9~14 题,每小题 10 分;15~17 题,每小
题 15 分,共 105 分
四、考查内容
Ⅰ 微积分
(一)函数、极限、连续 1. 考试内容
函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性 复合函数、
反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;函数关
601 高等数学三考试大纲
一、考试性质
高等数学三是理学学位招收硕士研究生而设置的具有选拔性质的考试科目。 目的是科学、公平、有效地测试考生是否具有攻读理学硕士学位所需要的数学基 础知识和能力,要求的标准是各学科分析与解决问题的基本工具和基础理论,以 利于学校择优选拔,确保硕士研究生的招生质量。
二、考查目标
考核微积分、线性代数、概率论与数理统计的基本概念和方法。要求考生具 备分析和处理带有随机性数据的能力。初步掌握处理微积分理论与应用、线性代 数基本方法和随机现象统计分析的基本思想,能够运用所学的高等数学相关基本 理论、基本知识和基本技能综合分析、判断和解决有关理论问题和实际问题。
601高等数学考试大纲7页
![601高等数学考试大纲7页](https://img.taocdn.com/s3/m/a62fe0b0aa00b52acec7ca5d.png)
2019年贵州师范大学硕士研究生入学考试大纲《高等数学》(科目代码:601)一、考试形式与试卷结构1. 试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
2. 答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。
二、复习要求全日制攻读硕士学位研究生入学考试高等数学科目考试内容包括高等数学上、下册基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,并能运用相关理论和方法分析、解决相关的一些实际问题。
三、考试内容与要求第一部分极限与连续1、考试内容函数概念及其表示法,函数的几种特性,反函数,复合函数,初等函数,双曲函数与反双曲函数;数列极限,函数极限,极限运算法则,无穷小与无穷大量,无穷小的比较,极限存在准则及两个重要极限,函数的连续性,函数的间断点,初等函数的连续性,闭区间上函数连续的性质。
2、考试要求2.1 理解函数的概念;了解函数的单调性、周期性、奇偶性等。
2.2. 理解反函数和复合函数的概念。
2.3. 理解基本初等函数的性质及图形。
2.4. 能列出简单实际问题中的函数关系。
2.5.了解极限的ε-N,ε-δ定义,并能在学习过程中逐步加深对极限思想的理解。
2.6 掌握极限的四则运算。
2.7 理解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
2.8 理解无穷小,无穷大的概念,掌握无穷小的比较。
2.9 理解函数在一点连续的概念,会判断间断点的类型。
2.10 了解初等函数的连续性,知道连续函数在闭区间上的连续性(介值定理和最值定理) 等。
第二部分一元函微分学1、考试内容导数概念,函数求导法则,基本初等函数的导数及初等函数的求导问题,高阶导数,隐函数的导数,由参数方程所确定的函数的导数,函数微分的概念,基本初等的微分及微分运算法则,微分在近似计算及误差估计中的应用;中值定理,罗必塔法则,泰勒公式,函数单调性的判定法,函数极值及其求法、最大值、最小值的求法,曲线的凹凸与拐点,函数图形的作法。
601 高等数学西安邮电大学2023 硕士考试大纲
![601 高等数学西安邮电大学2023 硕士考试大纲](https://img.taocdn.com/s3/m/6dd323f30875f46527d3240c844769eae009a337.png)
西安邮电大学硕士研究生招生考试大纲科目代码:601科目名称:《高等数学》第一部分考试说明一、考试性质《高等数学》是一门培养和提高学生科学素质、科学思维方法、科学研究能力(抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力)和技术创新能力的重要基础课。
《高等数学》是我校理学各学科硕士生入学考试科目之一。
它的标尺是高等学校优秀本科毕业生所能达到的水平,能够检验学生是否具有综合运用所学知识去分析问题和解决问题的能力,以保证被录取者具有良好的高等数学理论基础。
二、考试形式和试卷结构(一)试卷满分及考试时间试卷满分为150分,考试时间为180分钟.(二)答题方式答题方式为闭卷、笔试.(三)试卷题型结构试卷题型结构为:计算题(60分)解答题(包括证明题)(90分)(四)参考书目《高等数学》(七版),同济大学应用数学系主编,高等教育出版社.第二部分考试内容和要求一、函数、极限、连续考试内容:函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立.数列极限与函数极限的定义及其性质,函数的左极限与右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:0sin lim 1x x x →=1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭,函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质.考试要求:1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值和最小值,弧微分,曲率的概念,曲率圆与曲率半径.考试要求:1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质,定积分中值定理,积分上限的函数及其导数,牛顿一莱布尼茨(Newton-Leibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式和简单无理函数的积分,反常(广义)积分,定积分的应用。
