经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

合集下载

八个著名的不等式

八个著名的不等式

第八讲 几个著名的不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.这些著名不等式是数学家们长期致力于不等式理论研究的重要成果,它们将成为我们学习数学、研究数学、应用数学的得力工具。

下面择要介绍一些著名的不等式. 1.柯西(Cauchy )不等式 定理:设()n i R b a i i Λ2,1,=∈则()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++等号成立当且仅当()n i ka b i i ≤≤=1.。

[一般形式的证明] 作函数()()()()()())(222222122112222212222211≥+++++-+++=-++-+-=x b b b x b a b a b a x a a a b x a b x a b x a x f n n n n n n ΛΛΛΛ0≤∆∴ 此时044121221≤⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=∆∑∑∑===n i i n i i ni i i b a b a⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∴∑∑∑===n i i n i i ni i i b a b a 121221,得证。

[向量形式的证明]令(),2,1n a a a A Λρ= (),2,1n b b b B Λρ=()()()22221222212211cos nn n n b b b a a aB A B A b a b a b a B A ΛΛρρρρΛρρ++⋅+++=≤=++=⋅θ()1cos 1≤≤-θ两边同时平方得:()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++,得证。

[柯西不等式的应用]例1.1设()()22121111,1n a a a a a a n i R a n n i ≥⎪⎪⎭⎫ ⎝⎛++++++≤≤∈+ΛΛ求证 解:由柯西不等式可知,原不等式可化为()()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+++2222122221111n na a a a a a ΛΛ()22111n n =++≥43421Λ个 当且仅当,1,1,12211n na k a a k a a k a ===Λ时等号成立即n a a a Λ==21,故原不等式得证。

【优质】切比雪夫不等式证明(精选多篇)-优秀word范文 (17页)

【优质】切比雪夫不等式证明(精选多篇)-优秀word范文 (17页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==切比雪夫不等式证明(精选多篇)第一篇:切比雪夫不等式证明切比雪夫不等式证明一、试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。

分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此1000次试验中出现正面h的次数服从二项分布.解:设x表示1000次试验中出现正面h的次数,则x是一个随机变量,且~xb(1000,1/2).因此500211000=×==npex,250)2答题完毕,祝你开心!11(211000)1(=××==pnpdx,而所求的概率为}500600500400{}600400{<<=<}100100{<<=exxp}100{<=exxp975.010012=≥dx.二、切比雪夫(chebyshev)不等式对于任一随机变量x,若ex与dx均存在,则对任意ε>0,恒有p{|x-ex|>=ε}<=dx/ε^2或p{|x-ex|<ε}>=1-dx/ε^2切比雪夫不等式说明,dx越小,则p{|x-ex|>=ε}越小,p{|x-ex|<ε}越大,也就是说,随机变量x取值基本上集中在ex附近,这进一步说明了方差的意义。

同时当ex和dx已知时,切比雪夫不等式给出了概率p{|x-ex|>=ε}的一个上界,该上界并不涉及随机变量x的具体概率分布,而只与其方差dx和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。

需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。

切比雪夫不等式是指在任何数据集中,与平均数超过k倍标准差的数据占的比例至多是1/k^2。

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

不妨设
a1 a2 ... an
b1 b2 ... bn
由切比雪夫不等式为
1 (a1 a2 ... an )(b1 b2 ... bn ) a1b1 a2b2 ... anbn n
令 ai bi (i 1, 2,..., n) 则有
aibi-ajbi+ajbj-aibj=(ai-aj)(bi-bj)≥0
即顺序和≥乱序和(当且仅当 ai=aj 或 bi=bj 时等号成立) 当有多个乱序时可由数学归纳法即得结论: a1bn+a2bn-1+…+anb1≤a1bj1+a2bj2+„+anbjn≤a1b1+a2b2+„+anbn (其中 j1,j2,…,jn 是 1,2,…,n 的一个排列) 当且仅当 a1=a2=…=an 或 b1=b2=…=bn 时等号成立 2.切比雪夫不等式 若两个正实数数组{ai} , {bi} 满足 a1≤a2≤„≤an ,b1≤b2≤„ ≤bn,
版权所有,违者乱棍打死
1. 排序不等式 设两个数组{ai} , {bi}满足 a1≤a2≤„≤an,b1≤b2≤„≤bn, 则有 a1bn+a2bn-1+…+anb1≤a1bj1+a2bj2+„+anbjn≤a1b1+a2b2+„+anbn (其中 j1,j2,…,jn 是 1,2,…,n 的一个排列) 当且仅当 a1=a2=…=an 或 b1=b2=…=bn 时等号成立 证明: (先证有一个乱序的情形,其余的可根据结论得证) 设序列{ai}中仅有 ai 与 aj 调换次序 由 a1b1+a2b2+…+ajbi+…+aibj+…+anbn 记为○ 1 式(为乱序) a1b1+a2b2+…+aibi+…+ajbj+…+anbn 2 -○ 1 得 ○ : 记为○ 2 式(为顺序) 恒成立 .

