焊接热裂纹-凝固裂纹
失效案例分析
30
15
b.氢致开裂(HIC)
在钢的内部发生氢鼓 泡区域,当氢的压力 继续增高时,小的鼓 泡裂纹趋向于相互连 接,形成有阶梯特征 的氢致开裂。氢致开 裂发生不需要外加应 力(载荷应力、残余 应力),故从概念讲 不属于应力腐蚀破坏 范畴。
31
32
16
33
c.硫化物应力腐蚀开裂(SSCC)
• 硫化氢在液相水中,由于电化学的作用,在阴极反应时生成氢 原子渗透到钢的内部,溶解于晶格中,导致脆性增加(氢原子 渗透到钢的内部晶格,在亲和力的作用下生成氢分子,钢材晶 格发生变形,材料韧性下降,脆性增加),在外加拉应力或残 余应力的作用下形成开裂。
2、焊接裂纹有不同的特性,要根据不同的裂纹产生机理 及形式选择检测的时机与方法,提高检验的有效性。
• 延迟裂纹 • 液化裂纹
3、对于易产生焊接裂纹的钢种,一旦发现裂纹,应扩大 检验比例。
11
案例1:反应流出物换热器管箱入口不锈钢法兰开裂
某石化炼油厂,2010年大修检验发现,反应流出物换热器管箱入口 不锈钢法兰开裂。 主要原因:
P≤0.008%、Mn≤1.30%,且应进行抗HIC性能试验或恒 负荷拉伸试验。
40
20
在湿硫化氢应力腐蚀环境中使用的其它材料制设备和管 道应符合下列要求:
铬钼钢制设备和管道热处理后母材和焊接接头的硬度应不 大于HB225(1Cr-0.5Mo、1.25Cr-0.5Mo)、HB235 (2.25Cr-1Mo、5Cr-1Mo)或HB248(9Cr-1Mo);
27
湿硫化氢环境分类(NACE 8X196) 一类:不选用抗HIC钢,可不做热处理 二类:可选抗HIC钢,要进行热处理 三类:选用抗HIC钢,要进行热处理
焊接裂纹产生机理及其防治
σcr ——插销试验临界应力(N/mm2);
[H]——扩散氢含量(JIS测氢法)(mL/100g);
t8/5——800~500℃冷却时间(s); t100——由峰值温度冷至100℃冷却时间。
cr (132 .3 27.5lg([H] 1) 0.216 HV 0.0102 t100) 9.8 式中 [H]——扩散氢含量(mL/100g); HV——热影响区的平均最大硬度(维氏).
第1讲 焊接裂纹产生机理及其防治
结晶裂纹产生条件: a.脆性温度区间TB大小; b.脆性温度区间金属塑性Pmin ; c.脆性温度区间应变增长率. 脆性温度区间TB/脆性温度区间金属塑性Pmin 取决于: a.焊缝化学成分; b.偏析程度; c.晶粒大小和方向. 脆性温度区间应变增长率取决于: a.金属热物理性能;a.接头刚度;c.焊接工艺参数
在焊缝结晶过程固相线附近,由于凝固金属收缩, 残余液体金属不足而不能及时填充,在应力作用下发 生沿晶开裂. 特征:a.裂纹断面有氧化彩色;b.焊缝中发生. 结晶裂纹产生原因: a.焊缝含杂质多(含硫、磷、碳、 硅偏高); b.凝固过程产生拉伸应力.
第1讲 焊接裂纹产生机理及其防治
图1 焊缝中的结晶裂纹
b. 减小焊接过程应力; c. 降低温度;
第1讲 焊接裂纹产生机理及其防治
第1讲 焊接裂纹产生机理及其防治
二 冷裂纹(Cold Cracking) 焊后冷至较低温度(马氏体转变温度Ms附近),由 拘束应力/淬硬组织和氢共同作用产生. 特征:a.主要在热影响区;b.焊缝少(横向裂纹). 1. 延迟裂纹 特点:a.具有延迟现象. b.决定于钢种淬硬倾向 /焊 接接头应力状态和熔敷金属中扩散氢含量. 2. 淬硬脆化裂纹 特征:a.钢种淬硬倾向大;b.没有氢诱发/仅拘束应 力作用;c.没有延迟现象;d.出现热影响区或焊缝. 3. 低塑性脆化裂纹 特点:a.低塑性材料;b.无延迟现象.
