高考数学一轮复习第九章直线和圆的方程直线及其方程课件
2025届高中数学一轮复习课件《圆的方程及直线与圆的位置关系》ppt
解析 答案
高考一轮总复习•数学
第14页
3.若直线 ax+by=1 与圆 x2+y2=1 相交,则点 P(a,b)与圆 x2+y2=1 的关系为( )
A.在圆上
B.在圆外
C.在圆内
D.以上都有可能
解析:∵|a×0+a2b+×b02-1|<1,∴a2+b2>1,∴点 P(a,b)在圆外.
解析 答案
高考一轮总复习•数学
1+k2 过点 B(-2,0)时,直线 l 的斜率 k=2-4--02=1,则直线 l 与半 圆有两个不同的交点时,实数 k 的取值范围为34,1.故选 A.
l 的倾斜角:相切逆―时―→针过 B 点.
第29页
l
高考一轮总复习•数学
第30页
(3)已知圆 O:x2+y2=4 上到直线 l:x+y=a 的距离等于 1 的点至少有 2 个,则 a 的 即圆心 O 到 l 的距离 d<3.
高考一轮总复习•数学
方法二:设所求圆的标准方程为(x-a)2+(y-b)2=r2, 由题意得2--2a-2a+2+-3--5b-2b=2r=2,r2,
a-2b-3=0,
a=-1, 解得b=-2,
r2=10, 故所求圆的方程为(x+1)2+(y+2)2=10.
第20页
高考一轮总复习•数学
第21页
方法三:设圆的一般方程为 x2+y2+Dx+Ey+F=0,则圆心坐标为-D2 ,-E2.
2.以 A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
高考一轮总复习•数学
第10页
3.圆的切线方程常用结论 (1)过圆 x2+y2=r2 上一点 P(x0,y0)的圆的切线方程为 x0x+y0y=r2; 切线:y-y0=-xy00(x-x0)(y0≠0), 即 y0y+x0x=x20+y20=r2, 即 x0x+y0y=r2(留一代一). (2)过圆(x-a)2+(y-b)2=r2 上一点 P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y -b)=r2; (3)过圆 x2+y2=r2 外一点 M(x0,y0)作圆的两条切线,则两切点所在直线方程为 x0x+y0y =r2.
《直线和圆的方程》课件
圆的参数方程
圆的参数方程
01
$x=a+rcostheta, y=b+rsintheta$,其中$(a,b)$是圆心,$r$
是半径,$theta$是参数。
参数方程的应用
02
参数方程常用于圆的极坐标表示,方便计算圆的轨迹和运动。
参数方程与直角坐标系的关系
圆的一般方程
圆的一般方程
$x^2+y^2+Dx+Ey+F=0$, 其中$D,E,F$是常数。
圆心坐标
圆心的坐标为$(-frac{D}{2}, frac{E}{2})$,通过圆心可以确 定圆的位置。
半径
半径的平方为 $frac{D^2+E^2-4F}{4}$,通 过半径可以确定圆的大小。
参数$D,E,F$
02
圆的方程的介绍
圆的标准方程
圆的标准方程
圆心坐标
$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$是 圆心,$r$是半径。
圆心的坐标为$(a,b)$,通过圆心可以确定 圆的位置。
半径
圆上任一点坐标
半径是圆上任一点到圆心的距离,用$r$表 示。
根据圆的标准方程,圆上任一点的坐标可 以表示为$(a+rcostheta, b+rsintheta)$, 其中$theta$是参数。
《直线和圆的方程》 ppt课件
目 录
• 直线方程的介绍 • 圆的方程的介绍 • 直线与圆的位置关系 • 直线与圆的实际应用
01
直线方程的介绍
直线的斜率与截距式
总结词
斜率截距式是直线方程的基本形式,它描述了直线在直角坐标系中的位置关系 。
2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版
第四节
直线与圆、圆与圆的位置关系
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
高考数学一轮复习第九章直线和圆的方程圆的方程课件
解析 设圆心的坐标为x,41x2,据题意得14x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆 的半径为 2,故所求圆的方程是(x+2)2+(y-1)2=4.
