历届高考压轴题汇编
最近两年全国各地高考物理压轴题汇集(详细解析63题)
最近两年全国各地高考物理压轴题汇集(详细解析63题)最近年全各地高考物理压压压压集;压压解析两国63压, 2009年2月16日星期一P、Q压的距压离L.已知木压B在下滑压程中做速直压压~木压匀运与A相后立刻一起向下压~但不粘压碰运~最近年全各地高考物理压压压压集;压压解析两国63压,它达个运压到一最低点后又向上压~木压B向上压恰好能回到运Q点.若木压A 止于静P点~木压C从Q1;20分,2v向下压~压压同压压程~最后木压运C停在斜面上的R点~求P、R 压的距离L′的点压始以初速度0如压12所示~是一压压压=4 m的压压平板固定在水平地面上~整空压有一平行于个个的匀PRLPR3强压压~在板的右半部分有一垂直于压面向外的强磁压个匀~一压量压个=0,1 kg~压压量压=0,5 EBmq大小。
C的物~板的体从P端由止压始在压压力和摩擦力的作用下向右做加速压~压入磁压后恰能做静匀运匀5如压~足压压的水平压送压始压以大小压v,3m/s的速度向左压~压送压上有一压量压运M,2kg的小木盒速压。
物到板运当体碰R端的压板后被压回~若在撞瞬压撤去压压~物返回压在磁压中仍做速压~碰体匀运A~A与数压送压之压的压摩擦因压μ,0,3~压始压~A与静压送压之压保持相压止。
先后相隔?t,3s有两2 离匀减运压磁压后做速压停在C点~PC=L/4~物平板压的压摩擦因压体与数μ=0,4~取g=10m/s~求,个光滑的压量压,1kg的小球自压送压的左端出压~以,15m/s的速度在压送压上向右压。
第运1球个mBv0;1,判物压压性压~正压荷压是压压荷,断体与即与静木盒相遇后~球立压入盒中盒保持相压止~第2球出压后压压?个t,1s/3而木盒相遇。
求与1;2,物压板撞前后的速度体与碰v和v122;取g,10m/s,;3,磁感压强度B的大小;1,第1球木盒相遇后瞬压~者共同压的速度压多大,个与两运;4,压压强度E 的大小和方向;2,第1球出压后压压多压压压木盒相遇,个与压12;3,自木盒第与1球相遇至第个与2球相遇的压程中~由于木盒压送压压的摩擦而压生的压量个与是多少,2(10分)如压214—所示~光滑水平面上有压桌L=2m的木板C~压量m=5kg~在其正中央排放着并cvA0B两个小滑压A和B~m=1kg~m=4kg~压始压三物都止,在静A、B压有少量塑炸压~爆炸后胶A以速AB度6m,s水平向左压~运A、B中任一压压板撞后~都粘在一起~不压摩擦和撞压压~求,与碰碰(1)滑压当两A、B都压板撞后~与碰C的速度是多大?v (2)到A、B都压板撞压止~与碰C的位移压多少?6如压所示~平行金板两属A、B压l,8cm~板压距两离d,-10-208cm~A板比B板压压高300V~即U,300V。
高考试题压轴题及答案
高考试题压轴题及答案第一部分:语文篇章一:诗歌解析相信在我们的高中生涯中,我们都曾接触过各种各样的诗歌。
诗歌作为一种表现情感、抒发思想的文学形式,对于我们的文学修养和审美能力有着重要的影响。
下面是一首著名的古诗,请根据你的理解回答以下问题:《静夜思》 - 李白床前明月光,疑是地上霜。
举头望明月,低头思故乡。
1. 李白的《静夜思》以何种手法表达了对故乡的思念之情?2. 这首诗的主题是什么?请简要阐述。
3. 通过分析诗的意象和字里行间的表达,诗人想要传达怎样的情感?篇章二:阅读理解阅读以下短文,根据文章内容回答问题。
话题:人工智能随着科技的发展,人工智能(Artificial Intelligence, AI)日益走入人们生活的方方面面。
人工智能已经广泛应用于诸如语音识别、自动驾驶等领域,并对各行各业产生了深远的影响。
人工智能的发展给社会带来了许多便利,但同时也引发了诸多争议。
一方面,人工智能的广泛应用使得人们的工作效率大幅提升,减轻了人们的劳动负担;另一方面,大规模的自动化生产也导致了很多工人的失业。
当前,人工智能正在不断发展,各国纷纷加大对人工智能领域的投入。
但随之而来的问题是,人工智能的发展是否会威胁到人类的生存?1. 人工智能在现代社会中起到了哪些积极作用?请举例说明。
2. 人工智能的发展给我们带来了哪些挑战和问题?3. 你认为人工智能对人类的未来会产生怎样的影响?请谈谈你的看法。
第二部分:数学篇章一:解答数学题作为高考的重要科目之一,数学考试一直是考生们比较头疼的部分。
下面是一道高考数学题,请仔细阅读并回答。
已知函数 f(x) = x^2 + 3x + 2,求函数 f(x) 的零点。
篇章二:应用题数学不仅仅限于纸上的计算,它也广泛应用于实际生活中。
下面是一个与实际问题相关的数学应用题,请结合实际情境回答问题。
某公司生产的一种产品在市场上的日销量服从正态分布,均值为150件,标准差为40件。
高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!
