湖南省长沙一中等三校联考2015-2016学年高一(下)期末物理试卷(解析版)
湖南高一下学期期末考试物理试卷(附参考答案与解析)
湖南高一下学期期末考试物理试卷(附参考答案与解析)学校:___________班级:___________姓名:__________考号:__________一、单选题1.物体从t=0时开始做匀变速直线运动,其x-t图像的一段图线如图所示,图线经过图中坐标(3,10)和(4,9)的点,其中(3,10)为抛物线的顶点。
关于该物体的运动,下列20C .开始时弹簧和小物块组成的系统具有的弹性势能p E 满足p 8J 24J E ≤≤D .小物块对传送带做功的绝对值与传送带对小物块做功的绝对值一定相等6.空间中一静电场的某物理量在x 轴上分布情况如图所示,其中OA OB =,则( )A .若为E -x 图像,则φA =φBB .若为E -x 图像,则将一电子由A 沿x 轴移向B ,电场力先做负功再做正功C .若为φ-x 图像,则E A 、E B 相同D .若为φ-x 图像,在A 自由释放一质子,其仅在电场力作用下运动到B ,加速度先变小后增大7.四个固定在竖直平面内的光滑轨道 ab 如图所示,从 O 点静止释放小物块(可视为质点),仍能上升到与O 点等高的位置的是( )A .B .C .D .二、多选题8.一列复兴号动车进站时做匀减速直线运动,车头经过站台上三个立柱A 、B 、C ,对应时2x三、实验题12.某同学设计了如图所示的装置来做“探究加速度与力、质量的关系”实验。
弹簧测力计固定在一质量合适的木板上,桌面的右边缘固定一支表面光滑的铅笔以代替定滑轮,细绳的两端分别与弹簧测力计的挂钩和矿泉水瓶连接。
在桌面上画出两条平行线MN和PQ,并测得其间距为d。
开始时将木板置于MN处,现缓慢向瓶中加入细砂,直到木板刚刚开始运动为止,记下弹簧测力计的示数为0F,以此表示滑动摩擦力的大小;再将木板放回原处并按住,继续向瓶中加入细砂后,记下弹簧测力计的示数为F,然后释放木板,并用停表记下木板运动到PQ处的时间t。
的偶然误差,可以采用的方法是_________(写一种即可)。
湖南省长沙市2016-2017学年高一下学期期末考试物理试题 pdf版含答案
动能增加量 (52:!结果取'位有效数字
物理长郡版!%
三计算题 "3!"$分神舟五号载人飞船在绕地球飞行的第0圈进行变轨由原来的椭
圆轨道变为距地面高度5的圆形轨道!已知地球半径为6地面处的重力 加速度为/试导出飞船在上述圆轨道上运行的周期* 的公式!用56 / 表示
假设在某时刻它向后喷气做加速运动后进入新轨道做匀速圆周运动运
动的线速度是)&周期是 *&则
())")&*"*&
*))")&*"*&
+))")&*"*&
,))")&*"*&
4!如图所示质量为+ 的物体在水平外力" 的作用下沿
水平面做匀速运动速度大小为)当物体运动到 , 点
,)速度)越大摩擦力对物体的冲量越小摩擦力做功越多
#!两辆质量相同的小车置于光滑的水平面上有
一人静止在小车 , 上两车静止如图所示!当
这个人从, 车跳到- 车上接着又从- 车跳回, 车并与, 车保持相对静
止则, 车的速率
()等于零
*)小于- 车的速率
+)大于- 车的速率
,)等于- 车的速率
速度 +)%是赤道周长&是地球自转的周期'是同步卫星的加速度 ,)%是地球半径&是同步卫星绕地心运动的周期'是地球表面处的重
力加速度 "'!如图所示空间有一水平匀强电场竖直平面内的初速
度为)$ 的微粒沿着图中虚线由, 运动到-其能量变 化情况是 ()微粒只能带负电 *)动能减少重力势能增加电势能增加 +)动能不变重力势能增加电势能增加 ,)动能增加重力势能增加电势能减少
2015-2016高一物理下学期期末试题及答案用1(自编)
文档供参考,可复制、编制,期待您的好评与关注!2015—2016学年度下学期高一年级考试题一、选择题1.下列说法正确的是()A. 做匀速圆周运动的物体处于平衡状态B. 做匀速圆周运动的物体所受的合外力是恒力C. 做匀速圆周运动的物体的速度恒定D. 做匀速圆周运动的物体的加速度大小恒定2.如图所示,为一皮带传动装置,右轮半径为r,a为它边缘上一点;左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心的距离为r。
c点和d点分别位于小轮和大轮的边缘上。
若传动过程中皮带不打滑,则()①a点和b点的线速度大小相等②a点和b点的角速度大小相等③a点和c点的线速度大小相等④a点和d点的向心加速度大小相等A. ①③B. ②③C. ③④D. ②④3.做匀速圆周运动的物体,所受到的向心力的大小,下列说法正确的是()A. 与线速度的平方成正比B. 与角速度的平方成正比C. 与运动半径成正比D. 与线速度和角速度的乘积成正比4.如图所示,轻绳长为L一端系一小球,另一端固定于O点,在O点正下方的P 点钉一颗钉子,OP=L/2,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时()A小球的瞬时速度突然变大B小球的加速度突然变大C小球的所受的向心力突然变大D悬线所受的拉力突然变大5.如图,细杆的一端与一小球相连,可绕过O点的水平轴自由转动现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是()A.a处为拉力,b处为拉力B.a处为拉力,b处为推力C.a处为推力,b处为拉力D.a处为推力,b处为推力6.质点做匀速圆周运动时,下列说法正确的是( )A. 线速度越大,周期一定越小B. 角速度越大,周期一定越小C. 转速越小,周期一定越小D. 圆周半径越大,周期一定越小7.质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为V ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A. 受到向心力为R v m mg 2+B. 受到的摩擦力为 Rv m 2μC. 受到的摩擦力为μmgD. 受到的合力方向斜向左上方8.已知万有引力恒量,在以下各组数椐中,根椐哪几组可以测地球质量( ) A .地球绕太阳运行的周期及太阳与地球的距离 B .月球绕地球运行的周期及月球离地球的距离 C .地球半径、地球自转周期及同步卫星高度 D .地球半径及地球表面的重力加速度9.已知金星绕太阳公转的周期小于1年,则可判定( ) A .金星到太阳的距离小于地球到太阳的距离 B .金星的质量大于地球的质量C .金星的密度大于地球的密度D .金星的向心加速度大于地球的向心加速度10.一艘小船在河中行驶,假设河岸是平直的,河水沿河岸向下游流去。
2015-2016学年湖南省长沙湖南师大附中高一下学期期末考试物理(解析版)
2015-2016学年湖南省长沙湖南师大附中高一下学期期末考试物理1.下列物理量中,属于矢量的是A.向心加速度 B.功 C.功率 D.动能2.汽车在平直公路上以速度v0匀速行驶,发动机功率为P.快进入闹市区时,司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶.下列四个图象中,哪个正确表示了从司机减小油门开始,汽车的速度与时间的关系3.在光滑的水平面上,用绳子系一小球做半径为R的匀速圆周运动,若绳子拉力为F,在小球经过圆周的时间内,F所做的功为A.0 B.RF C.RF D.RF4.有一项趣味竞赛:从光滑水平桌面的角A向角B发射一只乒乓球,要求参赛者在角B处用细管吹气,将乒乓球吹进角C处的圆圈中.赵、钱、孙、李四位参赛者吹气方向为如图中的箭头所示,则最有可能成功的参赛者是A.赵 B.钱 C.孙 D.李5.质点在恒力F的作用下做曲线运动,P、Q为运动轨迹上的两个点,若质点经过P点的速度比经过Q点时速度小,则F的方向可能为下图中的6.在同一点O抛出的三个物体,做平抛运动的轨迹如图所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体做平抛运动的时间t A、t B、t C的关系分别是A.v A>v B>v C t A>t B>t CB.v A=v B=v C t A=t B=t CC.v A>v B>v C t A<t B<t CD.v A<v B<v C t A>t B>t C7.如图所示,a、b、c是环绕地球圆形轨道上运行的3颗人造卫星,它们的质量关系是m a =m b<m c,则A.b、c的线速度大小相等,且大于a的线速度B.b、c的周期相等,且小于a的周期C.b、c的向心加速度大小相等,且大于a的向心加速度D.b所需向心力最小8.水平面上甲、乙两物体,在某时刻动能相同,它们仅在摩擦力作用下停下来,如图所示的a、b分别表示甲、乙两物体的动能E随位移s变化的图象,则下列说法正确的是①若甲、乙两物体与水平面动摩擦因数相同,则甲的质量较大②若甲、乙两物体与水平面动摩擦因数相同,则乙的质量较大③若甲、乙质量相同,则甲与地面间的动摩擦因数较大④若甲、乙质量相同,则乙与地面间的动摩擦因数较大A.①③ B.②③ C.①④ D.②④9.如图所示,长为L1的橡皮条与长为L2的细绳的一端都固定在O点,另一端分别系两球A 和B,A和B的质量相等,现将两绳都拉至水平位置,由静止释放放,摆至最低点时,橡皮条和细绳长度恰好相等,若不计橡皮条和细绳的质量,两球经最低点速度相比A.A球大 B.B球大C.两球一样大 D.条件不足,无法比较10.如图所示,小球在竖直向下的力F作用下,将竖直轻弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度为零时为止,不计空气阻力,则小球在上升过程中A.小球的动能先增大后减小,弹簧弹性势能转化成小球的动能B .小球在离开弹簧时动能达到最大值C .小球动能最大时弹簧弹性势能为零D .小球、弹簧与地球组成的系统机械能守恒11.如图所示,一轻弹簧左端与物体A 相连,右端与物体B 相连,开始时,A 、B 均在粗糙水平面上不动,弹簧处于原长状态.在物体B 上作用一水平向右的恒力F ,使物体A 、B 向右运动.在此过程中,下列说法中正确的为A .合外力对物体A 所做的功等于物体A 的动能增量B .外力F 做的功与摩擦力对物体B 做的功之和等于物体B 的动能增量C .外力F 做的功及摩擦力对物体A 和B 做功的代数和等于物体A 和B 的动能增量及弹簧弹性势能增量之和D .外力F 做的功加上摩擦力对物体B 做的功等于物体B 的动能增量与弹簧弹性势能增量之和12.地球同步卫星离地心的距离为r ,环绕速度为v 1,加速度大小为a 1,地球赤道上的物体随地球自转的向心加速度大小为a 2,第一宇宙速度为v 2,地球半径为R ,则下列关系正确的是A .R ra a =21 B .221⎪⎭⎫ ⎝⎛=r R a aC .R r v v =21 D .rRv v =21 13.如图所示为火车在转弯处的截面示意图,轨道的外轨高于内轨.某转弯处规定行驶的速度为v ,当火车通过此弯道时,下列判断正确的是A .若速度大于v ,则火车轮缘挤压内轨B .若速度大于v ,则火车轮缘挤压外轨C .若速度小于v ,则火车轮缘挤压内轨D .若速度小于v ,则火车轮缘挤压外轨14.如图,长为L 的细绳一端系在天花板上的O 点,另一端系一质量m 的小球.将小球拉至细绳处于水平的位置由静止释放,在小球沿圆弧从A 运动到B 的过程中,不计阻力,则A .小球经过B 点时,小球的动能为mgL B .小球经过B 点时,绳子的拉力为3mgC .小球下摆过程中,重力对小球做功的平均功率为0D .小球下摆过程中,重力对小球做功的瞬时功率先增大后减小15.全球定位系统(GPS )有24颗卫星分布在绕地球的6个轨道上运行,距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6 400 km,则全球定位系统的这些卫星的运行速度约为A.3.1 km/s B.3.9 km/sC.7.9 km/s D.11.2 km/s16.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点.左侧是一套轮轴,大轮的半径为4r,小轮的半径为2r.b点在小轮上,到小轮中心的距离为r.已知c点和d 点分别位于小轮和大轮的边缘上.若在传动过程中皮带不打滑,则以下判断正确的是A.a点与b点的向心加速度大小相等B.a点与b点的角速度大小相等C.a点与c点的线速度大小相等D.a点与d点的向心加速度大小相等17.如图所示,两个半径不同内壁光滑的半圆轨道,固定于地面,一小球先后从与球心在同一水平高度上的A、B两点,从静止开始自由滑下,通过最低点时,下列说法中正确的是A.小球对轨道底部的压力相同B.小球对轨道底部的压力不同C.速度大小不同,半径大的速度大D.向心加速度的大小相同18.滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg19.有一人荡秋千,秋千的绳子刚好能支持人重的2倍,秋千的绳长为L,则此人荡秋千时,在______位置时绳子最容易断,此人荡秋千时的最大速率是________.此人荡秋千时与竖直方向最大的夹角是________.(不计空气阻力,重力加速度大小为g)20.某同学用如图甲所示的实验装置做《验证机械能守恒定律》的实验.实验时让质量为m的重锤从高处由静止开始下落,重锤上拖着的纸带通过打点计时器打出一系列的点.如图乙所示为实验时打出的一条纸带,选取纸带上连续打出的五个点A、B、C、D、E,测出C点距起始点O的距离OC=50.00 cm,点A、E间的距离为AE=24.00 cm.已知打点计时器使用的交流电周期为0.02 s,重锤的质量m=0.20 kg,当地的重力加速度g=9.80 m/s2.由这些数据可以计算出:重锤下落到C点时的动能为________J,从开始下落到C点的过程中,重锤的重力势能减少了________J.(答案保留两位有效数字)21.王晓明同学设计了如图1所示实验:选取任意高度击打簧片,使左右两球同时释放,发现两球均能同时落地,此实验能够说明做平抛运动的物体____________.李小薇同学设计了如图2的实验:将两个完全相同的倾斜滑道固定在同一竖直平面内,滑道1安置在滑道2的正上方,两滑道的最下端水平并对齐,滑道2与光滑水平板吻接.将两个质量相等的小钢球,从斜面的同一高度由静止同时释放,则她将观察到的现象是两球相碰,若反复调整斜面高度仍能达到上述效果,这说明做平抛运动的物体___________.22.如图所示,人骑摩托车做腾跃特技表演,沿半径为3.2 m的圆弧桥面运动,到桥面最高点时汽车对桥面的压力为1 224 N,然后水平飞出落到与圆心同高的水平面,已知人和车的总质量为180 kg,特技表演的全程中不计一切阻力,取g=10 m/s2.则:(1)求人和车到达顶部平台时的速度v0;(2)求人和车从桥面飞出的水平距离L.23.一颗人造地球卫星绕地球做匀速圆周运动,卫星离地面的高度为h.已知地球半径为R,地面重力加速度为g.求:(1)卫星的线速度;(2)卫星的周期.24.质量均为m的物体A和B分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B拉到斜面底端,这时物体A 离地面的高度为0.8 m ,如图所示.若摩擦力均不计,从静止开始放手让它们运动.求:(g =10 m/s 2)(1)物体A 着地时的速度;(2)物体A 着地后物体B 沿斜面上滑的最大距离. 25.如图a 所示,在水平路段AB 上有一质量为2 t 的汽车,正以10 m/s 的速度向右匀速运动,汽车前方的水平路段BC 较粗糙,汽车通过整个ABC 路段的v -t 图像如图b 所示(在t =15 s 处水平虚线与曲线相切),运动过程中汽车发动机的输出功率保持20 kW 不变,假设汽车在两个路段上受到的阻力(含地面摩擦力和空气阻力等)有恒定的大小.(1)求汽车在AB 路段上运动时所受的阻力f 1; (2)求汽车刚好到达B 点时的加速度a ; (3)求BC 路段的长度.26.如图所示,轻绳绕过定滑轮,一端连接物块A ,另一端连接在滑环C 上,物块A 的下端用弹簧与放在地面上的物块B 连接,A 、B 两物块的质量均为m ,滑环C 的质量为M ,开始时绳连接滑环C 部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L ,控制滑块C ,使其沿杆缓慢下滑,当C 下滑43L 时,释放滑环C ,结果滑环C 刚好处于静止,此时B 刚好要离开地面,不计一切摩擦,重力加速度为g .(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小.参考答案【答案】A 【解析】试题分析:向心加速度有方向,其方向指向圆心,是矢量,故A 正确;而动能、功、功率只有大小,属于标量,故选项BCD 错误。