几个著名不等式

几个著名不等式

几个著名不等式
五 节 不
柯西、均值、 柯西、均值、 排序、 排序、Jensen不等式 不等式
柯西不等式
设a1 , a 2 ,..., a n 是任意实数,则
2 2 2 2 2 (a1b1 + a 2 b2 + ... + a n bn) ≤ (a12 + a 2 + ... + a n )(b12 + b2 + ... + bn ),
Jensen不等式 不等式
设 f ( x )是定义在开区间( a , b)的函数, 如果对任意 x1、 x 2 ∈ ( a , b ), 有
x1 + x 2 f ( x1 ) + f ( x 2 ) f( ) ≤ 2 2
则称 f ( x )是( a , b)内的下凸函数。
当且仅当 x1 = x 2时等号成立,则称 f ( x )为严格下凸函数。
要证 n a 1 a 2 ... a n ≤ a 1 + a 2 + ... + a n . n
设 f ( x ) = ln x , 则 f ( x ) 为上凸函数,
a 1 + a 2 + ... + a n ln a 1 + ln a 2 + .... + ln a n 则 ln( )≥ n n
ln( a 1 a 2 ... a n ) = n 由函数单调性得证
2 2 由a i 不全为零,得 ( a12 + a 2 + ... + a n ) > 0, 而且 f ( x ) ≥ 0
2 )当 a i 不全为零时,
⇒∆≤0
例题 6 设实数 x 、 y 满足 3 x 2 + 2 y 2 ≤ 6 , 求 p = 2 x + y 的最大值。

常用不等式及其证明方法

常用不等式及其证明方法

常用不等式及其证明方法不等式作为数学中重要的概念,广泛应用在数学推理、优化问题以及各个领域的研究中。

在本文中,我们将介绍一些常用的不等式及其证明方法,帮助读者更好地理解和运用不等式。

一、基本不等式1. 平均不等式平均不等式是最基本的不等式之一。

对于任意非负实数$a_1, a_2,\ldots, a_n$,其算术平均和几何平均的大小关系如下:\[ \frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1 \cdot a_2 \cdot\ldots \cdot a_n} \]2. 柯西-施瓦兹不等式柯西-施瓦兹不等式是数学分析中常用的不等式之一。

对于实数$a_1, a_2, \ldots, a_n$和$b_1, b_2, \ldots, b_n$,其平方和满足以下不等式:\[ (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2)\geq (a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \]3. 马尔可夫不等式马尔可夫不等式用于描述非负随机变量的概率分布。

对于非负随机变量$X$和任意大于$0$的实数$a$,其概率满足以下不等式:\[ P(X \geq a) \leq \frac{\mathbb{E}(X)}{a} \]二、常用不等式1. 幂平均不等式幂平均不等式是数学分析中常用的不等式之一。

对于非负实数$a_1, a_2, \ldots, a_n$和实数$p$,定义$p$次幂平均如下:\[ M_p = \left(\frac{a_1^p + a_2^p + \ldots +a_n^p}{n}\right)^{\frac{1}{p}} \]当$p > q$时,有$M_p \geq M_q$。

