医学信号处理实验-用FFT做频谱分析
实验二用FFT对信号进行频谱分析
![实验二用FFT对信号进行频谱分析](https://img.taocdn.com/s3/m/6f8a04bef605cc1755270722192e453610665bcd.png)
实验二用FFT对信号进行频谱分析简介:频谱分析是信号处理中常用的一种方法,通过将信号变换到频域,可以得到信号的频谱特征。
其中,快速傅里叶变换(FFT)是一种高效的计算频域的方法。
在这个实验中,我们将学习如何使用FFT对信号进行频谱分析。
实验步骤:1.准备工作:a. 安装MATLAB或者Octave等软件,并了解如何运行这些软件。
2.载入信号:a. 在MATLAB或Octave中,使用内置函数加载信号文件,将信号读入到内存中。
b.查看信号的基本信息,例如采样频率、时长等。
3.FFT变换:a. 使用MATLAB或Octave的fft函数将信号由时域变换到频域。
b.设置合适的参数,例如变换的点数、窗口函数等。
可以尝试不同的参数,观察其对结果的影响。
4.频谱绘制:a. 使用MATLAB或Octave的plot函数将变换后的频率数据进行绘制。
b.可以绘制幅度谱(频率的能量分布)或相位谱(频率的相位分布),也可以同时绘制两个谱。
5.频谱分析:a.根据绘制出的频谱,可以观察信号的频率特征。
例如,可以识别出信号中的主要频率分量。
b.可以进一步计算信号的能量、均值、方差等统计量,了解信号的功率特征。
c.可以对不同的信号进行对比分析,了解它们在频域上的差异。
实验结果和讨论:1.绘制出的频谱图可以清晰地显示信号的频率分量,可以识别出信号中的主要频率。
2.通过对不同信号的对比分析,可以发现它们在频域上的差异,例如不同乐器的音调特征。
3.可以进一步分析频谱的统计特征,例如信号的能量、平均幅度、峰值频率等。
4.在进行FFT变换时,参数的选择对结果有一定的影响,可以进行参数的调优,获得更准确的频谱分析结果。
结论:本实验通过使用FFT对信号进行频谱分析,可以获得信号在频域上的特征。
通过观察频谱图和统计特征,可以进一步了解信号的频率分布、能量特征等信息。
这对信号处理、音频分析等领域具有很大的应用价值。
在实际应用中,可以根据不同的需求,选择合适的参数和方法,对不同的信号进行频谱分析。
用FFT对信号做频谱分析
![用FFT对信号做频谱分析](https://img.taocdn.com/s3/m/9be8389a7e192279168884868762caaedc33ba66.png)
用FFT对信号做频谱分析傅里叶变换(Fourier Transform)是一种将信号从时域转换到频域的数学方法,可用于信号的频谱分析。
通过傅里叶变换,我们可以将时域上的信号转换为频域上的频谱,帮助我们理解信号的频率组成以及各个频率分量的强弱。
频谱分析是对信号进行频率分析的过程,是了解信号在频域上的特性和频率成分的一种方法。
通过频谱分析,我们可以获得信号的频率分布情况,帮助我们了解信号的频率成分、频率峰值等信息。
在进行频谱分析时,常用的方法之一是采用快速傅里叶变换(FFT)。
FFT是一种高效的算法,能够快速计算离散傅里叶变换(DiscreteFourier Transform)。
下面将详细介绍FFT在频谱分析中的应用。
首先,我们需要将待分析的信号转换为数字信号,并对其进行采样,得到一个离散的信号序列。
然后,使用FFT算法对这个离散信号序列进行傅里叶变换,得到信号的频谱。
在进行FFT之前,需要进行一些预处理工作。
首先,需要将信号进行加窗处理,以减少泄露效应。
加窗可以选择矩形窗、汉宁窗、汉明窗等,不同的窗函数对应不同的性能和应用场景。
其次,需要对信号进行零填充,即在信号序列末尾添加零值,以增加频谱的分辨率。
零填充可以提高频谱的平滑度,使得频域上的分辨率更高。
接下来,我们使用FFT算法对经过加窗和零填充的信号序列进行傅里叶变换。
FFT算法将离散信号变换为离散频谱,得到信号的频率成分和强度。
FFT结果通常呈现为频率和振幅的二维图像,横轴表示频率,纵轴表示振幅。
通过观察频谱图像,我们可以得到一些关于信号的重要信息。
首先,我们可以观察到信号的频率成分,即信号在不同频率上的分布情况。
在频谱图像中,高峰表示信号在该频率上强度较高,低峰表示信号在该频率上强度较低。
其次,我们可以通过峰值的位置和强度来分析信号的主要频率和频率成分。
频谱图像上的峰值位置对应着信号的主要频率,峰值的高度对应着信号在该频率上的强度。
最后,我们还可以通过观察频谱图像的整体分布情况,来获取信号的频率范围和频率分布的特点。
实验二的应用FFT对信号进行频谱分析
![实验二的应用FFT对信号进行频谱分析](https://img.taocdn.com/s3/m/2b0b709032d4b14e852458fb770bf78a65293a97.png)
实验二的应用FFT对信号进行频谱分析引言:频谱分析是通过将连续信号转换为离散信号,根据信号在频域上的强度分布来分析信号的频谱特性。
其中,FFT(Fast Fourier Transform,快速傅里叶变换)是一种常见的频谱分析算法,可以高效地计算离散信号的傅里叶变换。
实验目的:本实验旨在使用FFT算法来对一个信号进行频谱分析,从而了解FFT 的原理和应用。
实验器材:-计算机-MATLAB软件实验步骤:1.准备信号数据:首先,需要准备一个信号数据用于进行频谱分析。
可以通过MATLAB 自带的函数生成一个简单的信号数据,例如生成一个正弦信号:```Fs=1000;%采样频率T=1/Fs;%采样时间间隔L=1000;%信号长度t=(0:L-1)*T;%时间向量S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); % 生成信号,包含50Hz和120Hz的正弦波成分```其中,Fs为采样频率,T为采样时间间隔,L为信号长度,t为时间向量,S为生成的信号数据。
2.进行FFT计算:利用MATLAB提供的fft函数,对准备好的信号数据进行FFT计算,得到信号的频谱:```Y = fft(S); % 对信号数据进行FFT计算P2 = abs(Y/L); % 取FFT结果的模值,并归一化P1=P2(1:L/2+1);%取模值前一半P1(2:end-1) = 2*P1(2:end-1); % 对非直流分量进行倍频处理f=Fs*(0:(L/2))/L;%计算对应的频率```其中,Y为FFT计算的结果,P2为对应结果的模值,并进行归一化处理,P1为P2的前一半,f为对应的频率。
3.绘制频谱图:使用MATLAB的plot函数,将频率和对应的功率谱绘制成频谱图:```plot(f,P1)title('Single-Sided Amplitude Spectrum of S(t)')xlabel('f (Hz)')ylabel(',P1(f),')```实验结果与分析:上述实验步骤通过MATLAB实现了对一个信号的频谱分析并绘制成频谱图。
实验四应用快速傅里叶变换对信号进行频谱分析
![实验四应用快速傅里叶变换对信号进行频谱分析](https://img.taocdn.com/s3/m/188e77bdf605cc1755270722192e453610665bf0.png)
实验四应用快速傅里叶变换对信号进行频谱分析引言:频谱分析是信号处理领域中的重要技术之一,可以用于研究信号的频率特性和频域内的信号成分。
傅里叶变换是一种能将时域信号转换为频域信号的数学工具,通过将信号分解成一系列频率分量来分析信号。
快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的方法,尤其适合实时信号处理。
实验目的:1.理解傅里叶变换在频谱分析中的应用;2.掌握使用FFT对信号进行频谱分析的方法;3.实现频谱分析并得出相应的频谱图。
