六年级上册数学各单元重点归纳
(完整版)六年级数学上册重点知识归纳
六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2、用数对表示位置时,一般先表示第几列,再表示第几行。
如数对(3,2)中的“3”表示第三列,“2”表示第二行。
3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。
第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
2、分数乘分数,应该分子乘分子,分母乘分母。
注意:能约分的可以先约分再乘。
注意:一个大于0的数乘大于1的数,积大于这个数。
一个大于0的数乘小于1的数,积小于这个数。
3、分数混合运算的顺序和整数的混合运算顺序相同。
(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。
4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。
6、乘积是1的两个数互为倒数。
求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。
注意:1的倒数是1,0没有倒数。
7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。
最新版六年级数学上册各单元知识点归纳
第一单元分数乘法一、分数乘法 (一)分数乘法的意义:1、分数乘整数与整数乘法意义相同:求几个相同加数的和的简便运算。
如:65×5表示求5个65的和是多少?31×5表示求5个31的和是多少? 2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:31×74表示求31的74是多少。
4×83表示求4的83是多少.(二)、分数乘法的计算法则:1.分数乘整数:分子与整数相乘的积做分子,分母不变。
(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(常见质因数有11×11=121;13×13=169;17×17=289)4、小数乘分数,先把小数化为分数。
(三)、 乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘1,积等于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a × c + b × c二、分数乘法的解决问题: (已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ” (2)分率前是“的”字:用单位“1”的量×分率=对应量如:甲数是20,甲数的31是多少?列式是:20×314、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;例如:甲数是50,乙数比甲数少31,乙数是多少? 列式是:50×(1-31)(比多):单位“1”的量×(1+分率)=具体量例如:小红有30元钱,小明比小红多53,小红有多少钱? 列式是:50×(1+53)5、求一个数的几倍是多少:用 一个数×几倍;6、求一个数的几分之几是多少: 用一个数×几分之几。
六年级数学上册各单元知识点(附重点题型)
10. 一个足球原价 80 元,现价降低了 多少元?
1 .这个足球现价是 5
6、根据描述画路线图:观测点发生变化,方向标要标清 楚. 7、画线路图必须用铅笔、直尺.角度、距离要标清.
第二单元 【知识梳理】
(一)数对: 1、 什么是数对?
位置与方向
【练习】
1.小红的座位在教室的第三列第四行,她的位置可以表 示为(3,4). ( 1 )小强坐在教室的第二列第五行 , 他的位置可以用 ( )表示. )列,
(2)小兰的位置是(5,1),她坐在教室的第( 第( )行.
(3)小亮的位置时(5,2),他坐在教室的第( 第( )行,在小兰的( )面.
)列,
(4)小明在小强的右面,小红的后面,是第( ( )行,他的位置可以用( )表示.
)列,第
(5)小华的位置是(4,2),她坐在小亮的( 第( )列,第( )行.
(二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不 变. 注: (1)为了计算简便能约分的可先约分再计算.(整数 和分母约分) (2)约分是用整数和分母约掉最大公因数.(计算结 果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子, 分母相乘的积做分母.(分子乘分子,分母乘分母) 注: (1)如果分数乘法算式中含有带分数,要先把带分数 化成假分数再计算. (2)分数化简的方法是:分子、分母同时除以它们的 最大公因数,计算后的结果才是最简单分数.