2. 切比雪夫不等式切比雪夫不等式是概率论中常用的不等式之一,用于度量随机变量偏离其期望值的程度。

3.6 柯西、排序不等式及不等式证明

3.6 柯西、排序不等式及不等式证明
解:1)由柯西不等式
4a + 1 + 4b + 1 + 4c + 1 = ( 4a + 1 ×1+ 4b + 1 ×1+ 4c + 1 ×1) ≤ [(4a + 1) + (4b + 1) + (4c + 1)](12 + 12 + 12 ) = 21
1 a 当且仅当 = b = c = 时,取得最大值为 21 。 3
1 1 1 2 2 2 2 1 ②( x + y + z) = ( 2x ⋅ + 3y ⋅ + z) ≤ (2x + 3 y + z )( + + 1) 2 3 2 3
2
∵x + y + z = 1
6 ∴2x + 3 y + z ≥ 11
2 2
2x 3y = =z 1 3 2 6 6 1 当 即x = , y = , z = 时, A最小 = 2 3 11 11 11 11 x + y + z = 1
解: ①( x + 2 y)2 = ( 2x ⋅ 1 + 3 y × 2 )2
2 3 1 4 11 ≤ (2x2 + 3 y2 )( + ) = (2x2 + 3 y2 )× 2 3 6
∵2x + 3 y = 5
2 2
55 ∴( x + 2 y) ≤ 6
2
∴−
330 330 ≤ x + 2y ≤ 6 6
π
π
π
π
π
3
aA+ bB + cC = a( + δ1 ) + b( −δ2 ) + c( −δ3 ) 3 3 3 = = = ≥

全部的初等不等式证明

全部的初等不等式证明

初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。

不等式的证明、柯西不等式与排序不等式 经典课件(最新)

不等式的证明、柯西不等式与排序不等式 经典课件(最新)

高中数学课件
4.会用上述不等式证明一些简单问题.能够利用均值不等式、柯西不等式求一些特 定函数的极值.
5.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.
高中数学课件
知识要点梳理
高中数学课件
1.柯西不等式 (1)柯西不等式的二维形式 ① 柯 西 不 等 式 的 代 数 形 式 : 设 a1 , a2 , b1 , b2 均 为 实 数 , 则 (a12 + a22)(b12 + b22)≥________(当且仅当 a1b2=a2b1 时,等号成立).
高中数学课件
[强化训练 2.1] (2019 年海南省海南中学高三联考)(1)若 a>0,b>0,求证:(a+ b)1a+1b≥4;
(2)设 a,b,c,d 均为正数,且 a+b=c+d,若 ab>cd,求证: a+ b> c+ d.
证明:(1)∵a>0,b>0, ∴a+b≥2 ab>0, 1a+1b≥2 a1b>0, ∴(a+b)1a+1b≥2 ab·2
高中数学课件
【反思·升华】 (1)在不等式的证明中,“放”和“缩”是常用的证明技巧.常见的放缩
方法有:













1 k2
<
1 k(k-1)

1 k2
>
1 k(k+1)

1 k<
2 k+
k-1

1 k
> k+2 k+1.上面不等式中 k∈N*,k>1;②利用函数的单调性;③利用结论:“若 0<a<b,
m>0,则ab<ab+ +mm”.

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式
1 xn
最小,因而其乘积和是反序的)
版权所有,违者乱棍打死

x1 y1 x2 y2 ... xn yn
总是两数组的反序和。
于是由排序不等式的“乱序和 反序和” ,总有
x1 yn x2 y1 ... xn yn1 x1 y1 x2 y2 ... xn yn
n 1 1 1 ... a1 a2 an
n
n a1a2 ...an
证明:○ 1
(此处先利用 由于
a1a2 ...an
a1 a2 ... an n
的结论) 1式 ○
1 1 1 ... a1 a2 an 1 1 1 n ... n a1 a2 an
=n
1 a1a2 ...an

a a1 a2 ... n 1 1 ... 1 n c c c
a1 a2 ... an c n a1a2 ...an n

n
a1 a2 ... an a1a2 ...an n
(利用切比雪夫不等式证明) ,
2 2 a1 a2 ... an a 2 a2 ... an 1 n n ○ 3
c
c
y1= 1 = c ,y2= 1 =
x1 a1 x2
c2 a1a2
,„,yn= 1 =
xn
cn a1a2 ...an
=1
(其中 c n a1a2 ...an ,因为{xn},{yn}两个数列对应成倒数,所以 无论它们数列的各项的值的大小如何,乘积的和都是 1,且 可视为两个数列反序乘积和的形式, 比如: 若 xn 最大, 则 yn=
(提示:上式从第○ 2 行到最后一行可视为 ai 顺序乘以 bi 的一 个乱序) 根据“顺序和 乱序和” (从第○ 2 行到第○ n 行同时使用) ,可 得