实验器材和材料:1.信号源(例如信号发生器);2.电脑或数字信号处理器(DSP);3.音频线或数据线连接信号源和电脑或DSP。
实验步骤:1.确定实验所需信号源的类型和参数,例如正弦信号、方波信号或任意信号;2.连接信号源和电脑或DSP,确保信号源输出的信号能够被电脑或DSP接收;3. 在电脑或DSP上选择合适的软件或编程语言环境,例如MATLAB、Python或C;4.编写程序或命令以控制信号源产生相应的信号,并将信号输入到电脑或DSP中;5.读取信号,并使用FFT对信号进行傅里叶变换;6.分析得到的频谱数据,绘制频谱图;7.对得到的频谱图进行解读和分析。
实验注意事项:1.在选择信号源和连接电脑或DSP时,注意信号源的输出范围和电脑或DSP的输入范围,避免信号超出范围导致损坏设备;2.根据实际需要选择合适的采样率和采样点数,以保证能够对信号进行充分的频谱分析;3.在进行FFT计算时,注意选择适当的窗函数和重叠率,以克服频谱分析中的泄漏效应。
实验结果与讨论:通过对信号进行频谱分析,我们可以得到信号的频率特性和频域内的成分信息。
根据得到的频谱图,我们可以分析信号的主要频率分量、功率谱密度以及可能存在的干扰或噪声。
通过对频谱图的解读和分析,可以帮助我们理解信号的特征和变化规律,为后续的信号处理和应用提供有价值的信息。
结论:本实验通过应用快速傅里叶变换对信号进行频谱分析,从而得到信号在频域内的成分信息并绘制出频谱图。
实验二用FFT做谱分析实验报告
![实验二用FFT做谱分析实验报告](https://img.taocdn.com/s3/m/8f0a782349d7c1c708a1284ac850ad02de8007e5.png)
实验二用FFT做谱分析实验报告一、引言谱分析是信号处理中一个重要的技术手段,通过分析信号的频谱特性可以得到信号的频率、幅度等信息。
傅里叶变换是一种常用的谱分析方法,通过将信号变换到频域进行分析,可以得到信号的频谱信息。
FFT(快速傅里叶变换)是一种高效的计算傅里叶变换的算法,可以大幅减少计算复杂度。
本实验旨在通过使用FFT算法实现对信号的谱分析,并进一步了解信号的频谱特性。
二、实验目的1.理解傅里叶变换的原理和谱分析的方法;2.学习使用FFT算法对信号进行谱分析;3.通过实验掌握信号的频谱特性的分析方法。
三、实验原理傅里叶变换是将信号从时域转换到频域的一种数学变换方法,可以将一个非周期性信号分解为一系列正弦和余弦函数的叠加。
FFT是一种计算傅里叶变换的快速算法,能够在较短的时间内计算出信号的频谱。
在进行FFT谱分析时,首先需要对信号进行采样,然后利用FFT算法将采样后的信号转换到频域得到信号的频谱。
频谱可以用幅度谱和相位谱表示,其中幅度谱表示信号在不同频率下的幅度,相位谱表示信号在不同频率下的相位。
四、实验装置和材料1.计算机;2.信号发生器;3.数字示波器。
五、实验步骤1.连接信号发生器和示波器,通过信号发生器产生一个周期为1s的正弦信号,并将信号输入到示波器中进行显示;2.利用示波器对信号进行采样,得到采样信号;3.利用FFT算法对采样信号进行频谱分析,得到信号的频谱图。
六、实验结果[插入频谱图]从频谱图中可以清晰地看到信号在不同频率下的幅度和相位信息。
其中,频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。
七、实验分析通过对信号的频谱分析,我们可以得到信号的频率分量和其对应的幅度和相位信息。
通过分析频谱图,我们可以得到信号中各个频率分量的相对强度。
在本实验中,我们可以看到频率为2Hz的分量的幅度最大,频率为5Hz的分量的幅度次之。
这说明信号中存在2Hz和5Hz的周期性成分,且2Hz的成分更为明显。
用FFT对信号作频谱分析
![用FFT对信号作频谱分析](https://img.taocdn.com/s3/m/1037928409a1284ac850ad02de80d4d8d05a0172.png)
用FFT对信号作频谱分析快速傅立叶变换(FFT)是一种在信号处理中常用于频谱分析的方法。
它是傅立叶变换的一种快速算法,通过将信号从时间域转换到频域,可以提取信号的频率信息。
FFT算法的原理是将信号分解为不同频率的正弦波成分,并计算每个频率成分的幅度和相位。
具体而言,FFT将信号划分为一系列时间窗口,每个窗口内的信号被认为是一个周期性信号,然后对每个窗口内的信号进行傅立叶变换。
使用FFT进行频谱分析可以得到信号的频率分布情况。
频谱可以显示信号中各个频率成分的强度。
通过分析频谱可以识别信号中的主要频率成分,判断信号中是否存在特定频率的干扰或噪声。
常见的应用包括音频信号处理、图像处理、通信系统中的滤波和解调等。
使用FFT进行频谱分析的步骤如下:1.首先,获取待分析的信号,并确保信号是离散的,即采样频率与信号中的最高频率成分满足奈奎斯特采样定理。
2.对信号进行预处理,包括去除直流分量和任何不需要的干扰信号。
3.对信号进行分段,分段后的每个窗口长度在FFT算法中通常为2的幂次方。
常见的窗口函数包括矩形窗、汉明窗等。
4.对每个窗口内的信号应用FFT算法,将信号从时间域转换到频域,并计算每个频率成分的幅度和相位。
5.对所有窗口得到的频谱进行平均处理,以得到最终的频谱分布。
在使用FFT进行频谱分析时需要注意的问题有:1.噪声的影响:FFT对噪声敏感,噪声会引入幅度偏差和频率漂移。
可以通过加窗等方法来减小噪声的影响。
2.分辨率的选择:分辨率是指在频谱中能够分辨的最小频率间隔。
分辨率与信号长度和采样频率有关,需要根据需求进行选择。
3.漏泄效应:当信号中的频率不是FFT长度的整数倍时,会出现漏泄效应。
可以通过零填充等方法来减小漏泄效应。
4.能量泄露:FFT将信号限定在一个周期内进行计算,如果信号过长,则可能导致部分频率成分的能量泄露到其他频率上。
总之,FFT作为信号处理中常用的频谱分析方法,能够提取信号中的频率信息,广泛应用于多个领域。
实验应用FFT对信号进行频谱分析
![实验应用FFT对信号进行频谱分析](https://img.taocdn.com/s3/m/4bc48361b307e87100f6960c.png)
20090401310074 海南大学实验二 应用FFT 对信号进行频谱分析一、实验目的1、进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。
2、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。
二、实验原理i.模拟信号频率Ω和采样得到的数字信号频率ω的关系:/s T f ω=Ω=Ωii.DTFT 与对应的理想采样信号的频谱之间的对应关系为:|^()()jw a T X j X e ω=ΩΩ=即DTFT 与FT 的关系为:12()[()]j a r X e X j r T T Tωωπ∞=-∞=-∑就是说,只要知道了采样序列的频谱,就可以得到相应的连续信号的频谱。
(满足耐奎斯特采样定理)iii.DFT 是对离散时间序列的频域采样,是对ZT 上单位圆上的均匀采样,或者是DTFT 上[0,2]π的等间距采样。
当满足频域的采样定理时,便可以由频域的采样值恢复ZT 或者是DTFT 。
所以能用DFT 对信号进行频谱分析。
当采样的点数足够时,便能用它的包络作为模拟信号的近似谱。
近似的过程中,可能会有混叠现象,泄露现象和栅栏效应这三种误差。
iv.离散傅立叶变换DFT :10()(),0,1,2...,1N nkN n X k x n W k N -===-∑[]101()()(),0,1,2...,1N nkN n x n IDFT X k X k W n N N --====-∑反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。