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.直线 y=x-1 上的点到圆 x2+y2+4x-2y+4=0 的最近距离为( )
解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心 P 应在 AB 中垂线 x=4 上,则由
2x-y-3=0, x=4,
得圆心 P(4,5).
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第2讲 圆的方程及点、线、圆的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
注意点 圆的标准方程与一般方程的关系 圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程, 二者只是形式的不同,没有本质区别.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (2)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为-a2,-a,半径为12 -3a2-4a+4的圆.( × ) (3)方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件是 A=C≠0,B=0,D2+E2-4AF>0.( √ ) (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F>0.( √ ) (5)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √ )
(浙江专用)高考数学一轮复习 第九章 直线和圆的方程 9.2 圆的方程课件.pptx
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+
T=P
T,Q求实数t的取值范围.
8
解析 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5. (1)由圆心N在直线x=6上,可设N(6,y0). 因为圆N与x轴相切,与圆M外切, 所以0<y0<7, 于是圆N的半径为y0, 从而7-y0=5+y0,解得y0=1. 因此,圆N的标准方程为(x-6)2+(y-1)2=1.
高考数学 (浙江专用)
第九章 直线和圆的方程
§9.2 圆的方程
1
五年高考
考点 圆的方程
1.(2016浙江文,10,6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是
,
半径是
.
答案 (-2,-4);5
解析 方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则a2=a+2,故a=-1或2.当a=2时,方程为4x2+4y2+4x+8y
2
2.(2015课标Ⅰ,14,5分)一个圆经过椭圆 x2 + y2 =1的三个顶点,且圆心在x轴的正半轴上,则该圆的
16 4
标准方程为
.
答案
x
+32y2=2
25 4
解析 由已知得该圆经过椭圆的三个顶点A(4,0)、B(0,2)、C(0,-2).易知线段AB的垂直平分线的
方程为2x-y-3=0.令y=0,得x= 3
+10=0,即x2+y2+x+2y+ 5
2023版高考数学一轮总复习第九章直线和圆的方程第一讲直线方程与两直线的位置关系课件文
第九章 直线和圆的方程1.直线的倾斜角与斜率直线的倾斜角直线的斜率定义定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l_________之间所成的角α叫作直线l的倾斜角.规定:当直线l与x轴______________时,规定它的倾斜角为0°.向上方向平行或重合k=tan α12=2−12−1区别直线l垂直于x轴时,直线l的斜率不存在;斜率k的取值范围为R.联系续 表[0,π)大大2.直线方程的几种形式名称方程说明适用条件斜截式y =kx +bk 是斜率;b 是纵截距.与x轴不垂直的直线.点斜式____________点(x 0,y 0)是直线上的已知点;k 是斜率.两点式点(x 1,y 1),(x 2,y 2)是直线上的两个已知点.与两坐标轴均不垂直的直线.y -y 0=k (x -x 0)名称方程说明适用条件截距式 a是直线的横截距;b是直线的纵截距.不过原点且与两坐标轴均不垂直的直线.一般式Ax+By+C=0(A2+B2≠0)所有直线.+=1注意 当直线与x轴不垂直时,可设直线方程为y=kx+b;当直线与y轴不垂直时,可设直线方程为x=my+n.1. 两条直线的位置关系斜截式一般式方程y =k 1x +b 1,y =k 2x +b 2.相交k 1≠k 2._________________.