焊接裂纹产生原因及防治措施
以下为焊接裂纹产生原因及防治措施,一起来看看吧。
1、焊接裂纹的现象在焊缝或近缝区,由于焊接的影响,材料的原子结合遭到破坏,形成新的界面而产生的缝隙称为焊接裂缝,它具有缺口尖锐和长宽比大的特征。
按产生时的温度和时间的不同,裂纹可分为:热裂纹、冷裂纹、应力腐蚀裂纹和层状撕裂。
在焊接生产中,裂纹产生的部位有很多。
有的裂纹出现在焊缝表面,肉眼就能观察到;有的隐藏在焊缝内部,通过探伤检查才能发现;有的产生在焊缝上;有的则产生在热影响区内。
值得注意的是,裂纹有时在焊接过程中产生,有时在焊件焊后放置或运行一段时间之后才出现,后一种称为延迟裂纹,这种裂纹的危害性更为严重。
2、焊接裂纹的危害焊接裂缝是一种危害大的缺陷,除了降低焊接接头的承载能力,还因裂缝末端的尖锐缺口将引起严重的应力集中,促使裂缝扩展,最终会导致焊接结构的破坏,使产品报废,甚至会引起严重的事故。
通常,在焊接接头中,裂缝是一种不允许存在的缺陷。
一旦发现即应彻底清除,进行返修焊接。
3、焊接裂纹的产生原因及防治措施由于不同裂缝的产生原因和形成机理不同,下面就热裂缝、冷裂缝和再热裂缝三类分别予以讨论。
3.1、热裂纹热裂缝一般是指高温下(从凝固温度范围附近至铁碳平衡图上的A3线以上温度)所产生的裂纹,又称高温裂缝或结晶裂缝。
热裂缝通常在焊缝内产生,有时也可能出现在热影响区。
原因:由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层存在形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂缝。
此外,如果母材的晶界上也存在有低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂缝。
总之,热裂缝的产生是冶金因素和力学因素综合作用的结果。
防治措施:防止产生热裂缝的措施,可以从冶金因素和力学因素两个方面入手。
控制母材及焊材有害元素、杂质含量限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素及有害杂质的含量。
不锈钢无缝管焊接裂纹的原因
不锈钢无缝管焊接裂纹的原因不锈钢无缝管焊接裂纹的原因可能包括以下几点:1.热裂纹:热裂纹是焊接冷却过程中高温阶段产生的裂纹,主要存在于焊接金属中,少量存在于近缝部。
分为结晶(凝固)裂纹、液化裂纹和多边化裂纹。
其中晶体裂纹是常见的裂纹,主要发生在杂质元素多的碳钢焊接中。
2.再热裂纹:厚板焊接结构消除应力处理过程中,在热影响区的粗晶区存在不同程度的应力集中时,由于应力松弛所产生附加变形大于该部位的蠕变塑性,则产生再热裂纹。
产生温度通常在为550℃~650℃。
3.冷裂纹:焊接接头冷却到较低温度下(对于钢来说在M。
温度以下)产生的裂纹称为冷裂纹。
冷裂纹可在焊后立即出现,也有可能经过一段时间(几小时、几天甚至更长时间)才出现,这种裂纹又称延迟裂纹,它是冷裂纹中比较普遍的一种形态,具有更大的危险性。
4.应力腐蚀裂缝:某些焊接结构(如容器和管道等),在腐蚀介质和应力的共同作用下产生的延迟开裂;在任何温度下可发生;裂纹发生的位置通常位于焊缝和热影响区;裂纹形态为沿晶或穿晶。
5.层状撕裂:主要是由于钢板中存在分层的夹杂物(沿轧制方向),在焊接时产生垂直于轧制方向的应力,致使在热影响区或稍远的地方,产生“台阶”式层状开裂;产生温度通常在约400℃以下;裂纹发生的位置通常位于热影响区附近;裂纹形态为穿晶或沿晶。
6.工艺不良:不锈钢焊接过程中,如果焊接参数设置不当、热输入过大或者焊接速度过快,都可能导致焊接区域内应力过高,从而导致裂纹的产生。
7.材质问题:不锈钢本身性质不佳,如果存在夹杂物、气孔等缺陷,那么焊接时这些缺陷就会聚集在一起,形成较大的缺陷区域,从而导致裂纹的产生。
8.环境因素影响:不锈钢焊接时,环境的氧气、水分等物质会对焊接区域的化学成分产生影响。