因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此借助FFT 来实现IFFT.三、实验内容和结果:1. 高斯序列的时域和频域特性:高斯序列的时域表达式:2(),015()0,n p q a e n x n -⎧⎪≤≤=⎨⎪⎩其它i. 固定参数p=8,改变参数q 的值,记录时域和频域的特性如下图。
实验三用FFT频谱分析
![实验三用FFT频谱分析](https://img.taocdn.com/s3/m/20c7be4dba68a98271fe910ef12d2af90242a8d2.png)
实验三用FFT频谱分析FFT(快速傅里叶变换)是一种常用的信号处理技术,可用于频谱分析。
频谱分析是分析信号中各频率成分的强度和相位的过程。
在本实验中,我们将使用FFT技术来进行频谱分析。
首先,我们需要了解一些基本概念。
任何信号都可以看作是不同频率的正弦波的叠加。
通过对信号进行傅里叶变换,我们可以将其表示为频率和幅度的函数,这就是频谱。
FFT是一种快速计算傅里叶变换的算法,大大提高了计算效率。
接下来,我们将使用Python的NumPy库来进行FFT频谱分析。
首先,我们需要导入NumPy库以及Matplotlib库用于绘图。
```pythonimport numpy as npimport matplotlib.pyplot as plt```然后,我们可以生成一个示例信号用于频谱分析。
在此实验中,我们将使用包含两个频率成分的正弦波。
```python#生成时间序列t = np.linspace(0, 1, 1000)#生成频率为10Hz和20Hz的信号f1=10f2=20signal = np.sin(2*np.pi*f1*t) + np.sin(2*np.pi*f2*t)```接下来,我们可以进行FFT频谱分析。
```python#对信号进行FFTfft = np.fft.fft(signal)#计算频率轴freqs = np.fft.fftfreq(len(signal))#绘制功率谱密度图plt.plot(freqs, np.abs(fft)**2)plt.xlabel('Frequency')plt.ylabel('Power')plt.show```这样就完成了FFT频谱分析。
我们可以通过查看功率谱密度图来了解信号的频率成分。
在图中,横轴表示频率,纵轴表示功率。
功率谱密度图可以帮助我们确定信号中存在的频率成分的强度。
在本实验中,我们使用了两个频率为10Hz和20Hz的正弦波信号进行了示例分析。
实验三用FFT对信号作频谱分析_实验报告
![实验三用FFT对信号作频谱分析_实验报告](https://img.taocdn.com/s3/m/0a41e06a905f804d2b160b4e767f5acfa1c78397.png)
实验三用FFT对信号作频谱分析_实验报告一、实验目的1.学习使用FFT(快速傅里叶变换)对信号进行频谱分析;2.掌握频谱分析的基本原理和方法;3.熟悉使用MATLAB进行频谱分析的操作。
二、实验原理FFT是一种基于傅里叶变换的算法,可以将时域信号转换为频域信号,并将信号的频谱特征展示出来。
在频谱分析中,我们通过分析信号的频谱可以获得信号的频率、幅值等信息,从而对信号的性质和特征进行研究。
对于一个连续信号,我们可以通过采样的方式将其转换为离散信号,再利用FFT算法对离散信号进行频谱分析。
FFT算法可以将信号从时域转换到频域,得到离散的频谱,其中包含了信号的频率分量以及对应的幅值。
MATLAB中提供了fft函数,可以方便地对信号进行FFT分析。
通过对信号进行FFT操作,可以得到信号的频谱图,并从中提取出感兴趣的频率信息。
三、实验步骤1.准备工作:(2)建立新的MATLAB脚本文件。
2.生成信号:在脚本中,我们可以通过定义一个信号的频率、幅值和时间长度来生成一个信号的波形。
例如,我们可以生成一个频率为1000Hz,幅值为1的正弦波信号,并设置信号的时间长度为1秒。
3.对信号进行FFT分析:调用MATLAB中的fft函数,对信号进行FFT分析。
通过设置采样频率和FFT长度,可以得到信号的频谱。
其中,采样频率是指在单位时间内连续采样的次数,FFT长度是指离散信号的样本点数。
4.绘制频谱图:调用MATLAB中的plot函数,并设置x轴为频率,y轴为幅值,可以绘制出信号的频谱图。
频谱图上横坐标表示信号的频率,纵坐标表示信号的幅值,通过观察可以得到信号的频率分布情况。
四、实验结果在实验过程中,我们生成了一个频率为1000Hz,幅值为1的正弦波信号,并对其进行FFT分析。
通过绘制频谱图,我们发现信号在1000Hz处有最大幅值,说明信号主要由这一频率成分组成。
五、实验总结本实验通过使用FFT对信号进行频谱分析,我们可以方便地从信号的波形中提取出频率分量的信息,并绘制出频谱图进行观察。
fft频谱分析实验报告
![fft频谱分析实验报告](https://img.taocdn.com/s3/m/64863a60bdd126fff705cc1755270722192e591d.png)
fft频谱分析实验报告
《FFT频谱分析实验报告》
摘要:
本实验利用FFT(快速傅里叶变换)技术对信号进行频谱分析,通过实验数据
的采集和处理,得出了频谱分析的结果。
实验结果表明,FFT技术可以有效地
对信号进行频谱分析,为信号处理提供了重要的工具和方法。
引言:
频谱分析是信号处理中的重要内容,通过对信号的频谱进行分析,可以了解信
号的频率成分和能量分布情况,对信号的特性有着重要的指导作用。
FFT作为
一种快速、高效的频谱分析方法,被广泛应用于信号处理领域。
本实验旨在通
过对信号进行FFT频谱分析,探讨FFT技术在频谱分析中的应用效果。
实验内容:
1. 实验仪器:使用数字示波器采集信号数据。
2. 实验步骤:通过数字示波器采集信号数据,并进行FFT频谱分析。
3. 实验数据处理:对采集到的信号数据进行FFT频谱分析,并得出频谱分析结果。
4. 实验结果分析:对频谱分析结果进行分析和讨论。
实验结果:
通过实验数据的采集和处理,得出了信号的频谱分析结果。
分析结果表明,FFT 技术可以有效地对信号进行频谱分析,得到了信号的频率成分和能量分布情况。
通过对实验数据的分析,我们得以了解信号的频谱特性,为信号处理提供了重
要的参考依据。
结论:
本实验通过对信号进行FFT频谱分析,得出了频谱分析的结果。
实验结果表明,FFT技术可以有效地对信号进行频谱分析,为信号处理提供了重要的工具和方法。
通过本实验的实践操作,我们对FFT频谱分析技术有了更深入的了解,为
今后的实际应用提供了重要的参考依据。
实验三:用FFT对信号作频谱分析_实验报告
![实验三:用FFT对信号作频谱分析_实验报告](https://img.taocdn.com/s3/m/98a35af1ba4cf7ec4afe04a1b0717fd5360cb297.png)
实验三:用FFT对信号作频谱分析_实验报告一、实验目的:掌握用FFT对信号作频谱分析的方法。
二、实验仪器:1、计算机;2、MATLAB软件。
三、实验原理:FFT即快速傅里叶变换,是一种用来处理数字信号的算法,其将一个信号从时域(即时间域)中转换到了频域中。
傅里叶变换可以将时域上的信号转换到频域上,分析其中的各频率分量,以及各分量的大小、相位等。
由于实验过程较为简单,这里就不展开讲解。
四、实验内容:假设现在有一个包含了多种频率成分的信号,要求对其进行频谱分析。
五、实验步骤:(1)生成信号,此处生成的信号包含了2种频率成分。
```Fs=2000; %采样率T=1/Fs; %采样周期N=1024; %采样点数t=(0:N-1)*T; %时域采样点f1=150; %第一个频率成分f2=600; %第二个频率成分x=sin(2*pi*f1*t)+0.3*sin(2*pi*f2*t); %合成信号```(2)做傅里叶变换,将信号转换到频域。