1、分数乘整数的意义与整数乘法的意义相同,就是求几 个相同加数的和的简便运算. 例如: × 7 表示: 求 7 个 的 7 倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多 少. 例如:
5 9
5 5 的和是多少? 或表示: 9 9
六年级上册数学第一到二单元重要知识点总结归纳
六年级上册数学第一到二单元重要知识点总结归纳小学六年级上册的数学,一到二单元的重点知识点总结如下:
一、第一单元:简单的几何图形
1. 了解形状:正方形、长方形、三角形、圆形等,能够分辨不同形状之间的特点。
2. 理解几何图形:辨认几何图形的特征,如它们的周长、边长、面积等。
3. 利用折线图特征:比较特征和区分形状,如正方形的边长和圆形的半径大小等。
4. 理解和计算形状的周长:边长的总和等于图形的周长,四边形周长公式计算。
5. 理解和计算形状的内角:知道内角的含义,并能够精确计算多边形的内角和。
二、第二单元:直角坐标系
1. 理解什么是坐标系:介绍坐标系的概念及它的成分。
2. 了解直角坐标系:解释x轴、y轴的意义,能识别(x, y)的形式,掌握xy轴的横坐标、纵坐标的含义。
3. 了解坐标点:用(x, y)的形式表示并标出直角坐标系中的点,定义坐标系中的原点。
4. 掌握直角坐标系的定义域:说明坐标系的定义域的含义及表达,掌握坐标系内两点间的距离公式。
5. 理解坐标轴对称:介绍坐标轴对称的概念,根据给定的点和直线,绘制出坐标系内数点的位置。
以上就是小学六年级上册数学一到二单元重要知识点总结归纳,抓住重点,熟练掌握,帮助孩子们理解、应用,对孩子们数学学习具有重要的指导意义。
人教版六年级数学上册各单元知识点归纳
新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律:( a × b )×c = a ×( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
人教版六年级数学上册各单元知识点汇总
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
六年级上册数学知识重点、难点
六年级上册数学知识点第一单元地点(用数对确立点物体的地点)1.数用有序的两个数表示一个确立的地点就是数对。
2.用数对表示物体地点的方法。
数对的前一个数表示第几列,后一个数表示第几行。
在书写时要用小括号将两个数括起来,并用逗号将两个数分开。
如:数对( 3,2)表示第三列,第二行。
3.在平面直角坐标系中,一个图形向左右平移,对应点的数对不过列数变,行数不变。
向上下平移,不过行数变,列数不变。
第二单元分数乘法1.分数乘法意义(1)能改写成加法算式的分数乘法算式意义与整数乘法的意义同样。
是求几个同样加数的和的简易运算。
1 1 1 1 11如:2×4=2 +2 + 2 +2那么×4 表示 4 个2相加的和是多少。
(2)不可以改写成加法算式的分数乘法算式意义就是求一个数的几分之几是多少。
1313如:2×5表示2的5是多少。
2.分数乘法的计算方法:(1)分数与整数相乘,用分子与整数相乘的积做分子,分母不变。
(2)分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
注意:在计算分数乘法时,分子和分母能约分的尽量先约分,再计算,这样能够简易。
3.倒数的认识(1)倒数的定义:乘积为 1 的两个数互为倒数。
重申:互为倒数,即倒数是两个数的关系,它们相互依存,倒数不可以独自存在。
(2)求倒数的方法:①求分数的倒数是互换分子分母的地点。
②求整数的倒数是把整数看做分母是 1 的分数,再互换分子分母的地点。
1③求 a(a≠0)的倒数就用 1÷ a=a。
( 3) 1 的倒数是它自己;0 没有倒数。
4.解决问题求一个数的几分之几是多少要用乘法计算。
【单位“ 1”的量×分率】第三单元分数除法1.?????分数除法的意义是已知两个数的积与此中一个因数,求另一个因数的运算。
(除法是乘法的逆运算)1313如:2÷5表示已知两个因数的积是2与此中一个因数是5,求另一个因数是多少。
六年级数学上册重点知识归纳
六年级数学上册重点知识归纳第一章:整数整数是由自然数、0和负整数组成的集合。
在六年级数学上册中,我们学习了整数的四则运算、比较大小、相反数和绝对值等重要概念。
1. 整数的四则运算:- 加法:将两个整数相加,结果仍然是一个整数。
- 减法:从一个整数中减去另一个整数,结果仍然是一个整数。
- 乘法:将两个整数相乘,结果仍然是一个整数。
- 除法:将一个整数除以另一个整数,结果可以是一个整数,也可以是一个带余数的分数。
2. 整数的比较大小:- 当两个整数相比较时,我们可以利用它们在数轴上的位置关系进行判断。
较大的整数在数轴上的位置更靠右。
- 当整数的绝对值相等时,正整数大于负整数。
- 当整数的绝对值不同且符号相同时,绝对值较大的整数较大。