如果焊接区域处于高温高压环境下,比如制备压力容器时,热应力增大,易导致裂纹的产生。
为了防止不锈钢无缝管焊接出现裂纹,应严格按照操作规程进行焊接,选用合格的焊材,避免在环境恶劣的条件下进行焊接。
焊接裂纹_精品文档
3、防止结晶裂纹的措施
1)、冶金方面
①控制焊缝中有害杂质的含量, 限制S、P、C含量S、P<0.03-0.04 焊丝C<0.12% (低碳钢) 焊接高合金钢,焊丝超低碳焊丝 ②改善焊缝的一次结晶 细化晶粒,加入Mo、V、Ti、Nb、Zr、
Al
2)、工艺方面(减少拉应力)
应变率 , E ↑、
↑应变率 ↓
例如:强度为600MPa焊条研究
焊缝成分分析
焊缝 C
S
P Mn Si Cr Ni
成分
Ao 0.10 0.037 0.017 0.94 0.54 0.20 0.87
A1 0.09 0.015 0.014 1.25 0.44 0.19 0.83
注:A1 焊缝中加入轻稀土1%
图2 焊缝冲击断口扫描形貌
b)、C
i)、C<0.1% C↑结晶温度区间↑,裂纹↑
ii)、C>0.16% Mn/S↑无效,加剧P有害作
用 裂↑
iii)、C>0.51% 初生相
初生相
S、P在小相中溶解度低,析
出S、P集富在晶界上,裂纹↑
c)、Mn
Mn具有脱S作用
其中Mn熔
点高,早期结晶星球状分布,抗裂↑
含碳量C<0.016% S↑裂↑但加入Mn↑裂↓
结 晶 裂 纹
2)、熔池各阶段产生结晶裂纹的 倾向
在焊缝金属凝固结晶的后期,低熔点共晶物 被排挤在晶界,形成一种所谓的“液态薄膜” ,在焊接拉应力作用下,就可能在这薄弱地带 开裂,产生结晶裂纹。
产生结晶裂纹原因:①液态薄膜
②拉伸应力
液态薄膜—根本原因
拉伸应力—必要条件
以低碳钢焊接为例可把熔池的结晶分 为以下三个阶段
冷热裂纹产生原因及预防
一、冷裂纹焊接接头冷却到较低温度时(对于钢来说在MS温度,即奥氏体开始转变为马氏体的温度以下)产生的焊接裂纹。
最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-------因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。
产生原因①焊接接头存在淬硬组织,性能脆化。
②扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。
(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)③存在较大的焊接拉应力预防措施①选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性②减少氢来源,焊材要烘干,接头要清洁(无油、无锈、无水)③避免产生淬硬组织,焊前预热、焊后缓冷(可以降低焊后冷却速度)④降低焊接应力,采用合理的工艺规范,焊后热处理等⑤焊后立即进行消氢处理(即加热到250℃,保温2~6小时左右,使焊缝金属中的扩散氢逸出金属表面)。
二、热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹。
焊接热裂纹(welding hot breaking)多产生于接近固相线的高温下,有沿晶界分布的特征,有时也能在低于固相线的温度下沿着“多边化边界”形成。
焊接热裂纹通常产生于焊缝金属内,也可能在焊接熔合线邻近的热影响区组织内(母材金属)。
按裂纹产生的机理、形态和温度区间不同,焊接热裂纹可分为:凝固裂纹,液化裂纹,多边化裂纹和失塑裂纹4种。
造成液化裂纹的原因是:(l)金属材料的晶粒边界聚集较多的低熔点物质。
(2)由于快速加热使某些金属化合物分解而来不及扩散,局部晶界产生某些合金元素的富集而达到共晶成分,使局部组织的熔点下降,在焊接热影响下促使局部晶界液化。