垂直_________._________________.平行k 1=k 2且_______.重合k 1=k 2且_______.A 1B 2-A 2B 1=B 1C 2-B 2C 1=A 1C 2-A 2C 1=0.A 1B 2-A 2B 1≠0k 1k 2=-1A 1A 2+B 1B 2=0b 1≠b 2b 1=b 2注意 两条直线平行时,不要忘记它们的斜率都不存在的情况;两条直线垂直时,不要忘记一条直线的斜率不存在、另一条直线的斜率为零的情况.2. 两条直线的交点对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,它们的交点通过方程组1+1+1=0,2+2+2=0求解.3. 三种距离公式距离类型公式两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2|=______________________点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d = 两条平行直线Ax +By +C 1=0与Ax +By +C 2=0间的距离d = (2−1)2+(2−1)2|B 0+B 0+U2+2|1−2|2+2注意 点到直线、两平行线间的距离公式的使用条件:(1)求点到直线的距离时,应先将直线方程化为一般式;(2)求两平行线间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.理解自测1.判断正误(正确的打“√”,错误的打“✕”).(1)直线的倾斜角越大,其斜率越大. ( )(2)若直线的斜率为tan α,则其倾斜角为α. ( )(3)经过定点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示. ( )(4)若两直线的方程组成的方程组有解,则两直线相交. ( )(5)点P (x 0,y 0)到直线y =kx +b 的距离为 . ( )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于 ,且线段AB 的中点在直线l 上. ( )✕✕✕✕✕√|kx 0+b |1+k 2-1(7)当直线l 1和直线l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2. ( )(8)若两条直线垂直,则他们的斜率之积一定等于-1. ( )2.直线2x cos α-y -3=0(α∈[π6,π3] )的倾斜角的取值范围是 ( )A.[π6,π3] B.[π4,π3] C.[π4,π2] D.[π4,2π3]3.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 . ✕✕B (-∞,-3]∪[1,+∞)1.典例 (1)已知点A(3,4),则经过点A且在两坐标轴上截距相等的直线方程为 .(2)已知直线l过点P(3,2),且与x轴,y轴的正半轴分别交于A,B两点,如图所示,当△ABO的面积最小时直线l的方程为 .4x-3y=0或x+y-7=0 2x+3y-12=0解析 (1) 设直线在x轴,y轴上的截距均为a.①若a=0,即直线过点(0,0)及(3,4).(讨论截距是否为0)则直线的方程为y=43x,即4x-3y=0.②若a≠0,设所求直线的方程为+=1,又点(3,4)在直线上,所以3+4=1,所以a=7.所以直线的方程为x+y-7=0.综上可知所求直线的方程为4x-3y=0或x+y-7=0.(2)解法一(截距式) 设A(a,0),B(0,b)(a>0,b>0),则直线l的方程为+=1.因为l过点P(3,2),所以3+2=1.因为1=3+2≥26B,整理得ab≥24,所以S△ABO=12ab≥12.当且仅当3= 2,即a=6,b=4时取等号.此时直线l的方程是6+4=1,即2x+3y-12=0.解法二(点斜式) 依题意知,直线l的斜率k存在且k<0,则直线l的方程为y-2=k(x-3),则A(3-2,0),B(0,2-3k),S△ABO=12(2-3k)(3-2)=12[12+(-9k)+4−]≥12[12+2(−9)·4− ]= 12×(12+12)=12,当且仅当-9k=4−,即k=-23时,等号成立.所以所求直线l的方程为2x+3y-12=0.方法技巧1.求解直线方程的两种方法直接法根据已知条件,选择适当的直线方程形式,直接写出直线方程.待定系数法①设所求直线方程的恰当形式(点斜式、斜截式、两点式、截距式和一般式);②由条件建立所求参数的方程(组);③解这个方程(组)求出参数;④把参数的值代入所设直线方程.2.过两直线交点的直线方程的求法(1)先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程,但需注意分类讨论.3.与直线方程有关的最值问题的解题策略先设出直线方程,建立目标函数,再结合函数的单调性或基本不等式求最值.