3. 相反数和绝对值:- 相反数:一个整数的相反数与它的绝对值相等,但符号相反。
- 绝对值:一个整数的绝对值是它到0的距离,即去掉符号后的值。
第二章:分数分数是指由整数和非零整数分母的有理数。
在数学上,我们学习了分数的基本概念、分数的四则运算以及分数的大小比较。
1. 分数的基本概念:- 分子:分数的上部分,表示被分成的份数。
- 分母:分数的下部分,表示每份的大小。
- 真分数:分子小于分母的分数。
- 假分数:分子大于等于分母的分数。
- 显分数:分数的分子除以分母得到的带余数。
2. 分数的四则运算:- 加法:将两个分数相加,分母不变,分子相加。
- 减法:将一个分数减去另一个分数,分母不变,分子相减。
- 乘法:将两个分数相乘,分子相乘,分母相乘。
- 除法:将一个分数除以另一个分数,分子相乘,分母相乘取倒数。
3. 分数的大小比较:- 当两个分数的分母相等时,我们可以比较它们的分子大小。
- 当两个分数的分母不等时,我们需要将它们通分后再比较。
第三章:小数小数是指用十进制表示的有理数。
在六年级数学上册中,我们学习了小数的读法、写法、大小比较以及小数的四则运算。
1. 小数的读法和写法:- 小数点:小数点用于分隔整数部分和小数部分。
六年级上册数学各单元重点归纳
六年级上册数学知识点归纳第一单元分数乘法 (1)(一)分数乘法意义: 0(二)分数乘法计算法则: (1)(三)积与因数的关系: (1)(四)分数乘法混合运算 (2)(五)倒数的意义: 乘积为1的两个数互为倒数。
(2)(六)分数乘法应用题——用分数乘法解决问题 (3)第二单元位置 (4)原理: (3)第三单元分数除法 (5)一、分数除法的意义: (4)分数除法是分数乘法的逆运算, 已知两个数的积与其中一个因数, 求另一个因数的运算。
4二、分数除法计算法则: (5)除以一个数(0除外), 等于乘上这个数的倒数。
(5)三、分数除法混合运算 (5)第四单元比 (5)第五单元圆 (8)一、圆的特征 (8)二、圆的周长: (7)围成圆的曲线的长度叫做圆的周长, 周长用字母C表示。
(7)三、圆的面积 S=πr² (9)第六单元、百分数 (10)一、百分数的意义: 表示一个数是另一个数的百分之几。
(8)二、百分数应用题 (11)第七单元、统计 (12)扇形统计图的意义: (11)常用统计图的优点: (11)第八单元、数学广角 (13)一、研究中国古代的鸡兔同笼问题。
(13)第一单元分数乘法(一)分数乘法意义:1.分数乘整数的意义与整数乘法的意义相同, 就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数, 不能是分数。
例如: ×7表示: 求7个的和是多少?或表示: 的7倍是多少?2.一个数乘分数的意义就是求一个数的几分之几是多少。
例如: 表示: 求的是多少?表示: 求4的是多少?(二)分数乘法计算法则:1.分数乘整数的运算法则是:分子与整数相乘, 分母不变。
注: (1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘, 计算结果必须是最简分数)2.分数乘分数的运算法则是: 用分子相乘的积做分子, 分母相乘的积做分母。
小学六年级数学上下册重点知识归纳
小学六年级数学上下册重点知识归纳人教版新课标六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一样规则:竖排叫做列,横排叫做行;确定第几列一样是从左往右数,确定第几行一样是从前往后数。
2、用数对表示位置时,一样先表示第几列,再表示第几行。
如数对(3,2)中的“3”表示第三列,“2”表示第二行。
3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。
第二单元:分数乘法1、分数乘整数的运算方法:分母不变,分子与整数相乘的积作分子。
2、分数乘分数,应该分子乘分子,分母乘分母。
注意:能约分的能够先约分再乘。
注意:一个大于0的数乘大于1的数,积大于那个数。
一个大于0的数乘小于1的数,积小于那个数。
3、分数混合运算的顺序和整数的混合运算顺序相同。
(1)在没有括号的算式里,同级运算从左往右进行运算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号别处的数。
4、整数乘法的交换律、结合律和分配律,关于分数乘法也适用。
(1)乘法交换律:a×b=b ×a(2)乘法结合律:(a ×b)×c=a ×(b ×c)(3)乘法分配律:(a+b)×c=a ×c+b ×c5、解决求一个数的几分之几是多少的问题,用乘法运算。
6、乘积是1的两个数互为倒数。
求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。
注意:1的倒数是1,0没有倒数。