防止液化裂纹产生的措施有:严格控制母材的杂质含量; 合理选用焊接材料;制定合理的焊接工艺规范,尽量减少焊接热作用。
多边化裂纹在焊缝金属凝固结晶不平衡的条件下,在低于固相线温度的高温区域,沿多边形化边界形成的热裂纹。
何谓焊接性
1、何谓焊接性?包含哪两方面?答:(1)焊接性:是指同质或异质材料再制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。
(2)焊接性能包括两方面的内容:①接合性能:金属材料在一定焊接工艺条件下,形成焊接缺陷的敏感性。
②使用性能:某金属材料在一定的焊接工艺条件下其焊接接头对使用要求的适应性。
2、简述热裂纹、冷裂纹,按照自己的理解分析两者区别。
答:(1)热裂纹:焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹。
多产生于接近固相线的高温下,有沿晶界分布的特征,有时也能在低于固相线的温度下沿着“多边化边界”形成。
焊接热裂纹通常产生于焊缝金属内,也可能在焊接熔合线邻近的热影响区组织内(母材金属)。
按裂纹产生的机理、形态和温度区间不同,焊接热裂纹可分为:凝固裂纹,液化裂纹,多边化裂纹和失塑裂纹四种。
冷裂纹冷裂纹是指焊接接头冷却到较低温度(对钢来说在Ms温度以下)时,产生的焊接裂纹。
冷裂纹发生在焊接之后,形成的温度约在200一300℃以下,即马氏体转变温度范围;冷裂纹大多产生在基本金属上或基本金属与焊缝交界的熔合线上;露在接头金属表面的冷裂纹裂口发亮,裂纹断面上无明显的氧化痕迹;冷裂纹可能发生在晶界上,也可能贯穿晶粒内部。
碳当量等于或大于0.40%的低合金钢、中高碳钢、合金钢、工具钢和超高强度钢等钢种在焊接时易产生冷裂倾向,而形成冷裂纹。
3、焊接中的再热裂纹是什么?何谓“再热”。
答:(1)焊后焊件在一定温度范围内再次加热过程中产生的裂纹。
(2)“再热”是指消除应力热处理、其它加热过程或在一定温度下服役过程中。
一、低碳调质钢为什么要进行调质处理?答:经过调制后的低碳钢具有较高的强度和良好的塑性、韧性和耐磨性特别是裂纹敏感性低,具有良好的焊接性。
二、从整体上分析低碳调质钢焊接性?答:低碳调质钢含碳量低,合金成分的确定也都考虑了材料的可焊性,其工艺要求基本与正火钢相似.差别是这类钢通过调质强化,故在焊接接头热影响区除了脆化外还有软化问题。
焊接热裂纹-凝固裂纹
凝固裂纹的产生原因
液态薄膜
材料连接原理
固-液阶 液态段薄膜—根本原因
拉伸应力—必要条件
材料连接原理
a) 拉伸应力所产生的应变随温度 按直线1变化时,产生的应变量 e1<δmin,不产生凝固裂纹;
θ
b) 按直线2变化时,应变量
e2>δmin,此时必将产生裂纹;
e1
e3
3
1
e2
2
c) 按直线3变化时, 应变量 e3=δmin,处于临界状态。
母 材:杂质含量较高的船用低碳钢 焊接方法:CO2气体保护焊
凝固裂纹实例2
材料连接原理
母 材:Q345B低合金高强钢 焊接方法:窄间隙激光填丝焊
凝固裂纹实例3
材料连接原理
母 材:不锈钢 焊接方法:手工电弧焊
着色探伤后发现在 焊缝中心存在一些 肉眼观察不到的细 小裂纹
凝固裂纹实例4
材料连接原理
母材:6013铝合金 焊接方法:激光焊 激光功率P=5kW 焊接速度V=1.5mm/min 观察方法:高速摄像
焊缝结 温度:固相线附近 凝固金属
晶
收缩
拉应力作用
凝固裂 沿晶开裂 纹
残余液态金属 不能及时填充 空隙
材料连接原理
4. 凝固裂纹的形成机理
固相 固-液态 液-固态 液相
TS
TL
δmin TB 熔池结晶的阶段及脆性
δ:塑性 δmin:脆性温度区间的 最 低塑性
T:温度 TL:液相线 TS:固相线 TB:脆性温度区间
焊接时产生凝固裂纹
此时的应变增长率成为临界 应变增长率,以CST表示, 及CST=tanθ。
的条C件ST综合地反映了材料凝固裂纹的敏感性,
热裂纹