```Y=fft(x); %做傅里叶变换P2=abs(Y/N); %取模P1=P2(1:N/2+1); %取单边谱P1(2:end-1)=2*P1(2:end-1); %翻倍f=Fs*(0:(N/2))/N; %频率点```(3)画出频谱图并分析。
```figuresubplot(2,1,1);plot(t,x);title('时域波形');xlabel('时间/s');ylabel('幅值/V');subplot(2,1,2);plot(f,P1,'r');title('频域谱图');xlabel('频率/Hz');ylabel('幅值/V');```六、实验结果分析:根据实验结果,可以看出原信号中包含的频率成分明显,且经过傅里叶变换后的频域谱图也反映出了信号中各个频率成分的大小和出现的频率位置。
用FFT对信号作频谱分析实验报告
![用FFT对信号作频谱分析实验报告](https://img.taocdn.com/s3/m/ab530db4bb0d4a7302768e9951e79b89680268ae.png)
用FFT对信号作频谱分析实验报告实验目的:利用FFT对信号进行频谱分析,掌握FFT算法的原理及实现方法,并获取信号的频谱特征。
实验仪器与设备:1.信号发生器2.示波器3.声卡4.计算机实验步骤:1.将信号发生器与示波器连接,调节信号发生器的输出频率为待测信号频率,并将示波器设置为XY模式。
2.将示波器的输出接口连接至声卡的输入接口。
3.打开计算机,运行频谱分析软件,并将声卡的输入接口设置为当前输入源。
4.通过软件选择频谱分析方法为FFT,并设置采样率为合适的数值。
5.通过软件开始进行频谱分析,记录并保存频谱图像和数据。
实验原理:FFT(快速傅里叶变换)是一种计算机算法,用于将时域信号转换为频域信号。
它通过将一个信号分解成多个不同频率的正弦波或余弦波的合成,并计算每个频率分量的幅度和相位信息。
实验结果与分析:通过对待测信号进行FFT频谱分析,我们可以得到信号在频域上的频谱特征。
频谱图像可以展示出信号中不同频率成分的能量分布情况,可以帮助我们了解信号的频率构成及其相对重要程度。
在实验中,我们可以调节信号发生器的输出频率,观察频谱图像的变化。
当信号频率与采样率相等时,我们可以得到一个峰值,表示信号的主频率。
同时,我们还可以观察到其他频率分量的存在,其幅度与信号频率的差距越小,幅度越低。
通过对不同信号进行频谱分析,我们可以了解信号的频率成分及其分布情况。
这对于信号处理、通信等领域具有重要意义。
实验结论:通过FFT频谱分析,我们可以获得信号在频域上的频谱特征,可以清晰地观察到信号的主频率以及其他频率分量的存在。
这为信号处理及相关应用提供了有价值的信息。
实验中,我们使用了信号发生器、示波器、声卡和计算机等设备,通过连接和软件进行了频谱分析实验。
通过实验,我们掌握了FFT算法的原理及实现方法,并且获取到了信号的频谱特征。
然而,需要注意的是,频谱分析仅能得到信号在其中一时刻或一段时间内的频率成分,不能得到信号的时域信息。
实验三用FFT对信号作频谱分析_实验报告
![实验三用FFT对信号作频谱分析_实验报告](https://img.taocdn.com/s3/m/872e91497dd184254b35eefdc8d376eeaeaa17d0.png)
实验三用FFT对信号作频谱分析_实验报告一、实验目的1.理解离散傅里叶变换(FFT)的原理和应用;2.学会使用FFT对信号进行频谱分析;3.掌握频谱分析的基本方法和实验操作。
二、实验原理离散傅里叶变换(FFT)是一种用来将时域信号转换为频域信号的数学工具。
其基本原理是将连续时间信号进行离散化,然后通过对离散信号进行傅里叶变换得到离散频域信号。
傅里叶变换(Fourier Transform)是一种将时域信号转换为频域信号的方法。
在信号处理中,经常需要对信号的频谱进行分析,以获取信号的频率分量信息。
傅里叶变换提供了一种数学方法,可以将时域信号转换为频域信号,实现频谱分析。
在频谱分析中,我们常常使用快速傅里叶变换(Fast Fourier Transform,FFT)算法进行离散信号的频谱计算。
FFT算法可以高效地计算出离散信号的频谱,由于计算复杂度低,广泛应用于信号处理和频谱分析的领域。
频谱分析的流程一般如下:1.采集或生成待分析的信号;2.对信号进行采样;3.对采样得到的信号进行窗函数处理,以改善频谱的分辨率和抑制信号泄漏;4.使用FFT算法对窗函数处理得到的信号进行傅里叶变换;5.对傅里叶变换得到的频谱进行幅度谱和相位谱分析;6.对频谱进行解释和分析。
三、实验内容实验所需材料和软件及设备:1.信号发生器或任意波形发生器;2.数字示波器;3.计算机。
实验步骤:1.连接信号发生器(或任意波形发生器)和示波器,通过信号发生器发送一个稳定的正弦波信号;2.调节信号频率、幅度和偏置,得到不同的信号;3.使用数字示波器对信号进行采样,得到离散时间信号;4.对采样得到的信号进行窗函数处理;5.对窗函数处理得到的信号进行FFT计算,得到频谱;6.使用软件将频谱进行幅度谱和相位谱的分析和显示。
四、实验结果与分析1.信号频谱分析结果如下图所示:(插入实验结果图)从频谱图中可以看出,信号主要集中在一些频率上,其他频率基本没有,表明信号主要由该频率成分组成。
实验3 用FFT对信号作频谱分析
![实验3 用FFT对信号作频谱分析](https://img.taocdn.com/s3/m/c337fd71a5e9856a5612605a.png)
选择 采样频率 ,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。
4(思考题
(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析, (2)如何选择FFT的变换区间,(包括非周期信号和周期信号) (3)当N=8时, 和 的幅频特性会相同吗,为什么,N=16 呢, 5(实验报告要求
%实验内容(1)===================================================
(1)完成各个实验任务和要求。附上程序清单和有关曲线。
(2)简要回答思考题。
=====================================================================
========Байду номын сангаас==
%第10章实验3程序exp3.m
% 用FFT对信号作频谱分析
clear all;close all
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3(实验步骤及内容
(1)对以下序列进行谱分析。
选择FFT的变换区间N为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
选择FFT的变换区间N为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。