世界数学史上的十个著名不等式

世界数学史上的十个著名不等式

数学史上的十个著名不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式.一、平均不等式(均值不等式)设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数.当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立.平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一.设,,…,是个正的变数,则(1)当积是定值时,和有最小值,且;(2)当和是定值时,积有最大值,且两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值.在中,当时,分别有,平均不等式经常用到的几个特例是(下面出现的时等号成立;(3),当且仅当时等号成立;(4),当且仅当时等号成立.二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)对任意两组实数,,…,;,,…,,有,其中等号当且仅当时成立.柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是:(1),,则(2)(3)柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位.三、闵可夫斯基不等式设,,…,;,,…,是两组正数,,则()()当且仅当时等号成立.闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:右图给出了对上式的一个直观理解.若记,,则上式为四、贝努利不等式(1)设,且同号,则(2)设,则(ⅰ)当时,有;(ⅱ)当或时,有,上两式当且仅当时等号成立.不等式(1)的一个重要特例是().五、赫尔德不等式已知()是个正实数,,则上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式(1)若,则;(2)若,则下面给出一个时的契比雪夫不等式的直观理解.如图,矩形OPAQ中,,,显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知).于是有,也即七、排序不等式设有两组数,,…,;,,…,满足,则有,式中的,,…,是1,2,…,的任意一个排列,式中的等号当且仅当或时成立.以上排序不等式也可简记为:反序和乱序和同序和这个不等式在不等式证明中占有重要地位,它使不少困难问题迎刃而解.八、含有绝对值的不等式为复数,则,左边的等号仅当的幅角差为时成立,右边的等号仅当的幅角相等时成立,这个不等式也称为三角形不等式,其一般形式是,也可记为绝对值不等式在实数的条件下用得较多。