2015—2016学年湖南省长沙市一中高一第二学期期末考试物理试题
2015—2016学年湖南省长沙市一中高一第二学期期末考试物理试题D7、关于圆周运动,以下说法正确的是A、做匀速圆周运动的物体,所受各力的合力一定是向心力B、做匀速圆周运动的物体除了受到其他物体的作用,还受到一个向心力C、物体做离心运动时,是因为它受到了离心力的作用D、汽车转弯时速度过小,会因离心运动造成交通事故8、如图所示,滑块A和B叠放在固定的斜面体上,从静止开始以相同的加速度一起沿斜面加速下滑,已知B与斜面体间光滑接触,则在AB下滑的过程中,下列说法正确的是A、B对A的支持力不做功B、B对A的作用力做负功C、B对A的摩擦力做正功D 、B 、A 的重力做功的平均功率相同9、一半的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来替代,如图甲所示,曲线上的A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径,现将一物体沿水平方向抛出,落地时速度v 与水平面成α角,如图乙所示,则在其轨迹最高点P 处的曲率半径是A 、2v gB 、2sin v g α C 、22cos v g α D 、22cos sin v g αα10、起重机的钢索将重物由地面吊到空中某个高度,其速度图像如图甲所示,则钢索拉力的功率随时间变化的图像可能是图乙中的哪一个?11、如图所示,a、b、c是北斗卫星导航系统中的3颗卫星,下列说法正确的是A、b、c的向心加速度大小相等,且小于a的向心加速度B、c加速可追上同一轨道的b,b减速可等候同一轨道上的cC、b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能增大D、b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能减小12、蹦床运动要求运动员在一张绷紧的弹性网上蹦起,腾空并做空中动作。
为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网的压力,并在计算机上作出压力-时间图像,假设作出的图像如图所示,设运动员在空中运动时可视为质点,忽略空气阻力,则根据图像判断下列说法正确的是(2)g m s10/A、在1.1s-2.3s时系统的弹性势能保持不变B、运动员在5.5时刻运动方向向上C、运动员跃起的最大高度为5.0mD、运动员在空中的机械能在增大13、如图所示,一轻质弹簧的下端,固定在水平面上,上端叠放这两个质量均为M的物体A、B (物体B与弹簧栓接),弹簧的劲度系数为k,初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v-t图像如图乙所示(重力加速度为g),则A、施加外力的瞬间,A、B间的弹力大小为()M g aB、A、B在t时刻分离,此时弹簧弹力大小不为1零C、弹簧恢复到原长时,物体B的速度达到最大值D、B与弹簧组成的系统的机械能先逐渐减小,后保持不变二、填空题以及实验题14、“用DIS研究机械能守恒定律”的实验中,让轻杆连接摆锤由A点释放,用光电门测定摆锤在某一位置的瞬时速度,从而求得摆锤在该位置的动能,同时输入摆锤的高度(实验中A 、B 、C 、D 四点高度为0.150m 、0.100m 、0.050m 、0.000m ,已由计算机默认),求得摆锤在该位置的重力势能,进而研究势能与动能转化时的规律。
高一物理-湖南省长沙一中等三校联考2016-2017学年高一下学期期末物理试卷(解析版)
2016-2017学年湖南省长沙一中等三校联考高一(下)期末物理试卷一、选择题(本題包括13小题.毎小题题4分,共52分.其中11〜13三个小题,每小题给出的四个选项中,有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法符合史实的()A.牛顿发现了行星的运动规律B.开普勒发现了万有引力定律C.卡文迪许第一次在实验室里测出了万有引力常量D.牛顿发现了海王星和冥王星2.两个完全相同的金属小球,分别带有+3Q和﹣Q的电量,当它们相距r时,它们之间的库仑力是F.若把它们接触后分开,再置于相距的两点,则它们的库仑力的大小将变为()A.B.3F C.4F D.9F3.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R和r,且R=3r,A、B分别为两轮边缘上的点,则皮带轮运动过程中,关于A、B两点下列说法正确的是()A.角速度之比ωA:ωB=3:1B.向心加速度之比a A:a B=1:3C.速率之比υA:υB=1:3D.在相同的时间内通过的路程之比s A:s B=3:14.如图所示,倾角为θ的斜面长为L,在顶端水平抛出一小球,小球刚好落在斜面的底端,那么,小球初速度v0的大小为()A.B.C.D.5.如图所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.在红蜡块从玻璃管的下端匀速上浮的同时,使玻璃管以速度v水平向右匀速运动.红蜡块由管口上升到顶端,所需时间为t,相对地面通过的路程为L,则()A.v增大时,t增大B.v增大时,t减小C.v增大时,L增大D.v增大时,L减小6.我国载人飞船“神舟七号”的顺利飞天,极大地振奋了民族精神.“神七”在轨道飞行过程中,宇航员翟志钢跨出飞船,实现了“太空行走”,当他出舱后相对于飞船静止不动时,以下说法正确的是()A.他处于平衡状态B.他不受任何力的作用C.他的加速度不为零D.他的加速度恒定不变7.关于圆周运动,以下说法正确的是()A.做匀速圆周运动的物体,所受各力的合力一定是向心力B.做匀速圆周运动的物体除了受到其它物体的作用,还受到一个向心力C.物体做离心运动时,是因为它受到了离心力的作用D.汽车转弯时速度过小,会因离心运动造成交通事故8.如图所示,滑块A和B叠放在固定的斜面体上,从静止开始以相同的加速度一起沿斜面加速下滑.己知B与斜面体间光滑接触,则在AB下滑的过程中,下列说法正确的是()A.B对A的支持力不做功B.B对A的作用力做负功C.B对A的摩擦力做正功D.B,A的重力做功的平均功率相同9.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径.现将一物体沿与水平面成α角的方向以速度υ0抛出,如图(b)所示.则在其轨迹最高点P处的曲率半径是()A.B.C.D.10.起重机的钢索将重物由地面吊到空中某一个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是图中的哪一个()A.B.C.D.11.如图所示,a、b、c是北斗卫星导航系统中的3颗卫星,下列说法正确的是()A.b,c的向心加速度大小相等,且小于a的向心加速度B.c加速可追上同一轨道上的b,b减速可等候同一轨道上的cC.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能增大D.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能减小12.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中动作.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网的压力,并在计算机上作出压力﹣时间图象,假设作出的图象如图所示.设运动员在空中运动时可视为质点,忽略空气阻力,则根据图象判断下列说法正确的是(g取10m/s2)()A.在1.1s﹣2.3s时系统的弹性势能保持不变B.运动员在5.5s时刻运动方向向上C.运动员跃起的最大高度为5.0 mD.运动员在空中的机械能在增大13.如图所示,一轻质弹簧的下端,固定在水平面上,上端叠放着两个质量均为M的物体A、B(物体B与弹簧拴接),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F作用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v﹣t图象如图乙所示(重力加速度为g),则()A.施加外力的瞬间,A、B间的弹力大小为M(g﹣a)B.A、B在t1时刻分离,此时弹簧弹力大小不为零C.弹簧恢复到原长时,物体B的速度达到最大值D.B与弹簧组成的系统的机械能先逐渐减小,后保持不变二、填空題及实验题:(每空2分,共计14分)14.“用DIS研究机械能守恒定律”的实验中,让轻杆连接摆锤由A点释放,用光电门测定摆锤在某一位置的瞬时速度,从而求得摆锤在该位罝的动能,同时输入摆锤的高度(实验中A,B,C,D)四点高度为0.150m、0.100m、0.050m,0.000m,己由计算机默认),求得摆锤在该位置的重力势能,进而研究势能与动能转化时的规律.(1)实验时,把点作为了零势能点.(2)(单选)若实验测得D点的机械能明显偏大,造成该误差的原因可能是A、摆锤在运动中受到空气阻力的影响B、光电门放在D点上方C、摆锤在A点不是由静止释放的D、摆锤释放的位罝在AB之间.15.某同学査资料得知,弹簧的弹性势能E P=kx2,其中k是弹簧的劲度系数,x是弹簧长度的变化量.于是设想用压缩的弹簧推静止的小球(质量为m)运动来初步探究“外力做功与物体动能变化的关系”.为了研究方便,把小球放在水平桌面上做实验,让小球在弹力作用下运动,即只有弹簧弹力做功.(重力加速度为g)该同学设计实验如下.(1)首先进行如图甲所示的实验:将轻质弹簧竖直挂起来,在弹簧的另一端挂上小球,静止时测得弹簧的伸长量为d,在此步骤中,目的是要确定弹簧的劲度系数k,用m、d、g表示为.(2)接着进行如图乙所示的实验:将这根弹簧水平放在桌面上,一端固定,另一端被小球压缩,测得压缩量为x,释放弹簧后,小球被推出去,从高为h的水平桌面上抛出,小球在空中运动的水平距离为L.小球的初动能E k1=;小球离开桌面的动能E k2=(用m、g、L、h表示),弹簧对小球做的功W=(用m、x、d、g表示).对比W和E k2﹣E k1就可以得出“外力做功与物体动能变化的关系”.需要验证的关系为(用所测物理量d,x、h、L表示).三、计算题:(本題4个大题,共34分,其中第16-18题均为8分,第19题10分)16.有三根长度皆为l=0.30m的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m=1.0×10﹣2kg的带电小球A和B,它们的电荷量分别为﹣q 和+q,q=1.0×10﹣6C.A、B之间用第三根线连接起来,空间中存在大小为E=2.0×105 N/C 的匀强电场,电场强度的方向水平向右.平衡时A,B球的位置如图所示.已知静电力常量k=9×109N•m2/C2重力加速度g=10m/s2.求:(1)A,B间的库仑力的大小(2)连接A,B的轻线的拉力大小.17.滑板运动是一种陆地上的“冲浪运动”,滑板运动员可在不同的滑坡上滑行,做出各种动作,给人以美的享受.如图是模拟的滑板组合滑行轨道,该轨道由足够长的斜直轨道、半径R1=1m的凹形圆弧轨道和半径R2=1.6m的凸形圆弧轨道组成,这三部分轨道处于同一竖直平面内且依次平滑连接,其中M点为凹形圆弧轨道的最低点,N点为凸形圆弧轨道的最高点,凸形圆弧轨道的圆心O点与M点处在同一水平面上,一质量为m=1kg可看作质点的滑板,从斜直轨道上的P点无初速滑下,经过M点滑向N点,P点距M点所在水平面的高度h=1.8m,不计一切阻力,g取10m/s2.(1)滑板滑到M点时的速度多大?(2)滑板滑到N点时对轨道的压力多大?(3)改变滑板无初速下滑时距M点所在平面的高度h,用压力传感器测出滑板滑至N点时对轨道的压力大小为零,则P与N在竖直方向的距离多大?18.地球可视为球体,其自转周期为T,在它的两极处,用弹簧秤测得一物体重为P;在赤道上,用弹簧秤测得同一物体重为0.9P,已知引力常量为G,则地球的平均密度是多少?19.如图所示,原长为L的轻质弹簧一端固定在O点,另一端与质量为m的圆环相连,圆环套在粗糙竖直固定杆上的A处,环与杆间动摩擦因数μ=0.5,此时弹簧水平且处于原长.让圆环从A处由静止开始下滑,经过B处时速度最大,到达C处时速度为零.过程中弹簧始终在弹性限度之内.重力加速度为g.求:(1)圆环在A处的加速度为多大?(2)若AB间距离为,则弹簧的劲度系数k为多少?(3)若圆环到达C处时弹簧弹性势能为E p,且AC=h,使圆环在C处时获得一个竖直向上的初速度,圆环恰好能到达A处.则这个初速度应为多大?2016-2017学年湖南省长沙一中等三校联考高一(下)期末物理试卷参考答案与试题解析一、选择题(本題包括13小题.毎小题题4分,共52分.其中11〜13三个小题,每小题给出的四个选项中,有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法符合史实的()A.牛顿发现了行星的运动规律B.开普勒发现了万有引力定律C.卡文迪许第一次在实验室里测出了万有引力常量D.牛顿发现了海王星和冥王星【考点】物理学史;万有引力定律的发现和万有引力恒量的测定.【分析】开普勒发现了行星的运动规律;牛顿发现了万有引力定律;卡文迪许第一次在实验室里测出了万有引力常量;亚当斯发现的海王星.【解答】解:A、开普勒发现了行星的运动规律.故A错误;B、牛顿发现了万有引力定律.故B错误;C、卡文迪许第一次在实验室里测出了万有引力常量.故C正确;D、亚当斯发现的海王星.故D错误.故选:C2.两个完全相同的金属小球,分别带有+3Q和﹣Q的电量,当它们相距r时,它们之间的库仑力是F.若把它们接触后分开,再置于相距的两点,则它们的库仑力的大小将变为()A.B.3F C.4F D.9F【考点】库仑定律.【分析】接触带电的原则是先中和再平分.根据库仑定律公式F=k求出库仑力的大小.【解答】解:根据库仑定律公式得,F=k.接触再分离后所带电量各为Q,F′=k=k=3F.故B正确,A、C、D错误.故选:B.3.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R和r,且R=3r,A、B分别为两轮边缘上的点,则皮带轮运动过程中,关于A、B两点下列说法正确的是()A.