高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!数学学科是高考最拉分的学科,所以如何在这门学科上取得高分,是很多同学都非常关心的问题。
其实数学想拿高分,就在于压轴大题的突破,高中数学难度虽然较大,但是在高考考试中基础部分题型任然占据了70%左右的分值,因此压轴题成了关键,只要能够把数学压轴题型拿下,那么数学高分肯定不成问题。
可是很多同学对于数学压轴题的第一反应就是,太难了,完全没有解题的思路,如何做拿下呢?其实数学压轴题也没有想象中的那么难了,关键是你要有解决问题的思路。
压轴大题考查的是考生的综合能力,涉及很多知识点,但是中高考都有一定的考查知识点标准。
答题时只有约接近知识点或“踩到”的知识点越多,得分就越多,想要数学大题不丢分,就先要了解阅卷评分准则。
比如:应用题满分套路,应用题一直以来都是难点,很多学生听到应用题估计都会头疼,不知道从何下手,但是做应用题也有一定的方法技巧,只要掌握了这些套路,让你做应用题,也得心应手!推断证明题满分套路,数学推断证明题的考查也是令不少考生头疼,总说掌握不了,看到题目就觉得很难,同学们千万不要被表面吓到!其实大家掌握了技巧,总结证明题的解题经验,你会发现,推断证明一点都不难,完全可以拿满分!所以这一次为了帮助同学们拿下高中数学压轴题难关,老师这次就总结整了了高考数学20道压轴题全汇总(附解析),这20道题是高考数学的高频考点,如果同学们能够拿下它,认真吃透,那么高考数学必定能够取得不错的成绩。
篇幅关系,这里就先整理了高考数学典型题例的部分,有关于2018年各省份的高考数学压轴题,物理压轴大题,各科的真题试卷老师都在整理中,如果家长朋友们觉得有帮助或是需要了解更多,都可以找老师交流,点击下方蓝色字体,查看获取更多优质精彩内容。
暑期将至,近期老师整理不少暑期提升资料,希望可以帮助到大家,篇幅关系资料未能全部呈现,如需完整版本,点击下方蓝色字体找我分享!初中、高中3年各年级各科的学习资料和暑期提升试卷正在整理编辑中,如需其他学科的学习资料都可找我分享。
历届高考压轴题汇总
25.(20分)我国发射的“嫦娥一号”探月卫星沿近似于圆形轨道绕月飞行。
为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。
卫星将获得的信息持续用微波信号发回地球。
设地球和月球的质量分别为M和m,地球和月球的半径分别为R和R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r和r1,月球绕地球转动的周期为T。
假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M、m、R、R1、r、r1和T表示,忽略月球绕地球转动对遮挡时间的影响)。
09年全国卷Ⅱ)26. (21分)如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔。
如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏高。
重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。
为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。
已知引力常数为G。
(1)设球形空腔体积为V,球心深度为d(远小于地球半径),P Q=x,求空腔所引起的Q点处的重力加速度反常(2)若在水平地面上半径L的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。
25.(20分)如图,O和O/分别表示地球和月球的中心。
在卫星轨道平面上,A是地月连心线OO/与地月球面的公切线ACD的交点,D、C和B分别是该公切线与地球表面、月球表面和卫星圆轨道的交点。
根据对称性,过A点在另一侧作地月球面的公切线,交卫星轨道于E点。
卫星在BE弧上运动时发出的信号被遮挡。
设探月卫星的质量为m0,万有引力常量为G ,根据万有引力定律有 r T m rMm G 222⎪⎭⎫⎝⎛=π ○1 1210212r Tm r mm G ⎪⎪⎭⎫⎝⎛=π ○2 式中,T 1是探月卫星绕月球转动的周期。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
历届高考数学压轴题汇总及答案(上海卷)
历届高考数学压轴题汇总及答案(上海卷2017-2018)一.填空题1.(上海2017.12题)如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“▲”的点在正方形的顶点处,设集合1234{P ,P ,P ,P }Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1D (P l )和2D (P l )分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足1D (P l )2D =(P l ),则Ω中所有这样的P 为 .2.(上海2018.12题已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 。
二.选择题3、(上海2017.16题)在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ 的最大值.记{(,)}P Q Ω=,P 在1C 上,Q 在2C 上,且OP OQ w =,则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个4.(上海2018.16题)设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,的可能取值只能是( )D.01f ()三.解答题5、(上海2017.20题)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P在第一象限,且||OP =P 的坐标;(2)设83,55P ⎛⎫⎪⎝⎭,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.6.(上海2018.20题)(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点0(2)F ,,直线:l x t =,曲线:(0,y 0)x t ≤≤≥,l 与x 轴交于点A ,与τ交于点B P Q ,、分别是曲线τ与线段AB 上的动点。
史上最难高考压轴题
史上最难高考压轴题史上最难高考压轴题如下:1. 数学:某数学题考察内容:高等数学、解析几何等题目内容:已知平面上一点P(x,y)满足方程3x^2+4y^2-4xy=7,求点P的坐标。
2. 物理:某物理题考察内容:力学、电磁学等题目内容:一质点自由下落,经过一个高度为H的水平杆时垂直向上抛出一个小球,小球的初速度和垂直向下飞行的质点相同。
已知质点下落时间为t,小球的抛出角度为θ,请计算小球飞出的水平距离。
3. 化学:某化学题考察内容:化学反应、化学平衡等题目内容:已知气体反应2A+3B→4C+2D,在某一温度下反应速率常数k为2.5×10^-3mol/(L·s),反应初速度为0.04mol/(L·s),求在此温度下反应达到平衡时C的浓度。
4. 生物:某生物题考察内容:生物多样性、遗传学等题目内容:某物种具有显性遗传性状A和隐性遗传性状B,A为完全显性。