思维拓展常见的直线系方程过定点P(x0,y0)的直线系方程A(x-x)+B(y-y0)=0(A2+B2≠0),还可以表示为y-y=k(x-x0)或x=x0.平行于直线Ax+By+C=0的直线系方程Ax+By+λ=0(λ≠C).垂直于直线Ax+By+C=0的直线系方程Bx-Ay+λ=0.过两条已知直线l1:A1x+B1y+C1=0和l 2:A2x+B2y+C2=0的交点的直线系方程A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R)或A2x+B2y+C2=0.2.变式 (1)已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a= 12 .(2)过直线2x+7y-4=0与7x-21y-1=0的交点,且和A(-3,1),B(5,7)等距离的直线方程为 .21x-28y-13=0或x=1解析 (1) 由题意知直线l1,l2恒过定点P(2,2),直线l1的纵截距为2-a,因为0<a<2,所以2-a>0,直线l2的横截距为a2+2,所以四边形的面积S=12×2(2-a)+12×2(a2+2)=a2-a+4=(a-12)2+154,所以当a=12时,面积最小.(2) 因为A,B到直线7x-21y-1=0的距离不相等,所以可设所求直线方程为2x+7y-4+λ(7x-21y-1)=0,(此直线系不包括直线7x-21y-1=0,解题时,要注意检验该方程是否满足题意)即(2+7λ)x+(7-21λ)y+(-4-λ)=0,考向1直线方程由点A(-3,1),B(5,7)到所求直线的距离相等,可得|(2+7)×(−3)+(7−21)×1−4−|(2+7)2+(7−21)2=|(2+7)×5+(7−21)×7−4−|(2+7)2+(7−21)2,整理可得|43λ+3|=|113λ-55|,解得λ=2935或λ=13,所以所求的直线方程为21x-28y-13=0或x=1.3.典例 (1)[2022南昌市模拟]直线l 1:ax +(a +1)y -1=0,l 2:(a +1)x -2y +3=0,则“a =2”是“l 1⊥l 2”的 ( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知直线l 1:3x -y -1=0,l 2:x +2y -5=0,l 3:x -ay -3=0不能围成三角形,则实数a 的取值不可能为 ( ) A.1B.13C.-2D.-1A A解析 (1) 若l1⊥l2,则a(a+1)+(a+1)×(-2)=0,解得a=-1或a=2,所以“a=2”是“l1⊥l2”的充分不必要条件,故选A.(2) 由题意可得,若三条直线不能围成三角形,则其中有两条直线平行或三条直线经过同一点.若其中有两条直线平行,当l1∥l3时,可得a=13,当l2∥l3时,可得a=-2;若三条直线经过同一点,由3−=1,+2=5可得直线l1与l2的交点为(1,2),则(1,2)在l3上,故可得1-2a-3=0,解得a=-1.综上,实数a的值可能为1,-2,-1.故选A.4.变式 已知直线l 的方程为3x +4y -12=0,(1)若过点(-1,3),且与l平行的直线l 1的方程为 ;(2)若直线l 2与l 垂直,且l 2与两坐标轴围成的三角形的面积为4,则直线l 2的方程为 .3x +4y-9=0 4x-3y +46=0或4x-3y -46=0 解析 (1)解法一 直线l的方程可化为y=-34x+3,可知l的斜率为-34,因为l1与l平行,所以直线l1的斜率为-34.又l1过点(-1,3),所以由点斜式得直线l1的方程为y-3=-34(x+1),即3x+4y-9=0.解法二 由l1与l平行,可设l1的方程为3x+4y+m=0(m≠-12),将(-1,3)代入,得m=-9,于是所求直线方程为3x+4y-9=0.(2) 由l2与l垂直,可设直线l2的方程为4x-3y+p=0,则l2在x轴上的截距为-4,在y轴上的截距为3.由题意可知,l2与两坐标轴围成的三角形的面积S= 12·|3|·|-4|=4,求得p=±46.所以直线l2的方程为4x-3y+46=0或4x-3y-46=0.5.典例 (1)[2022武汉市部分学校质检]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|= ( )A.23B.25C.2D.4(2)[2021全国卷乙][文]双曲线x 24-y 25=1的右焦点到直线x +2y -8=0的距离为 .B 5解析 (1)直线x +2y +1=0与x +2y +3=0间的距离d 1=|3−1|12+22=255,(使用两平行线间的距离公式时,两条直线方程中的x ,y 前的系数必须分别对应相等)直线3x-4y +c 1=0与3x-4y +c 2=0间的距离d 2=|1−2|32+(−4)2=|1−2|5.由菱形的性质,知d 1=d 2,所以|1−2|5=255,所以|c 1-c 2|=25,故选B .