中国科学院大学2019年研究生考试大纲601高等数学甲
![中国科学院大学2019年研究生考试大纲601高等数学甲](https://img.taocdn.com/s3/m/0e5941b083d049649b66587b.png)
中国科学院大学硕士研究生入学考试高等数学(甲)考试大纲一、考试性质中国科学院大学硕士研究生入学高等数学(甲)考试是为招收理学非数学专业硕士研究生而设置的选拔考试。
它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。
考试对象为参加全国硕士研究生入学考试、并报考理论物理、原子与分子物理、粒子物理与原子核物理、等离子体物理、凝聚态物理、天体物理、天体测量与天体力学、空间物理学、光学、物理电子学、微电子与固体电子学、电磁场与微波技术、物理海洋学、海洋地质、气候学等专业的考生。
二、考试的基本要求要求考生系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。
要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、考试方法和考试时间高等数学(甲)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
四、考试内容和考试要求(一)函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形数列极限与函数极限的概念无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →=,e xx x =+∞→)11(lim 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质函数的一致连续性概念考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.理解函数的有界性、单调性、周期性和奇偶性。
掌握判断函数这些性质的方法。
3.理解复合函数的概念,了解反函数及隐函数的概念。
会求给定函数的复合函数和反函数。
4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。
中国科学院大学601高等数学(甲)考试内容要求及大纲解析详解(多元函数微分学)【圣才出品】
![中国科学院大学601高等数学(甲)考试内容要求及大纲解析详解(多元函数微分学)【圣才出品】](https://img.taocdn.com/s3/m/1c809dad19e8b8f67c1cb949.png)
专题5 多元函数微分学第1部分考试内容多元函数的概念二元函数的几何意义二元函数的极限和连续有界闭区域上多元连续函数的性质多元函数偏导数和全微分的概念及求法全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法高阶偏导数的求法空间曲线的切线和法平面曲面的切平面和法线方向导数和梯度二元函数的泰勒公式多元函数的极值和条件极值拉格朗日乘数法多元函数的最大值、最小值及其简单应用全微分在近似计算中的应用第2部分考试要求(1)理解多元函数的概念、理解二元函数的几何意义。
(2)理解二元函数的极限与连续性的概念及基本运算性质,了解二元函数累次极限和极限的关系会判断二元函数在已知点处极限的存在性和连续性了解有界闭区域上连续函数的性质。
(3)理解多元函数偏导数和全微分的概念了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分,了解二元函数两个混合偏导数相等的条件了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
(4)熟练掌握多元复合函数偏导数的求法。
(5)熟练掌握隐函数的求导法则。
(6)理解方向导数与梯度的概念并掌握其计算方法。
(7)理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
(8)了解二元函数的二阶泰勒公式。
(9)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。
(10)了解全微分在近似计算中的应用第3部分考试大纲详解一、多元函数1.多元函数的概念设D是R n的一个非空子集,称映射f:D→R为定义在D上的n元函数,记作或其中点集D称为该函数的定义域,x1,x2,…,x n称为自变量,u称为因变量.当n≥2时,n元函数就称为多元函数.2.二元函数的几何意义二元函数z=f(x,y)在空间直角坐标系中表示的是一个曲面.3.二元函数的极限设二元函数f(P)=f(x,y)的定义域为D,P0(x0,y0)是D的聚点.如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当点时,都有成立,则称常数A为函数f(x,y)当(x,y)→(x0,y0)时的极限,记作4.二元函数的连续性(1)连续性的定义设二元函数f(P)=f(x,y)的定义域为D,P 0(x0,y0)为D的聚点,且.如果,则称函数f(x,y)在点P0(x0,y0)处连续.(2)二元函数累次极限和极限的关系①若累次极限和,极限都存在,则三者相等.②若累次极限和存在但不相等,则极限必不存在.(3)有界闭区域上连续函数的性质①有界性与最大值最小值定理在有界闭区域D上的多元连续函数,必定在D上有界,且能取得它的最大值和最小值.注:若f(P)在有界闭区域D上连续,则必定存在常数M>0,使得对一切,有;且存在,使得②介值定理在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的任何值.③一致连续性定理在有界闭区域D上的多元连续函数必定在D上一致连续.注:若f(P)在有界闭区域D上连续,则对于任意给定的正数ε,总存在正数δ,使得对于D上的任意两点P1,P2,只要当|P1P2|<δ时,都有成立.二、偏导数1.