脆性温度区 TB 越大,收缩应力的作用时间就越长,
产生T的/℃应变量越大,形成热裂纹的倾向越大。 TL TH
δmin
TB内金属的塑 性δmin越低, 产生热裂纹的 倾向越大。
δ=Φ(T)
TB
TS
TS'
1
2
ε= f (T)
3
ε,δ
TB 内的图应11变-48增长产率生凝∂ε固/裂∂T纹越的大条,件越容易产生裂纹。 线ε-2应所变对应δ-的塑∂性ε/∂TTL-为液临相界线应变TS增-固长相率线,用“CST”
元善素硫,化并物能的加形剧态硫,﹑使磷薄及膜其状他改 温 元变素为的球有状害,作提用高。金碳属能的明抗显裂增性。度
加钢结中晶碳温含度量区增间加,时并,且M随n着的碳加
T/ ℃
含入量量的也增要加相,应初增生相加可。由当δwC相<
转0为.16γ%相时。,由w于Mn硫/wS和>磷25在即γ可相防
中止的热溶裂解纹度的比产在生δ 。相但中是低当很多wC, 如>果0初.16生%相(为包γ晶相点,)则时析,出磷的的
液化裂纹
高温失延裂纹的形成机理
在固相线以下的高温阶段,金属处于不断增长的固相收缩
应力作用之下,变形方式主要是依靠位错或空位沿着晶界的
扩散、移动进行。当沿晶界的扩散变形遇到障碍时(如三晶
粒相交的顶点),就会因应变集中导致裂纹。空穴开裂理论
认为晶界滑动和晶界迁移同时发生,两者共同作用可形成晶
界台阶,进而形成空穴并发展成微裂纹。
Ni,Ni2B(B4) Ni3B2,NiB(B12) γNi,Ni3Al(Ni89) Zr,Zr2Ni(Ni17) Ni,Ni2Mg(Ni11)
共晶温度/℃ 988 1050 1260 1200 1120 1340 645 880 1106 1140 990 1385 961 1095
冷、热、再热裂纹
1.热裂纹(结晶裂纹、凝固裂纹)(1)定义焊接过程中在300℃以上高温(Ac3附近)下产生的裂纹为热裂纹。
一般沿晶开裂,产生于焊缝、热影响区。
倾向材料:杂质较多的低碳钢、奥氏体不锈钢、铝合金。
当温度在脆性温度区间时,焊缝金属产生裂纹的可能性较大(2)分类结晶裂纹(凝固过程)、高温液化裂纹(奥氏体)、多边化裂纹(纯金属或单相奥氏体合金)。
(3)产生原因热裂纹的产生原因是焊接拉应力作用到晶界上的低熔共晶体(S)所造成的。
(4)影响结晶裂纹因素a.合金元素和杂质元素含量,尤其是S、P含量。
(S、P增加结晶温度区间和产生低温共晶)b.冷却速度大,偏析严重,结晶温度区间增大c.结晶应力和拘束应力使部分金属受拉(5)防止结晶裂纹措施○1降低含碳量,减小硫、磷等杂质元素的含量;○2加入一定的合金元素,减小柱状晶的偏析,如加入钼、钒、钛、铌等细化晶粒;○3采用熔深较浅的焊缝,使低熔点物质上浮;○4合理使用焊接规范,采用预热和后热,减小冷却速度;○5采用合理的装配次序,减小焊接应力。
在压力容器焊接中,降低线能量或采用多层焊是防止热裂纹的一种有效方法。
2.冷裂纹(延迟裂纹)(1)定义指焊缝冷却到200~300℃以下产生的裂纹。
一般穿晶开裂,产生于热影响区、焊缝。
倾向材料:高碳钢、中碳钢、低合金、中合金高强钢的热影响区;合金元素含量多的超高强钢、钛合金发生在焊缝上;Rm≥450MPa材料;如耐热钢、马氏体不锈钢、焊接含Ni的低合金钢、异种钢的焊接接头、特殊结构钢和堆焊层等。
16MnR、15MnVR、15MnNbR、18MnMoNbR、13MnNiMoNbR(仿制日本的BHW35,是单层厚壁用钢,焊接性能好但价格高)、07MnCrMoVR (仿CF-62)、07MnNiMoVDR和日本的CF-62系列钢。
(2)分类延迟裂纹、淬火裂纹(淬硬倾向大的组织)、低塑性脆化裂纹(较低的温度)(3)特征a.产生于较低温度,且是焊接后一段时间,又称延迟裂纹;b.主要发生在热影响区,少量在焊缝区;c.冷裂纹可能是沿晶、穿晶或混合开裂;d.引起的破坏是典型的脆断。
热裂纹、再热裂纹、冷裂纹、层状撕裂,这些你都了解吗?