7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
小学六年级上册数学各单元知识点
小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。
人教版新课标六年级数学上册重点知识归纳
人教版新课标六年级数学上册重点知识归纳第一单元:位置1、列、行的意义:横、竖成排有规则的排列,竖排称为列,横排称为行。
列从左往右数,行从前往后数。
2、数对:两个有顺序的数组成的且表示一个确定的位置。
3、用数对表示物体位置的方法:先表示列数,再表示行数。
4、用数对确定物体位置的方法:看数对中的两个数表示的是哪一列、哪一行,确定出物体的位置。
第二单元:分数乘法分数乘整数1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算:2、分数乘整数计算法则:分数乘整数用分数的分子和整数相乘的积作分子,分母不变。
3、分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
4、温馨提示:计算分数乘整数时只能是整数和分子相乘的积作分子,分数的分母不能和整数相乘作分母。
分数乘分数1、分数乘分数的意义就是求一个数的几分之几是多少。
2、分数乘分数的计算方法:用分子相乘的积作分子,分母相乘的积作分母。
3、分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
4、(1)当一个因数大于1时,积大于另一个因数(0除外);当一个因数小于1时,积小于另一个因数(0除外);当一个因数等于1时,积等于另一个因数。
(2)用字母表示因数与积的关系:a×b=c ○1b﹥1, c﹥a(0除外);○2b=1,c=a;○3b<1,c<a(0除外)。
5、温馨提示:运用约分对分数乘分数进行简便运算时,约分后分子和分母必须不再含有公因数,计算后的结果才是最简分数。
6、温馨提示:在进行因数与积的大小比较时,要考虑因数为0时的特殊情况。
7、形如:的分数可以拆成(一)×8、温馨提示:在具体数和一个数的几分之几进行大小比较时,不要轻易下结论,要从多方面考虑,才能做出正确判断。
分数乘法的混合运算和简便运算1、分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。
没有括号的先算乘法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
六年级上册数学重点知识归纳
第1单元分数乘法1、分数乘整数意义:表示几个相同的分数的和。
(表示一个数的几倍是多少)计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。
能先约分的,可以先约分,再计算。
2、分数乘分数意义:一个数乘分数,就是求这个数的几分之几是多少。
计算方法:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
为了计算简便,可以先约分再相乘。
3、分数乘法解决问题①求一个数的几分之几是多少这个数(单位“1”的量)×分率=对应分率的量②连续求一个数的几分之几是多少:用这个数(单位“1”的量)连续乘对应的几分之几。
③求比一个数多(或少)几分之几的数是多少:单位“1”+单位“1”×比单位“1”多几分之几=比单位“1”多几分之几的数。
单位“1”-单位“1”×比单位“1”少几分之几=比单位“1”少几分之几的数。
单位“1”×(1+比单位“1”多几分之几)=比单位“1”多几分之几的数。
单位“1”×(1-比单位“1”多几分之几)=比单位“1”少几分之几的数。
第2二单元方向和位置1、有方向和距离两个条件才能准确地确定物体的位置。
2、在平面图中标出物体的位置,必须标出方向和距离才能确定物体的位置。
过程:确定方向,选定单位长度基准来确定距离。
画出物体的具体位置,并标出名称。
3、位置的相对性。
两个地点间的位置关系是相对的:东偏北<→西偏南北偏西→南偏东东偏南→西偏北北偏东→南偏西4如何描述路线图按行走路线,先确定观测点及行走的方向和路程,再描述。
即每走一步都要说清从哪出发,向什么方向走多远到达哪里。
第3单元分数除法1、倒数的认识定义:乘积是1的两个数互为倒数。
方法:一个分数,分子、分母交换位置后得到的数就是这个分数的倒数。
1的倒数是1,0没有倒数。
如何寻找倒数2、分数除以整数①用分子直接除以整数72736376=÷=÷ ②把除法转化成乘法 723176376=⨯=÷ 1、分数除以分数 把除法转化成乘法 21923763276=⨯=÷ 2、分数除法解决问题-①知道一个数的几分之几是多少,求这个数列方程: 单位“1”×分数=对应量算式: 对应量÷分数=单位“1”②知道比一个数多几分之几的数是多少, 求这个数列方程: 单位“1”×(1+分数)=对应量单位“1”+单位“1”×分数=对应量列算式: 对应量÷(1+分数)=单位“1”③知道比一个数少几分之几的数是多少,求这个数列方程: 单位“1”×(1-分数)=对应量单位“1”-单位“1”×分数=对应量列算式: 对应量÷(1-分数)=单位“1”④和倍问题:方法一:列方程:1、根据2个数的倍数关系设2个未知数。