偏导数的定义设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应的函数有增量如果存在,则称此极限为函数z=f(x,y)在点(x0,y0)处对x的偏导数,记作函数z=f(x,y)在点(x0,y0)处对y的偏导数定义为记作2.偏导函数如果函数z=f(x,y)在区域D内每一点(x,y)处对x的偏导数都存在,则该偏导数是x,y的函数,称为函数z=f(x,y)对自变量x的偏导函数,记作同理,函数z=f(x,y)对自变量y的偏导函数,记作3.高阶偏导数设函数z=f(x,y)在区域D内具有偏导数于是在D内f x(x,y),f y(x,y)都是x,y的函数.如果这两个函数的偏导数也存在,则称它们是函数z=f(x,y)的二阶偏导数.按照对变量求导次序的不同有下列四个二阶偏导数其中第二、三两个偏导数称为混合偏导数.同样可得三阶、四阶……以及n阶偏导数.二阶及二阶以上的偏导数统称为高阶偏导数.4.二元函数两个混合偏导数相等的条件如果函数z=f(x,y)的两个二阶混合偏导数及在区域D内连续,则在该区域内这两个二阶混合偏导数必相等.三、全微分1.全微分存在条件(二元函数可微、偏导数存在及连续的关系)如果函数z=f(x,y)的偏导数在点(x,y)连续,则函数在该点可微分.2.全微分计算(1)二元函数z=f(x,y)的全微分:;(2)三元函数u=f(x,y,z)的全微分:.3.全微分存在的必要条件和充分条件(1)必要条件如果函数z =f (x ,y )在点(x ,y )可微分,则该函数在点(x ,y )的偏导数z x ∂∂与zy∂∂必定存在,且函数z =f (x ,y )在点(x ,y )的全微分为.(2)充分条件如果函数z =f (x ,y )的偏导数在点(x ,y )连续,则函数在该点可微分.4.全微分形式不变性设函数z =f (u ,ν)具有连续偏导数,则有全微分注:无论u 和ν是自变量还是中间变量,函数z =f (u ,ν)的全微分形式是一样的,即复合函数的全微分.四、多元复合函数偏导数的求导法则 1.一元函数与多元函数复合的情形 如果函数及都在点t 可导,函数z =f (u ,ν)在对应点(u ,ν)具有连续偏导数,则复合函数在点t 可导,且有2.多元函数与多元函数复合的情形 如果函数及都在点(x ,y )具有对x 及对y 的偏导数,函数z =f(u ,ν)在对应点(u ,ν)具有连续偏导数,则复合函数z =在点(x ,y )的两个偏导数都存在,且有。
西北师范大学601数学(理)考试大纲
![西北师范大学601数学(理)考试大纲](https://img.taocdn.com/s3/m/bf485227011ca300a6c390cf.png)
硕士研究生入学统一考试《数学(理)》科目大纲(科目代码:601)学院名称(盖章):地理与环境科学学院学院负责人(签字):编制时间:2014年7 月10 日《数学(理)》科目大纲科目代码:601一、考核要求本《高等数学》考试大纲适用于西北师范大学地环学院各专业的硕士研究生入学考试。
《高等数学》的内容和应用非常广泛,是理工科各专业的重要基础课。
本《高等数学》考核微积分学及其应用。
主要内容包括:一元及多元函数的微积分,微分方程,空间解析几何和向量代数等。
要求考生对课程的整体框架有一个清晰的了解,重点掌握基本概念和基本理论的数学思想和方法,能运用高等数学解决一些理论和实际问题。
主要考查学生的逻辑思维能力、计算能力、综合分析能力、解决实际问题的创新能力等。
二、考核评价目标第一章函数与极限1. 理解和掌握函数的表示法,会建立应用问题的函数关系。
2. 了解函数的有界性、单调性、周期性和奇偶性。
3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.掌握极限的性质及四则运算法则。
6.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
7.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
8.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第二章导数与微分1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,理解函数的可导性与连续性之间的关系。
2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3. 了解高阶导数的概念,会求简单函数的高阶导数。
第三章中值定理与导数的应用1. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
中国科学院大学601高等数学(甲)考试内容要求及大纲解析详解(函数、极限、连续)【圣才出品】
![中国科学院大学601高等数学(甲)考试内容要求及大纲解析详解(函数、极限、连续)【圣才出品】](https://img.taocdn.com/s3/m/d514ed3f31b765ce0508144e.png)
专题1 函数、极限、连续第1部分 考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=, e xx x =+∞→)11(lim 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念第2部分 考试要求(1)理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式.(2)理解函数的有界性、单调性、周期性和奇偶性.掌握判断函数这些性质的方法.(3)理解复合函数的概念,了解反函数及隐函数的概念.会求给定函数的复合函数和反函数.(4)掌握基本初等函数的性质及其图形.(5)理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.(6)掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算.(7)掌握极限存在的两个准则,并会利用它们求极限.