两个杂交的个体AaBb和AABb进行自交,求自交后得到AA、Aa、aa的比例。
5. 历史:某历史题考察内容:历史事件、历史人物等题目内容:请描述并分析中国历史上的一次重大政治运动(如文化大革命、百花齐放等),阐述其对中国社会和政治的影响。
6. 地理:某地理题考察内容:地球自然环境、人文环境等题目内容:以某城市为例,探讨其城市规划对城市环境、交通流量以及居民生活的影响,提出相关改进建议。
7. 政治:某政治题考察内容:现代政治体制、治理等题目内容:分析中国和美国的政治体制差异,并探讨其对两国政治发展和社会稳定的影响。
请注意,以上仅为示例,并不代表真实的高考压轴题。
真实的高考压轴题因年份和科目而异,题目确定时,请以官方发布为准。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
历年高考物理压轴题汇编
历年高考物理压轴题汇编高考是一个检验学生学习成果的重要里程碑,物理考试是高考中衡量学生理论知识和应用能力的一项重要考试。
每年高考物理考试中都会出现一些压轴题,将众多考生分成优秀与普通。
本文根据历年高考物理考试压轴题,汇编了近年来在各种物理考试中出现的高考试题,以便学生在考前都能针对性的复习,并在考试中发挥出色。
首先,让我们从2019年开始梳理,2019年高考物理考试的压轴题之一是:“某放射源的谱线为$alpha$粒子。
某变压器的铁心周围用一个充满氦气的不锈钢管夹紧,这种做法的物理原理是什么?”这一题是以传统测定放射能量的实验和原理作为背景,考察学生对放射物质及相关电磁保护原理的理解。
答案是:氦气在$alpha$粒子穿透作用下能发生电集电离和光散射等现象,可以降低$alpha$粒子的能量,从而达到“保护”变压器绕组的作用。
其次,2018年的压轴题是:“一张由正负电荷构成的集合物体处于介质中,下列描述正确的是()A、正电荷处的电场强是负电荷处的电场强的2倍B、正电荷处的电场强是负电荷处的电场强的3倍C、正电荷处的电场强是负电荷处的电场强的1/2倍D、正电荷处的电场强是负电荷处的电场强的1/3倍”这是一道典型的电场题,考查考生运用相关知识的能力,考生要知道在介质中,正电荷的电场强度大于等于负电荷的电场强度,正确答案为A,正电荷处的电场强是负电荷处的电场强的2倍。
“以下哪个元素更容易发生受力变形?再次,2017年的压轴题是:A、氧化铝B、碳钢C、普通铝D、锰钢”这是一道典型的材料力学考题,考查考生对材料的理解能力,知道材料的抗变形能力主要取决于材料的硬度和弹性模量,钢的抗变形能力高于铝,锰钢的抗变形能力高于碳钢,因此,正确的答案为A,氧化铝更容易发生受力变形。
此外,2016年的压轴题是:“一架电动模型飞机以恒定的速度飞行,受到气流和重力力的作用,其水平飞行路程与时间的关系是什么?A、恒定B、对数型C、幂函数型D、二次函数型”这是一道运动学中典型的运动方程题,考查考生的基础计算能力,其解答的步骤是:(1)先求出模型飞机的加速度;(2)根据加速度的大小,判断水平飞行路程与时间的关系;(3)根据求出的加速度,可以知道受力定律与模型飞机的加速度相等,故正确答案为A,恒定。
高考数学压轴题精编精解100题(解答)
以往高考数学压轴题汇总详细解答1.解:(I )()()1,1211,23ax x g x a x x -≤≤⎧=⎨--<≤⎩(1)当0a <时,函数()g x 是[]1,3增函数,此时,()()max 323g x g a ==-,()()min 11g x g a ==-,所以()12h a a =-;(2)当1a >时,函数()g x 是[]1,3减函数,此时,()()min 323g x g a ==-,()()max 11g x g a ==-,所以()21h a a =-;————4分(3)当01a ≤≤时,若[]1,2x ∈,则()1g x ax =-,有()()()21g g x g ≤≤; 若[]2,3x ∈,则()()11g x a x =--,有()()()23g g x g ≤≤; 因此,()()min 212g x g a ==-,————6分 而()()()()3123112g g a a a -=---=-, 故当102a ≤≤时,()()max 323g x g a ==-,有()1h a a =-;当112a <≤时,()()max 11g x g a ==-,有()h a a =;————8分 综上所述:()12,011,021,1221,1a a a a h a a a a a -<⎧⎪⎪-≤≤⎪=⎨⎪<≤⎪⎪->⎩。
————10分(II )画出()y h x =的图象,如右图。
————12分数形结合,可得()min 1122h x h ⎛⎫==⎪⎝⎭。
————14分2.解: (Ⅰ)先用数学归纳法证明01n a <<,*n N ∈. (1)当n=1时,由已知得结论成立;(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,因为0<x<1时,1()1011x f x x x '=-=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)<f(k a )<f(1),即0<11ln 21k a +<-<.故当n=k+1时,结论也成立. 即01n a <<对于一切正整数都成立.————4分 又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.综上可知10 1.n n a a +<<<————6分(Ⅱ)构造函数g(x)=22x -f(x)= 2ln(1)2x x x ++-, 0<x<1, 由2()01x g x x'=>+,知g(x)在(0,1)上增函数.又g(x)在[]0,1上连续,所以g(x)>g(0)=0. 因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而21.2n n a a +<————10分 (Ⅲ) 因为 1111,(1)22n n b b n b +=≥+,所以0n b >,1n n b b +12n +≥ ,所以1211211!2n n n n n n b b b b b n b b b ---=⋅⋅≥⋅ ————① , ————12分 由(Ⅱ)21,2n n a a +<知:12n n n a a a +<, 所以1n a a =31212121222n n n a a a a a aa a a --⋅< ,因为1a =, n≥2, 10 1.n n a a +<<< 所以 n a 1121222n a a a a -<⋅<112n n a -<2122n a ⋅=12n ————② . ————14分由①② 两式可知: !n n b a n >⋅.————16分3.(Ⅰ)在21212122()()2()cos 24sin f x x f x x f x x a x ++-=+中,分别令120x x x =⎧⎨=⎩;1244x x x ππ⎧=+⎪⎪⎨⎪=⎪⎩;1244x x xππ⎧=⎪⎪⎨⎪=+⎪⎩得22()()2cos 24sin , (+)()2 2(+)()2cos 2)4sin 224f x f x x a x f x f x a f x f x x a x ππππ⎧⎪+-=+⎪⎪+=⎨⎪⎪+-+⎪⎩,=(+(+)①②③由①+②-③,得1cos 2()1cos 242()22cos 22cos(2)44222x x f x a x x a a ππ-+-=+-++[]-[] =22(cos 2sin 2)2(cos 2sin 2)a x x a x x ++-+∴())sin(2)4f xa a x π=+-+(Ⅱ)当0,4x π∈[]时,sin(2)4x π+∈2. (1)∵()f x ≤2,当a <1时,12[)]2a a =+-≤()f x ≤)aa -≤2.