角速度之比ωA:ωB=3:1B.向心加速度之比a A:a B=1:3C.速率之比υA:υB=1:3D.在相同的时间内通过的路程之比s A:s B=3:1【考点】线速度、角速度和周期、转速;向心加速度.【分析】两轮通过皮带传动,皮带与轮之间不打滑,说明它们边缘的线速度相等;再由角速度、向心加速度的公式逐个分析即可.【解答】解:A、由于AB的线速度大小相等,由v=ωr知,ω═,所以ω于r成反比,所以角速度之比为1:3,故A错误.B、由a n=可知,a n于r成反比,所以向心加速度之比a A:a B=1:3,所以B正确.C、两轮通过皮带传动,皮带与轮之间不打滑,说明它们边缘的线速度相等,所以C错误.D、由于AB的线速度大小相等,在相同的时间内通过的路程之比应该是s A:s B=1:1,所以D错误.故选B.4.如图所示,倾角为θ的斜面长为L,在顶端水平抛出一小球,小球刚好落在斜面的底端,那么,小球初速度v0的大小为()A.B.C.D.【考点】平抛运动.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据下落的高度求出运动的时间,再根据水平位移和时间求出小球的初速度.【解答】解:在竖直方向上有:Lsinθ=,解得t=.则初速度=.故A正确,B、C、D错误.故选:A.5.如图所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.在红蜡块从玻璃管的下端匀速上浮的同时,使玻璃管以速度v水平向右匀速运动.红蜡块由管口上升到顶端,所需时间为t,相对地面通过的路程为L,则()A.v增大时,t增大B.v增大时,t减小C.v增大时,L增大D.v增大时,L减小【考点】运动的合成和分解.【分析】蜡块参与了竖直方向和水平方向两个方向的分运动,根据分运动与合运动具有等时性确定运动的时间,根据运动的合成,确定蜡块相对于地面的路程.【解答】解:蜡块在水平方向上和竖直方向上都做匀速直线运动,在竖直方向上,t=,管长不变,竖直方向上的分速度不变,根据合运动与分运动具有等时性,知蜡块由管口到顶端的时间不变.v增大,水平方向上的位移增大,根据运动的合成,知蜡块相对于地面的路程L增大.故C正确,A、B、D错误.故选C.6.我国载人飞船“神舟七号”的顺利飞天,极大地振奋了民族精神.“神七”在轨道飞行过程中,宇航员翟志钢跨出飞船,实现了“太空行走”,当他出舱后相对于飞船静止不动时,以下说法正确的是()A.他处于平衡状态B.他不受任何力的作用C.他的加速度不为零 D.他的加速度恒定不变【考点】万有引力定律及其应用;牛顿第二定律.【分析】翟志钢出舱后相对于飞船静止不动,与飞船一起绕地球做圆周运动,处于非平衡状态.他受到地球的万有引力,加速度不是零,而且加速度是变化的.【解答】解:A、翟志钢出舱后相对于飞船静止不动,与飞船一起绕地球做圆周运动,处于非平衡状态.故A错误.B、翟志钢出舱后仍受到地球的万有引力.故B错误.C、翟志钢出舱后与飞船一起绕地球做圆周运动,加速度不是零.故C正确.D、翟志钢的加速度方向时刻在变化,加速度是变化的.故D错误.故选C7.关于圆周运动,以下说法正确的是()A.做匀速圆周运动的物体,所受各力的合力一定是向心力B.做匀速圆周运动的物体除了受到其它物体的作用,还受到一个向心力C.物体做离心运动时,是因为它受到了离心力的作用D.汽车转弯时速度过小,会因离心运动造成交通事故【考点】向心力;牛顿第二定律.【分析】物体做匀速圆周运动,合力提供向心力,向心力并不是实际受到的力,分析受力时不单独分析.离心运动产生的条件是合外力突然消失,或者合外力不足以提供圆周运动所需的向心力.根据这些知识进行分析.【解答】解:A、做匀速圆周运动的物体,沿圆周切线方向的合力为零,所受各力的合力一定是向心力,故A正确.B、做匀速圆周运动的物体,合力提供向心力,物体不再受到一个向心力,故B错误.C、物体做离心运动时,并不是因为受到了离心力的作用,而是由于合外力减小或消失,合外力不足以提供圆周运动所需的向心力.故C错误.D、汽车转弯时速度过大,地面提供的最大静摩擦力不足以提供汽车所需要的向心力,从而产生离心运动,造成交通事故,速度小时不会造成交通事故,故D错误.故选:A8.如图所示,滑块A和B叠放在固定的斜面体上,从静止开始以相同的加速度一起沿斜面加速下滑.己知B与斜面体间光滑接触,则在AB下滑的过程中,下列说法正确的是()A.B对A的支持力不做功B.B对A的作用力做负功C.B对A的摩擦力做正功D.B,A的重力做功的平均功率相同【考点】牛顿第二定律;力的合成与分解的运用.【分析】B与斜面间光滑接触,对整体进行受力分析可知AB的加速度为gsinα,B对A有向左的摩擦力,B对A的作用力方向与斜面垂直,故B对A的支持力做负功,B对A的作用力不做功,B对A的摩擦力做正功.B、A的重力未知,故重力做功的平均功率是否相同也未知.【解答】解:A、B对A的支持力竖直向上,A和B一起沿着斜面下滑的,所以B对A的支持力与运动方向之间的夹角大于90°,所以B对A的支持力做负功,所以A错误;B、B对A的作用力包括B对A的支持力和摩擦力的作用,它们的合力的方向垂直斜面向上,所以B对A的作用力不做功,故B错误;C、B对A的摩擦力是沿着水平面向左的,与运动方向之间的夹角小于90°,所以B对A的摩擦力做正功,故C正确;D、因为B、A的重力未知,故重力做功的平均功率是否相同也未知,故D错误;故选:C9.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径.现将一物体沿与水平面成α角的方向以速度υ0抛出,如图(b)所示.则在其轨迹最高点P处的曲率半径是()A. B.C.D.【考点】牛顿第二定律;匀速圆周运动.【分析】由题目的介绍可知,求曲率半径也就是求在该点做圆周运动的半径,利用向心力的公式就可以求得.【解答】解:物体在其轨迹最高点P处只有水平速度,其水平速度大小为v0cosα,在最高点,把物体的运动看成圆周运动的一部分,物体的重力作为向心力,由向心力的公式得mg=m,所以在其轨迹最高点P处的曲率半径是ρ=,故C正确.故选:C.10.起重机的钢索将重物由地面吊到空中某一个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是图中的哪一个()A.B. C.D.【考点】功率、平均功率和瞬时功率.【分析】钢索拉力的功率P=Fv,根据速度图象分析重物的运动情况,根据牛顿第二定律得出拉力与重力的关系,再由功率公式得出功率与时间的关系式,选择图象.【解答】解:在0﹣t1时间内:重物向上做匀加速直线运动,设加速度大小为a1,根据牛顿第二定律得:F﹣mg=ma1,解得:F=mg+ma1拉力的功率:P1=Fv=(mg+ma1)a1t,m、a1均一定,则P1∝t.在t1﹣t2时间内:重物向上做匀速直线运动,拉力F=mg,则拉力的功率P2=Fv=mgv,P2不变,根据拉力的大小得到,P2小于t1时刻拉力的功率.在t2﹣t3时间内:重物向上做匀减速直线运动,设加速度大小为a2,根据牛顿第二定律得:mg﹣F=ma2,F=mg ﹣ma2,拉力的功率P3=Fv=(mg﹣ma2)(v0﹣a2t),m、a2均一定,P3与t是线性关系,随着t延长,P3减小.t2时刻拉力突然减小,功率突然减小.故选:A11.如图所示,a、b、c是北斗卫星导航系统中的3颗卫星,下列说法正确的是()A.b,c的向心加速度大小相等,且小于a的向心加速度B.c加速可追上同一轨道上的b,b减速可等候同一轨道上的cC.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能增大D.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能减小【考点】人造卫星的加速度、周期和轨道的关系.【分析】卫星绕地球做圆周运动时,万有引力提供圆周运动的向心力,据此讨论卫星做圆周运动时线速度、向心加速度与半径大小的关系,卫星线速度减小,机械能减小时做向心运动.【解答】解:由图示可知,卫星轨道半径间的关系为:r a<r b=r c;A、万有引力提供向心力,由牛顿第二定律得:G=ma,解得:a=,由于r a<r b=r c,则:a a>a b=a c,故A正确;B、c卫星加速时,做圆周运动向心力增加,而提供向心力的万有引力没有变化,卫星c加速后做离心运动,轨道高度将增加,故不能追上同一轨道的卫星b,同理减速会降低轨道高度,也等不到同轨道的卫星,故B错误;C、万有引力提供向心力,由牛顿第二定律得:G=m,解得:v=,b卫星的轨道半径r减小,则其线速度增大,卫星b的轨道半径r减小,卫星做向心运动,卫星在原轨道上运动时其线速度要减小,卫星动能减小,卫星的机械能减小,故C错误,D正确;故选:AD.12.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中动作.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网的压力,并在计算机上作出压力﹣时间图象,假设作出的图象如图所示.设运动员在空中运动时可视为质点,忽略空气阻力,则根据图象判断下列说法正确的是(g取10m/s2)()A.在1.1s﹣2.3s时系统的弹性势能保持不变B.运动员在5.5s时刻运动方向向上C.运动员跃起的最大高度为5.0 mD.运动员在空中的机械能在增大【考点】功能关系.【分析】运动员离开弹性网后做竖直上抛运动,图中压力传感器示数为零的时间即是运动员在空中运动的时间,根据平抛运动的对称性可知,运动员竖直上抛或自由下落的时间为空中时间的一半,据此可求出运动员跃起是最大高度.对照机械能守恒的条件和功能关系进行分析.【解答】解:A、由图象可知,弹性网压力增大时运动员向下运动,1.1s﹣2.3s内运动员先向下运动再向上运动,则弹性网的弹性势能先增大后减小,故A错误.B、弹性网的压力为零运动员在空中运动,5.4s﹣7.4s内运动员在空中先向上运动再向下运动,所以运动员在5.5s时刻运动方向向上,故B正确.C、由图可知运动员在空中的最长时间为:t=4.3s﹣2.3s=2s运动员做竖直上抛运动,所以跃起的最大高度为:h=g()2=5m,故C正确.D、运动员在空中运动时,只受重力,机械能保持不变,故D错误.故选:BC13.如图所示,一轻质弹簧的下端,固定在水平面上,上端叠放着两个质量均为M的物体A、B(物体B与弹簧拴接),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F作用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v﹣t图象如图乙所示(重力加速度为g),则()A.施加外力的瞬间,A、B间的弹力大小为M(g﹣a)B.A、B在t1时刻分离,此时弹簧弹力大小不为零C.弹簧恢复到原长时,物体B的速度达到最大值D.B与弹簧组成的系统的机械能先逐渐减小,后保持不变【考点】机械能守恒定律.【分析】弹簧的弹力可根据胡克定律列式求解,先对物体AB整体受力分析,根据牛顿第二定律列方程;再对物体B受力分析,根据牛顿第二定律列方程;t1时刻是A与B分离的时刻之间的弹力为零.【解答】解:A、施加F前,物体A、B整体平衡,根据平衡条件,有:2Mg=kx;解得:x=施加外力F的瞬间,对B物体,根据牛顿第二定律,有:F弹﹣Mg﹣F AB=Ma其中:F弹=2Mg解得:F AB=M(g﹣a),故A正确.B、物体A、B在t1时刻分离,此时A、B具有共同的v与a;且F AB=0;对B:F弹′﹣Mg=Ma解得:F弹′=M(g+a)≠0,故B正确.C、B受重力、弹力及压力的作用;当合力为零时,速度最大,而弹簧恢复到原长时,B受到的合力为重力,已经减速一段时间;速度不是最大值;故C错误;D、B与弹簧组成的系统,开始时A对B的压力对A做负功,故开始时机械能减小;AB分离后,B和弹簧系统,只有重力和弹力做功,系统的机械能守恒.故D正确;故选:ABD二、填空題及实验题:(每空2分,共计14分)14.“用DIS研究机械能守恒定律”的实验中,让轻杆连接摆锤由A点释放,用光电门测定摆锤在某一位置的瞬时速度,从而求得摆锤在该位罝的动能,同时输入摆锤的高度(实验中A,B,C,D)四点高度为0.150m、0.100m、0.050m,0.000m,己由计算机默认),求得摆锤在该位置的重力势能,进而研究势能与动能转化时的规律.(1)实验时,把点作为了零势能点.(2)(单选)若实验测得D点的机械能明显偏大,造成该误差的原因可能是A、摆锤在运动中受到空气阻力的影响B、光电门放在D点上方C、摆锤在A点不是由静止释放的D、摆锤释放的位罝在AB之间.【考点】验证机械能守恒定律.。
(解析版)湖南省长沙一中2015-2016学年高一下学期期中物理试卷 Word版含解析
2015-2016学年湖南省长沙一中高一(下)期中物理试卷一、选择题1.关于运动的合成与分解的说法中,正确的是()A.合运动的位移为分运动的位移矢量和B.合运动的速度一定比其中的一个分速度大C.合运动的时间为分运动时间之和D.合运动的位移一定比分运动位移大2.关于平抛运动的性质,以下说法中正确的是()①是变加速运动②是匀变速运动③是匀速率曲线运动④是两个直线运动的合运动.A.①③B.①④C.②③D.②④3.如图所示,光滑的水平面上,小球m在拉力F作用下做匀速圆周运动,若小球到达P点时F突然发生变化,下列关于小球运动的说法正确的是()A.F突然消失,小球将沿轨迹Pa做离心运动B.F突然变小,小球将沿轨迹Pa做离心运动C.F突然变大,小球将沿轨迹pb做离心运动D.F突然变小,小球将沿轨迹Pc逐渐靠近圆心4.在质量为M的电动机飞轮上固定着一个质量为m的重物,重物到转轴的距离为r,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过()A.B.C.D.5.载人飞船在发射和返回地面的过程中,都具有很大的竖直向上的加速度,会使宇航员的大脑暂时缺血,而发生“黑视”.则下列说法正确的是()A.飞船发射时,宇航员的重力增大B.飞船返回地面的过程中,宇航员的重力减小C.飞船发射和返回地面的过程中,宇航员对座椅的压力均大于宇航员的重力D.飞船发射时宇航员对座椅压力大于宇航员的重力,返回地面的过程中宇航员对座椅压力小于宇航员的重力6.地球质量是月球质量81倍,若地球吸引月球的力大小为F,则月球吸引地球的力大小为()A.F B.9F C.27F D.81F7.设行星绕恒星的运动轨道是圆,则其运行轨道半径r的三次方与其运行周期T的平方之比为常数,即=k,那么k的大小()A.只与行星的质量有关B.只与恒星的质量有关C.与恒星和行星的质量都有关D.与恒星的质量及行星的速率都无关8.关于地球同步卫星,下列说法正确的是()A.它可以定位在夷陵中学的正上空B.地球同步卫星的角速度虽被确定,但高度和线速度可以选择,高度增加,线速度减小,高度降低,线速度增大C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度一定介于第一宇宙速度和第二宇宙速度之间9.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T,引力常量为G,那么该行星的平均密度为()A. B. C.D.10.同步卫星离地心的距离为r,运行速度为v1,加速度a1,地球赤道上的物体随地球自转的向心加速度a2,第一宇宙速度为v2,地球的半径为R,则()A.