掌握利用两个重要极限求极限的方法.(8)理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.(9)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.(10)掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质.(11)理解函数一致连续性的概念.第3部分考试大纲详解一、函数1.函数的定义设数集D R,则称映射f:D→R为定义在D上的函数,简记为,其中x称为自变量,y称为因变量.D称为定义域,记作,即.2.函数的表示方法(1)表格法(2)图形法(3)解析法(公式法)二、函数的性质1.有界性 (1)上界:若存在K 1,对任意x I Î有1()f x K £,则称函数()f x 在I上有上界,而K 1称为函数()f x 在I上的一个上界.(2)下界:若存在K 2,对任意x I Î有2()f x K ³,则称函数()f x 在I上有下界,而K 2称为函数()f x 在I上的一个下界.(3)有界:若对任意x I Î,存在M >0,总有()f x M £,则称()f x 在I 上有界.2.单调性(1)单调递增 当12x x <时,12()()f x f x <.(2)单调递减 当12x x <时,12()()f x f x >.3.周期性(1)定义 ()()f x T f x +=(T 为正数).(2)最小正周期 函数所有周期中最小的周期称为最小正周期.4.奇偶性f (x )的定义域关于原点对称,则:(1)偶函数 f (-x )=f (x ),图形关于y 轴对称.(2)奇函数 f (-x )=-f (x ),图形关于原点对称.三、反函数、复合函数、隐函数1.反函数(1)定义设函数f :D →f (D )是单射,则它存在逆映射f -1:f (D )→D ,称此映射f -1为函数f 的反函数.(2)特点 ①当f 在D 上是单调递增函数,f -1在f (D )上也是单调递增函数;②当f 在D 上是单调递减函数,f -1在f (D )上也是单调递减函数;③f 的图像和f -1的图像关于直线y =x 对称,如图1-1所示.图1-12.复合函数(1)复合函数概念设函数y =f (u )的定义域为f D ,函数u =g (x )的定义域为g D ,且其值域g f R D Ì,则函数称为由函数u =g (x )与函数y =f (u )构成的复合函数,它的定义域为g D ,变量u 称为中间变量.注:函数g 与函数f 构成的复合函数,即按“先g 后f ”的次序复合的函数,记为 ,即.(2)构成复合函数的条件g 与f 能构成复合函数的条件是:函数g 的值域R g 必须包含于函数f 的定义域D f ,即g f R D Ì.3.隐函数 如果变量x,y满足一个方程(,)0F x y =,在一定条件下,当x取区间I 任一值时,相应地总有满足该方程的唯一的y存在,则称方程(,)0F x y =在区间I 确定了一个隐函数.四、基本初等函数1.初等函数定义 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.2.基本初等函数性质和图形(1)幂函数①表达式:(R)n y x n =∈;②定义域:使(R)n y xn =∈有意义的全体实数构成的集合;③性质: a .当n >0时,图象过点(0,0)和(1,1),在区间(0,)+∞上是增函数; b .当n <0时,图象过点(1,1),在区间(0,)+∞上是减函数④图像:图像如图1-2所示:图1-2(2)指数函数①表达式:(0,1)x y aa a =>≠;②定义域:R ;③值域:(0,)+∞④性质: a .当a >1时,图象过点(0,1),在R 上是增函数; b .当0<a <1时,图象过点(0,1),在R 上是减函数. ⑤图像:图像如图1-3所示:图1-3(3)对数函数①表达式:log (0,1)a y x a a =>≠;②定义域:(0,)+∞;③值域:R④性质:a .当a >1时,图象过点(1,0),在(0,)+∞上是增函数;b .当0<a <1时,图象过点(1,0),在(0,)+∞上是减函数. ⑤图像:图像如图1-4所示:。
《高等数学》考试大纲
![《高等数学》考试大纲](https://img.taocdn.com/s3/m/363ce5a9f80f76c66137ee06eff9aef8951e4812.png)
《高等数学》考试大纲一、考试目的高等数学是理工科院校各专业学生的一门重要基础课程。
本考试旨在考察学生对高等数学的基本概念、基本理论和基本方法的掌握程度,以及运用所学知识解决问题的能力。
二、考试内容(一)函数、极限与连续1、理解函数的概念,掌握函数的表示方法,会求函数的定义域、值域。
2、理解函数的单调性、奇偶性、周期性和有界性。
3、掌握基本初等函数的性质及其图形。
4、理解数列极限和函数极限的概念,掌握极限的四则运算法则和两个重要极限。
5、了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。
6、理解函数连续的概念,会判断函数的连续性,掌握闭区间上连续函数的性质。
(二)一元函数微分学1、理解导数的概念,掌握导数的几何意义和物理意义,会求平面曲线的切线方程和法线方程。
2、掌握基本初等函数的导数公式,掌握导数的四则运算法则和复合函数的求导法则。
3、会求隐函数和由参数方程所确定的函数的导数。
4、了解高阶导数的概念,会求函数的二阶导数。
5、理解函数的微分概念,掌握微分的运算法则和一阶微分形式的不变性。
6、掌握罗尔定理、拉格朗日中值定理和柯西中值定理,会用中值定理证明简单的不等式和等式。
7、掌握函数单调性的判别方法,会求函数的单调区间。
8、掌握函数极值和最值的求法,会解决简单的实际应用问题。
9、会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平渐近线和垂直渐近线。
(三)一元函数积分学1、理解原函数和不定积分的概念,掌握不定积分的基本性质和基本积分公式。
