空间直角坐标系专题学案(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1

第九讲 空间直角坐标系

时间: 年 月 日 刘老师 学生签名:

一、 兴趣导入

二、 学前测试

要点考向1:利用空间向量证明空间位置关系

考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。

2.题型灵活多样,难度为中档题,且常考常新。

考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。

2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。

例1:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,

90BFC ∠=︒,BF FC =,H 为BC 的中点。

(1)求证:FH ∥平面EDB ;

(2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。

【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。

【规范解答】

E F

B

C D

H

G

X Y

Z

2

,,//,,,,,,,

.

ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB

BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥四边形为正方形,又且,

平面又为中点,且平面

H HB GH HF 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系,

1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则

(1)

(0,0,1),(0,0,1),////HF HF

GE HF HF ∴==∴⊂⊄∴设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又

GE 平面EDB,平面EDB,平面EDB

(2)

(2,2,0),(0,0,1),0,.AC AC AC AC AC =-=∴=∴⊥⊥∴⊥GE GE GE 又BD,且GE BD=G ,平面EBD.

(3)

1111111(1,,),(1,1,1),(2,2,0).

010,10,

220011,0y z BE BD BE y z y z y BD ==--=--⎧=--+=⎧⎪=-=⎨⎨--==⎩⎪⎩∴=-1111设平面BDE 的法向量为n n 由即,得,n n (,)

2222222(1,,),(0,2,0),(1,1,1).

00,01,

10010,-1y z CD CE CD y y z y z CE ==-=-⎧==⎧

⎪==-⎨⎨-+==⎩⎪⎩∴=2222设平面CDE 的法向量为n n 由即,得,n n (,) 12

1212121

cos ,,2||||

2,60,n n n n n n n n ∴<>=

=

=∴<>=即二面角B-DE-C 为60。

【方法技巧】1

、证明线面平行通常转化为证明直线与平面内的一条直线平行;

2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直;

3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。

4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问

题进行求解证明。应用向量法解题,思路简单,易于操作,推荐使用

要点考向2:利用空间向量求线线角、线面角

考情聚焦:1.线线角、线面角是高考命题的重点内容,几乎每年都考。

2.在各类题型中均可出现,特别以解答题为主,属于低、中档题。

考向链接:1.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为:

(1)异面直线所成角

设分别为异面直线的方向向量,则

(2)线面角

设是直线l的方向向量,n是平面的法向量,则

2.运用空间向量坐标运算求空间角的一般步骤为:

(1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。

例2:已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=1

2

AB,N为AB上一点,AB=4AN,M,S分别为

PB,BC的中点.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

【命题立意】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体

的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。

【思路点拨】建系,写出有关点坐标、向量的坐标,

(I)计算CM SN

、的数量积,写出答案;

(II)求平面CMN的法向量,求线面角的余弦,求线面角,写出答案。

【规范解答】

设PA=1,以A为原点,射线AB、AC、AP分别为x,y,z轴正方向建立空间直角坐标系,如图。

则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, 1

2

),N(

1

2

,0,0),S(1,

1

2

,0)

3

相关文档
最新文档