=B.=C.=D.=11.假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是()A.地球的向心力变为缩小前的一半B.地球的向心力变为缩小前的C.地球绕太阳公转周期与缩小前的相同D.地球绕太阳公转周期变为缩小前的一半12.为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T113.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火加速后,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于P点,轨道2、3相切于Q点,如图,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的速率小于在轨道1上的速率B.卫星在轨道1上P点的速率大于在轨道2上P点的速率C.卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度D.卫星在轨道2上运行时的周期大于它在轨道3上运行时的周期14.经长期观测,人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的半径远小于两颗星之间的距离,而且双星系统一般远离其他天体.如图两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做匀速圆周运动.现测得两颗星之间的距离为l,质量之比约为m1:m2=3:2,则可知()A.m1:m2做圆周运动的线速度之比为2:3B.m1:m2做圆周运动的角速度之比为1:lC.m1做圆周运动的半径为lD.m2做圆周运动的半径为l二、实验和填空题15.在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:(1)让小球每次从同一高度位置滚下,是为了保证.(2)保持斜槽末端切线水平的目的是.(3)如图为一个同学在实验中画出的一部分曲线,于是他在曲线上取水平距离相等的三点A、B、C,量得△s=0.2m.又量出它们之间的竖直距离分别为h1=0.1m,h2=0.2m,g取10m/s2,利用这些数据,可求得:①物体抛出时的初速度为m/s;②物体经过B时的速度大小为m/s.三、计算题16.有一辆质量为800kg的小汽车驶上圆弧半径为50m的拱桥.重力加速度g取10m/s2.(1)汽车到达桥顶时速度为5m/s,汽车对桥的压力是多大?(2)汽车以多大的速度经过桥顶时恰好对桥没有压力而腾空?(3)如果拱桥的半径增大到与地球半径R一样,汽车要在桥面上腾空,速度要多大?(地球半径R=6400km)17.一宇航员为了估测某一星球表面的重力加速度和该星球的质量,在该星球的表面做自由落体实验:让小球在离地面h高处自由下落,他测出经时间t小球落地,又已知该星球的半径为R,忽略一切阻力.求:(1)该星球表面的重力加速度g;(2)该星球的质量M;(3)该星球的第一宇宙速度V.18.由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7000米分别排在第一、第二.若地球半径为R,把地球看做质量分布均匀的球体,地球表面的重力加速度大小为g,引力常量为G.“蛟龙”下潜深度为d,天宫一号轨道距离地面高度为h.已知质量分布均匀的球壳对壳内物体的引力为零.求(1)“天宫一号”绕地心转一周的时间是多少?(2)“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为多少?19.我国正在逐步建立同步卫星与“伽利略计划”等中低轨道卫星等构成的卫星通信系统.(1)若已知地球的平均半径为R0,自转周期为T0,地表的重力加速度为g,试求同步卫星的轨道半径R;(2)有一颗与上述同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径R的四分之一,试求该卫星至少每隔多长时间才在同一城市的正上方出现一次.(计算结果只能用题中已知物理量的字母表示)2015-2016学年湖南省长沙一中高一(下)期中物理试卷参考答案与试题解析一、选择题1.关于运动的合成与分解的说法中,正确的是()A.合运动的位移为分运动的位移矢量和B.合运动的速度一定比其中的一个分速度大C.合运动的时间为分运动时间之和D.合运动的位移一定比分运动位移大【考点】运动的合成和分解.【分析】位移、速度、加速度都是矢量,合成分解遵循平行四边形定则.合运动与分运动具有等时性.【解答】解:A、位移是矢量,合成遵循平行四边形定则,合运动的位移为分运动位移的矢量和.故A正确,D错误;B、根据平行四边形定则,知合速度可能比分速度大,可能比分速度小,可能与分速度相等故B错误;C、合运动与分运动具有等时性,合运动的时间等于分运动的时间.故C错误;故选:A.2.关于平抛运动的性质,以下说法中正确的是()①是变加速运动②是匀变速运动③是匀速率曲线运动④是两个直线运动的合运动.A.①③B.①④C.②③D.②④【考点】平抛运动.【分析】平抛运动的物体只受重力,是一种匀变速曲线运动,可以分解为水平和竖直两个方向直线运动的合成.【解答】解:①、②、③平抛运动的物体只受重力,加速度为g,是一种匀变速曲线运动,故①③错误,②正确.④平抛运动可以分解为水平方向的匀速直线运动和竖直方向自由落体运动,即平抛运动是两个直线运动的合运动.故④正确.故选:D.3.如图所示,光滑的水平面上,小球m在拉力F作用下做匀速圆周运动,若小球到达P点时F突然发生变化,下列关于小球运动的说法正确的是()A.F突然消失,小球将沿轨迹Pa做离心运动B.F突然变小,小球将沿轨迹Pa做离心运动C.F突然变大,小球将沿轨迹pb做离心运动D.F突然变小,小球将沿轨迹Pc逐渐靠近圆心【考点】向心力;牛顿第二定律;离心现象.【分析】当向心力突然消失或变小时,物体会做离心运动,运动轨迹可是直线也可以是曲线;当向心力突然变大时,物体做向心运动,要根据受力情况分析.【解答】解:A、在水平面上,细绳的拉力提供m所需的向心力,当拉力消失,物体受力合为零,将沿切线方向做匀速直线运动,A正确;B、当向心力减小时,将沿Bb轨道做离心运动,B错误;C、F突然变大,小球将沿轨迹Bc做向心运动,故C错误;D、F突然变小,小球将沿轨迹Bb做离心运动,故D错误;故选A.4.在质量为M的电动机飞轮上固定着一个质量为m的重物,重物到转轴的距离为r,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过()A.B.C.D.【考点】牛顿第二定律;向心力.【分析】重物转到飞轮的最高点时,若重物对飞轮的作用力恰好等于电动机的重力Mg时,电动机刚要跳起.以重物为研究对象,根据牛顿第三定律飞轮对重物的反作用大小也等于Mg,由牛顿第二定律求解角速度.【解答】解:重物转到飞轮的最高点时,电动机刚要跳起时,重物对飞轮的作用力F恰好等于电动机的重力Mg,即F=Mg.以重物为研究对象,由牛顿第二定律得Mg+mg=mω2r,解得ω=故选B5.载人飞船在发射和返回地面的过程中,都具有很大的竖直向上的加速度,会使宇航员的大脑暂时缺血,而发生“黑视”.则下列说法正确的是()A.飞船发射时,宇航员的重力增大B.飞船返回地面的过程中,宇航员的重力减小C.飞船发射和返回地面的过程中,宇航员对座椅的压力均大于宇航员的重力D.飞船发射时宇航员对座椅压力大于宇航员的重力,返回地面的过程中宇航员对座椅压力小于宇航员的重力【考点】牛顿运动定律的应用-超重和失重;牛顿第二定律.【分析】超重时,物体对悬挂物的拉力或对支撑面的压力大于重力,根据牛顿第二定律,物体受到向上的合力,加速度方向向上;失重时,物体对悬挂物的拉力或对支撑面的压力小于重力,根据牛顿第二定律,物体受到向下的合力,加速度方向向下.【解答】解:A、飞船发射加速上升时,加速度方向向上,宇航员处于超重状态,但重力不变.故A错误.B、飞船返回地面的过程中,加速度方向向上,宇航员处于超重重状态,但重力不变.故B 错误.C、飞船发射加速上升时,加速度方向向上,宇航员处于超重状态,飞船在落地向下前减速,加速度方向向上,宇航员处于超重状态,宇航员对座椅的压力都大于其重力,故C正确,D 错误.故选:C.6.地球质量是月球质量81倍,若地球吸引月球的力大小为F,则月球吸引地球的力大小为()A.F B.9F C.27F D.81F【考点】万有引力定律及其应用.【分析】根据牛顿第三定律,作用力和反作用力大小相等,地球吸引月球的力大小为F,则月球吸引地球的力大小也一定为F.【解答】解:根据牛顿第三定律,地球吸引月球的力大小为F,则月球吸引地球的力大小也一定为F.故选:A.7.设行星绕恒星的运动轨道是圆,则其运行轨道半径r的三次方与其运行周期T的平方之比为常数,即=k,那么k的大小()A.只与行星的质量有关B.只与恒星的质量有关C.与恒星和行星的质量都有关D.与恒星的质量及行星的速率都无关【考点】开普勒定律.【分析】开普勒第三定律中的公式即=k,可知半长轴的三次方与公转周期的二次方成正比【解答】解:A、式中的k只与恒星的质量有关,与行星质量无关,故A错误;B、式中的k只与恒星的质量有关,故B正确;C、式中的k只与恒星的质量有关,与行星质量无关,故C错误;D、式中的k只与恒星的质量有关,与行星速率无关,故D错误;故选:B8.关于地球同步卫星,下列说法正确的是()A.它可以定位在夷陵中学的正上空B.地球同步卫星的角速度虽被确定,但高度和线速度可以选择,高度增加,线速度减小,高度降低,线速度增大C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度一定介于第一宇宙速度和第二宇宙速度之间【考点】同步卫星.【分析】物体做匀速圆周运动,它所受的合力提供向心力,也就是合力要指向轨道平面的中心.第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度.【解答】解:A、它若在除赤道所在平面外的任意点,假设实现了“同步”,那它的运动轨道所在平面与受到地球的引力就不在一个平面上,这是不可能的,因此同步卫星相对地面静止不动,同步通讯卫星只能定点在赤道的上空.故A错误;B、根据万有引力提供向心力,列出等式:=•(R+h),其中R为地球半径,h为同步卫星离地面的高度.由于同步卫星的周期必须与地球自转周期相同,所以T 为一定值,根据上面等式得出:同步卫星离地面的高度h也为一定值.由于轨道半径一定,则线速度的大小也一定.故B错误;C、D、同步卫星相对地球静止,低轨卫星相对地球是运动的,根据=得,v=,第一宇宙速度的轨道半径等于地球的半径,所以低轨卫星的线速度小于第一宇宙速度,故C 正确,D错误.故选:C.9.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T,引力常量为G,那么该行星的平均密度为()A. B. C.D.【考点】万有引力定律及其应用.【分析】根据万有引力等于向心力,可以列式求解出行星的质量,进一步求出密度.【解答】解:飞船绕某一行星表面做匀速圆周运动,万有引力等于向心力F引=F向即:解得:M=由得:该行星的平均密度为故选B.10.同步卫星离地心的距离为r,运行速度为v1,加速度a1,地球赤道上的物体随地球自转的向心加速度a2,第一宇宙速度为v2,地球的半径为R,则()A.=B.=C.=D.=【考点】同步卫星.【分析】同步卫星的周期与地球的自转周期相同,根据a=rω2得出同步卫星和随地球自转物体的向心加速度之比,根据万有引力提供向心力得出第一宇宙速度与同步卫星的速度之比.【解答】解:因为同步卫星的周期等于地球自转的周期,所以角速度相等,根据a=rω2得:=.根据万有引力提供向心力有:G=m,解得:v=,则:=,故ABD错误,C正确.故选:C.11.假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是()A.地球的向心力变为缩小前的一半B.地球的向心力变为缩小前的C.地球绕太阳公转周期与缩小前的相同D.地球绕太阳公转周期变为缩小前的一半【考点】万有引力定律及其应用.【分析】由密度不变,半径变化可求得天体的质量变化;由万有引力充当向心力可得出变化以后的各量的变化情况.【解答】解:由于天体的密度不变而半径减半,导致天体的质量减小,所以有地球绕太阳做圆周运动由万有引力充当向心力.所以有所以B 正确,A错误;由,整理得与原来相同,C正确.D错误;故选BC.12.为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T1【考点】万有引力定律及其应用.【分析】研究飞船绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式求出中心体的质量.研究登陆舱绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式表示出线速度和周期.再通过不同的轨道半径进行比较.【解答】解:A、研究飞船绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式:得出:M=,故A正确.B、根据圆周运动知识,a=只能表示在半径为r1的圆轨道上向心加速度,而不等于X星球表面的重力加速度,故B错误.C、研究登陆舱绕星球做匀速圆周运动,根据万有引力提供向心力有:在半径为r的圆轨道上运动:=m得出:v=,表达式里M为中心体星球的质量,R为运动的轨道半径.所以登陆舱在r1与r2轨道上运动时的速度大小之比为==,故C错误.D、研究登陆舱绕星球做匀速圆周运动,根据万有引力提供向心力,列出等式:在半径为r的圆轨道上运动:=m得出:T=2π.表达式里M为中心体星球的质量,R为运动的轨道半径.所以登陆舱在r1与r2轨道上运动时的周期大小之比为:=,所以T2=T1,故D正确.故选AD.13.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火加速后,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于P点,轨道2、3相切于Q点,如图,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的速率小于在轨道1上的速率B.卫星在轨道1上P点的速率大于在轨道2上P点的速率C.卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度D.卫星在轨道2上运行时的周期大于它在轨道3上运行时的周期【考点】人造卫星的加速度、周期和轨道的关系.【分析】卫星绕地球做匀速圆周运动时,万有引力等于向心力,列式求出线速度的表达式,可比较速率的大小.当卫星做离心运动时需要加速,做近心运动时需要减速.结合开普勒第三定律分析卫星在轨道2上运动的周期与它在轨道3上运动的周期大小.【解答】解:A、卫星轨道1、3上绕地球做匀速圆周运动时,由万有引力提供向心力,则有:G=m解得卫星的运行速度v=,则知r越大,v越小,所以卫星在轨道3上的速率小于在轨道1上的速率.故A正确.B、卫星从轨道1变到轨道2必须做离心运动,在P点需要加速,则卫星在轨道1上P点的速率小于在轨道2上P点的速率.故B错误.C、根据牛顿第二定律得G=ma,得a=,可知,r相等,a相等,所以卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度.