(2) 由双曲线的性质知c =3,双曲线右焦点的坐标为(3,0),所以双曲线的右焦点到直线x +2y-8=0的距离d =|3−8|12+22=5.方法技巧求解距离问题的策略(1)点到直线的距离问题可直接利用距离公式求解;(2)动点到两定点距离相等,一般不直接利用两点间的距离公式处理,而是转化为动点在以两定点为端点的线段的垂直平分线上,从而简化计算; (3)两平行线间的距离:①利用两平行线间的距离公式求解;②利用“转化法”将两条直线间的距离转化为一条直线上任意一点到另一条直线的距离.考向3距离问题B6.变式 [2020全国卷Ⅲ] [文]点(0,-1)到直线y=k(x+1)距离的最大值为 ( )A.1B. 2C.3D.2解析 解法一 由点到直线的距离公式知点(0,-1)到直线y=k(x+1)的距离d=|r1|2+1=2+2r12+1=1+22+1.当k=0时,d=1;当k≠0时,d=1+22+1= 1+2r1,要使d最大,需k>0且k+1最小,∴当k=1时,d max=2.解法二 记点A(0,-1),直线y=k(x+1)恒过点B(-1,0),当AB垂直于直线y=k(x+1)时,点A(0,-1)到直线y=k(x+1)的距离最大,且最大值为|AB|= 2.考向4对称问题7.典例 已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A'的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m'的方程;(3)直线l关于点A对称的直线l'的方程.解析 (1)设A'(x,y),则r2r1·23=−1,2×−12−3×−22+1=0,解得=−3313,=413,即A'(-3313,413).(2)在直线m上任取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m'上.设M关于直线l的对称点为M'(a,b),则2×r22−3×r02+1=0,−0−2×23=−1,解得=613,=3013,即M'(613,3013).设m与l的交点为N,则由2−3+1=0,3−2−6=0得N(4,3).又m'经过点N(4,3),所以由两点式得直线m'的方程为9x-46y+102=0.(3)解法一 在l:2x-3y+1=0上任取两点,如P(1,1),N(4,3),则P,N关于点A 的对称点P',N'均在直线l'上.易知P'(-3,-5),N'(-6,-7),由两点式可得l'的方程为2x-3y-9=0.解法二 设Q(x,y)为l'上任意一点,则Q(x,y)关于点A(-1,-2)的对称点为Q'(-2-x,-4-y),因为点Q'在直线l上,所以2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0点关于点对称直线关于点对称直线关于点对称的问题可转化为点关于点对称的问题.点关于直线对称直线关于直线对称直线关于直线的对称问题可转化为点关于直线的对称问题.方法技巧对称问题的解题策略8.变式 (1)一条光线从点P (-2,1)射出,与直线l :x -y +1=0交于点Q (1,2),经直线l 反射,则反射光线所在直线的斜率是 ( )A.1B.3C.2D.3(2)过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为 . D x +4y-4=0点P关于直线l:x-y+1=0的对称点为(0,-1),所以反射光线的斜率为2−(−1)1−0=3.(2)设l1与l的交点为A(a,8-2a),由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把点B的坐标代入l2的方程得-a-3(2a-6)+10=0,解得a=4.因为点A(4,0),P(0,1)在直线l上,所以直线l的方程为x+4y-4=0.。
高考数学一轮复习专题 第九章 直线与圆的方程 第三节理 课件苏教版
解析:法一:如右图所示,设点Q(1,1)关于已知直线的对称点为 Q′(m,n),则入射光线所在的直线为PQ′.则直线PQ′与已知直线的 交点M为反射点.
1 由 m 1 n 1 m 2 n 2 m 1 n 1 1 2 2
利用“垂直”“平分”这两个条件建立方程组,就可求出对称
点的坐标. 设点P(x0 ,y0)关于直线y=kx+b 的对称点为P′( x′,y ′),则
y y0 k 1 , x x0 可求出x′、y′. y y k x x0 b 2 2
的对称点为P(x,y). (1)用θ表示点P的坐标x,y; (2)求证:点P到点B(2,0)的距离为常数. 解析:(1)由中点坐标公式,
x cos 1 x 2 cos 2 y sin y sin 0 2
故点P的坐标为P(2-cosθ,-sin θ). (2)∵|PB|= (2 cos 2) 2 ( sin 0) 2 = cos2 sin 2 =1 ∴点P到点B(2,0)的距离为常数.