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

几个经典不等式的关系一 几个经典不等式(1)均值不等式设12,,0n a a a > 是实数1212111+n na a a nn a a a +++≤≤≤++ 其中0,1,2,i a i n >= .当且仅当12n a a a === 时,等号成立.(2)柯西不等式设1212,,,,,n n a a a b b b 是实数,则()()()222222212121122n n n n aa ab b b a b a b a b ++++++≥+++当且仅当0(1,2,,)i b i n == 或存在实数k ,使得(1,2,,)i i a kb i n == 时,等号成立.(3)排序不等式设12n a a a ≥≥≥ ,12n b b b ≥≥≥ 为两个数组,12n c c c ,,,是12n b b b ,,,的任一排列,则112211221211n n n n n n n a b a b a b a c a c a c a b a b a b -+++≥+++≥+++ 当且仅当12n a a a === 或12n b b b === 时,等号成立.(4)切比晓夫不等式对于两个数组:12n a a a ≥≥≥ ,12n b b b ≥≥≥ ,有112212121211n n n n n n n a b a b a b a a a b b b a b a b a b n n n n -++++++++++++⎛⎫⎛⎫≥≥⎪⎪⎝⎭⎝⎭当且仅当12n a a a === 或12n b b b === 时,等号成立.二 相关证明(1)用排序不等式证明切比晓夫不等式 证明:由()()()1122121211221212n n n n n n n n a b a b a b a a a b b b n n n n a b a b a b a a a b b b +++++++++⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭⇔+++≥++++++而()()1212112212231132421425311221211n n n n n n n n n n n n n n a a a b b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ---++++++=++++++++++++++++++++++++根据“顺序和≥乱序和”(在1n -个部分同时使用),可得()()()11221212n n n n n a b a b a b a a a b b b +++≥++++++即得11221212n n n n a b a b a b a a a b b b n n n +++++++++⎛⎫⎛⎫≥ ⎪⎪⎝⎭⎝⎭同理,根据“乱序和≥反序和”,可得12121211n n n n n a a a b b b a b a b a b n n n -+++++++++⎛⎫⎛⎫≥⎪⎪⎝⎭⎝⎭综合即证(2)用排序不等式证明“几何—算数平均不等式”12na a a n+++≤证明:构造两个数列:12112122,,1n n n a a a a a ax x x c c c==== 2121121212111,,1nn n nc c c y y y x a x a a x a a a =======其中c =.因为两个数列中相应项互为倒数,故无论大小如何,乘积的和:............................1122n n x y x y x y ++总是两数组的反序和..........于是由“乱序和≥反序和”,总有 12111122n n n n n x y x y x y x y x y x y -++≥++于是12111n a a a c c c+++≥+++ 即12na a a n c+++≥即证12na a a c n+++≥= (3)用切比晓夫不等式证明“算数—开方平均不等式”:12n a a a n +++≤证明:不妨设12n a a a ≥≥≥ ,12n a a a n +++≤ 222121212n n na a a a a a a a a n n n +++++++++⎛⎫⎛⎫⇔≤⎪⎪⎝⎭⎝⎭. 由切比晓夫不等式,右边不等式显然成立.即证. (4)用切比晓夫不等式证明“调和—算数平均不等式”1212+nna a a n na a a +++≤++证明:1212111+nna a a n na a a +++≤++12121212111111+1n n n na a a a a a a a a a a a n n n ⎛⎫++⋅+⋅++⋅ ⎪+++⎛⎫ ⎪⇔≥= ⎪⎪⎝⎭ ⎪⎝⎭.不妨设12n a a a ≥≥≥ ,则11111n n a a a -≥≥≥ ,由切比晓夫不等式,上式成立.即证. (5)用均值不等式和切比晓夫不等式证明柯西不等式证明:不妨设12n a a a ≥≥≥ ,12n b b b ≤≤≤ 由切比晓夫不等式,有11221212n n n n a b a b a b a a a b b b n n n +++++++++⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭.由均值不等式,有1212n n a a a n b b b n +++≤+++≤所以1122n na b a b a b n+++≤两边平方,即得()222222211221212n n nn a b a b a b a a a bb b +++≤++++++ .即证.(6)补充“调和—几何平均不等式”的证明证明12n a a a n +++≤ 中的i a 换成1i a12111n a a a n +++≤ .两边取倒数,即得12111+nna a a ≤++。

高中数学竞赛解题方法篇(不等式)

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。

希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。

常用不等式及其证明

常用不等式及其证明

常用不等式及其证明不等式在数学中起着重要的作用,它们在数学推理和解决实际问题中发挥着重要的作用。

本文将介绍几个常用的不等式及其证明。

一、柯西不等式柯西不等式是线性代数中常用的不等式之一,它在向量空间和内积空间中广泛应用。

柯西不等式表述如下:对于任意的n维实数列a1,a2,...,an和b1,b2,...,bn,有:(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2)证明:考虑离差:(a1λ + b1)^2 + (a2λ + b2)^2 + ... + (anλ + bn)^2对于任意实数λ。

这个式子可以通过非负性的考虑被表示为:(a1b1 + a2b2 + ... + anbn - λ(a1^2 + a2^2 + ... + an^2))^2 ≥ 0展开得:(a1^2 + a2^2 + ... + an^2)λ^2 - 2(a1b1 + a2b2 + ... + anbn)λ + (b1^2 + b2^2 + ... + bn^2) ≥ 0这是一个二次方程,所以判别式需要不大于0:4(a1b1 + a2b2 + ... + anbn)^2 - 4(a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2) ≤ 0化简得到:(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2)因此,柯西不等式得证。