故C正确.D、根据开普勒第三定律知,卫星的轨道半径或半长轴越大,周期越大,故卫星在轨道2上运动的周期小于它在轨道3上运动的周期,故D错误.故选:AC14.经长期观测,人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的半径远小于两颗星之间的距离,而且双星系统一般远离其他天体.如图两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做匀速圆周运动.现测得两颗星之间的距离为l,质量之比约为m1:m2=3:2,则可知()A.m1:m2做圆周运动的线速度之比为2:3B.m1:m2做圆周运动的角速度之比为1:lC.m1做圆周运动的半径为lD.m2做圆周运动的半径为l【考点】万有引力定律及其应用.【分析】抓住双星围绕连线上的O点做匀速圆周运动的向心力由彼此间的万有引力提供,因此两星做圆周运动的角速度相等,由此展开讨论即可.【解答】解:双星围绕连线上的O点做匀速圆周运动,彼此间万有引力提供圆周运动向心力,可知双星做圆周运动的周期和角速度相等.令星m1的半径为r,则星m2的半径为l﹣r 则有:据万有引力提供圆周运动向心力有:即m1r=m2(l﹣r)又∵∴则星m2的半径为,故C错误,D正确又因为v=rω可知,两星做圆周运动的线速度之比等于半径之比即:,所以A正确.双星运动的角速度相同,故B正确.故选:ABD.二、实验和填空题15.在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:(1)让小球每次从同一高度位置滚下,是为了保证保证小球平抛运动的初速度相等.(2)保持斜槽末端切线水平的目的是保证小球的初速度水平.(3)如图为一个同学在实验中画出的一部分曲线,于是他在曲线上取水平距离相等的三点A、B、C,量得△s=0.2m.又量出它们之间的竖直距离分别为h1=0.1m,h2=0.2m,g取10m/s2,利用这些数据,可求得:①物体抛出时的初速度为2m/s;②物体经过B时的速度大小为 2.5m/s.【考点】研究平抛物体的运动.【分析】根据竖直方向上连续相等时间内的位移之差是一恒量求出相等的时间间隔,结合水平位移和时间间隔求出初速度.根据某段时间内的平均速度等于中间时刻的瞬时速度求出B 点的竖直分速度,结合平行四边形定则求出B点的速度.【解答】解:(1)让小球每次从同一高度位置滚下,是为了保证小球平抛运动的初速度相等.(2)保持斜槽末端切线水平的目的是保证小球的初速度水平.(3)①在竖直方向上,根据得,T=,则物体的初速度.②B点的竖直分速度,根据平行四边形定则知,B点的速度=m/s=2.5m/s.故答案为:(1)保证小球平抛运动的初速度相等,(2)保证小球的初速度水平,(3)①2,②2.5.三、计算题16.有一辆质量为800kg的小汽车驶上圆弧半径为50m的拱桥.重力加速度g取10m/s2.(1)汽车到达桥顶时速度为5m/s,汽车对桥的压力是多大?(2)汽车以多大的速度经过桥顶时恰好对桥没有压力而腾空?(3)如果拱桥的半径增大到与地球半径R一样,汽车要在桥面上腾空,速度要多大?(地球半径R=6400km)【考点】牛顿第二定律.【分析】(1)汽车受重力和向上的支持力,合力提供向心力,根据牛顿第二定律列式即可求解出支持力,压力与支持力是作用力与反作用力,大小相等;(2)重力恰好完全提供向心力,根据牛顿第二定律列式即可求解速度;(3)依然是重力恰好完全提供向心力,根据牛顿第二定律列式求解.【解答】解:(1)重力和向上的支持力的合力提供向心力解得即汽车对桥的压力为7600N.(2)当F N=0时,重力恰好完全提供向心力解得即汽车以10m/s的速度经过桥顶时恰好对桥没有压力而腾空.(3)重力恰好完全提供向心力即速度为8×103m/s.17.一宇航员为了估测某一星球表面的重力加速度和该星球的质量,在该星球的表面做自由落体实验:让小球在离地面h高处自由下落,他测出经时间t小球落地,又已知该星球的半径为R,忽略一切阻力.求:(1)该星球表面的重力加速度g;(2)该星球的质量M;(3)该星球的第一宇宙速度V.【考点】第一宇宙速度、第二宇宙速度和第三宇宙速度.【分析】先利用自由落体运动的规律求出该星球表面的重力加速度,再写出星球表面物体所受万有引力等于物体所受重力的表达式,即可求解.第一宇宙速度是近地卫星做圆周运动的运行速度.【解答】解:(1)由自由落体规律:h=gt2①可得:g=②(2)在星球表面物体所受万有引力等于物体所受重力.。
湖南省长沙市长沙县长郡中学2015-2016学年高一下学期素质训练物理试卷(8) 含解析
2015—2016学年湖南省长沙市长沙县长郡中学高一(下)素质训练物理试卷(8)一、选择题(每题4分,共40分)1.质量为m的物体从地面上方H高处无初速释放,落在地面后撞出一个深度为h的坑,如图所示,在此过程中()A.重力对物体做功为mgHB.物体的重力势能减少了mg(H+h)C.外力对物体做的总功为零D.地面对物体的平均阻力为2.下列关于物体机械能守恒的说法中,正确的是()A.运动的物体,若受合外力为零,则其机械能一定守恒B.运动的物体,若受合外力不为零,则其机械能一定不守恒C.合外力对物体不做功,物体的机械能一定守恒D.运动的物体,若受合外力不为零,其机械能有可能守恒3.下列说法中,正确的是()A.物体克服重力做功,物体的重力势能一定增加,机械能可能不变B.物体克服重力做功,物体的重力势能一定增加,机械能一定增加C.重力对物体做正功,物体的重力势能一定减少,动能可能不变D.重力对物体做正功,物体的重力势能一定减少,动能一定增加4.两质量相同的小球A、B,用线悬在等高的O1、O2点,A球的悬线比B球长,把两球的悬线均拉到水平后将小球无初速释放,如图,则经最低点时(以悬点为零势能点)()A.A球的速度大于B球的速度B.A球的动能大于B球的动能C.A球的机械能大于B球的机械能D.A球的机械能等于B球的机械能5.在下列情况中,物体的机械能守恒的有()A.正在空中匀速下落的降落伞 B.在环形轨道上运动的过山车C.在空中作斜抛运动的铅球D.正在用力荡秋千的学生6.人在高h的地方,斜上抛出一质量为m的物体,物体到最高点时的速度为v1,落地速度为v2,不计空气阻力,则人对这个物体做的功为()A.mv22﹣mv12B.mv22C.mv22﹣mgh D.mv12﹣mgh7.a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c球竖直下抛.设三球落地时的速率分别为v a、v b、v c,则()A.v a>v b>v c B.v a=v b>v c C.v a<v b<v c D.v a=v b=v c8.如图所示,用长为l的绳子一端系着一个质量为m的小球,另一端固定在O点,拉小球至A点,此时绳偏离竖直方向θ,空气阻力不计,松手后小球经过最低点时的速率为()A. B.C.D.9.如图所示,在跨过一光滑定轮的轻绳两端分别挂着质量为m1、m2的两个物体,已知m2>m1.若m2以加速度a向下加速运动时,阻力不计,则()A.m1、m2的总机械能不守恒B.m2的机械能守恒C.m1、m2的总机械能守恒、动量也守恒D.m1、m2的总机械能守恒、动量不守恒10.如图所示,一根长为l1的橡皮条和一根长为l2的绳子(l1<l2)悬于同一点,橡皮条的另一端系一A球,绳子的另一端系一B球,两球质量相等,现从悬线水平位置(绳拉直,橡皮条保持原长)将两球由静止释放,当两球摆至最低点时,橡皮条的长度与绳子长度相等,此时两球速度的大小为()A.B球速度较大 B.A球速度较大 C.两球速度相等 D.不能确定二、填空题(每题6分,共24分)11.以10m/s的速度将质量为m的物体竖直向上抛出,若空气阻力忽略,g=10m/s2,则物体上升的最大高度是______m,当物体上升至高度为______m时重力势能和动能相等.12.如图所示,木块M与地面间无摩擦,子弹m以一定速度沿水平方向射向木块,并留在其中,然后将弹簧压缩至最短.现将木块、子弹、弹簧作为研究对象,从子弹开始射入木块到弹簧被压缩到最短的过程中系统的动量______,机械能______.而后,弹簧又从压缩到的最短位置向右伸张到最长位置,在这过程中系统的动量______,机械能______.(填守恒或不守恒)13.如图所示,质量为M的物体放在水平地面上,物体上方安装一劲度系数为k的轻弹簧,在弹簧处于原长时,用手拉着其上端P点很缓慢地向上移动,直到物体脱离地面向上移动一段距离.在这一过程中,P点的位移为H,则物体重力势能的增加量为______.14.在离地h1高处以v0的速度斜向上抛出一个质量为m的手榴弹,手榴弹在最高点的速度大小为v1,不计空气阻力,则手榴弹能达到的最大高度为______,手榴弹落地时的速度大小为______.三、计算题(共36分)15.如图所示,总长为l的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端对齐,当略有扰动时其一端下落,铁链开始滑动,求当铁链脱离滑轮瞬间铁链速度大小.16.如图,质量为m的小球A和质量为3m的小球B用细杆连接在一起,竖直地靠在光滑墙壁上,A球离地面高度为h.墙壁转角呈弧形,释放后它们一起沿光滑水平面滑行,求滑行的速度.17.一种叫做“蹦极”的现代运动,可以用下面的实验来进行模拟,如图,在桌边插一个支架,在支架横臂的端点系上一根橡皮绳,其重力可不计,劲度系数为k,橡皮绳的弹力与其伸长的长度成正比.橡皮绳另一端系一质量为m的小球,使小球从支架横臂高度处由静止下落,小球落到最低点时,便又被橡皮绳拉回然后再落下….已知橡皮绳的弹性势能,式中k为劲度系数,x为橡皮绳的伸长量或压缩量.若小球下落的最大高度是L,试求橡皮绳的自然长度?18.如图所示,带有光滑的半径为R的图弧轨道的滑块静止在光滑的水平面上,此滑块质量为M,一只质量为m的小球由静止从A点释放,当小球从滑块B水平飞出时,滑块的反冲速度是多大?2015-2016学年湖南省长沙市长沙县长郡中学高一(下)素质训练物理试卷(8)参考答案与试题解析一、选择题(每题4分,共40分)1.质量为m的物体从地面上方H高处无初速释放,落在地面后撞出一个深度为h的坑,如图所示,在此过程中()A.重力对物体做功为mgHB.物体的重力势能减少了mg(H+h)C.外力对物体做的总功为零D.地面对物体的平均阻力为【考点】动能定理的应用.【分析】根据重力做功的公式W G=mg△h即可求解;对整个过程运用动能定理,根据重力和阻力做功之和等于钢球动能的变化量,即可求解.【解答】解:A、重力做功:W G=mg△h=mg(H+h),故A错误,B正确.C、对整个过程运用动能定理得:W=△E K=0,故C正确.总=W G+(﹣fh)=△E K=0,f=,故D正确.D、对整个过程运用动能定理得:W总故选:BCD2.下列关于物体机械能守恒的说法中,正确的是()A.运动的物体,若受合外力为零,则其机械能一定守恒B.运动的物体,若受合外力不为零,则其机械能一定不守恒C.合外力对物体不做功,物体的机械能一定守恒D.运动的物体,若受合外力不为零,其机械能有可能守恒【考点】机械能守恒定律.【分析】判断机械能是否守恒,看物体是否只有重力做功,或者看物体的动能和势能之和是否保持不变.【解答】解:A、物体所受的合外力为0,可能做匀速直线运动,匀速直线运动机械能不一定守恒,比如降落伞匀速下降,机械能减小.故A错误.B、运动的物体,若只受重力,合外力不为零,但机械能守恒;故B错误;D正确;C、物体所受的合外力不做功,则动能保持不变,如竖直方向的匀速直线运动,机械能不守恒;故C错误;故选:D.3.下列说法中,正确的是()A.物体克服重力做功,物体的重力势能一定增加,机械能可能不变B.物体克服重力做功,物体的重力势能一定增加,机械能一定增加C.重力对物体做正功,物体的重力势能一定减少,动能可能不变D.重力对物体做正功,物体的重力势能一定减少,动能一定增加【考点】功能关系;重力势能.【分析】物体克服重力做功,物体的重力势能一定增加,重力对物体做正功,物体的重力势能一定减少,但其他能的变化不一定.【解答】解:AB、当物体克服重力做功时,物体上升,物体的重力势能一定增加,可能只有重力做功,机械能不变,故A正确,B错误.CD、重力对物体做正功,物体下降,物体的重力势能一定减少,合外力做功可能为零,则动能可能不变,故C正确,D错误.故选:AC4.两质量相同的小球A、B,用线悬在等高的O1、O2点,A球的悬线比B球长,把两球的悬线均拉到水平后将小球无初速释放,如图,则经最低点时(以悬点为零势能点)()A.A球的速度大于B球的速度B.A球的动能大于B球的动能C.A球的机械能大于B球的机械能D.A球的机械能等于B球的机械能【考点】机械能守恒定律.【分析】A、B两球在运动的过程中,只有重力做功,机械能守恒,比较出初始位置的机械能即可知道在最低点的机械能大小.根据机械能守恒mgL=mv2,列式可比较出A、B两球的速度大小和动能大小.根据机械能等于重力势能与动能之和分析机械能的关系.【解答】解:A、B,A、B两球在运动的过程中,只有重力做功,机械能守恒,则有:mgL=mv2,得最低点速度大小为v=,可知,经最低点时,A球的速度大于B球的速度,A球的动能大于B球的动能,故AB正确.C、D,A、B两球在运动的过程中,只有重力做功,机械能守恒,初始位置的机械能相等,所以在最低点,两球的机械能相等.故C错误,D正确.故选ABD5.在下列情况中,物体的机械能守恒的有()A.正在空中匀速下落的降落伞 B.在环形轨道上运动的过山车C.在空中作斜抛运动的铅球D.正在用力荡秋千的学生【考点】机械能守恒定律.【分析】物体机械能守恒的条件是只有重力或者是弹力做功,逐个分析物体的受力的情况,判断做功情况,即可判断物体是否是机械能守恒.也可以机械能的概念分析.【解答】解:A、降落伞在空中匀速下降,动能不变,重力势能减小,故机械能不守恒,故A错误.B、在环形轨道上运动的过山车,由于有阻力做功,所以机械能不守恒,故B错误.C、不计空气阻力,将铅球斜向上抛出后,只受重力,故机械能守恒,故C正确D、正在用力荡秋千的学生,有其他能转化机械能,机械能不守恒,故D错误.故选:C6.人在高h的地方,斜上抛出一质量为m的物体,物体到最高点时的速度为v1,落地速度为v2,不计空气阻力,则人对这个物体做的功为()A.mv22﹣mv12B.mv22C.mv22﹣mgh D.mv12﹣mgh【考点】动能定理的应用.【分析】人对小球做的功等于小球获得的初动能,根据对抛出到落地的过程运用动能定理即可求得初动能;【解答】解:人对小球做的功等于小球获得的初动能,根据对抛出到落地的过程运用动能定理得:mgh=m﹣mv所以mv=m﹣mgh,即人对小球做的功等于m﹣mgh,故选C.7.a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c球竖直下抛.设三球落地时的速率分别为v a、v b、v c,则()A.v a>v b>v c B.v a=v b>v c C.v a<v b<v c D.v a=v b=v c【考点】机械能守恒定律.【分析】三个球从同一个高度抛出,且它们的初速度的大小相同,在运动的过程中,三个球的机械能都守恒,所以根据机械能守恒可以判断小球的落地时速度的情况.【解答】解:由于三个球的高度相同,抛出时的速率也相同,最后又落到了同一个水平面上,在球的运动的过程中,机械能都守恒,根据机械能守恒可知,三个球的落地时的速度的大小都相同,所以D正确.故选D.8.