变式探究
1.求直线l1:2x-y+2=0关于定点M(1,2)对称的直线 m的方程. 分析:设直线 m上的动点 P ( x,y)关于点M(1 ,2)的对称 点为Q(x0,y0),则Q必在直线l1上,结合中点坐标公式即可 求得. 解析:设直线 m上的动点 P ( x,y)关于点M(1 ,2)的对称 点为Q(x0,y0),则Q必在直线l1上,线段PQ的中点M,由中
故直线PQ′的方程为5x-4y+2=0.
由 5x-4y+2=0
x+y=-1
2023版高考数学一轮总复习:圆的方程及直线圆的位置关系课件文
直线和圆的方程
第二讲 圆的方程及直线、圆的位置关系
要点提炼
考点1
圆的方程
1. 圆的定义与方程
定长
(a,b)
考点1
圆的方程
规律总结
(1)若没有给出r>0,则圆的半径为|r|.
2
2
2
2
(2)在圆的一般方程中:当D +E -4F=0时,方程x +y +Dx+Ey+F=0表示一个点(- ,- );
( ✕)
( √ )
(4)如果两圆的圆心距小于两圆的半径之和,则两圆相交.
( ✕)
(5)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.
( ✕)
(6)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的
直线方程.
( √ )
(7)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则O,P,A,B四点共圆且直
R-r<d <R+r
____________
___________
d_________
>R+r ___________
_____
4
_____
3
________
2
1
0
考点3
圆与圆的位置关系
2.两圆相交时,公共弦所在直线的方程
设圆C1:x2+y2+D1x+E1y+F1=0
(*),圆C2:x2+y2+D2x+E2y+F2=0
y2=1,即x2+y2-2x=0.
高考数学一轮复习 9.2圆的方程及直线与圆课件
d<|r1-r2|
6.圆的切线方程问题 (1)圆的方程为x2+y2=r2(r>0),点M(x0,y0),若点M在☉O上,则过M的切线方程 为x0x+y0y=r2;
若点M在☉O外,则直线x0x+y0y=r2与☉O的位置关系是相交; 若点M在☉O内,则直线x0x+y0y=r2与☉O的位置关系是相离. (2)过圆x2+y2+Dx+Ey+F=0外一点M(x0,y0)引切线,切点为T,切线长公式为 |MT|= x0.2 y02 Dx0 Ey0 F
52 122
典例题组
求圆的方程
典例1 (2014陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x
对称,则圆C的标准方程为
.
答案 x2+(y-1)2=1
解析 根据题意得点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,
所以圆C的标准方程为x2+(y-1)2=1.
1-1 求经过点A(5,2),B(3,-2),且圆心在直线2x-y-3=0上的圆的方程. 解析 解法一:∵圆过A(5,2),B(3,-2)两点,
∴圆心一定在线段AB的垂直平分线上.
易知线段AB的垂直平分线方程为y=- 1 (x-4).
2
设所求圆的圆心坐标为C(a,b),则有
b2a解b12得(a3
典例2 (2014江苏,9,5分)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2
+(y+1)2=4截得的弦长为
.
答案 2 55
5
解析
易知圆心(2,-1),r=2,故圆心到直线的距离d=
| 2 2 (1) 3 |
高考数学一轮复习第九章直线和圆的方程9.2圆的方程公开课课件省市一等奖完整版
的一般方程形式;当所求圆过两已知圆的交点时,可选用圆系方程.
例1 (2017浙江镇海中学阶段测试(一),12)已知圆心在x轴上,半径为 2
的圆M位于y轴左侧,且与直线x-y=0相切,则圆M的方程是
.
解题导引 利用圆心到切线的距离等于圆的半径得圆心坐标→得结论
解析 设圆心坐标为M(a,0)(a<0),则有d= | a | =- a = ,2则a=-2.故圆M的
③ 2 D2E;2
,
E
2;
(3)当D2+E2-4F<0时,方程不表示任何图形.
方法技巧
方法 1 求圆的方程的解题策略
求圆的方程,应先根据题意分析选用哪种形式.当已知条件和圆心、半
径有关时,可用圆的标准方程形式;当已知条件涉及过几个点时,常用圆
k2 1
k=± 3.