癖接裂纹就其本质来分,可分为热裂纹、再热裂纹'冷裂纹、层状撕裂等.下面就各杵裂奴的成因、特点和防治办法进行具体的阐述。
Ol热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同.目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类.(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si黑高)和单相奥氏体钢、银基合金以及某些话合金焊逢中.这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂.防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短照性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入M。
、V、Ti.Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。
(2)近缱区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。
它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。
这一种裂纹的防治措施与结晶裂纹基本上是一致的.特别是在冶金方面,尽可能降低硫、磷、畦、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度.(3)多边化裂纹是在形成多边化的过程中,由于高温时的芨性很低造成的.这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等,02再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高混合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。
碳钢焊接裂纹产生的原因及预防措施
碳钢焊接裂纹产生的原因及预防措施碳钢焊接常出现裂纹,其产生的原因有很多,主要包括:冷裂纹、热裂纹、固化裂纹和应力裂纹等。
本文主要介绍这些裂纹产生的原因以及预防措施。
1. 冷裂纹碳钢焊接后如果在冷却过程中产生裂纹,这种情况就称为冷裂纹。
冷裂纹主要产生于低温条件下,通常发生在焊接过程中或者焊后的冷却过程中。
产生冷裂纹的原因主要有以下两方面:(1)组织条件。
低温下,钢材的组织会发生相变,易形成脆性组织。
(2)应力状态。
在焊接过程中,产生的内应力、残余应力和变形应力等可能导致焊缝区出现应力集中,从而引发裂纹。
为了预防冷裂纹的产生,需要注意以下几点:(1)焊接前需要对钢材进行预热处理,提高焊接温度。
(2)控制焊接过程中的加热速度和冷却速度,使之均匀。
(3)选择对于在低温环境中具有较好韧性的钢材进行焊接。
热裂纹是指在焊接加热过程中或者焊接结束后,钢材表面或焊缝处产生的裂纹。
热裂纹通常发生在焊接开始或者结束的瞬间,并具有一定的热时间。
(1)固溶体凝固温度范围内的液体区域中积累了高应力。
(2)合金成分使得焊缝区域易于析出特定化合物,从而引发热裂纹。
(2)选择焊接材料的化学成分符合所需的要求。
(1)焊接材料中含有的一些元素,如磷、硫和锰等等,会导致产生固化裂纹。
(2)焊接区域的硬度或脆性较高,若后续应力应变变化较大就容易出现固化裂纹。
(3)进行足够的热处理,同时注意减少后续的应力应变变化。
应力裂纹是指在加工过程中或者使用过程中产生的裂纹。
应力裂纹通常发生在焊接后或者机械加工、冷加工或者零部件在使用过程中受到过大的载荷和应力时。
(2)加工过程中出现应力集中,从而引发裂纹。
(3)在零部件使用过程中,负载过大,应力过大,从而引发裂纹。
(1)控制加工过程中应力的大小,注意减少应力的影响。
(2)对于连接件,应该选择适当的焊接方式,从而避免应力的集中。
(3)在零部件使用前进行充分测试,确保零部件能够承受相关的加载。
综上所述,针对碳钢焊接中出现的裂纹,需要针对不同的裂纹类型采取相应的措施,从而实现有效的预防和治疗。