即1(1a ≤2 ≤a ≤1.(2)∵()f x ≤2,当a ≥1时,- 2≤a a )≤()f x ≤1.即1≤a ≤4+.故满足条件a 的取值范围[,4+.4.(1)3.223,1.2222==⇒=-====e a a b a a c e b b 椭圆的方程为1422=+x y (2分) (2)设AB 的方程为3+=kx y由41,4320132)4(1432212212222+-=+-=+=-++⇒⎪⎩⎪⎨⎧=++=k x x k k x x kx x k x y kx y (4分)由已知43)(43)41()3)(3(410212122121221221++++=+++=+=x x k x x k kx kx x x ay y b x x±=++-⋅++-+=k k k k k k 解得,4343243)41(44222 2 (7分)(3)当A 为顶点时,B 必为顶点.S △AOB =1 (8分)当A ,B 不为顶点时,设AB 的方程为y=kx+b42042)4(1422122222+-=+=-+++⇒⎪⎩⎪⎨⎧=++=k kb x x b kbx x k x y bkx y 得到442221+-=k b x x :04))((0421212121代入整理得=+++⇔==b kx b kx x x y y x x 4222=+k b (11分)41644|||4)(||21||||212222122121++-=-+=--=k b k b x x x x b x x b S 1||242==b k 所以三角形的面积为定值.(12分)5(1)12(101)10(101)99n n n n a =-⋅+⋅- ……………………………… (2分 ) 1(101)(102)9n n=-⋅+101101()(1)33n n --=⋅+…………………………………(4分) 记:A =1013n - , 则A=333n⋅⋅⋅⋅⋅⋅为整数 ∴ n a = A (A+1) , 得证 ……( 6分)(2) 21121010999n n n a =+-………………………………………………… (8分)2422112(101010)(101010)999n n n S n =++⋅⋅⋅⋅⋅⋅++++⋅⋅⋅⋅⋅⋅- 2211(101110198210)891n n n ++=+⋅--……………………………………………(12分) 6、解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF .3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k. 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得 依题意220(1680)0k k ∆=-><<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x .4520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F 12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k R F ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|7、解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.个:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++ 因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形, .32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又,,392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角. 9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当,.CBA 3310y 为钝角时∠-<22222y y 3428y 3y 349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点. 3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y 1x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--=A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或8、解:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1(2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴ )x (f 1)x (f =-由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴ 0)x (f 1)x (f >-=又x=0时,f(0)=1>0 ∴ 对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)x x (f )x (f )x (f )x (f )x (f 121212>-=-⋅= ∴ f(x 2)>f(x 1) ∴ f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x) 又1=f(0),f(x)在R 上递增 ∴ 由f(3x-x 2)>f(0)得:x-x 2>0 ∴ 0<x<3 9、解:(1)由题意知021)1(=++=c b f ,∴b c 21--=记1)12()12()()(22--++=++++=++=b x b x c b x b x b x x f x g 则075)3(>-=-b g 051)2(<-=-b g 7551<<⇒b01)0(<--=b g 即)75,51(∈b01)1(>+=b g(2)令u=)(x f 。
高考全国百所名校数学压轴题精选(含答案及解析)