2、掌握不定积分的换元积分法和分部积分法。
3、理解定积分的概念和几何意义,掌握定积分的基本性质。
4、掌握牛顿莱布尼茨公式,会用定积分计算平面图形的面积、旋转体的体积和曲线的弧长。
5、了解广义积分的概念,会计算简单的广义积分。
(四)向量代数与空间解析几何1、理解向量的概念,掌握向量的坐标表示和向量的线性运算。
2、掌握向量的数量积和向量积的计算方法,了解向量的混合积。
西北工业大学 601数学(理学) 硕士研究生考试大纲
![西北工业大学 601数学(理学) 硕士研究生考试大纲](https://img.taocdn.com/s3/m/ed7ce932647d27284a735114.png)
5. 理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。 6. 掌握用洛必达法则求未定式极限的方法。 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最 大值和最小值的求法及其应用. 8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平和铅直渐近线,会描绘 函数的图形。 9. 了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
y(n) f ( x), y'' f ( x, y') 和 y'' f ( y, y').
4. 理解线性微分方程解的性质及解的结构。 5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分 方程。 6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数 非齐次线性微分方程。
二、参考书目
1.西北工业大学高等数学教材编写组编,《高等数学》,科学出版社,2005 2.西北工业大学线性代数编写组编, 《线性代数》,科学出版社,2006 3. 陆全主编, 《高等数学常见题型解析及模拟题》,西北工业大学出版社,2003 4. 徐仲、张凯院主编,《线性代数辅导讲案》,西北工业大学出版社, 2007
(四)、多元函数微分学 考试内容
多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域上 多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必要条件和充分条件,多 元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,空间曲线的切线与法平面, 曲面的切平面与法线,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应 用。 考试要求 1. 理解多元函数的概念,理解二元函数的几何意义。 2. 了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3. 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分 条件,了解全微分形式的不变性。 4. 理解方向导数与梯度的概念,掌握其计算方法。 5. 掌握多元复合函数一阶、二阶偏导数的求法。 6.了解隐函数存在定理,会求多元隐函数的偏导数 7. 了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函 数极值存在的充分条件,会求二元函数的极值;会用拉格朗日乘数法求条件极值,会求简单 多元函数的最大值和最小值,并会解决一些简单的应用问题。
复习提纲 601高等共19页文档
![复习提纲 601高等共19页文档](https://img.taocdn.com/s3/m/f092fbac3186bceb19e8bbd7.png)
硕士研究生入学考试军事交通学院命题科目复习提纲601高等数学参考书为《微积分》(第二版)(上、下),同济大学应用数学系主编,高等教育出版社。
(一)函数、极限、连续函数本部分内容主要介绍函数的基本概念、研究函数变化性态的主要工具——极限理论、以及函数的连续性。
采取课堂系统讲授、课后练习并有针对性地组织习题课与课堂讨论,使学员达到:1. 了解集合的概念,集合的基本运算;知道“确界公理”;2. 理解函数的概念,了解映射及反函数的概念;了解函数的基本特性,会证明函数的奇偶性;3. 理解复合函数和初等函数的概念。
会用函数关系描述一些简单的实际问题;4. 理解极限(包括左、右侧极限)的概念,会用ε—N,ε—δ定义验证简单极限;5. 理解和掌握极限四则运算法则;6. 了解极限的性质(包括惟一性、有界性和保号性)和极限存在准则(单调有界准则和夹逼准则),掌握用两个重要极限求极限;7. 理解无穷小、无穷大的概念,掌握无穷小与无穷大的关系,掌握有极限的量与无穷小量的关系,了解无穷小的阶的概念,掌握无穷小的基本运算。
掌握用等价无穷小代换求极限;8. 理解函数连续的概念,会判断间断点的类型;9. 了解初等函数的连续性,理解闭区间上连续函数的性质,掌握应用这些性质特别是零点定理解决有关问题的方法。
(二)一元函数微分学本部分内容主要研究一元函数微分学的相关概念、理论和方法。
采取课堂系统讲授,、课后练习并有针对性地组织习题课与课堂讨论,使学员达到:1. 理解导数和微分的概念,理解导数和微分的几何意义及函数的可导性与连续性的关系;2. 熟练掌握导数的四则运算法则和复合函数求导法,掌握基本初等函数的导数公式及反函数的求导方法;3. 了解微分的四则运算法则和一阶微分形式不变性;4. 了解高阶导数的概念,会求简单函数的高阶导数;5. 掌握求分段函数、隐函数及参数式所确定的函数的导数的方法;6. 会用导数概念解决一些简单的实际问题;7. 理解罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理,了解柯西(Cauchy)中值定理和泰勒(Taylor )中值定理,掌握中值定理的应用,会用泰勒公式近似表示函数;8. 熟练掌握用洛必达(L’Hospital)法则求未定式极限的方法;9. 理解函数极值的概念,掌握用导数判断函数增减性和求极值的方法。