1-1 焊接裂纹--热裂纹产生原因及防止措施
第一类焊接裂纹概述一. 焊接裂纹的定义:GB/T3375——94“焊接术语”这样解释的:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。
它具有尖锐的缺口和大的长宽比的特征。
焊接裂纹是焊接结构最危险的一种缺陷,不仅会使产品报废,而且还可能引起严重事故。
裂纹也是日常生产中经常遇到的问题,尤其在采用的材料种类繁多,焊接结构复杂的产品中。
出现裂纹的可能性更大。
当我们在鉴定一种新材料的可焊性时,也常将其形成裂纹的倾向作为判断其可焊性好坏的一个重要标志。
由此可见,裂纹是焊接生产中一个重要问题,这就要求我们掌握焊接生产中产生裂纹的规律,并结合具体的生产条件,提出经济、科学、有效的防止裂纹的措施。
二、裂纹分类:1、在焊接生产中出现的焊接裂纹是多种多样的有的出现在焊缝表面,有的隐藏在焊缝内部,有的则产生在熔合线、热影响区或母材中。
GB6417——86将其规定如下表:1011011 1012 1013 1014 Ea 纵向裂纹基本上与焊缝轴线平行的裂纹,可能存在于:——焊缝金属中;——熔合线上;——热影响区中;——母材金属中1021021 1023 1024 Eb 横向裂纹基本上与焊缝轴线垂直的裂纹,可能存在于:——焊缝金属中;——热影响区中;——母材金属中1031031 1033 1034 E 放射状裂纹具有某一公共点的放射状裂纹可能位于:——焊缝金属中;——热影响区中;——母材金属中注:这种类型的小裂纹内也可以叫做星形裂纹。
1041045 1046 1047 Ec 弧坑裂纹在焊缝收弧弧坑处的裂纹,可能是:——横向的;——纵向的;——星形的。
1051051 1053 1054 E 间断裂纹群一组间断的裂纹可能位于:——焊缝金属中;——热影响区中;——母材金属中。
106 E 枝状裂纹由某一公共裂纹派生出的一组裂1061 1063 1064 纹,它与间断裂纹群(105)和放射裂纹(103)不同,可能位于:——焊缝金属中;——热影响区;——母材金属区。
第2章2-4 焊接裂纹
三、层状撕裂 (lamellar tearing)
1、层状撕裂的定义:
轧制的厚钢板角接接头,T形接 头和十字接头中,由于多层焊角焊 缝产生的过大的Z向应力及母材中存 在的层状夹杂,在焊接热影响区及 其附近的母材内引起的沿轧制方向 发展的具有阶梯状的裂纹。
2、层状撕裂的特征
产生部位:
产生温度: 形貌特征: 产生的接头形 式:
第三,选择合理的焊接次序,施工时焊接 次序是很重要的,同样的焊接方法和焊接材料, 只是因焊接次序不同,可能具有不同的结晶裂 纹倾向。总的原则是尽量使大多数焊缝能在较 小刚度的条件下焊接,使焊缝的受力最小。 以上简要地从冶金和工艺方面对防止热裂 纹的措施进行了讨论,实际生产中情况比较复 杂,防止热裂纹的方法也很多,这里无法一一 举例。但最主要的是根据施工具体条件,找出 存在的主要问题,采取相应的措施。同时应当 经济可靠,简便易行。
为什么钢淬硬之后易引发冷裂纹呢?
1) 淬硬会形成脆硬的马氏体组织 这种组织发生断裂时将消耗较低的能量。
2) 淬硬会形成更多的晶格缺陷 成为裂纹源。
(2)氢的作用
焊接接头的含氢量越高,裂纹的敏感性越大 。 氢的应力扩散理论认为,金属内部的缺陷(包括 微孔、微夹杂和晶格缺陷等)提供了潜在裂源,在应 力的作用下,这些微观缺陷的前沿形成了三向应力区, 诱使氢向该处扩散并聚集。当氢的浓度达到一定程度 时,一方面产生较大的应力,另一方面阻碍位错移动 而使该处变脆,当应力进一步加大时,促使缺陷扩展 而形成裂纹。其后氢又不断向新的三向应力区扩展, 达到临界浓度时,又发生新的裂纹扩展。这种过程可 周而复始断续进行,直至成为宏观裂纹。
产生结晶裂纹的条件:
1、冶金因素 ——由低熔共晶形成的液态薄膜
焊接冶金原理课件:焊接裂纹 (一)
焊接冶金原理课件:焊接裂纹 (一)焊接冶金原理课件:焊接裂纹焊接是一种常见的连接方法,它通过熔化并再次凝固来实现一些金属部件的连接。
焊接中存在许多问题,其中之一就是焊接裂纹。
焊接裂纹是指焊接过程中或焊后由于各种原因导致的金属裂纹。