feel free to listen to their voices and help the masses solve problems, we were officially opened on May 10 "12345" Mayor calls, formulated rules and regulations, equipped with a full-time staff, a 24-hour on-duty system, people to call to receive, reply, action, reminders, feedback and so on. By year end, handled the crowd calls 1076, 94.7% feedback rate. By Mayor calls active coordination to solve a large number of bears on the immediate interests of the people and issues of great lives, but also for leadership research and decision to collect a lot of good ideas and suggestions, by all sectors of the community alike. Second, start Municipal Government Affairs Hall built. On May 11, we built and launched the city-government lobby, were settled in 12 departments, strict implementation of first asking duty system, service system, system of gratuitous, "receiving, internal coordination, head of the window handle, limited time concluded" one-stop service. By the end of today to accept various types of 3,273, originally of up to 100%. Running Government Affairs Hall, the convenience of the masses, promoting open Government, improve the investment environment and solve their practical problems, and so did a lot of work, masses, serve the community for the Government to play a very good "window, link, model". Third, create a city government public affairs network. We rely on theGovernment Web site, was completed on May 24, the province's first public affairs network. Over
实验二 应用 FFT 对信号进行频谱分析
![实验二 应用 FFT 对信号进行频谱分析](https://img.taocdn.com/s3/m/812822ff19e8b8f67c1cb9c6.png)
实验二 应用 FFT 对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉 FFT 算法及其程序的编写。
2、熟悉应用 FFT 对典型信号进行频谱分析的方法。
3、了解应用 FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用 FFT 。
二、实验原理与方法一个连续信号 )(t x a 的频谱可以用它的傅立叶变换表示为⎰+∞∞-Ω-=Ωdt e t x j X t j a a )()( (2-1)如果对该信号进行理想采样,可以得到采样序列)()(nT x n x a = (2-2)同样可以对该序列进行z 变换,其中T 为采样周期∑+∞-∞=-=n n z n x z X )()( (2-3) 当 ωj ez =的时候,我们就得到了序列的傅立叶变换 ∑+∞-∞=-=n n j j e n x e X ωω)()( (2-4)其中ω称为数字频率,它和模拟域频率的关系为s f T Ω=Ω=ω(2-5)式中的s f 是采样频率。
上式说明数字频率是模拟频率对采样率s f 的归一化。
同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。
序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系∑-=)2(1)(Tm j X T e X a j πωω (2-6) 即序列的频谱是采样信号频谱的周期延拓。
从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。
注意:这里的信号必须是带限信号,采样也必须满足 Nyquist 定理。
在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。
无限长的序列也往往可以用有限长序列来逼近。
对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是 N 时,我们定义离散傅立叶变换为:∑-===10)()]([)(N n kn NW n x n x DFT K X (2-7) 其中,N j N e W π2-=它的反变换定义为:∑-=-==10)(1)]([)(N k kn N W k X N k X IDFT n x (2-8) 根据式(2-3)和(2-7)令 k N W z -=,则有)]([)()(10n x DFT W n x z X N n kn N W z k N ==∑-==- (2-9)可以得到 k N k N j W z W e z X k X k N -===-,)()(2π是 z 平面单位圆上幅角为k Nπω2=的点,就是将单位圆进行 N 等分以后第 k 个点。
应用FFT对信号进行频谱分析
![应用FFT对信号进行频谱分析](https://img.taocdn.com/s3/m/e8b42820aaea998fcc220e6f.png)
>> for i=1:4 x(i)=5-i; end >> for i=5:8 x(i)=i-4; end >> for i=9:16 x(i)=0; end >> close all;subplot(2,1,1);stem(x); >> subplot(2,1,2);stem(abs(fft(x,16)));
可以得到������ ������ = ������(������)|
������������ −������ ������ ������=������−������ ������ =������ ������
, ������−������ ������ 是 Z 平面单位圆上幅角为������ =
������的点, 就是将
二、实验原理与方法
一个连续信号 xa(t)的频谱可以用他的傅立叶变换表示为 +∞ ������������ (������������)= −∞ ������������ (������)������−������������������������������ 如果对该信号进行理想采样,可以得到采样序列: x(n)=Xa(nT) 同样可以对该序列进行 Z 变换,其中 T 为采样周期 ∞ X(z)= + x n z-n n=-∞ 当 Z=ej 的时候,我们就得到了序列的傅立叶变换 ω ∞ X(ej )= + x n ������−������������������ n=-∞
>> p=8;q=8;x=exp(-1*(n-p).^2/q); >> close all;subplot(3,1,1);stem(abs(fft(x))) >> p=13;q=8;x=exp(-1*(n-p).^2/q); >> subplot(3,1,2);stem(abs(fft(x))) >> p=14;q=8;x=exp(-1*(n-p).^2/q); >> subplot(3,1,3);stem(abs(fft(x)))
fft谱分析实验报告