如图所示,用长为l的绳子一端系着一个质量为m的小球,另一端固定在O点,拉小球至A 点,此时绳偏离竖直方向θ,空气阻力不计,松手后小球经过最低点时的速率为()A. B.C.D.【考点】机械能守恒定律;向心力.【分析】小球摆动过程中,受到重力和拉力;只有重力做功,机械能守恒,根据机械能守恒定律列式求解即可【解答】解:小球从A到最低点的过程中,只有重力做功,机械能守恒,故有:mgL(1﹣cosθ)=mv2解得:v=故选:B.9.如图所示,在跨过一光滑定轮的轻绳两端分别挂着质量为m1、m2的两个物体,已知m2>m1.若m2以加速度a向下加速运动时,阻力不计,则()A.m1、m2的总机械能不守恒B.m2的机械能守恒C.m1、m2的总机械能守恒、动量也守恒D.m1、m2的总机械能守恒、动量不守恒【考点】动量守恒定律;牛顿第二定律;动量定理;机械能守恒定律.【分析】选取两个物体找出的系统为研究的对象,由于空气阻力不计,所以在m1m2运动的过程中要只受到重力和滑轮的向上的作用力,只有重力做功,故系统的机械能守恒.【解答】解:选取两个物体找出的系统为研究的对象,在m1m2运动的过程中要只受到重力和滑轮的向上的作用力,由于m2>m1.而且m2以加速度a向下加速运动所以系统受到的合力不为0,所以整个过程中系统的动量不守恒;在运动的过程中由于只有重力对系统做功,所以系统的机械能守恒.故选项D正确,选项ABC错误.故选:D.10.如图所示,一根长为l1的橡皮条和一根长为l2的绳子(l1<l2)悬于同一点,橡皮条的另一端系一A球,绳子的另一端系一B球,两球质量相等,现从悬线水平位置(绳拉直,橡皮条保持原长)将两球由静止释放,当两球摆至最低点时,橡皮条的长度与绳子长度相等,此时两球速度的大小为()A.B球速度较大 B.A球速度较大 C.两球速度相等 D.不能确定【考点】机械能守恒定律.【分析】两小球初态时,处于同一高度,质量相等,重力势能相等,机械能相等,下摆过程中,B球的重力势能全部转化为动能,而A球的重力势能转化为动能和橡皮绳的弹性势能,这样,在最低点时,B球的动能大,从而就能比较两球速度大小.【解答】解:取最低点所在水平面为参考平面.根据机械能守恒定律,得对和橡皮绳系统A:mgl2=mv A2+E P,E P为橡皮绳的弹性势能对B:mgl2=mv B2,显然v A<v B故A正确,BCD错误.故选A二、填空题(每题6分,共24分)11.以10m/s的速度将质量为m的物体竖直向上抛出,若空气阻力忽略,g=10m/s2,则物体上升的最大高度是5m,当物体上升至高度为2。
《解析》湖南省长沙一中2015-2016学年高一下学期物理综合练习卷(二)Word版含解析
2015-2016学年湖南省长沙一中高一(下)物理综合练习卷(二)一、单项选择题:家长意见:1.如图所示,两轮用皮带传动,假设皮带不打滑,图中A、B、C三点所在处半径rA>rB=rC,则这三点的向心加速度a A、a B、a C的大小关系正确的是()A.a A=a B B.a C>a A C.a A<a B D.a C=a B2.如图所示,斜面上有a、b、c、d四个点,ab=bc=cd.从a点正上方的O点以速度v水平抛出一个小球,它落在斜面上b点.若小球从O点以速度2v水平抛出,不计空气阻力,则它落在斜面上的()A.b与c之间某一点B.c点C.c与d之间某一点D.d点3.如图,从地面上方某点,将一小球以5m/s的初速度沿水平方向抛出.小球经过1s落地.不计空气阻力,则可求出()A.小球抛出时离地面的高度是10mB.小球落地时的速度方向与水平地面成30°角C.小球落地时的速度大小是15m/sD.小球从抛出点到落地点的水平位移大小是5m4.某人用手将1kg的物体由静止向上提起1m,这时物体的速度为2m/s,取g=10m/s2,下列说法正确的是()A.手对物体做功10 J B.合外力做功2 JC.合外力做功12 J D.物体克服重力做功10 J5.下列有关功和能量的说法中,正确的是()A.功有正负,说明功是矢量B.功的大小可以定量一个物体的能量大小C.功就是能量,功和能量可以相互转化D.功是能量转化的量度6.如图所示,DO是水平面,AB为斜面,初速为v0的物体从D点出发沿DBA滑动到顶点A时速度刚好为零.如果斜面改为AC,让该物体从D点出发沿DCA滑动到A点且速度刚好为零,则物体具有的初速度(物体与斜面及水平面间的动摩擦因数处处相同且不为零,不计物体滑过B、C点时的机械能损失)()A.大于v0B.等于v0C.小于v0D.取决于斜面的倾角7.如图所示,一倾角为a的固定斜面下端固定一挡板,一劲度系数为k的轻弹簧下端固定在挡板上.现将一质量为m的小物块从斜面上离弹簧上端距离为s 处,由静止释放,已知物块与斜面间的动摩擦因数为μ,物块下滑过程中的最大动能为E km,则小物块从释放到运动至最低点的过程中,下列说法中正确的是()A.μ>tanaB.物块刚与弹簧接触的瞬间达到最大动能C.弹簧的最大弹性势能小于整个过程中物块减少的重力势能与摩擦力对物块做功之和D.若将物块从离弹簧上端2s的斜面处由静止释放,则下滑过程中物块的最大动能小于2E km8.如图所示,将一质量为m的小球从空中O点以速度v0水平抛出,飞行一段时间后,小球经过P点时动能E k=5mv02,不计空气阻力,则小球从O到P()A.经过的时间为B.速度增量为3v0,方向斜向下C.运动方向改变的角度为arctanD.下落的高度为二.多项选择题9.如图所示,足够长的粗糙斜面体C置于水平面上,B置于斜面上,按住B不动,B通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与斜面平行,放手后B沿斜面加速上滑,C一直处于静止状态.则在A落地前的过程中()A.A的重力势能的减少量等于B的机械能的增加量B.水平面对C的摩擦力水平向左C.水平面对C的支持力小于B、C的总重力D.A物体落地前的瞬间受到绳子拉力的功率小于重力的功率10.一质点在x﹣y平面上运动,在x方向的速度图象如图甲,在y方向的位移图象如图乙,质点的质量为4kg,下列说法正确的是()A.质点做匀变速曲线运动B.质点的初速度为7m/sC.质点所受的合外力为6ND.质点初速度的方向与合外力的方向垂直做匀速圆周运动11.如图所示,长为l的细绳一端固定在O点,另一端拴住一个小球,在O点的正下方与O点相距的地方有一枚与竖直平面垂直的钉子;把小球拉起使细绳在水平方向伸直,由静止开始释放,当细绳碰到钉子的瞬间,下列说法错误的是()A.小球的线速度不发生突变B.小球的角速度突然增大到原来的2倍C.小球的向心加速度突然增大到原来的2倍D.绳子对小球的拉力突然增大到原来的2倍12.在倾角为θ的光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量均为m,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一恒力F沿斜面方向拉物块A使之向上运动,当物块B刚要离开C时,A的速度为v,则此过程(弹簧的弹性势能与弹簧的伸长量或压缩量的平方成正比,重力加速度为g)()A.物块A运动的距离为B.物块A的加速度为C.拉力F做的功为mv2D.拉力F对A做的功等于A的机械能的增加量三、填空题13.被竖直上抛的物体,初速度与回到抛出点的速度之比为k,而空气阻力的大小在运动过程中恒定不变,则重力与阻力大小之比为.14.如图1所示是一个研究向心力与哪些因素有关的DIS实验装置的示意图,其中做匀速圆周运动的圆柱体的质量为m,放置在未画出的圆盘上.圆周轨道的半径为r,力电传感器测定的是向心力,光电传感器测定的是圆柱体的线速度,以下是所得数据和图2所示的(1)数据表和图2的三个图象是在用实验探究向心力F和圆柱体线速度v的关系时保持圆柱体质量不变,半径r=0.1m的条件下得到的.研究图象后,可得出向心力F和圆柱体速度v的关系.(2)为了研究F与r成反比的关系,实验时除了保持圆柱体质量不变外,还应保持物理量不变.(3)根据你已经学习过的向心力公式以及上面的图线可以推算出,本实验中圆柱体的质量为四、计算题15.“神舟八号”飞船与“天宫一号”目标飞器在2011年11月3日凌晨I时36分实现刚性连接,形成组合体,我国载人航天首次空间交会对接试验获得成功.(1)如图所示,为“神舟八号”的示意图,P l、P2、P3、P4是四个喷气发动机,每台发动机开动时,都能向“神舟八号”提供推力,但不会使其转动.当“神舟八号”与“天宫一号”在同一轨道上运行,相距30m停泊(相对静止)时,若仅开动发动机Pl使“神舟八号”瞬间获得大于“天宫一号”的运行速度,则它们能否实现交会对接?(填“能”或“不能”).(2)若地球表面的重力加速度为g,地球半径为R,组合体运行的圆轨道距地面的高度为h,那么,组合体绕地球运行的周期是多少?16.一种氢气燃料的汽车,质量为m=2.0×103kg,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒为车重的0.1倍.若汽车从静止开始先匀加速启动,加速度的大小为a=1.0m/s2.达到额定输出功率后,汽车保持功率不变又加速行驶了800m,直到获得最大速度后才匀速行驶.(g=10m/s2)试求:(1)汽车的最大行驶速度;(2)汽车匀加速启动阶段结束时的速度;(3)当速度为5m/s时,汽车牵引力的瞬时功率;(4)汽车从静止到获得最大行驶速度所用的总时间.17.如图所示,一轻质弹簧下端固定在水平地面上,上端与物体A连接,物体A 又与一跨过定滑轮的轻绳相连,绳另一端悬挂着物体B和C,A,B,C均处于静止状态,现剪断B和C之间的绳子,则A和B将做简谐运动,已知物体A质量为3m,B和C质量均为2m,弹簧的劲度系数为k,试求:(1)剪断B和C间绳子之前,A,B,C均处于静止状态时,弹簧的开变量x1;(2)物体A振动过程中的最大速度v m及此时弹簧的形变量x2;(3)振动过程中,绳对物体B的最大拉力F max和最小拉力F min.2015-2016学年湖南省长沙一中高一(下)物理综合练习卷(二)参考答案与试题解析一、单项选择题:家长意见:1.如图所示,两轮用皮带传动,假设皮带不打滑,图中A、B、C三点所在处半径rA>rB=rC,则这三点的向心加速度a A、a B、a C的大小关系正确的是()A.a A=a B B.a C>a A C.a A<a B D.a C=a B【考点】向心加速度.【分析】两轮用皮带传动,轮子边缘上的点线速度大小相等,结合a=得出向心加速度大小关系,A、C两点共轴转动,角速度相等,根据a=rω2得出A、C的向心加速度大小关系.【解答】解:A、B两点线速度相等相等,根据a=得:r A>r B,则a A<a B,故A 错误,C正确.A、C两点角速度大小相等,根据a=rω2得:r A>r C,则a A>a C,可知a B>a C.故BD错误.故选:C.2.如图所示,斜面上有a、b、c、d四个点,ab=bc=cd.从a点正上方的O点以速度v水平抛出一个小球,它落在斜面上b点.若小球从O点以速度2v水平抛出,不计空气阻力,则它落在斜面上的()A.b与c之间某一点B.c点C.c与d之间某一点D.d点【考点】平抛运动.【分析】解答本题需要掌握:平抛运动的特点并能灵活应用,应用相关数学知识求解,如假设没有斜面的限制,将落到那点,有斜面和没有斜面的区别在哪里.【解答】解:过b做一条与水平面平行的一条直线,若没有斜面,当小球从O 点以速度2v水平抛出时,小球将落在我们所画水平线上c点的正下方,但是现在有斜面的限制,小球将落在斜面上的bc之间,故A正确,BCD错误.故选A.3.如图,从地面上方某点,将一小球以5m/s的初速度沿水平方向抛出.小球经过1s落地.不计空气阻力,则可求出()A.小球抛出时离地面的高度是10mB.小球落地时的速度方向与水平地面成30°角C.小球落地时的速度大小是15m/sD.小球从抛出点到落地点的水平位移大小是5m【考点】平抛运动.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据高度求出落地的高度,结合初速度和时间求出水平位移,求出落地时竖直方向上的分速度,通过平行四边形定则求出小球落地时的速度大小.根据平行四边形定则求出落地时的速度与水平方向的夹角.【解答】解:A、根据h=gt2得,所以高度h=×10×1m=5m.故A错误.B、设小球落地时速度与水平方向的夹角为θ,则tanθ====2>,所以θ>30°.故B错误.C、小球落地时竖直方向上的速度v y=gt=10m/s,则落地的速度v==m/s=5m/s.故C错误.D、小球在水平方向上的位移x=v0t=5m.故D正确.故选:D4.某人用手将1kg的物体由静止向上提起1m,这时物体的速度为2m/s,取g=10m/s2,下列说法正确的是()A.手对物体做功10 J B.合外力做功2 JC.合外力做功12 J D.物体克服重力做功10 J【考点】动能定理的应用;重力势能的变化与重力做功的关系.【分析】根据物体的运动的情况可以求得物体的加速度的大小,再由牛顿第二定律就可以求得拉力的大小,再根据功的公式就可以求得力对物体做功的情况.【解答】解:分析物体的运动的情况可知,物体的初速度的大小为0,位移的大小为1m,末速度的大小为2m/s,由导出公式:v2﹣v02=2ax可得,加速度a=2m/s2,由牛顿第二定律可得,F﹣mg=ma,所以F=mg+ma=12N,A、手对物体做功W=FL=12×1J=12J,故A错误;B、合力的大小为ma=2N,所以合力做的功为2×1=2J,所以合外力做功为2J,故B正确,C错误;D、重力做的功为W G=mgh=﹣10×1=﹣10J,所以物体克服重力做功10J,故D正确;故选:BD.5.下列有关功和能量的说法中,正确的是()A.功有正负,说明功是矢量B.功的大小可以定量一个物体的能量大小C.功就是能量,功和能量可以相互转化D.功是能量转化的量度【考点】功能关系.【分析】功是能量转化的量度,功是标量.【解答】解:A、功只有大小,没有方向.功的正负表示能量转化的方向.故A 错误;B、D、功是能量转化的量度,不能用功来定量一个物体的能量大小.故B错误,D正确;C、功是能量转化的量度,而能量是物体具有的某种特性,功不是能量.故C错误.故选:D6.如图所示,DO是水平面,AB为斜面,初速为v0的物体从D点出发沿DBA滑动到顶点A时速度刚好为零.如果斜面改为AC,让该物体从D点出发沿DCA滑动到A点且速度刚好为零,则物体具有的初速度(物体与斜面及水平面间的动摩擦因数处处相同且不为零,不计物体滑过B、C点时的机械能损失)()A.大于v0B.等于v0C.小于v0D.取决于斜面的倾角【考点】功能关系.【分析】物体从D点滑动到顶点A过程中,分为水平和斜面两个过程,由于只有重力和摩擦力做功,根据动能定理列式求解即可.【解答】解:物体从D点滑动到顶点A过程中﹣mg•x AO﹣μmg•x DB﹣μmgcosα•x AB=﹣m由几何关系cosα•x AB=x OB,因而上式可以简化为﹣mg•x AO﹣μmg•x DB﹣μmg•x OB=﹣m﹣mg•x AO﹣μmg•x DO=﹣m从上式可以看出,到达顶点的动能与路径无关.故选:B.7.如图所示,一倾角为a的固定斜面下端固定一挡板,一劲度系数为k的轻弹簧下端固定在挡板上.现将一质量为m的小物块从斜面上离弹簧上端距离为s 处,由静止释放,已知物块与斜面间的动摩擦因数为μ,物块下滑过程中的最大动能为E km,则小物块从释放到运动至最低点的过程中,下列说法中正确的是()A.μ>tanaB.物块刚与弹簧接触的瞬间达到最大动能C.弹簧的最大弹性势能小于整个过程中物块减少的重力势能与摩擦力对物块做功之和D.