中国科学院大学601高等数学(甲)考试内容要求及大纲解析详解(多元函数积分学)【圣才出品】
![中国科学院大学601高等数学(甲)考试内容要求及大纲解析详解(多元函数积分学)【圣才出品】](https://img.taocdn.com/s3/m/155db1aeed630b1c58eeb53f.png)
该体积为所求二重积分的值,有等式
这就是把二重积分化为先对 y,后对 x 的二次积分的公式.上面公式也可以写成
3 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
f (x, y)d
为常数,表示过 z 轴的半平面,其中
6 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
设点 M 在 xOy 面上的投影为 P,点 P 在 x 轴上的投影为 A,则 OA=x,AP=y,PM
=z.又
因此,点 M 的直角坐标不球面坐标的关系为
则球面坐标形式的三重积分为
二、三重积分 1.定义
2.三重积分的计算
(1)利用直角坐标计算三重积分
假设积分区域 Ω 可表示为 Ω={(x,y,z)|z1(x,y)≤z≤z2(x,y),(x,y)∈Dxy}.
①将 x、y 看做定值,将 f(x,y,z)只看做 z 的函数,在区间[z1(x,y),z2(x,y)]
上对 z 积分的结果是 x、y 的函数,记为 F(x,y),即
部分是 X 型区域或 Y 型区域.
4.利用极坐标计算二重积分
设积分区域 D 可以用丌等式
来表示(图 6-3),其中函
数 φ1(θ)、φ2(θ)在区间[α,β]上连续,则极坐标系中的二重积分化为二次积分的公式
为
4 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
b
dx
2x f x, y dy
D
a
1 x
(2)Y 型区域
设积分区域 D 用丌等式
来表示(图 6-2),其中函数
601高等数学
![601高等数学](https://img.taocdn.com/s3/m/bbe9c7d150e2524de4187e07.png)
理解原函数的概念,理解不定积分和定积分的概念;掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;会求有理函数、三角函数有理式和简单无理函数的积分;理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;了解反常积分的概念,会计算反常积分;掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)。
8、常微分方程
了解微分方程及其阶、解、通解、初始条件和特解等概念;掌握变量可分离的微分方程及一阶线性微分方程的解法;会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程;会用降阶法解微分方程;理解线性微分方程解的性质及解的结构;掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程;会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程;会解欧拉方程;会用微分方程解决一些简单的应用问题。
2、一元函数微分学
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L'Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数的最大值和最小值。
6、多元函数积分学
二重积分与三重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,二元函数全微分的原函数,两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用。
601高等数学(甲)
![601高等数学(甲)](https://img.taocdn.com/s3/m/594b4bc5240c844769eaee40.png)
4. 会求分段函数的一阶、二阶导数。
5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数
6. 会求反函数的导数。
7. 理解并会用罗尔定理、拉格朗日中值定理、柯西
中值定理和泰勒定理。
8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
10. 掌握用洛必达法则求未定式连续性 闭区间上连续函数的
性质 函数的一致连续性概念
考试要求
1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
考试内容
向量的概念 向量的线性运算 向量的数量积、向量积和混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。
7. 掌握极限存在的两个准则,并会利用它们求极限。掌握利用两个重要极限求极限的方法。
8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
11.了解曲率和曲率半径的概念,会计算曲率和曲率半径。
601-高等数学一
![601-高等数学一](https://img.taocdn.com/s3/m/fdfd353903768e9951e79b89680203d8cf2f6a6b.png)
601-《高等数学一》考试大纲
一、试卷满分及考试时光
试卷满分为150分,考试时光为180分钟。
二、试卷的题型结构
填空题
挑选题
计算题
证实题
三、考试内容
第一章函数与极限
一、函数
二、极限
三、延续函数
第二章微分学
一、导数及其运算
二、微分
三、中值定理导数的应用
第三章不定积分..