二、均值不等式均值不等式是不等式中常见的一类,它包括算术平均数、几何平均数和调和平均数。

1. 算术平均数不等式:对于任意n个正实数a1,a2,...,an,有:(a1 + a2 + ... + an)/n ≥ √(a1a2...an)证明:根据算术平均值和几何平均值的定义可得:(√a1 - √a2)^2 ≥ 0a1 + a2 - 2√(a1a2) ≥ 0(a1 + a2)/2 ≥ √(a1a2)将上述不等式推广到n个数,可得:(a1 + a2 + ... + an)/n ≥ √(a1a2...an)2. 几何平均数不等式:对于任意n个正实数a1,a2,...,an,有:√(a1a2...an) ≤ (a1 + a2 + ... + an)/n证明:根据算术平均值和几何平均值的定义可得:(√a1 - √a2)^2 ≥ 0a1 + a2 - 2√(a1a2) ≥ 0a1 + a2 + ... + an - n√(a1a2...an) ≥ 0(a1 + a2 + ... + an)/n ≥ √(a1a2...an)因此,几何平均数不等式得证。

基本不等式中常用公式

基本不等式中常用公式

基本不等式中常用公式在数学中,基本不等式是一类很重要的不等式,它们常用于证明和推导其他的数学定理和不等式。

下面将介绍一些常用的基本不等式公式。

1.平均值不等式:平均值不等式是数学中最常用的不等式之一,它表示对于任意一组非负实数a1, a2, …, an,有如下不等式成立:(a1 + a2 + … + an)/n ≥ √(a1a2…an)这个不等式表明,一组数的算术平均值大于等于它们的几何平均值。

2.柯西-施瓦茨不等式:柯西-施瓦茨不等式是指对于任意一组实数a1, a2, …, an和b1,b2, …, bn,有如下不等式成立:(a1b1 + a2b2 + … + anbn)² ≤ (a1² + a2² + … + an²)(b1² +b2² + … + bn²)这个不等式表明,两组数的内积的平方不会大于它们的平方和的乘积。

特别地,这个不等式在向量空间中有广泛应用。

3.切比雪夫不等式:切比雪夫不等式是指对于任意一组非负实数a1, a2, …, an和正数k,有如下不等式成立:P(,x-x̄,≥kσ)≤1/k²其中,x̄表示这组数的算术平均值,σ表示这组数的标准差。

这个不等式表明,对于任意正数k,大于等于k个标准差之外的值出现的概率不超过1/k²。

4.三角不等式:三角不等式是指对于任意实数a和b,有如下不等式成立:a+b,≤,a,+,b这个不等式表明,两个数的和的绝对值不会大于等于它们绝对值的和。

5.幂平均不等式:幂平均不等式表示对于任意一组正数a1, a2, …, an和非零实数p,有如下不等式成立:[1/n * (a1^p + a2^p + … + an^p)]^(1/p) ≥ [1/n * (a1^(p+1)+ a2^(p+1) + … + an^(p+1))]^(1/(p+1))其中,p+1≠0这个不等式表明,对于一组正数的p次幂的平均值和p+1次幂的平均值,前者大于等于后者。

重要不等式

重要不等式

重要不等式1柯西不等式柯西不等式的一般证法有以下几种:(1)Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有(∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2.我们令f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)则我们知道恒有f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论。

(2)用向量来证.m=(a1,a2......an) n=(b1,b2......bn)mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^) ^1/2乘以cosX.因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+ an^)^1/2乘以(b1^+b2^+......+bn^)^1/2这就证明了不等式.柯西不等式还有很多种,这里只取两种较常用的证法.柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。

巧拆常数:例:设a、b、c 为正数且各不相等。

求证:(2/a+c)+(2/b+c)+(2/c+a)>(9/a+b+c)分析:∵a 、b 、c 均为正数∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)(1+1+1)证明:Θ2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]=[(a+b)+(a+c)+(b+c)][1/a+b)+(1/b+ c)+(1/c+a)]≥(1+1+1)(1+1+1)=9又a、b 、c 各不相等,故等号不能成立∴原不等式成立。