人教版小学六年级数学上册知识点归纳总结
人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可使一些计算简便。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳(绝对经典)第一单元:位置在数学中,我们经常需要描述物体的位置。
为了方便,我们引入了行和列的概念。
竖排叫做列,横排叫做行。
数对可以表示物体的位置,先表示列,再表示行。
例如,(7,9)表示第七列第九行。
如果两个数对前一个数相同,说明它们所表示物体位置在同一列上;如果后一个数相同,说明它们所表示物体位置在同一行上。
物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元:分数乘法分数乘法可以分为分数乘整数和分数乘分数两种情况。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如,6×1/2,表示:6个1/2相加是多少,还表示的6倍是多少。
一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如,6×2/5,表示:6的2/5是多少。
分数乘法的计算法则:整数和分数相乘,整数和分子相乘的积作分子,分母不变。
分数和分数相乘,分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
分数大小的比较:一个数(除外)乘以一个真分数,所得的积小于它本身。
一个数(除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(除外)乘以一个带分数,所得的积大于它本身。
在解决实际问题时,我们可以先找出含有分率的关键句,然后找出单位“1”的量,根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
最后根据已知条件和问题列式解答。
在乘法应用题中,我们需要注意概念,找到含有分数的关键句中的单位“1”,并注意“的”前“比”后的规则。
3.表示甲比乙多几分之几,是指甲比乙多的数占乙的几分之几,而甲比乙少几分之几,则是指甲比乙少的数占乙的几分之几。
在应用题中,比如小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,我们要求增产几分之几。
小学六年级数学上册1~8单元期末必考知识点汇总
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
新人教版六年级数学上册各单元知识点归纳
新人教版六年级数学上册各单元知识点归纳第一单元:整数1. 整数的概念整数是正整数、零、负整数的总称。
用于表示具有相反意义的数,其绝对值较大的数是正数,较小的数是负数。
2. 整数的比较整数的大小关系可通过数轴、绝对值、直接比较等形式进行判断。
3. 整数的加法和减法整数之间的加法和减法运算规则与非负整数相同,注意正数加负数和负数减正数的特殊情况。
4. 整数的乘法和除法整数之间的乘法和除法运算规则可通过实际问题、计算器等途径进行理解与计算。
第二单元:有理数1. 有理数的概念有理数包括整数和分数,是指可以表达为两个整数的比例的数。
2. 有理数的分类有理数可以分为正有理数、负有理数和零,需要注意有理数的绝对值和大小关系。
3. 有理数的加法和减法有理数的加法和减法运算规则与整数相似,需要注意同号和异号数的相加与相减。
4. 有理数的乘法和除法有理数的乘法和除法运算规则与整数相似,需要注意同号和异号数的相乘与相除。
第三单元:分数1. 分数的概念分数是指整数除以非零整数所得的数,由分子和分母两部分组成。
2. 分数的化简分数可通过约分化简,使分子和分母的最大公约数为1,从而得到最简分数。
3. 分数之间的关系分数可以通过比较分子和分母的大小关系进行大小比较。
4. 分数的加法和减法分数的加法和减法需要找到公共分母,并将分数转化为通分后再进行运算。
第四单元:小数1. 小数的概念小数是指除不尽的分数,可表示为有限小数或循环小数。
2. 小数的读法和写法小数的读法和写法要熟练掌握,包括整数部分、小数点、小数位数等。
3. 小数之间的关系小数的大小关系可通过比较小数位数、小数点后面的数字大小进行判断。
4. 小数的加法和减法小数的加法和减法运算规则与整数相同,需要注意小数位数对齐和进位借位的特点。
第五单元:相反数和绝对值1. 相反数的概念相反数是指绝对值相等、符号相反的两个数。
2. 相反数的性质相反数的加法和减法运算满足特定性质,即相反数相加等于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法