![fft谱分析实验报告](https://img.taocdn.com/s3/m/f6abb74517fc700abb68a98271fe910ef12dae88.png)
FFT谱分析实验报告1. 引言谱分析是一种常见的信号处理技术,用于将一个信号分解为不同频率的成分。
FFT(快速傅里叶变换)是一种高效的算法,用于计算离散傅里叶变换,广泛应用于谱分析中。
本实验旨在探究FFT在信号处理中的应用,并通过实验验证其有效性。
2. 实验目的本实验旨在: - 理解FFT算法的原理和实现方法; - 学习如何使用FFT对信号进行频谱分析; - 验证FFT算法的准确性和有效性。
3. 实验步骤3.1 准备实验材料和工具为了进行谱分析实验,我们需要准备以下材料和工具: - 信号源(例如音频文件、信号发生器等) - 电脑(用于运行信号处理软件) - 信号处理软件(例如MATLAB、Python等)3.2 选择信号源在本实验中,我们选择了一个音频文件作为信号源。
音频文件包含了不同频率的声音信号,适合用于谱分析。
3.3 导入信号源使用信号处理软件,将选择的音频文件导入到程序中。
3.4 实施FFT算法根据FFT算法的原理,我们可以使用信号处理软件实施FFT算法。
以下是实施FFT算法的步骤: 1. 对导入的音频信号进行采样。
2. 将采样后的信号进行傅里叶变换,得到信号的频域表示。
3. 可选地,对频域表示进行滤波或其他信号处理操作。
4. 将处理后的信号进行逆傅里叶变换,得到恢复后的信号。
3.5 分析结果通过实施FFT算法,我们得到了信号的频域表示。
可以通过绘制频谱图来直观地观察信号的频率成分。
频谱图通常以频率为横轴,幅度为纵轴。
通过观察频谱图,我们可以分析信号中存在的频率成分及其强度。
3.6 结果验证为了验证FFT算法的有效性,我们可以选择一些已知频率的信号作为测试样本。
通过对测试样本进行FFT分析,并与已知频率进行比较,可以评估FFT算法的准确性。
4. 结果与讨论通过实验,我们成功使用FFT算法对音频信号进行了谱分析。
通过观察频谱图,我们可以清楚地看到信号中存在的频率成分。
在结果验证部分,我们与已知频率进行了比较,结果表明FFT算法具有较高的准确性。
实验三用FFT对信号作频谱分析实验报告
![实验三用FFT对信号作频谱分析实验报告](https://img.taocdn.com/s3/m/769e67bfc8d376eeaeaa31e8.png)
实验三:用FFT对信号作频谱分析实验报告一、实验目的与要求学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。
二、实验原理用FFT对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D和分析误差。
频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N小于等于D。
可以根据此式选择FFT的变换区间N。
误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。
三、实验步骤及内容(含结果分析)(1)对以下序列进行FFT分析:x 1(n)=R4(n)x2(n)=n+1 0≤n≤38-n 4≤n≤74-n 0≤n≤3n-3 4≤n≤7x(n)=3选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
【实验结果如下】:实验结果图形与理论分析相符。
(2)对以下周期序列进行谱分析:x(n)=cos[(π/4)*n]4(n)= cos[(π/4)*n]+ cos[(π/8)*n]x5选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
【实验结果如下】:(3)对模拟周期信号进行频谱分析:(n)= cos(8πt)+ cos(16πt)+ cos(20πt)x6选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。
【实验结果如下】:四、【附录】(实验中代码)x1n=[ones(1,4)]; %产生R4(n)序列向量X1k8=fft(x1n,8); %计算x1n的8点DFTX1k16=fft(x1n,16); %计算x1n的16点DFT%以下绘制幅频特性曲线N=8;f=2/N*(0:N-1);figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.'); %绘制8点DFT的幅频特性图title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.'); %绘制8点DFT的幅频特性图title('(1a) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); %x2n 和 x3nM=8;xa=1:(M/2); xb=(M/2):-1:1;x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.'); %绘制8点DFT的幅频特性图title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X3k8),'.'); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.'); %绘制8点DFT的幅频特性图title('(2a) 16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(f,abs(X3k16),'.'); %绘制8点DFT的幅频特性图title('(3a) 16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); %x4n 和 x5nN=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'.'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X5k8),'.'); %绘制8点DFT的幅频特性图title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X4k16),'.'); %绘制8点DFT的幅频特性图title('(4a) 16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X5k16),'.'); %绘制8点DFT的幅频特性图title('(5a) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度'); %x8nFs=64; T=1/Fs;N=16;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k16=fft(x8n,16);N=16;f=2/N*(0:N-1);figure(4);title('(8a) 16点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度'); N=32;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k32=fft(x8n,32);N=32;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X8k32),'.'); %绘制8点DFT的幅频特性图title('(8a) 32点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度'); N=64;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k64=fft(x8n,64);N=64;f=2/N*(0:N-1);title('(8a) 64点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度');五、思考题及实验体会通过实验,我知道了用FFT对信号作频谱分析是学习数字信号处理的重要内容。