所以 y 的最大值为 3 ,最小值为- .3
x
(2)y-x可看作直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截
距b取得最大值或最小值(如图②),此时 | 2 =0 , b | 3
2
解得b=-2± 6. 所以y-x的最大值为-2+ 6,最小值为-2- .6 (3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点 和圆心连线与圆的两个交点处取得最大值和最小值(如图③). 又圆心到原点的距离为 (=22.0)2(00)2 所以x2+y2的最大值是(2+ 3)2=7+4 ,3 x2+y2的最小值是(2- 3)2=7-4 .3
22
方程为(x+2)2+y2=2.
答案 (x+2)2+y2=2
高考数学一轮复习专题 第九章 直线与圆的方程 第二节理 课件苏教版
若点P(x0,y0)在直线Ax+By+C=0上,则有 _________________;若点P(x0,y0)不在直线Ax+By+C=0上 ,3. 则有_(_x2__x1_)2__(_y2__y1_)2______. 已知A(x1,y1),B(x2,y2)
A B C
解但D析当:l1⊥当l2m时=,-1有时3,mk+1m=-(213m-,k12)==30,k1·2km2=2-+12,l1m⊥=l02; m=0或-
1.选A. 答案:A
第七页,共39页。
3.(2009年厦门模拟)已知l1:2x+my+1=0与l2:y=3x-1,若两直线 (zhíxiàn)平行,则m的值为___________.
|AB||=A_x_0 __B_y_0 __C_|________. 4.点与直A线2 、B平2 行线间距离 (1)点P(x0,y0)到直线l:A第四x页,+共B39页y。+C=0的距离:
( 2)两平行线l1:Ax+By+C1=0和l2:Ax+By+C2=0之间的距离: d= . ___| _C A_2_2_-_C_B _1_2|______
(2)证明点P(x0,y0)在直线,x-2y=1
(3)求点P(x0,y0)到原点距离的最小值.
解析:
(1)由
5x+4y=2m+1
2x+3y=m
由 x0>0
y0<0
2m+3>0 m-2<0
x0=
1 (2m+3)
(全国通用)高考数学一轮总复习第九章直线和圆的方程9.3直线与圆、圆与圆的位置关系课件理新人教B版
x
2
y2
4x
12
y
24
0,
x1
x2
2k 4 1 k2
,
x1
x2
1
11 k
2
.
第十二页,共13页。
由弦长公式得 |1x1-kx22|
= (=14 k 2,) [(x③1 x2 )2 4x1x2 ]
3
将②代入③,解得k= 3,
此时直线l的方程为3x4-4y+20=0.
又可知直线l的斜率不存在时也满足题意(tíyì),此时直线l的方程为x=0,
方法 位置关系
几何法
相交 相切 相离
d<r d=r d>r
2.圆与圆的位置(wèi zhi)关系
设圆O1:(x-a1)2+(y-b1)2r=12 (r1>0), 圆O2:(x-a2)2+(y-b2)2r=22 (r2>0).
第二页,共13页。
代数法
Δ>0 Δ=0 Δ<0
方法
几何法:圆心距与r1,r2的关系 代数法:两圆方程联立组成方程组的
因为直线l与曲线(x-2)2+y2=1有公共点,
所以圆心到直线的距离d小于或等于半径,
即d= ≤1,解得- ≤k≤ .
| 2k 4k | k2 1
3
3
3
3
第七页,共13页。
方法(fāngfǎ)2 有关弦长问题的解法
涉及圆的弦长问题时,一般采用几何(jǐ hé)法,如图①,直线被圆截得的半弦长 ,弦心AB距d和圆的
3
∴所3求直线l的方程为3x-4y+20=0或x=0.
解法(jiě fǎ)二:当直线l的斜率存在时,设所求直线l的斜率为k,则直线的方程为y-5=kx,即y=kx+5,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
率
k
不存在. ②计算公式:给定两点
P1(x1,y1),P2(x2,y2)(x1≠x2),经过
P1,P2
两点的直线的斜率公式为k=yx22--yx11
.