一、不定积分的概念与运算法则
二、积分法
第四章微分方程初步
一、微分方程的基本概念
二、一阶微分方程
三、二阶微分方程
第五章定积分
一、基本概念
二、定积分的计算
第1 页/共 2 页
三、定积分的应用
第六章空间解析几何和矢量代数
一、空间直角坐标
二、矢量代数
三、空间中的平面和直线
四、二次曲面
第七章多元函数微分学
一、多元函数
二、偏导数的应用
第八章重积分
一、二重积分
二、三重积分
三、重积分的应用
第九章曲线积分曲面积分矢量分析初步
一、曲线积分
二、曲面积分
三、矢量分析和场论初步
第十章级数
一、数项级数
二、幂级数
三、傅里叶级数
第十一章广义积分和含参变量积分
一、广义积分
二、含参变量的积分。
601自命题数学一(初试统考大纲)
![601自命题数学一(初试统考大纲)](https://img.taocdn.com/s3/m/b5c18f37c4da50e2524de518964bcf84b9d52d90.png)
601自命题数学一(初试统考大纲)黑龙江大学硕士研究生入学考试大纲考试科目名称:自命题数学一考试科目代码:[601]一、考试要求具有高中代数,平面解析几何,立体几何等基本知识。
要求考生掌握一元函数微积分及其应用;常微分方程;空间解析几何;多元函数微积分及其应用;级数的一般理论及综合运算能力。
二、考试内容第一章函数与极限§1 映射与函数集合,映射,函数。
§2 数列极限数列极限的定义,收敛数列的性质。
§3 函数的极限自变量趋于无穷大时和自变量趋于有限点时函数的极限的定义,函数极限与数列极限的关系,函数极限的性质。
§4 无穷小与无穷大无穷小的定义与性质,无穷小与无穷大的关系。
§5 极限运算法则函数的极限与无穷小量的关系,极限的各种运算法则的证明,应用运算法则求极限。
§6 极限存在准则,两个重要极限极限存在的两个准则,两个重要极限。
§7 无穷小的比较无穷小的阶的比较,等价无穷小之间的关系,等价无穷小替换求极限。
§8 函数的连续性与间断点函数的连续性的定义,左连续和右连续的定义,函数的间断点及间断点的类型。
§9 连续函数的运算与初等函数的连续性连续函数的和、差、积、商的连续性,反函数与复合函数的连续性,初等函数的连续性。
§10 闭区间上连续函数的性质有界性与最大、最小值定理,零点定理与介值定理。
第二章导数与微分§1导数的概念引例,导数的定义与几何意义,函数可导性与连续性的关系。
§2函数的求导法则函数的和、差、积、商的求导法则,反函数、复合函数的求导法则。
§3高阶导数§4隐函数及由参数方程所确定的函数的导数相关变化率隐函数的导数,由参数方程所确定的函数的导数,相关变化率。
§5函数的微分微分的定义,微分的几何意义,基本初等函数的微分公式,微分运算法则,微分在近似计算中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《教育学原理》考试大纲
一、基本要求
1、准确识记教育学的基础知识。
2、正确理解教育学的基本概念和基本理论。
3、能够运用教育学的基本理论分析教育理论与实践问题。
《教育学原理》课程考试对考生的具体要求分为三个层次:
1.识记:能知道有关的名词、概念、知识的含义,并能正确认识和表述。
2.领会:在识记的基础上,能全面把握基本概念、基本原理,能掌握有关概念和原理的区别与联系。
3.应用:在领会的基础上,能用相关知识点分析理论与实践问题。
二、考试范围
1、教育与教育学
识记:教育;学校教育制度;教育的起源说
领会:教育的基本构成要素;原始社会教育、古代学校教育、现代教育的特点;当代世界教育发展趋势;教育学的研究对象与任务;教育学的发展阶段;新中国成立以来的学制及其改革
应用:教育的本质问题
2、教育与个体发展
识记:个体的身心发展
领会:影响个体身心发展的基本因素;教育在个体发展中的作用;教育的本体功能;多元智能理论
应用:教育如何遵循个体身心发展的基本规律
3、教育与社会发展
识记:学校文化;学生文化
领会:教育的社会制约性;教育的社会功能;学校文化与学生文化的特征
应用:教育平等问题
4、教育目的
识记:教育目的;素质教育
领会:教育目的的层次结构及作用;影响教育目的制定的基本依据;我国建国后教育目的演化的过程;我国教育目的基本精神