被除数
除号(÷)
除数(不能为0)
商不变性质
一种运算
分数
分子
分数线
分母(不能为0)
分数的基本性质
一个数
比
前项
比号(∶)
后项(不能为0)
比的基本性质
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
第八单元、数学广角
一、研究中国古代的鸡兔同笼问题。
1、 用表格方式解决有局限性,数目必须小,例:
(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)
2、 用假设法解决
(1) 假如都是兔 (2) 假如都是鸡
3、 用方程法解(一般设腿多的为X)
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。
例如: 表示: 求 的 是多少? 表示: 求4的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
2、( 什么)是(什么 )的
例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数= 乙数× 即25× =15
(1)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(2)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数+乙数× 即25+25× =25×(1+ )=40
有无条对称轴的图形:圆,圆环
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
2、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、被除数与商的变化规律:
除以大于1的数,商小于被除数: 除以小于1的数,商大于被除数:
除以等于1的数,商等于被除数:
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
第四单元 比
比:两个数相除也叫两个数的比
3、半圆周长=圆周长一半+直径=πr+d
三、圆的面积S=πr²
圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
环形面积 = 大圆面积 – 小圆面积
常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第六单元、百分数
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙 少:(乙-甲)÷乙
第二单元 位置
原理:
找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。
第三单元 分数除法
一、分数除法的意义:
分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:
除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数,积小于这个数。
一个数(0除外)乘等于1的数,积等于这个数。
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
Hale Waihona Puke 带分数的倒数小于1。(六)分数乘法应用题 ——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
例如:求25的 是多少? 列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
百分数的分子可以是小数,分数的分子只以是整数。
注意:
百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
第七单元、统计
扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
求分数的倒数:交换分子、分母的位置。 求整数的倒数:整数分之1。
求带分数的倒数:先化成假分数,再求倒数。 求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
六年级上册数学知识点归纳
第一单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
甲比乙多25%,多10,乙是多少?10÷25%=40
甲比乙多25%,多10,甲是多少?10÷25%+10=50
乙比甲少20%,少10,甲是多少?10÷20%=50
乙比甲少20%,少10,乙是多少?10÷20%-10=40
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。