全部的初等不等式证明

全部的初等不等式证明

初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。

几个重要的不等式

几个重要的不等式
P
D
O
E4
C
F4
E3 E2
E1
F3 F2
F1
A
B
均值不等式可以扩展的n维吗?
,
,
则 An Gn ,其中等号当且仅当 a1 a2 an 时成立
2 证一 当 n 2 时,由 ( a1 a2) 0 ,知 A2 G2 ,其中等号当且仅当
a1 a2 时成立.
假定定理 1 在 n k (k 1) 时成立.当 n=k+1 时,要证
, an的任一排列为a1 ', a2 ', an n. an '
, an '.
【例2】用排序原理证明平均值不等式: x1 x2 xn n xi 0时, x1 x2 xn . n
【例3】设a, b, c 0,求证: a b c 3 . bc ca ab 2
【例4】已知m,n是正整数,且1 m n, 求证: (1 m)n (1 n)m .
【例5】已知a1 ,a2 ,
,an 0,且 ai 1 .求证:
i 1
n
1 1 (1 2 )(1 2 ) a1 a2
1 (1 2 ) (1 n2 ) n . an
【例6】对满足abc 1的正实数a,b,c,求 1 1 1 (a 1 )(b 1 )(c 1 )的最大值. b c a
( x y )( x k x k 1 y xy k 1 ky k )
(x y)[xk yk y(xk1 yk1)
y k 1 ( x y)] 0

(3)
时,显然(1)取等号。反过来,当
不全相等时,若 a1 , a2 ,, ak 中至少有两个不等,按归纳假定, (2)不 取等号;若

高中数学奥赛讲义竞赛中常用的重要不等式

高中数学奥赛讲义竞赛中常用的重要不等式

优秀学习资料欢迎下载高中数学奥赛讲义:竞赛中常用的重要不等式【内容综述】本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用【要点讲解】目录§1柯西不等式§2排序不等式§3切比雪夫不等式★★ ★§1。

柯西不等式定理 1 对任意实数组恒有不等式“积和方不大于方和积”,即时成立。

等式当且仅当本不等式称为柯西不等式。

思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。

证明 1∴右-左=当且仅当定值时,等式成立。

思路 2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明 2当时等式成立;当时,注意到=1故当且仅当且(两次放缩等式成立条件要一致)即同号且常数,亦即思路 3 根据柯西不等式结构,也可利用构造二次函数来证明。

证明 3 构造函数。

由于恒非负,故其判别式即有等式当且仅当常数时成立。

若柯西不等式显然成立。

例 1 证明均值不等式链:调和平均数≤算术平均数≤均方平均数。

证设本题即是欲证:本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法(1) 先证①注意到欲证① , 即需证②此即由柯西不等式, 易知②成立 , 从而①真(11) 再证,③欲证③ , 只需证④而④即要证⑤( 注意)由柯西不等式, 知⑤成立.( Ⅰ)(Ⅱ) 中等式成立的条件都是即各正数彼此相等.说明:若再利用熟知的关系( ★)(其中,结合代换,即当且仅当时,等式成立,说明★的证明参见下节排序不证式或数学归纳法,这样就得到一个更完美的均值不等式链其中等式成产条件都是.§2.排序不等式定理2设有两组实数,满足则( 例序积和 )(乱序积和)(须序积和)其中是实数组一个排列,等式当且仅当或时成立。

说明本不等式称排序不等式,俗称例序积和乱序积和须序积和。

证法一.逐步调整法首先注意到数组也是有限个数的集合,从而也只有有限个不同值,故其中必有最大值和最小值(极端性原理)。

经典不等式

经典不等式

经典不等式不等式是数学中的一个重要概念,它用来描述两个或多个量之间的关系。

经典不等式是指一些在数学中经常出现的不等式,它们有些是基本的,有些则比较复杂。

以下是一些经典不等式的介绍:1.均值不等式(均值不等式,或者AM-GM不等式):这个不等式表明,对于两个正数a和b,它们的算术平均数(a+b)/2总不小于它们的几何平均数(ab)^(1/2)。