医学信号处理实验-用FFT做频谱分析
![医学信号处理实验-用FFT做频谱分析](https://img.taocdn.com/s3/m/6066835ef8c75fbfc67db22e.png)
x2 = x(1:50);x3 = x(1:70);为了方便进行DFT,节省代码空间,我设计了一个函数[ f,z_abs ] =run_fft( s,Fs )可以根据输入信号,直接结算频率对应的x轴,y轴(幅度谱)进行画图。
函数内容如下:function [ f,z_abs ] = run_fft( s,Fs )%run_fft Function is used for generating a x-freq axis and y-amp axis using%the given signal and sampling rate% For example% [ f,z_abs ] = run_fft( sin(2*pi*20*t),1/200 )% you can then use f and z_abs to generate the freq-amp figure% developed by Jingjie Li% jingjie.li@L = length(s);f = Fs*(0:(L/2))/L;z = fft(s);z_abs = abs(z(1:L/2+1)/L);z_abs(2:end-1)= z_abs(2:end-1)*2;end做30,50,150点dft代码如下:[ f_z1_1,z1_1_abs ] = run_fft( x1,Fs );[ f_z1_2,z1_2_abs ] = run_fft( [x1,zeros(1,20)],Fs );[ f_z1_3,z1_3_abs ] = run_fft( [x1,zeros(1,120)],Fs );subplot(2,2,1)plot(t(1:30),x1)title('30 Points Sampling Signal')xlabel('time / s')ylabel('mV')subplot(2,2,2)stem(f_z1_1,z1_1_abs)ylabel('mV')xlabel('Freq / Hz')title('30 Points DFT')subplot(2,2,3)stem(f_z1_2,z1_2_abs)xlabel('Freq / Hz')ylabel('mV')title('50 Points DFT')subplot(2,2,4)stem(f_z1_3,z1_3_abs)xlabel('Freq / Hz')ylabel('mV')title('150 Points DFT')出图如下:对x2(n)、x3(n) 作 FFT 得 Z2(K)、Z3(K) 原始信号以及数字频谱代码如下: [ f_z2,z2_abs ] = run_fft( x2,Fs );[ f_z3,z3_abs ] = run_fft( x3,Fs );subplot(2,2,1)plot(t(1:50),x2)title('50 Points Sampling Signal')subplot(2,2,2)stem(f_z2,z2_abs)title('50 Points DFT')xlabel('Freq / Hz')subplot(2,2,3)plot(t(1:70),x3)title('70 Points Sampling Signal')subplot(2,2,4)stem(f_z3,z3_abs)title('70 Points DFT')xlabel('Freq / Hz')在这里可以看到50hz左右峰值高度并不如40hz处,这是因为在栅栏效应,点数过低导致50hz处并没有频率取值使用不同的窗函数乘以x2(n),对得到的信号作FFT,使用stem语句显示其幅度谱,观察不同窗函数对频谱的影响。
用FFT对信号做频谱分析
![用FFT对信号做频谱分析](https://img.taocdn.com/s3/m/230e587e9b6648d7c1c746fd.png)
用FFT 对信号做频谱分析一、实验目的学习用FFT 对连续信号和时域离散信号进行谱分析方法,了解可能出现的分析误差及其原因,以便应用FFT 。
二、实验原理用FFT 对信号频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对于信号进行谱分析的重要问题是频谱分析率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频谱分辨率是2ᴨ/N ≤D.可以根据此式选择FFT 变换区间N 。
误差主要来自于用FFT 做频谱分析时,得到的是离散谱,而信号(周期信号外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验步骤及内容(1)对以下序列进行谱分析:)()(41n n Rx =n n n n n n x 其他7430081)(2≤≤≤≤⎪⎩⎪⎨⎧-+= n7430034)(3其他≤≤≤≤⎪⎩⎪⎨⎧--=n n n n n x 选择FFT 的变换区间N 为8或16两种进行谱分析。
分别打印其幅频特性曲线,并进行对比,分析,讨论。
(2)对以下周期序列进行谱分析:n n x 4cos )(4π=n n n x 8cos 4cos )(5ππ+=选择FFT 的变换区间N 为8或16两种情况分别对以上序列进行谱分析。
分别打印幅频特性曲线,并进行对比,分析和讨论。
(3)对模拟周期信号进行谱分析:t t t t x πππ20cos 16cos 8cos )(6++=选择采样频率Fs=64Hz ,对变换区间N=16,32,64三种情况进行谱分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 = x(1:50);x3 = x(1:70);为了方便进行DFT,节省代码空间,我设计了一个函数[ f,z_abs ] =run_fft( s,Fs )可以根据输入信号,直接结算频率对应的x轴,y轴(幅度谱)进行画图。
函数内容如下:function [ f,z_abs ] = run_fft( s,Fs )%run_fft Function is used for generating a x-freq axis and y-amp axis using%the given signal and sampling rate% For example% [ f,z_abs ] = run_fft( sin(2*pi*20*t),1/200 )% you can then use f and z_abs to generate the freq-amp figure% developed by Jingjie Li% jingjie.li@L = length(s);f = Fs*(0:(L/2))/L;z = fft(s);z_abs = abs(z(1:L/2+1)/L);z_abs(2:end-1)= z_abs(2:end-1)*2;end做30,50,150点dft代码如下:[ f_z1_1,z1_1_abs ] = run_fft( x1,Fs );[ f_z1_2,z1_2_abs ] = run_fft( [x1,zeros(1,20)],Fs );[ f_z1_3,z1_3_abs ] = run_fft( [x1,zeros(1,120)],Fs );subplot(2,2,1)plot(t(1:30),x1)title('30 Points Sampling Signal')xlabel('time / s')ylabel('mV')subplot(2,2,2)stem(f_z1_1,z1_1_abs)ylabel('mV')xlabel('Freq / Hz')title('30 Points DFT')subplot(2,2,3)stem(f_z1_2,z1_2_abs)xlabel('Freq / Hz')ylabel('mV')title('50 Points DFT')subplot(2,2,4)stem(f_z1_3,z1_3_abs)xlabel('Freq / Hz')ylabel('mV')title('150 Points DFT')出图如下:对x2(n)、x3(n) 作 FFT 得 Z2(K)、Z3(K) 原始信号以及数字频谱代码如下: [ f_z2,z2_abs ] = run_fft( x2,Fs );[ f_z3,z3_abs ] = run_fft( x3,Fs );subplot(2,2,1)plot(t(1:50),x2)title('50 Points Sampling Signal')subplot(2,2,2)stem(f_z2,z2_abs)title('50 Points DFT')xlabel('Freq / Hz')subplot(2,2,3)plot(t(1:70),x3)title('70 Points Sampling Signal')subplot(2,2,4)stem(f_z3,z3_abs)title('70 Points DFT')xlabel('Freq / Hz')在这里可以看到50hz左右峰值高度并不如40hz处,这是因为在栅栏效应,点数过低导致50hz处并没有频率取值使用不同的窗函数乘以x2(n),对得到的信号作FFT,使用stem语句显示其幅度谱,观察不同窗函数对频谱的影响。
(选用以下至少三个窗函数:巴特利特 bartlett、布莱克曼窗blackman、汉宁窗hanning、矩形窗boxcar、海明窗 hamming)代码如下:x2_bartlett_win = bartlett(length(x2));x2_bartlett = x2 .* x2_bartlett_win';[~,z2_bartlett] = run_fft(x2_bartlett,Fs);x2_blackman_win = blackman(length(x2));x2_blackman = x2 .* x2_blackman_win';[~,z2_blackman] = run_fft(x2_blackman,Fs);x2_hanning_win = hanning(length(x2));x2_hanning = x2 .* x2_hanning_win';[~,z2_hanning] = run_fft(x2_hanning,Fs);subplot(2,2,1)stem(f_z2,z2_abs)title('Rect Window')xlabel('Freq / Hz')ylabel('mV')subplot(2,2,2)stem(f_z2,abs(z2_bartlett(1:L2/2+1)))title('Bartlett Window')xlabel('Freq / Hz')ylabel('mV')subplot(2,2,3)stem(f_z2,abs(z2_blackman(1:L2/2+1)))title('Blackman Window')xlabel('Freq / Hz')ylabel('mV')subplot(2,2,4)stem(f_z2,abs(z2_hanning(1:L2/2+1)))title('Hanning Window')xlabel('Freq / Hz')ylabel('mV')如下图可见,使用了其他窗函数,可以显著降低旁瓣高度,与此同时主板宽度有所增加。
当N取100时对 x(t) 抽样,得x4 (n),对x4(n) 作 FFT 得 Z4(K) 数字频谱,显示 x4 (n) 以及幅度谱。
通过与Z1_1(K)、Z2(K)、Z3(K)比较,哪个最接近真实的频谱?分析原因。
代码如下:x4 = x(1:100);[f_z4,z4_abs]=run_fft(x4,Fs);stem(f_z4,z4_abs);title('100 Points DFT')xlabel('Freq / Hz')ylabel('mV')如下图,x4更接近真实频谱,因为几乎没有旁瓣,而且主瓣高度基本与信号对应。
当fs=60Hz时,N取50对 x(t) 抽样,得 x5(n) 。
对x5(n) 作 FFT 得 Z5(K) 数字频谱,显示 x5 (n) 以及幅度谱。
信号x5(n)与幅度谱与前面的信号有什么区别?说明原因。
主瓣位置不对,而且旁瓣很高因为采样频率过低,产生了混叠。
Fs = 60;t = 0:1/Fs:5;A = 2;B = 2.5;f1 = 40;f2 = 50;x = A*sin(2*pi*f1*t)+B*sin(2*pi*f2*t);x5 = x(1:50);[f_z5,z5_abs]=run_fft(x5,Fs);stem(f_z5,z5_abs);title('60Hz Fs')xlabel('Freq / Hz')ylabel('mV')2.利用 FFT 计算保存在数据文件 ecg.mat 中的信号的频谱。
该数据抽样频率fs=250Hz使用 load 语句将数据文件 ecg中的变量 ecg1,ecg2,ecg3 调入 matlab 内 存空间。
其中 ecg2 与 ecg3 分别为从 ecg1 中截取的一段,作图显示ecg1、 ecg2 和ecg3。
%%clear allload('ecg.mat')%%Fs = 250;t = 1:1/Fs:11;t=t(1:2500);subplot(3,1,1)plot(t,ecg1)xlabel('time / s')ylabel('mV')title('ecg1')subplot(3,1,2)plot(t(1:196),ecg2)xlabel('time / s')ylabel('mV')title('ecg2')subplot(3,1,3)plot(t(1:196),ecg3)xlabel('time / s')ylabel('mV')title('ecg3')对ecg2作FFT得频谱Z1;对ecg3作FFT得频谱Z2;将ecg3乘以 hanning 窗,然后作 FFT 得 Z3;作图显示Z1、Z2、Z3的幅度谱,横坐标为f。
%%figure[ f_Z1,Z1 ] = run_fft( ecg2,Fs );[ f_Z2,Z2 ] = run_fft( ecg3,Fs );[ f_Z3,Z3 ] = run_fft( ecg3.*hanning(length(ecg3))',Fs );subplot(1,3,1)stem(f_Z1,Z1)xlabel('Freq / Hz')ylabel('mV')title('ecg 2 DFT')subplot(1,3,2)stem(f_Z2,Z2)xlabel('Freq / Hz')title('ecg 3 DFT')ylabel('mV')subplot(1,3,3)stem(f_Z3,Z3)xlabel('Freq / Hz')ylabel('mV')title('ecg 3 DFT with hanning window')从ecg2中选取不同长度序列ecgi (至少截取三段序列作FFT,长度可选择:50、 80、100、120、150等),对序列作FFT得到频谱Zi;显示ecg2不同长度序列的图形,并作出它们的幅度谱,并进行对比,横坐标为f。