本文将对焊接裂纹的形成原理、预防方法和修补方法进行介绍。
一、焊接裂纹的形成原理1.热裂纹:热裂纹是在热作用下形成的,主要由于金属在加热和冷却过程中产生的热应力和压应力不断变化,使得金属发生了裂纹的问题。
2.冷裂纹:冷裂纹是由于钢材或钢板塑性后强度减小,在一些应变状态下容易发生的裂纹。
3.应力腐蚀裂纹:应力腐蚀裂纹是金属在介质的影响下结合高应力的作用下,产生的化学反应和电化学过程中,出现的腐蚀、氢脆和应力相结合的裂纹。
二、焊接裂纹的预防方法1.合理焊接工艺:合理的焊接工艺可以减少焊接裂纹的发生,例如减小焊接热量、加大间隙、控制焊接速度、选用适当的电流电压和极性等。
2.选用合适的焊接材料:选用适合的焊接材料可以有效降低焊接裂纹的产生,焊接材料的选择要根据基体材料和工作环境进行,在选择焊接材料时,要注意焊接后的连续性和完整性。
3.进行预热和后热处理:进行预热和后热处理,可以降低材料的收缩应力、热应力,减少焊接裂纹的发生。
三、修补焊接裂纹的方法1.热处理修补:用热处理的方法来修补焊接裂纹,主要是对焊接部位进行局部加热,使出现的裂纹处得到熔化、结合,从而达到修补的效果。
2.机械修补:通过机械的方法将焊接裂纹处切割或者打磨掉,然后重新进行焊接或补焊即可。
3.焊接修补:选择合适的焊接方法,进行焊接修补,让焊接材料与原来的金属材料结合在一起,从而达到焊接裂纹的修补效果。
综上所述,焊接裂纹是焊接过程中比较常见的问题,产生原因多种多样。
为了避免焊接裂纹的产生,应采取正确的焊接工艺、选用合适的焊接材料、进行适当的热处理和预防应力腐蚀等方法。
如果出现了焊接裂纹,可以采用热处理、机械修补和焊接修补等方法进行修复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料连接原理
3.1) 凝固裂纹的特征? 宏观特征:焊缝柱状晶交界处,沿焊缝中心的纵向裂纹 微观特征:表面无金属光泽,常有氧化颜色 产生材料:含杂质较多的碳钢、低合金钢焊缝中和单相
奥氏体钢、镍基合金以及某些铝合金
材料连接原理
3.2) 什么是凝固裂纹?(定义)
温度:固相线附近 拉应力作用
沿晶开裂
材料连接原理
固相 固-液态 液-固态 液相
TS
TL
δmin TB 熔池结晶的阶段及脆性温度区间
δ:塑性 δmin:脆性温度区间的最 低塑性
T:温度 TL:液相线 TS:固相线 TB:脆性温度区间
凝固裂纹的产生原因
液态薄膜
材料连接原理
固-液阶段
液态薄膜—根本原因 拉伸应力—必要条件
材料连接原理
a) 拉伸应力所产生的应变随温度 按直线1变化时,产生的应变量 e1<δmin,不产生凝固裂纹;
θ
b) 按直线2变化时,应变量
e2>δmin,此时必将产生裂纹;
e1
e3
3
1
e2
2
c) 按直线3变化时, 应变量 e3=δmin,处于临界状态。
焊接时产生凝固裂纹的条件
此时的应变增长率成为临界 应变增长率,以CST表示,及 CST=tanθ。
CST综合地反映了材料凝固裂纹的敏感性,为防止产生凝
固裂纹,必须满足下面条件: e <CST T
凝固裂纹实例3
材料连接原理
母 材:不锈钢 焊接方法:手工电弧焊
着色探伤后发现在焊缝中 心存在一些肉眼观察不到 的细小裂纹
凝固裂纹实例4
材料连接原理
母材:6013铝合金 焊接方法:激光焊 激光功率P=5kW 焊接速度V=1.5mm/min 观察方法:高速摄像
焊后焊缝的表面形貌 (沿焊缝中心开裂的凝固裂纹)
材料连接原理
轮船断裂
压力容器爆炸
材料连接原理
所谓焊接热裂纹是焊接过程中在高温阶段产生的开裂现 象,多在固相线附近发生。
本节将重点讲授凝固裂纹的定义、特征及形成机理
凝固裂纹实例1
材料连接原理
母 材:杂质含量较高的船用低碳钢 焊接方法:CO2气体保护焊
凝固裂纹实例2
材料连接原理
母 材:Q345B低合金高强钢 焊接方法:窄间隙激光填丝焊
课后作业
材料连接原理
为什么采用临界应变增长率CST作为判据 来比较金属材料的热裂倾向更为合理?用脆性 温度区间来作为判据如何?
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!