高考全国百所名校数学压轴题精选1.如右图(1)所示,定义在区间D 上的函数)(x f ,如果满足:对x D ∀∈,∃常数A ,都有()f x A ≥成立,则称函数..()f x 在区间...D 上有下界....,其中A 称为函数的下界...... (提示:图(1)、(2)中的常数A 、B 可以是正数,也可以是负数或零) (Ⅰ)试判断函数348()f x x x=+在(0,)+∞上是否有下界?并说明理由;(Ⅱ)又如具有右图(2)特征的函数称为在区间D 上有上界.请你类比函数有下界的定义,给出函数()f x 在区间D 上有上界的定义,并判断(Ⅰ)中的函数在(,0)-∞上是否有上界?并说明理由;(Ⅲ)若函数()f x 在区间D 上既有上界又有下界,则称函数()f x 在区间D 上有界,函数()f x 叫做有界函数.试探究函数3()b f x ax x=+(0,a >0b >,a b 是常数)是否是[,]m n (0,0,m n >>m 、n 是常数)上的有界函数?【解析】:24.(I )解法1:∵2248()3f x x x'=-,由()0f x '=得224830x x-=,416,x = ∵(0,)x ∈+∞, ∴2x =,-----------------2分∵当02x <<时,'()0f x <,∴函数)(x f 在(0,2)上是减函数; 当2x >时,'()0f x >,∴函数)(x f 在(2,+∞)上是增函数; ∴2x =是函数的在区间(0,+∞)上的最小值点,m in 48()(2)8322f x f ==+=∴对(0,)x ∀∈+∞,都有()32f x ≥,------------------------------------4分即在区间(0,+∞)上存在常数A=32,使得对(0,)x ∀∈+∞都有()f x A ≥成立, ∴函数348()f x x x=+在(0,+∞)上有下界. ---------------------5分[解法2:0x >∴ 3348161616()32f x x x xxxx=+=+++≥= 当且仅当316x x=即2x =时“=”成立∴对(0,)x ∀∈+∞,都有()32f x ≥,即在区间(0,+∞)上存在常数A=32,使得对(0,)x ∀∈+∞都有()f x A ≥成立, ∴函数348()f x x x=+在(0,+∞)上有下界.](II )类比函数有下界的定义,函数有上界可以这样定义:定义在D 上的函数)(x f ,如果满足:对x D ∀∈,∃常数B ,都有()f x ≤B 成立,则称函数)(x f 在D 上有上界,其中B 称为函数的上界. -----7分 设0,x <则0x ->,由(1)知,对(0,)x ∀∈+∞,都有()32f x ≥,∴()32f x -≥,∵函数348()f x x x=+为奇函数,∴()()f x f x -=-∴()32f x -≥,∴()32f x ≤-即存在常数B=-32,对∀(,0)x ∈-∞,都有()f x B ≤, ∴函数348()f x x x =+在(-∞, 0)上有上界. ---------9分 (III )∵22()3b f x ax x'=-,由()0f x '=得2230b ax x-=,∵0,0a b >> ∴4,3b x a=∵ [,](0,)m n ⊂+∞,∴x =,----------10分∵当0x <<时,'()0f x <,∴函数)(x f 在(0当x >时,'()0f x >,∴函数)(x f∞)上是增函数;∴x =是函数的在区间(0,+∞)上的最小值点,3f a =+=---------------------11分①当m ≥)(x f 在[,]m n 上是增函数;∴()()()f m f x f n ≤≤∵m 、n 是常数,∴()f m 、()f n 都是常数 令(),()f m A f n B ==,∴对[,]x m n ∀∈,∃常数A,B,都有()A f x B ≤≤ 即函数3()b f x ax x=+在[,]m n 上既有上界又有下界-------------------------12分②当n ≤时函数)(x f 在[,]m n 上是减函数∴对[,]x m n ∀∈都有()()()f n f x f m ≤≤ ∴函数3()b f x ax x=+在[,]m n 上有界.-------------------------13分③当m n <<时,函数)(x f 在[,]m n 上有最小值m in ()f x=3f a =+=令A =令B=()f m 、()f n 中的最大者则对[,]x m n ∀∈,∃常数A,B,都有()A f x B ≤≤ ∴函数3()b f x ax x=+在[,]m n 上有界.综上可知函数3()b f x ax x=+是[,]m n 上的有界函数--------------14分2.如图,已知双曲线322yx -=1的两个焦点为F 1,F 2,两个顶点为A 1,A 2,点),0(b P 是.0,0,2121>⋅<⋅PA PA PF PF y 且轴正半轴上一点(I )求实数b 的取值范围;(II )直线PF 1,PF 2分别与双曲线各交于两点,求以这四个交点为顶点的四边形的面积S 的取值范围。
最近五年高考数学解析几何压轴题大全(含答案)
.最近五年高考数学解析几何压轴题大全(含答案)1.【2009 年陕西卷】21.(本小题满分12 分)已知双曲线 C 的方程为2 2y x2 2 1( 0, 0)a ba b,离心率5e ,顶点到渐近线的2距离为 2 55。
(I )求双曲线C的方程;(II) 如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若1AP PB, [ ,2] ,求AOB 面积的取值范围。
3【答案】21.(本小题满分14 分)已知双曲线C的方程为2 2y x2 2 1(a 0,b 0),a b离心率5e , 顶点到渐近线的距离为22 55.(Ⅰ)求双曲线C的方程;(Ⅱ)如图,P 是双曲线C上一点,A,B 两点在双曲线C的两条渐近线上,且分别位于第一,二象限. 若1AP PB, [ , 2], 求△AOB面积的取值范围.32 5解答一(Ⅰ)由题意知,双曲线C的顶点(O, a) 到渐近线ax by 0的距离为,5∴ab 2 5 ab 2 5, ,即2 2 5 c 5a bab25 5 5 22y42 1.xa2,,cb1,c由得∴双曲线C的方程为ac5,2 2 2c a b..(Ⅱ)由(Ⅰ)知双曲线C的两条渐近线方程为y 2x.设A(m,2 m), B( n,2 n), m 0,n 0.由A P PB 得P点的坐标为m n 2(m n) ( , ), 1 1将P 点坐标代入2y42 1,x 化简得mn2(1 n)4.设∠AOB1 1 42 , tan( ) 2, tan ,sin ,sin 2 .2 2 2 5又|OA | 5m |OB | 5n41 1 1S |OA | |OB | sin 2 2mn ( ) 1.AOB2 2记由1 1 1S( ) ( ) 1, [ ,2],2 318 9得又S(1)=2,S(S'( ) 0 1, ) , S(2) ,33 4当1时,△A OB的面积取得最小值2,当13时,△AOB的面积取得最大值83.∴△AOB面积的取值范围是8 [2, ].3解答二(Ⅰ)同解答一(Ⅱ)设直线AB的方程为y kx m,由题意知|k| 2,m 0.由{y kx my 2x 得A 点的坐标为( , 2 ),m m2 k 2 k由{ y kx my 2x得B 点的坐标为( , 2 ).m m2 k 2 k由AP PB得P点的坐标为m 1 2m 1( ( ), ( )), 1 2 k 2 k 1 2 k 2 k将P 点坐标代入2 2 2 y 4m (1 )2x 得1 .24 4 k设Q为直线AB与y 轴的交点,则Q点的坐标为(0,m).1 1 1S S S | OQ | | XA | |OQ | | x8| m (xA xB) AOB AOQ BOQ2 2 2=21 m m 1 4m 1 1m( ) ( ) 1.22 2 k 2 k 2 4 k 2.. 以下同解答一.2.【2010 年陕西卷】20. (本小题满分13 分)2 2x y: 12 2a b 的顶点为A1, A2 , B1,B2,焦yB2l如图,椭圆 CA点为F1,F2, | A B | 7 ,1 1 S 1 12 2 2S 1 1 2 2A B A B B F B FPn(Ⅰ)求椭圆C的方程;(Ⅱ)设n 是过原点的直线,l 是与n 垂直相交于F点、与A1 F1 o xA 2F2B椭圆相交于A,B 亮点的直线,| OP |=1 ,是否存在上述直线B1 l 使AP PB 1成立?若存在,求出直线l 的方程;若不存在,请说明理由。