应用:实施教育目的的基本要求;素质的结构;素质教育的内涵与任务
5、教师与学生
领会:学生的本质属性和社会地位;教师职业的性质和特点,教师的专业化条件;师生关系的表现形式
应用:新型师生关系的建立
6、课程
识记:课程;课程类型;课程目标;课程标准;课程实施的取向;课程评价
领会:经验主义、学科中心主义、社会再造主义、存在主义、后现代主义课程论等课程理论;制约课程的因素;课程的主要形式;课程设计的理论与实践
应用:针对课程中存在问题的课程改革
7、教学
识记:教学;教学效率;教学策略
领会:教学的意义与任务;教学过程的特点与结构;教学环节的操作方法和主要的教学方法;教学工作的基本程序;哲学取向的教学理论;几种主要的教学组织形式;班级授课制的由来与发展;教学策略的特征与类型
应用:主要的教学原则及其实施
8、德育
识记:道德;品德;德育;德育过程;德育原则;德育方法
领会:德育的重要意义;德育的目标和内容;当代最具影响的几种德育模式
应用:德育过程的主要规律、原则和方法
9、教育评价
识记:学生评价;教师评价;学校办学水平评价;指标体系
领会:教育评价的产生和发展;教育评价的功能;教育评价的基本过程;教育评价的发展趋势
应用:学生评价的类型;教师评价的方法
-611《教育研究方法》考试大纲
一、基本要求
1、了解教育科学研究的历史、现状与发展趋势,理解教育科学研究方法的重要术语、基本概念,掌握教育科学研究方法的一般原理及主要研究方法。
2、具有进行教育科学研究选题及研究方案设计、查阅文献资料、收集和分析研究资料、撰写研究报告和学术论文等的初步能力。
3、能够运用教育科学研究原理分析和评论研究设计、成果及典型案例。
《教育科学研究方法》课程考试对考生的具体要求分为三个层次:
1.识记:能知道有关的名词、概念、知识的含义,并能正确认识和表述。
2.领会:在识记的基础上,能全面把握基本概念、基本原理,能掌握有关概念和原理的区别与联系。
3.应用:在领会的基础上,能用相关知识点分析理论与实践问题。
二、考试范围
1、教育科学研究的意义和过程
识记:方法论;研究方法;定量研究;定性研究;探索性研究;描述性研究;解释性研究。
领会:教育科学研究的意义;科学的研究方法应具有的主要特性;研究的基本过程;教育科学研究的类型;定量研究与定性研究的特点、过程、用途及局限性等;教育科学研究者应有的道德原则
2、选题与研究设计
识记:理论;变量;命题;假设;研究问题
领会:研究问题的来源;选题的标准;研究课题的陈述;研究假设;概念的操作化
应用:研究方案的设计
3、测量
识记:测量;内部信度;外部信度;内部效度;外部效度;指数
领会:测量的层次;李克特量表;语义差异量表;信度与效度的关系
应用:测量调查的相关技术和实施规范
4、抽样
识记:抽样
领会:抽样调查的意义;抽样的程序;概率抽样的原理与程序;样本容量及其影响因素应用:概率抽样的方法;非概率抽样方法
5、问卷法
识记:调查研究;问卷
领会:调查研究的应用领域;问卷法的特点;问卷的类型与结构;问卷设计的主要技术
与标准;问卷调查的实施;问卷的效度与信度;问卷法的优缺点
应用:问卷设计的基本原则与主要步骤
6、访谈法
识记:访谈法;结构式访谈;非结构式访谈
领会:访谈法的特点与类型;访问员的挑选与培训;焦点团体访谈
应用:访谈法的程序与技巧
7、观察法
识记:观察;结构化观察
领会:观察法的特点与优缺点;参与观察;非参与观察;观察的信度与效度;观察法实施的伦理问题
应用:观察研究的设计;观察表格的记录
8、实验法
识记:实验法
领会:实验的逻辑;实验法的特点与意义;实验法的原理和程序;实验的基本类型;影响实验效度的因素;实验法的优缺点
应用:实验设计
9、文献法
识记:文献;文献研究
领会:文献法的优缺点;文献研究的类型;文献查阅的方法;内容分析的特点与应用;资料的审核与整理;资料汇总
应用:文献综述的撰写;内容分析的类型与程序
10、比较研究
识记:比较研究
领会:比较研究法的发展历史与作用;比较研究法的种类;比较研究法的运用
11、研究报告的撰写
领会:教育科学研究成果的含义与目的;研究报告的种类;研究报告的结构;教育科学研究成果评价的作用、内容和方法
应用:研究报告的撰写步骤与要求。