这个不等式在很多场合都非常有用,比如在证明一些几何和物理的问题时。

2.柯西不等式(Cauchy-Schwarz Inequality):这个不等式是关于向量和向量的点积的一个重要结果。

它表明,对于任何两个向量x和y,它们的点积的模总是小于或等于它们的模的乘积。

这个不等式的用途广泛,特别是在物理和工程领域。

3.三角不等式(Triangle Inequality):三角不等式是用来描述三角形的边长的关系的。

它表明,对于任何三角形ABC的边a、b和c,总是有a+b>c和a-b<c。

这个不等式在几何学和解析几何学中都有重要应用。

4.排序不等式(Sorting Inequality):排序不等式也被称为荷兰国旗定理,它描述的是三个不同数值的排序问题。

具体来说,对于任何三个不同的实数a、b和c,总有a+b>c和a+c>b+c。

这个不等式在算法设计和优化问题中非常有用。

5.贝塞尔不等式(Bessel Inequality):贝塞尔不等式是用来描述正交多项式的的一个重要结果。

它表明,对于任何正整数n和任何实数x,总有(x^2-1)^n>=0。

这个不等式在正交多项式和特殊函数的研究中非常重要。

6.切比雪夫不等式(Chebyshev Inequality):切比雪夫不等式是概率论中的一个重要结果,它给出了一个随机变量的取值范围的概率不小于某个值的下界。

具体来说,对于任何实数x和正数k,一个随机变量X满足|X-E[X]|=p<=k的概率不小于1-1/k^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个经典不等式的关系
一 几个经典不等式 (1)均值不等式
设12,,0n a a a >L 是实数
其中0,1,2,i a i n >=L .当且仅当12n a a a ===L 时,等号成立. (2)柯西不等式
设1212,,,,,n n a a a b b b L L 是实数,则
当且仅当0(1,2,,)i b i n ==L 或存在实数k ,使得(1,2,,)i i a kb i n ==L 时,等号成立. (3)排序不等式
设12n a a a ≥≥≥L ,12n b b b ≥≥≥L 为两个数组,12n c c c L ,,
,是12n b b b L ,,,的任一排列,则
当且仅当12n a a a ===L 或12n b b b ===L 时,等号成立. (4)切比晓夫不等式
对于两个数组:12n a a a ≥≥≥L ,12n b b b ≥≥≥L ,有 当且仅当12n a a a ===L 或12n b b b ===L 时,等号成立. 二 相关证明
(1)用排序不等式证明切比晓夫不等式 证明:由 而
根据“顺序和≥乱序和”(在1n -个部分同时使用),可得 即得
同理,根据“乱序和≥反序和”,可得 综合即证
(2)用排序不等式证明“几何—算数平均不等式”12n
a a a n
+++≤
L
证明:构造两个数列:
其中
c =因为两个数列中相应项互为倒数,故无论大小如何,乘积的..........................和:..
总是两数组的反序和.........
.于是由“乱序和≥反序和”,总有 于是 即 即证
(3)用切比晓夫不等式证明“算数—开方平均不等式”:
12n a a a n +++≤
L 证明:不妨设12n a a a ≥≥≥L ,
12n a a a n +++≤L 222121212n n n
a a a a a a a a a n n n +++++++++⎛⎫⎛⎫⇔≤
⎪⎪⎝⎭⎝⎭
L L L .
由切比晓夫不等式,右边不等式显然成立.即证.
(4)用切比晓夫不等式证明“调和—算数平均不等式”
1212111+n
n
a a a n n
a a a +++≤
++L L
证明:
1212111+n
n
a a a n n
a a a +++≤
++L L
1212121211
1111+1n n n n a a a a a a a a a a a a n n n ⎛⎫++⋅+⋅++⋅ ⎪+++⎛⎫ ⎪⇔≥= ⎪
⎪⎝⎭ ⎪⎝⎭L L L . 不妨设12n a a a ≥≥≥L ,则11
111
n n a a a -≥≥≥L ,由切比晓夫不等式,上式成立.即证.
(5)用均值不等式和切比晓夫不等式证明柯西不等式
证明:不妨设12n a a a ≥≥≥L ,12n b b b ≤≤≤L 由切比晓夫不等式,有
11221212n n n n a b a b a b a a a b b b n n n +++++++++⎛⎫⎛⎫
≤ ⎪⎪⎝⎭⎝⎭
L L L . 由均值不等式,有
1212n n a a a n b b b n +++≤
+++≤
L L 所以
两边平方,即得()()()2222
22211221212n n n n a b a b a b a a a b b b +++≤++++++L L L .即证. (6)补充“调和—几何平均不等式”的证明
证明:
12n a a a n +++≤L 中的i a 换成1i a ,
12
111
n a a a n
+++

L .
两边取倒数,即得
12111+n
n
a a a ≤++L。

相关文档
最新文档