高考压轴题汇编(华师一附中-很多难题)
华师一附中高考数学压轴题精选精练 共46道典型压轴题华师一附中高考数学知识点 华师一附中高考数学高分法则1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =+=+(222222211321a ab ac ∴=∴=+=+∴=-=+∴+= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}na 中,16a=,点(n nA a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k值;若不存在,说明理由; (Ⅲ)对任意正整数n,不等式1120111111n n n ab b b +-≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数,舍去综上,存在唯一的符合条件。
高考数学历年压轴题集锦
高考数学压轴题集锦1.椭圆的中心是原点O,它的短轴长为22,相应于焦点F (c ,0)(c >0)的准线l 与x 轴相交于点A ,OF =2FA ,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若OP ⋅OQ =0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM =-λFQ . (14分)2.已知函数f (x )对任意实数x 都有f (x +1)+f (x )=1,且当x ∈[0,2]时,f (x )=|x -1|。
(1)x ∈[2k ,2k +2](k ∈Z )时,求f (x )的表达式。
(2)证明f (x )是偶函数。
(3)试问方程f (x )+log 43.(本题满分12分)如图,已知点F(0,1),直线L:y=-2,及圆C:x +(y -3)=1。
(1)若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程;(2)过点F 的直线g 交轨迹E 于G(x 1,y 1)、H(x 2,y 2)两点,求证:x 1x 2为定值;(3)过轨迹E 上一点P 作圆C 的切线,切点为A、B,要使四边形PACB 的面积S 最小,求10点P 的坐标及S 的最小值。
8y64C2Fx -15-10-55OX-2-4-61=0是否有实数根?若有实数根,指出实数根的个数;若没有x实数根,请说明理由。
221015x 224.以椭圆2+y =1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试a 判断并推证能作出多少个符合条件的三角形.5已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a、b、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6已知过函数f(x)=x +ax +1的图象上一点B(1,b)的切线的斜率为-3。
高考数学压轴题精选100题汇总(含答案)
7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln
;
an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
历年高考压轴题汇编(1991-2019)
历年(1991—2019)高考压轴题汇编1、(91')在光滑的水平轨道上有两个半径都是r 的小球A 和B,质量分别为m 和2m,当两球心间的距离大于l (l 比2r 大得多)时,两球之间无相互作用力,当两球心间的距离等于或小于l 时,两球间存在相互作用的恒定斥力F.设A 球从远离B球处以速度v 0沿两球连心线向原来静止的B 球运动,如图所示.欲使两球不发生接触,v 0必须满足什么条件?2、如图所示,一质量为M 、长为L 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M 。
以地面为参照系,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板,以地为参照系。
(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度的大小和方向(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。
3、(93’) 一平板车,质量M=100千克,停在水平路面上,车身的平板离地面的高度h=1.25米,一质量m=50千克的小物块置于车的平板上,它到车尾端的距离b=1.00米,与车板间的滑动摩擦系数μ=0.20,如图所示。
今对平板车施一水平方向的恒力,使车向前行驶,结果物块从车板上滑落。
物块刚离开车板的时刻,车向前行驶的距离s 0=2.0米。
求物块落地时,落地点到车尾的水平距离s 。
不计路面与平板车间以及轮轴之间的摩擦。
取g=10米/秒24、(94’) 如图19-19所示,一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.重力忽略不计。
5、(95’)如图15所示,一排人站在沿x 轴的水平轨道旁,原点O 两侧的人的序号都记为n(n=1,2,3…).每人只有一个沙袋,x>0一侧的每个沙袋质量为m=14千克,x<0一侧的每个沙袋质量m′=10千克.一质量为M=48千克的小车以某初速度从原点出发向正x 方向滑行.不计轨道阻力.当车每经过一人身旁时,此人就把沙袋以水平速度u 朝与车速相反的方向沿车面扔到车上,u 的大小等于扔此袋之前的瞬间车速大小的2n 倍.(n 是此人的序号数) (1)空车出发后,车上堆积了几个沙袋时车就反向滑行? (2)车上最终有大小沙袋共多少个?6、(96’) 设在地面上方的真空室内存在匀强电场和匀强磁场。
历届高考压轴题汇编(1)
2001—2008届高考物理压轴题汇编一、力学2001年全国理综(江苏、安徽、福建卷)31.(28分)太阳现正处于主序星演化阶段。
它主要是由电子和H 11、He 42等原子核组成。
维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 42+释放的核能,这些核能最后转化为辐射能。
根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。
为了简化,假定目前太阳全部由电子和H 11核组成。
(1)为了研究太阳演化进程,需知道目前太阳的质量M 。
已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。
试估算目前太阳的质量M 。
(2)已知质子质量m p =1.6726×10-27 kg ,He 42质量m α=6.6458×10-27 kg ,电子质量m e =0.9×10-30kg ,光速c =3×108 m/s 。
求每发生一次题中所述的核聚变反应所释放的核能。
(3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。
试估算太阳继续保持在主序星阶段还有多少年的寿命。
(估算结果只要求一位有效数字。