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理 2 直线方程的形式及适用条件
注意点 对直线的倾斜角和斜率的理解 每条直线都有唯一的倾斜角,但并不是每条直线都存在斜率;倾斜角和斜率都是反映直线相对于 x 轴 正方向的倾斜程度. 在设直线的斜率为 k 时,就是默认了直线的斜率存在.注意检验当斜率不存在时是否符合题意.
8 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理 2.如图中的直线 l1、l2、l3 的斜率分别为 k1、k2、k3,则( )
A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k2
解析 直线 l1 的倾斜角 α1 是钝角,故 k1<0,直线 l2 与 l3 的倾斜角 α2 与 α3 均为锐角,且 α2>α3,所以 0<k3<k2,因此 k1<k3<k2,故选 D.
撬法·命题法 ·高考数学·理
[考法综述] 高考中对直线方程的考查,一种常见方式是求曲线的切线方程,也可能与其他知识(如
圆锥曲线、圆)综合考查,难度中低档.求直线方程的一种重要方法就是先设直线方程,再求直线方程中的
系数,这种方法叫做待定系数法.运用此方法,要注意各种形式的方程的适用条件,选择适当的直线方程
解析 设 P(x0,0),Q(0,y0),∵M(1,-2)为线段 PQ 中点,∴x0=2,y0=-4,∴直线 PQ 的方程为2x+ -y4=1.
即 2x-y-4=0.
10 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬法·命题法 解题法
11 撬点·基础点 重难点
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.过点 M(1,-2)的直线与 x 轴、y 轴分别交于 P、Q 两点,若 M 恰为线段 PQ 的中点,则直线 PQ 的
方程为( )
A.2x+y=0
B.2x-y-4=0
C.x+2y+3=0 D.x-2y-5=0
的形式至关重要.
命题法 求直线的斜率、倾斜角及方程
典例 (1)直线 xsinα-y+1=0 的倾斜角的变化范围是( )
A.0,2π C.-π4,π4
B.(0,π) D.0,π4∪34π,π
12 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
(2)根据所给条件求直线的方程. ①直线过点(-4,0),倾斜角的正弦值为 1100; ②直线过点(-3,4),且在两坐标轴上的截距之和为 12; ③直线过点(5,10),且到原点的距离为 5.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)在平面直角坐标系下,任何直线都有点斜式方程.( × ) (4)任何直线方程都能写成一般形式.( √ )
14 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
③当斜率不存在时,所求直线方程为 x-5=0,符合题意;当斜率存在时,设斜率为 k, 则所求直线方程为 y-10=k(x-5), 即 kx-y+(10-5k)=0. 由点到直线的距离公式,得|10k-2+51k|=5,解得 k=34. 故所求直线方程为 3x-4y+25=0. 综上知,所求直线方程为 x-5=0 或 3x-4y+25=0.
(2)①由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为 α,则 sinα= 1100(0<α<π), k=tanα=±31.故所求直线方程为 y=±31(x+4). 即 x+3y+4=0 或 x-3y+4=0. ②由题设知截距不为 0,设直线方程为ax+12-y a=1, 又直线过点(-3,4), 从而-a3+124-a=1,解得 a=-4 或 a=9. 故所求直线方程为 4x-y+16=0 或 x+3y-9=0.
[答案] (2)见解析 [解析] (1)直线 xsinα-y+1=0 的斜率是 k=sinα, 又∵-1≤sinα≤1,∴-1≤k≤1, 当 0≤k≤1 时,倾斜角的范围是0,π4; 当-1≤k<0 时,倾斜角的范围是34π,π.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1 表示直线方向的两个量
(1)直线的倾斜角
①定义:在平面直角坐标系中,当直线 l 与 x 轴相交时(取 x 轴作为基准),x 轴正方向与直线 l 向上方向
之间所成的角.
②范围:当直线 l 与 x 轴平行或重合时,规定它的倾斜角 α 为 0°,故直线的倾斜角 α 的取值范围为 0°≤α<180° .
(2)直线的斜率 ①定义:当 α≠90°时, tanα 表示直线 l 的斜率,用 k 表示,即 k=tanα;当 α=90°时,直线 l 的斜
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第1讲 直线的方程和两条直线的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
考点一 直线及其方程
4 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬点·基础点 重难点
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理