若将物块从离弹簧上端2s的斜面处由静止释放,则下滑过程中物块的最大动能小于2E km【考点】功能关系.【分析】小物块从静止释放后能下滑,说明重力沿斜面向下的分力大于最大静摩擦力,由此列式得到μ与α的关系.物块所受的合力为零时动能最大.根据能量守恒定律分析各种能量的关系.【解答】解:A、小物块从静止释放后能下滑,则有mgsinα>μmgcosα,解得μ<tanα.故A错误.B、物块刚与弹簧接触的瞬间,弹簧的弹力为零,仍有mgsinα>μmgcosα,物块继续向下加速,动能仍在增大,所以此瞬间动能不是最大,当物块的合力为零时动能才最大,故B错误.C、根据能量转化和守恒定律知,弹簧的最大弹性势能等于整个过程中物块减少的重力势能与产生的内能之差,而内能等于物块克服摩擦力做功,可得弹簧的最大弹性势能等于整个过程中物块减少的重力势能与摩擦力对物块做功之和.故C 错误.D、若将物块从离弹簧上端2s的斜面处由静止释放,下滑过程中物块动能最大的位置不变,弹性势能不变,设为E p.此位置弹簧的压缩量为x.根据功能关系可得:将物块从离弹簧上端s的斜面处由静止释放,下滑过程中物块的最大动能为E km=mg(s+x)sinα﹣μmg(s+x)cosα﹣E p.将物块从离弹簧上端s的斜面处由静止释放,下滑过程中物块的最大动能为E km′=mg•(2s+x)sinα﹣μmg•(2s+x)cosα﹣E p.而2E km=mg(2s+2x)sinα﹣μmg(2s+2x)cosα﹣2E p.=[mg(2s+x)sinα﹣μmg (2s+x)cosα﹣E p]+[mgxsinα﹣μmgxcosα﹣E p]=E km′+[mgxsinα﹣μmgxcosα﹣E p]由于在物块接触弹簧到动能最大的过程中,物块的重力势能转化为内能和物块的动能,则根据功能关系可得:mgxsinα﹣μmgxcosα>E p,即mgxsinα﹣μmgxcosα﹣E p>0,所以得E km′<2E km.故D正确.故选:D8.如图所示,将一质量为m的小球从空中O点以速度v0水平抛出,飞行一段时间后,小球经过P点时动能E k=5mv02,不计空气阻力,则小球从O到P()A.经过的时间为B.速度增量为3v0,方向斜向下C.运动方向改变的角度为arctanD.下落的高度为【考点】平抛运动.【分析】题A根据竖直方向是自由落体运动的位移与时间关系即可求解;题B 的关键是求出竖直方向是速度即可求解;C根据加速度的定义可知△v=at=gt,然后求解即可,D根据动能定理即可求解.【解答】解:A、对小球从A到P由动能定理可得:mgh=E k﹣,解得:h=,在竖直方向应有:h=,代入数据解得:t=,所以A正确,D错误;B、根据△v=at可得,△v=gt=g=3v0,方向与g方向相同即竖直向下,所以B错误;C、速度偏角满足tanθ=,θ=arctan3,所以C错误;故选:A二.多项选择题9.如图所示,足够长的粗糙斜面体C置于水平面上,B置于斜面上,按住B不动,B通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与斜面平行,放手后B沿斜面加速上滑,C一直处于静止状态.则在A落地前的过程中()A.A的重力势能的减少量等于B的机械能的增加量B.水平面对C的摩擦力水平向左C.水平面对C的支持力小于B、C的总重力D.A物体落地前的瞬间受到绳子拉力的功率小于重力的功率【考点】机械能守恒定律.【分析】以A、B组成的系统为研究对象,应用能量守恒定律分析能量变化情况;根据物体的受力情况与运动情况分析C受到的摩擦力与支持力大小;根据物体运动状态与功率公式分析绳子拉力功率与重力功率的关系.【解答】解:A、在A落地前,A、B一起加速运动,它们的速度大小相等,A重力势能的减少量转化为A、B的动能、B增加的重力势能、系统增加的内能,A 重力势能的减少量大于B的机械能的增加量,故A错误;B、B沿斜面上滑,B受到的摩擦力沿斜面向下,B对C的摩擦力平行于斜面向上,C有向右的运动趋势,因此C受到水平向左的地面的摩擦力,故B正确;C、A、B加速运动,A、B系统处于失重状态,B对C的压力小于B的重力,B、C对于地面的压力小于B、C的总重力,因此水平面对C的支持力小于B、C的总重力,故C正确;D、A向下加速运动,绳子的拉力小于A受到的重力,由P=Fv可知,A物体落地前的瞬间受到绳子拉力的功率小于A重力的功率,故D正确;故选:BCD.10.一质点在x﹣y平面上运动,在x方向的速度图象如图甲,在y方向的位移图象如图乙,质点的质量为4kg,下列说法正确的是()A.质点做匀变速曲线运动B.质点的初速度为7m/sC.质点所受的合外力为6ND.质点初速度的方向与合外力的方向垂直做匀速圆周运动【考点】运动的合成和分解;牛顿第二定律.【分析】根据速度图象判断物体在x轴方向做匀加速直线运动,y轴做匀速直线运动.根据位移图象的斜率求出y轴方向的速度,再将两个方向的合成,求出初速度.质点的合力一定,做匀变速运动.y轴的合力为零.根据斜率求出x轴方向的合力,即为质点的合力.合力沿x轴方向,而初速度方向既不在x轴,也不在y轴方向,质点初速度的方向与合外力方向不垂直.【解答】解:A、质点的加速度大小恒定,方向沿x方向,加速度与速度方向不在一条直线上,所以质点做匀变速曲线运动,选项A正确;B、质点在x方向做初速度为3 m/s、加速度为1.5m/s2的匀加速直线运动,在y方向做速度为4 m/s的匀速直线运动,所以质点的初速度为v0==5m/s,选项B错误;C、质点所受的合外力为F=ma=4×1.5N=6 N,选项C正确;D、质点的合外力沿x方向,初速度的方向不垂直于x方向,选项D错误.故选:AC.11.如图所示,长为l的细绳一端固定在O点,另一端拴住一个小球,在O点的正下方与O点相距的地方有一枚与竖直平面垂直的钉子;把小球拉起使细绳在水平方向伸直,由静止开始释放,当细绳碰到钉子的瞬间,下列说法错误的是()A.小球的线速度不发生突变B.小球的角速度突然增大到原来的2倍C.小球的向心加速度突然增大到原来的2倍D.绳子对小球的拉力突然增大到原来的2倍【考点】向心力;牛顿第二定律.【分析】细绳与钉子碰撞前后的瞬间,小球的线速度大小不变,根据ω=判断角速度的变化,根据a=判断向心加速度的变化,根据牛顿第二定律得出拉力的大小,从而判断拉力的变化.【解答】解:A、细绳与钉子碰撞前后瞬间,小球的线速度大小不变.故A正确.B、根据ω=知,线速度大小不变,半径变为原来的二分之一,则角速度增大到原来的2倍.故B正确.C、根据a=知,线速度大小不变,半径变为原来的二分之一,则向心加速度增大到原来的2倍.故C正确.D、根据牛顿第二定律得:,F=mg+,线速度大小不变,半径变为原来的二分之一,拉力不是原来的2倍.故D错误.本题选错误的,故选:D.12.在倾角为θ的光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量均为m,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一恒力F沿斜面方向拉物块A使之向上运动,当物块B刚要离开C时,A的速度为v,则此过程(弹簧的弹性势能与弹簧的伸长量或压缩量的平方成正比,重力加速度为g)()A.物块A运动的距离为B.物块A的加速度为C.拉力F做的功为mv2D.拉力F对A做的功等于A的机械能的增加量【考点】功的计算;胡克定律;牛顿第二定律;机械能守恒定律.【分析】未加拉力F时,物体A对弹簧的压力等于其重力的下滑分力;物块B 刚要离开C时,弹簧的拉力等于物体B重力的下滑分力;根据平衡条件并结合胡克定律求解出两个状态弹簧的行变量,得到弹簧的长度变化情况;然后结合功能关系进行分析即可.【解答】解:A、开始时,弹簧处于压缩状态,压力等于物体A重力的下滑分力,根据胡克定律,有:mgsinθ=kx1解得:x1=物块B刚要离开C时,弹簧的拉力等于物体B重力的下滑分力,根据胡克定律,有;mgsinθ=kx2解得:x2=故物块A运动的距离为:,故A正确;B、此时物体A受拉力、重力、支持力和弹簧的拉力,根据牛顿第二定律,有:F﹣mgsinθ﹣T=ma弹簧的拉力等于物体B重力的下滑分力,为:T=mgsinθ故:a=,故B错误;C、D、拉力F做的功等于物体A、弹簧系统机械能的增加量,为:W=mg•△xsinθ+,故CD错误;故选:A.三、填空题13.被竖直上抛的物体,初速度与回到抛出点的速度之比为k,而空气阻力的大小在运动过程中恒定不变,则重力与阻力大小之比为.【考点】竖直上抛运动;牛顿第二定律.【分析】分上升和下降两个过程,运用动能定理列式,即可求得重力与阻力大小之比.【解答】解:设物体的质量为m,空气阻力大小为f,上升的最大高度为h,根据动能定理得上升过程:﹣(mg+f)h=0﹣下降过程:(mg﹣f)h=由题意,=k联立解得,=故答案为:14.如图1所示是一个研究向心力与哪些因素有关的DIS实验装置的示意图,其中做匀速圆周运动的圆柱体的质量为m,放置在未画出的圆盘上.圆周轨道的半径为r,力电传感器测定的是向心力,光电传感器测定的是圆柱体的线速度,以下是所得数据和图2所示的(1)数据表和图2的三个图象是在用实验探究向心力F和圆柱体线速度v的关系时保持圆柱体质量不变,半径r=0.1m的条件下得到的.研究图象后,可得出向心力F和圆柱体速度v的关系F=0.88v2.(2)为了研究F与r成反比的关系,实验时除了保持圆柱体质量不变外,还应保持物理量线速度的大小不变.(3)根据你已经学习过的向心力公式以及上面的图线可以推算出,本实验中圆柱体的质量为0.088kg【考点】决定向心力大小的因素.【分析】(1)根据图象很容易得到F∝v2,由数学知识求出F﹣v2图象的斜率,即可得到向心力F和圆柱体速度v的关系式;(2)根据控制变量法找出还应保持不变的物理量.(3)根据已经学习过的向心力公式F=m,将r=0.1m,即可求得m【解答】解:(1)由乙图可知,F∝v2,由数学知识得到F﹣v2图象的斜率k==≈0.88,故向心力F和圆柱体速度v的关系是F=0.88v2.(2)该实验运用控制变量法研究物理量的关系,根据向心力公式F=m可知为研究F与r的关系,实验时除保持圆柱体的质量不变外,还应保持不变的物理量是线速度的大小.(3)根据已经学习过的向心力公式F=m,与F=0.88v2比较得,将r=0.1m代入得:m=0.088kg.故答案为:(1)F=0.88v2;(2)线速度的大小;(3)0.088kg四、计算题15.“神舟八号”飞船与“天宫一号”目标飞器在2011年11月3日凌晨I时36分实现刚性连接,形成组合体,我国载人航天首次空间交会对接试验获得成功.(1)如图所示,为“神舟八号”的示意图,P l、P2、P3、P4是四个喷气发动机,每台发动机开动时,都能向“神舟八号”提供推力,但不会使其转动.当“神舟八号”与“天宫一号”在同一轨道上运行,相距30m停泊(相对静止)时,若仅开动发动机Pl使“神舟八号”瞬间获得大于“天宫一号”的运行速度,则它们能否实现交会对接?不能(填“能”或“不能”).(2)若地球表面的重力加速度为g,地球半径为R,组合体运行的圆轨道距地面的高度为h,那么,组合体绕地球运行的周期是多少?【考点】人造卫星的加速度、周期和轨道的关系.【分析】(1)仅开动发动机Pl使“神舟八号”瞬间获得大于“天宫一号”的运行速度,则会由于离心运动偏离轨道;(2)根据地球表面重力约等于万有引力建立等效代换关系,组合体运行时万有。
2015-2016学年度第二学期期末八县(市)一中期末联考高一物理参考答案
2015-2016学年度第二学期八县(市)一中期中联考高中一年物理科试卷答案一.选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1-8题只有一项符合题目要求;第9-12题有多项符合题目要求,全部选对得4分,选对但不全得2分,有选错得0二、实验题(每空2,共14分)13. D14. (1) D (2)①左,② 1.84 , 1.88 ,③在误差允许范围内,重物下落机械能守恒(其他接近的描述亦可)(3) 0.2或0.3 。
15(6分)解:(1)物体做平抛运动:…………………………(2分)解得:t=2s …………………………(1分)(2 ) 水平方向:…………………………(2分)解得:…………………………(1分)16(10分)解:(1)设地球的质量为M,对于在地面处质量为m0的物体有:①…………………………(2分)设同步卫星的质量为m,则:②………………………(2分)由①②两式解得:…………………………(2分)(2)又因为:③…………………………(1分)④…………………………(1分)由①③④解得:…………………………(2分)17(10分)解:(1)由A到B,机械能守恒:…………………………(2分)过B点时:…………………………(2分)解得:…………………………(1分)由牛顿第三定律得:压力…………………………(1分)(2)小球离开B点做平抛运动:水平方向:…………………………(1分)竖直方向:…………………………(1分)解得:…………………………(2分)18(12分)解:(1)恰能做圆周运动,过最高点D有:…………………………(2分)解得:…………………………(1分)(2)从A到B,由动能定理得:……………………(3分)解得:H=0.75m …………………………(1分)(3)小滑块从D点到F点机械能守恒: =+………………………(2分)过F点根据牛顿第二定律: …………………………(2分)压力差:…………………………(1分)。
湖南省长沙县一中、浏阳一中、宁乡一中2015届高三5月三校联考物理试题(含解析)