)参考解答:(1)估算太阳的质量M设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知①地球表面处的重力加速度2R mGg = ② 由①、②式联立解得③以题给数值代入,得M =2×1030 kg ④(2)根据质量亏损和质能公式,该核反应每发生一次释放的核能为 △E =(4m p +2m e -m α)c 2 ⑤ 代入数值,解得△E =4.2×10-12 J ⑥(3)根据题给假定,在太阳继续保持在主序星阶段的时间内,发生题中所述的核聚变反应的次数为pm MN 4=×10% ⑦ 因此,太阳总共辐射出的能量为 E =N ·△E设太阳辐射是各向同性的,则每秒内太阳向外放出的辐射能为 ε=4πr 2w ⑧ 所以太阳继续保持在主序星的时间为εEt =⑨由以上各式解得以题给数据代入,并以年为单位,可得 t =1×1010 年=1 百亿年 ⑩评分标准:本题28分,其中第(1)问14分,第(2)问7分。
(免费,精华)江苏历年高考压轴题整合,含答案
江苏高考压轴题整合(含答案)1.(本小题满分12分)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意 2.(本小题满分14分)设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a (a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1.Q n (n=1,2,3,…)的横坐标构成数列{}.n a(Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-nk k k k a a a 121321)((Ⅲ)当a =1时,证明∑-++<-nk k k ka a a121.31)(3.设无穷等差数列{}n a 的前n 项和为n S .(Ⅰ)若首项=1a 32,公差1=d ,求满足2)(2k k S S =的正整数k ;(Ⅱ)求所有的无穷等差数列{}n a ,使得对于一切正整数k 都有2)(2k k S S =成立.4.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m ,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M . 若2MQ QF =,求直线l 的斜率.5.已知函数()()f x x R ∈满足下列条件:对任意的实数x 1,x 2都有 2121212()()[()()]x x x x f x f x λ-≤--和1212()()f x f x x x -≤-,其中λ是大于0的常数. 设实数a 0,a ,b 满足0()0f a =和()b a f a λ=- (Ⅰ)证明1λ≤,并且不存在00b a ≠,使得0()0f b =; (Ⅱ)证明22200()(1)()b a a a λ-≤--; (Ⅲ)证明222[()](1)[()]f b f a λ≤-.6.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分) 如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE⑴求异面直线CD 与SB 所成的角(用反三角函数值表示); ⑵证明:BC ⊥平面SAB ;⑶用反三角函数值表示二面角B —SC —D 的大小不必写出解答过程)7.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数|)(2a x x x f -=⑴当2=a 时,求使x x f =)(成立的x 的集合;AF EC B A 1EFCP B⑵求函数)(x f y =在区间]2,1[上的最小值8.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分) 设数列{}n a 的前n 项和为n S ,已知11,6,1321===a a a ,且,3,2,1,)25()85(1=+=+--+n B An S n S n n n ,其中A.B 为常数⑴求A 与B 的值;⑵证明:数列{}n a 为等差数列;⑶证明:不等式15>-n m mn a a a 对任何正整数n m ,都成立9.(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分) 在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001—2008届高考物理压轴题汇编一、力学2001年全国理综(江苏、安徽、福建卷)31.(28分)太阳现正处于主序星演化阶段。
它主要是由电子和H 11、He 42等原子核组成。
维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 42+释放的核能,这些核能最后转化为辐射能。
根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。
为了简化,假定目前太阳全部由电子和H 11核组成。
(1)为了研究太阳演化进程,需知道目前太阳的质量M 。
已知地球半径R =6.4×106 m ,地球质量m =6.0×1024kg ,日地中心的距离r =1.5×1011m ,地球表面处的重力加速度g =10m/s 2,1年约为3.2×107秒。
试估算目前太阳的质量M 。
(2)已知质子质量m p =1.6726×10-27 kg ,He 42质量m α=6.6458×10-27kg ,电子质量m e =0.9×10-30 kg ,光速c =3×108 m/s 。
求每发生一次题中所述的核聚变反应所释放的核能。
(3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。
试估算太阳继续保持在主序星阶段还有多少年的寿命。
(估算结果只要求一位有效数字。
)参考解答:(1)估算太阳的质量M设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知①地球表面处的重力加速度2R m Gg =② 由①、②式联立解得③以题给数值代入,得M =2×1030 kg ④(2)根据质量亏损和质能公式,该核反应每发生一次释放的核能为 △E =(4m p +2m e -m α)c 2⑤ 代入数值,解得 △E =4.2×10-12 J ⑥(3)根据题给假定,在太阳继续保持在主序星阶段的时间内,发生题中所述的核聚变反应的次数为pm MN 4=×10% ⑦ 因此,太阳总共辐射出的能量为 E =N ·△E设太阳辐射是各向同性的,则每秒内太阳向外放出的辐射能为 ε=4πr 2w ⑧所以太阳继续保持在主序星的时间为εEt =⑨由以上各式解得以题给数据代入,并以年为单位,可得 t =1×1010 年=1 百亿年 ⑩评分标准:本题28分,其中第(1)问14分,第(2)问7分。
第(3)问7分。
第(1)问中,①、②两式各3分,③式4分,得出④式4分; 第(2)问中⑤式4分,⑥式3分;第(3)问中⑦、⑧两式各2分,⑨式2分,⑩式1分。
2003年理综(全国卷)34.(22分)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。
现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。
稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。
每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。
已知在一段相当长的时间T 内,共运送小货箱的数目为N 。
这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。
求电动机的平均抽出功率P 。
参考解答:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2①v 0=at ② 在这段时间内,传送带运动的路程为s 0=v 0t ③ 由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。
T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨ 已知相邻两小箱的距离为L ,所以v 0T =NL ⑩ 联立⑦⑧⑨⑩,得P =T Nm [222TL N +gh]2004年全国理综25.(20分)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物。
在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动。
现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处(如图1)从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上。
同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短。
随后,桩在泥土中向下移动一距离l 。
已知锤反跳后到达最高点时,锤与已停下的桩幅之间的距离也为h (如图2)。
已知m =1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.20m ,重力加速度g =10m/s 2,混合物的质量不计。
设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小。
25.锤自由下落,碰桩前速度v 1向下,gh v 21=①碰后,已知锤上升高度为(h -l ),故刚碰后向上的速度为)(22l h g v -=②设碰后桩的速度为V ,方向向下,由动量守恒,21mv MV mv -=③桩下降的过程中,根据功能关系,Fl Mgl MV =+221④ 由①、②、③、④式得])(22)[(l h h l h Mml mg Mg F -+-+=⑤代入数值,得5101.2⨯=F N ⑥2005年理综(四川、贵州、云南、陕西、甘肃)25.(20分)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A 。
求男演员落地点C 与O 点的水平距离s 。
已知男演员质量m 1和女演员质量m 2之比m 1/m 2=2秋千的质量不计,秋千的摆长为R ,C 点低5R 。
解:设分离前男女演员在秋千最低点B 的速度为v 0,由机械能守恒定律,22121)(21)(v m m gR m m +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒,2211021)(v m v m v m m -=+分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t ,根据题给条件,由运动学规律,2214gt R =t v x 1=,根据题给条件,女演员刚好回A 点,由机械能守恒定律,222221v m gR m =,已知m 1=2m 2,由以上各式可得x =8R 2006年全国理综(天津卷)25.(22分)神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。
天文学家观测河外星系麦哲伦云时,发现了LMCX-3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其它天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图所示。
引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期。
(1)可见得A 所受暗星B 的引力F A 可等效为位于O 点处质量为m /的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2。
试求m /的(用m 1、m 2表示);(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量m I 的两倍,它将有可能成为黑洞。
若可见星A 的速率v =2.7m/s ,运行周期T =4.7π×104s ,质量m 1=6m I ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×1011-N ·m/kg 2,m I =2.0×1030kg )解析(1)设A 、B 的圆轨道半径分别为r 1、r 2,由题意知,A 、B 做匀速圆周运动的角速相同,其为ω。
由牛顿运动运动定律,有F A =m 1ω2r 1 F B =m 2ω2r 2 F A =F B设A 、B 之间的距离为r ,又r =r 1+r 2,由上述各式得 r =1212m m r m ① 由万有引力定律,有F A =G122m m r将①代入得F A =G 3122212()m m m m r +令F A =G 121/m m r比较可得3212()/=m m m m +② (2)由牛顿第二定律,有/211211m m v G m r r =③又可见星A 的轨道半径r 1=2vTπ④ 由②③④式可得332212()2m v Tm m Gπ=+ (3)将m 1=6m I 代入⑤式,得33222(6)2I m v Tm m Gπ=+⑤ 代入数据得3222 3.5(6)I I m m m m =+⑥设m 2=nm I ,(n >0),将其代入⑥式,得32222 3.56(6)(1)I I I m nm m m m n==++⑦可见,3222(6)I m m m +的值随n 的增大而增大,试令n =2,得 20.125 3.56(1)I I I n m m m n=<+⑧若使⑦式成立,则n 必须大于2,即暗星B 的质量m 2必须大于2m I ,由此得出结论:暗星B 有可能是黑洞。
2006年全国理综(重庆卷)25.(20分)(请在答题卡上作答)如题25图,半径为R 的光滑圆形轨道固定在竖直面内。
小球A 、B 质量分别为m 、βm (β为待定系数)。
A 球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 41,碰撞中无机械能损失。
重力加速度为g 。
试求: (1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力; (3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
解析:(1)由mgR =4mgR +4mgRβ得 β=3(2)设A 、B 碰撞后的速度分别为v 1、v 2,则2112mv =4mgR2212mv β=4mgR β 设向右为正、向左为负,解得 v 1=12gR ,方向向左 v 2=12gR ,方向向右 题25图设轨道对B 球的支持力为N ,B 球对轨道的压力为N /,方向竖直向上为正、向下为负。