2015年湖南省长沙县一中、浏阳一中、宁乡一中联考高考物理模拟试卷(5月份)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)下列说法不正确的是()A.奥斯特发现电流周围存在磁场,并提出分子电流假说解释磁现象B.电源是通过非静电力做功把其他形式的能转化为电能的装置C.牛顿发现了万有引力定律,卡文迪许用扭秤实验测出了万有引力常量的数值,从而使万有引力定律有了真正的使用价值D.T•m2与V•s能表示同一个物理量的单位【考点】:物理学史.【专题】:常规题型.【分析】:根据物理学史和常识解答,记住著名物理学家的主要贡献即可.【解析】:解:A、奥斯特发现电流周围存在磁场,安培提出分子电流假说解释磁现象,故A错误;B、电源是通过非静电力做功把其他形式的能转化为电能的装置,故B正确;C、牛顿发现了万有引力定律,卡文迪许用扭秤实验测出了万有引力常量的数值,从而使万有引力定律有了真正的使用价值,故C正确;D、根据Φ=BS和E=得T•m2与V•s能表示同一个物理量的单位,即磁通量的单位,故D正确;本题选不正确的,故选:A.【点评】:本题考查物理学史,是常识性问题,对于物理学上重大发现、发明、著名理论要加强记忆,这也是考试内容之一.2.(6分)电子式互感器是数字变电站的关键装备之一.如图所示,某电子式电压互感器探头的原理为电阻分压,ac间的电阻是cd间电阻的(n﹣1)倍,某次测量中输出端数字电压表的示数为U,则输入端的电压为()A.nU B.C.(n﹣1)U D.【考点】:串联电路和并联电路.【专题】:恒定电流专题.【分析】:由ac和cd是串联形式,有串并联知识可知电压与电阻成正比,可以解得结果.【解析】:解:ac和cd是串联形式,由串联电路电压和电阻成正比,ac间的电阻是cd间电阻的(n﹣1)倍,则当某次测量中输出端数字电压表的示数为U,ac间的电压为(n﹣1)U,故输入电压为U+(n﹣1)U=nU,故A正确,BCD错误.故选:A.【点评】:该题主要考察串并联电路的基本规律,该题看似有点新颖,但是实际就是两段电阻的串联.3.(6分)如图所示为地磁场磁感线的示意图.一架民航飞机在赤道上空匀速飞行,机翼保持水平,由于遇到强气流作用使飞机竖直下坠,在地磁场的作用下,金属机翼上有电势差.设飞行员左方机翼末端处的电势为φ1,右方机翼末端处的电势为φ2,忽略磁偏角的影响,则()A.若飞机从西往东飞,φ2比φ1高B.若飞机从东往西飞,φ2比φ1高C.若飞机从南往北飞,φ2比φ1高D.若飞机从北往南飞,φ2比φ1高【考点】:导体切割磁感线时的感应电动势.【专题】:电磁感应与电路结合.【分析】:由于地磁场的存在,当飞机在在赤道上空竖直下坠时,机翼切割磁感线,产生感应电动势,机翼末端存在电势差,由右手定则可判定电势的高低.【解析】:解:AB、当飞机在赤道上空竖直下坠时,由于地磁场向北,若飞机从西往东飞,机翼不切割磁感线,不产生感应电动势,所以机翼两端不存在电势差,故AB错误.CD、由于地磁场向北,若飞机从南往北飞,由右手定则可判知,飞机的右方机翼末端电势比左方末端电势高,即φ2比φ1高.相反,若飞机从北往南飞,φ1比φ2高,故C正确,D 错误.故选:C.【点评】:本题要了解地磁场的分布情况,掌握右手定则.对于机翼的运动,类似于金属棒在磁场中切割磁感线一样会产生电动势,而电源内部的电流方向则是由负极流向正极的.4.(6分)在学校体育器材室里,篮球水平放在如图所示的球架上.已知球架的宽度为0.15m,每个篮球的质量为0.4kg,直径为0.25m,不计球与球架之间的摩擦,则每个篮球对球架一侧的压力大小为(重力加速度g=10m/s2)()A.4N B.5N C.2.5N D.3N【考点】:共点力平衡的条件及其应用;力的合成与分解的运用.【专题】:共点力作用下物体平衡专题.【分析】:以任意一只篮球为研究对象,分析受力情况,根据几何知识求出相关的角度,由平衡条件求解球架对篮球的支持力,即可得到篮球对球架的压力.【解析】:解:以任意一只篮球为研究对象,分析受力情况,设球架对篮球的支持力N与竖直方向的夹角为α.由几何知识得:sinα====0.6,故α=37°;根据平衡条件得:2Ncosα=mg解得:N===2.5N则得篮球对球架的压力大小为:N′=N=2.5N.故选:C.【点评】:本题关键要通过画出力图,正确运用几何知识求出N与竖直方向的夹角,再根据平衡条件进行求解.5.(6分)如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,已知万有引力常量为G,则月球的质量是()A.B.C.D.【考点】:万有引力定律及其应用.【专题】:万有引力定律的应用专题.【分析】:根据线速度和角速度的定义公式求解线速度和角速度,根据线速度和角速度的关系公式v=ωr求解轨道半径,然后根据万有引力提供向心力列式求解行星的质量.【解析】:解:线速度为:v=…①角速度为:ω=…②根据线速度和角速度的关系公式,有:v=ωr…③卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有:…④联立解得:M=故选:C.【点评】:本题关键抓住万有引力提供向心力,然后根据牛顿第二定律列式求解,不难,注意掌握线速度与角速度的定义.6.(6分)如图甲为理想变压器的示意图,其原、副线圈的匝数比为5:1电压表和电流表均为理想电表,R t为阻值随温度升高而变大的热敏电阻,R1为定值电阻.若发电机向原线圈输入如图乙所示的正弦交流电,则下列说法中正确的是()A.输入变压器原线圈的交流电压的表达式为u=36sin50πtVB.t=0.015s时,发电机的线圈平面与磁场方向垂直C.变压器原、副线圈中的电流之比为1:5D.R t温度升高时,电流表的示数变小,伏特表的读数不变【考点】:变压器的构造和原理.【专题】:交流电专题.【分析】:由图乙可知交流电压最大值U m=36V,周期T=0.02s,可由周期求出角速度的值,则可得交流电压u的表达式U=36sin100πtV、由变压器原理可得变压器原、副线圈中的电流之比,Rt处温度升高时,阻值减小,根据负载电阻的变化,可知电流.【解析】:解:A、由图乙可知交流电压最大值U m=36V,周期T=0.02s,可由周期求出角速度的值为=100π,则可得交流电压u的表达式U=36sin100πtV,故A错误;B、t=0.015s时,瞬时值最大,发电机的线圈平面与磁场方向平行;故B错误;C、变压器原、副线圈中的电流之比等于匝数的反比;故为1:5,故C正确.D、电压之比等于匝数之比,匝数不变则电压不变;因t处温度升高时,阻值增大,电流表的示数变大,故D正确;故选:CD.【点评】:本题考查交流电及变压器的性质;根据图象准确找出已知量,是对学生认图的基本要求,准确掌握理想变压器的特点及电压、电流比与匝数比的关系,是解决本题的关键.7.(6分)如图所示,匀强电场中的△PAB平面平行于电场方向,C点为AB的中点,D点为PB的中点,将一个带电粒子从P点移动到A点,电场力做功W PA=1.6×10﹣8J;将该粒子从P点移动到B点,电场力做功W PB=3.2×10﹣8J.则下列说法正确的是()A.直线PC为等势线B.直线AD为等势线C.若将该粒子从B点移动到A点,电场力做功W BA=1.6×10﹣8JD.若将该粒子从P点移动到C点,电场力做功为W PC=2.4×10﹣8J【考点】:电势差与电场强度的关系;等势面.【专题】:电场力与电势的性质专题.【分析】:带电粒子从P点移动到A点,还是从P点移动到B点,电场力都做正功,P到AB间都有电势差,粒子在电场中做功等于W BA=W BP+W PA即可判断两点间电场力做功【解析】:解:A、一个带电粒子从P点移动到A点,还是从P点移动到B点,电场力都做正功,P到AB间都有电势差,故直线PC为不可能等势线,故A错误;B、粒子从P点移动到B点,电场力做功W PB=3.2×10﹣8J,D点为PB的中点,故粒子从D 点移动到B点,电场力做功W PB==1.6×10﹣8J,粒子从A到B电场力做功为W AB=W AP+W PB=1.6×10﹣8J,故AD为等势面,故B正确;C、从B点移动到P点电场力做功为,故离子从B移到A电场力做功为W BA=W BP+W PA=﹣1.6×10﹣8J,故C错误;D、C是AB的中点,故C点电势为AB的中点电势,故该粒子从P点移动到C点,电场力做功为W PC==2.4×10﹣8J,故D正确;故选:BD【点评】:本题考查对匀强电场中两点电势差与两点沿电场方向的距离成正比U=Ed与运用公式W=qU求解电场力做功的能力,常规题,比较简单.8.(6分)如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,在杆上P点固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套有一质量m=2kg的小球A.半径R=0.3m的光滑半圆形细轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量也为m=2kg的小球B.用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来.杆和半圆形轨道在同一竖直面内,两小球均可看作质点,且不计滑轮大小的影响.现给小球A一个水平向右的恒力F=50N.(取g=10m/s2)则()A.把小球B从地面拉到P的正下方时力F 做功为20JB.小球B运动到C处时的速度大小为0C.小球B被拉到与小球A速度大小相等时,sin∠OPB=D.把小球B从地面拉到P的正下方时小球B的机械能增加了6J【考点】:动能定理的应用;机械能守恒定律.【专题】:动能定理的应用专题.【分析】:根据几何知识求出滑块移动的位移大小,再求解力F做的功,力F做的功等于AB组成的系统机械能的增加,根据功能关系列方程求解小球B运动到C处时的速度大小v,当绳与轨道相切时两球速度相等,小滑块A与小球B的速度大小相等,由几何知识求出夹角.【解析】:解:A、对于F的做功过程,由几何知识得到:力F作用点的位移x=PB﹣PC=则力F做的功W=Fx=50×0.4J=20J,故A正确;B、由于B球到达C处时,已无沿绳的分速度,所以此时滑块A的速度为零,考察两球及绳子组成的系统的能量变化过程,由功能关系得:W=mv2+mgR代入已知量得:20=+2×10×0.3,解得小球B速度的大小v=m/s,故B错误;C、当绳与轨道相切时两球速度相等,如图:由三角形知识得:sin∠OPB==,故C正确;D、设最低点势能为0,小球B从地面拉到P的正下方时小球B的机械能增加,,故D错误;故选:AC【点评】:本题连接体问题,关键分析两物体之间的速度与高度关系并运用几何知识和功能关系来研究,注意分析B球到达最高点时A球速度为零.二、非选择题:包括必考题和选考题两部分.第9题~第12题为必考题,每个试题考生都必须作答.第13题~第18题为选考题,考生根据要求作答.(一)必考题9.(6分)为了探究质量一定时加速度与力的关系,一同学设计了如图1所示的实验装置.其中M为带滑轮的小车的质量,m为砂和砂桶的质量.(滑轮质量不计)(1)实验时,一定要进行的操作是BCD.A.用天平测出砂和砂桶的质量.B.将带滑轮的长木板右端垫高,以平衡摩擦力.C.小车靠近打点计时器,先接通电源,再释放小车,打出一条纸带,同时记录弹簧测力计的示数.D.改变砂和砂桶的质量,打出几条纸带.E.为减小误差,实验中一定要保证砂和砂桶的质量m远小于小车的质量M(2)该同学在实验中得到如图2所示的一条纸带(两计数点间还有两个点没有画出),已知打点计时器采用的是频率为50Hz的交流电,根据纸带可求出小车的加速度为 1.3m/s2(结果保留两位有效数字).(3)以弹簧测力计的示数F为横坐标,加速度为纵坐标,画出的a﹣F图象是一条直线,图线与横坐标的夹角为θ,求得图线的斜率为k,则小车的质量为D.A.2tanθ B.C.k D..【考点】:探究加速度与物体质量、物体受力的关系.【专题】:实验题;牛顿运动定律综合专题.【分析】:(1)解决实验问题首先要掌握该实验原理,了解实验的操作步骤和数据处理以及注意事项;(2)依据逐差法可得小车加速度.(3)小车质量不变时,加速度与拉力成正比,对a﹣F图来说,图象的斜率表示小车质量的倒数.【解析】:解:(1)AE、本题拉力可以由弹簧测力计测出,不需要用天平测出砂和砂桶的质量,也就不需要使小桶(包括砂)的质量远小于车的总质量,故A错误,E错误.B、该题是弹簧测力计测出拉力,从而表示小车受到的合外力,故需要将带滑轮的长木板右端垫高,以平衡摩擦力,故B正确;C、打点计时器运用时,都是先接通电源,待打点稳定后再释放纸带,该实验探究加速度与力和质量的关系,要记录弹簧测力计的示数,故C正确;D、改变砂和砂桶质量,即改变拉力的大小,打出几条纸带,研究加速度随F变化关系,故D正确;故选:BCD.(2)由于两计数点间还有两个点没有画出,故单摆周期为0.06s,由△x=aT2可得:.(3)对a﹣F图来说,图象的斜率表示小车质量的倒数,此题,弹簧测力计的示数F=,故小车质量为m=.故答案为:(1)BCD;(2)1.3;(3)D.【点评】:解决实验问题首先要掌握该实验原理,了解实验的操作步骤和数据处理以及注意事项,小车质量不变时,加速度与拉力成正比,对a﹣F图来说,图象的斜率表示小车质量的倒数.10.(9分)现有一只电压表有刻度但无刻度值,提供以下可选用的器材及导线若干,要求尽可能精确地测量一个电压表的满偏电压U g.A.待测电压表V1,满偏电压约3V,内阻R V1=3000Ω,刻度均匀、总格数为N;B.电流表A:量程0.6A、内阻R A约0.1Ω;C.电压表V2:量程15V、内阻R V2约15kΩ;D.标准电阻R1=10Ω;E.标准电阻R2=10kΩ;F.滑动变阻器R:最大阻值200Ω;G.学生电源E,电动势15V,内阻不计;H.开关一个.①如图方框中已画出部分实验电路图,请你完成剩余的部分电路图,并标上题目中所给仪器的字母代号.②测出多组数据,其中一组数据中待测电压表V1的指针偏转了n格,可计算出满偏电压U g为(用字母表示),式中除题目已给的物理量外,其他字母符号表示的物理量物理意义是标准电压表V2的读数.【考点】:伏安法测电阻.【专题】:实验题.【分析】:(1)根据题意及给出的仪表进行分析,明确实验中应采用的接法及电路图;(2)根据所设计的电路图,利用欧姆定律及串并联电路的规律可得出满偏电压值.【解析】:解:①待测电压表内阻已知,若能求出电路中的电流即可明确其不同刻度处时的电压,根据格数即可求得满偏电压值;因电压表中允许通过的电流较小,不能用用让其与待测电流表相串联,故只能用电压表并联的方式测出电压值,而V2量程过大,故应串联一保护电阻;原理图如图所示;(2)若V2示数为U,则流过V1的电流I=;待测电压表的示数为:IR V1=R1;故满偏电压Ug=;其中U是直流电压表V的指针指到第n格时,标准电压表V2的读数故答案为:(1)如图所示;(2);标准电压表V2的读数【点评】:本题为探究型实验,要注意根据题意明确实验原理,注意所给仪器的正确使用,学会分析问题非常关键.11.(14分)如图1所示,一根直杆AB与水平面成某一角度固定,在杆上套一个小物块,杆底端B处有一弹性挡板,杆与板面垂直,现将物块拉到A点静止释放,物体下滑与挡板第一次碰撞前后的v﹣t图象如图2所示,物块最终停止在B点.重力加速度为g=10m/s2,求:(1)物块与杆之间的动摩擦因数μ;(2)物块滑过的总路程s.【考点】:牛顿第二定律;匀变速直线运动的图像.【专题】:牛顿运动定律综合专题.【分析】:根据速度时间公式求出下滑和上滑的加速度大小,结合牛顿第二定律求出物块与杆之间的动摩擦因数.对全过程运用动能定理,求出物块滑块的总路程.【解析】:解:(1)设杆子与水平方向的夹角为θ,由图象可知,物块匀加速运动的加速度大小,匀减速上滑的加速度大小,根据牛顿第二定律得,mgsinθ﹣μmgcosθ=ma1,mgsinθ+μmgcosθ=ma2,联立两式解得μ=0.25,sinθ=0.6.(2)物块最终停止在底端,对全过程运用动能定理得,mgs1sinθ﹣μmgcosθ•s=0,由图线围成的面积知,,代入数据解得s=6m.答:(1)物块与杆之间的动摩擦因数μ为0.25;(2)物块滑过的总路程s为6m.【点评】:本题考查了牛顿第二定律、动能定理以及速度时间图线的综合运用,知道加速度是联系力学和运动学的桥梁,难度不大.12.(18分)如图所示,等腰直角三角形ACD的直角边长为2a,P为AC边的中点,Q为CD边上的一点,DQ=a.在△ACD区域内,既有磁感应强度大小为B、方向垂直纸面向里的匀强磁场,又有电场强度大小为E的匀强电场,一带正电的粒子自P点沿平行于AD的直线通过△ACD区域.不计粒子的重力.(1)求电场强度的方向和粒子进入场区的速度大小v0;(2)若仅撤去电场,粒子仍以原速度自P点射入磁场,从Q点射出磁场,求粒子的比荷;(3)若仅撤去磁场,粒子仍以原速度自P点射入电场,求粒子在△ACD区域中运动的时间.【考点】:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.【专题】:带电粒子在复合场中的运动专题.【分析】:(1)根据正电的粒子在电磁场中做直线运动可以,粒子受力平衡,根据电场力等于洛伦兹力求出初速度;(2)根据洛伦兹力提供向心力公式结合几何关系求解;(3)粒子沿初速度v0方向做匀速直线运动,沿电场方向做匀加速直线运动,根据运动学基本公式结合几何关系求解.【解析】:解:(1)正粒子在场区受力平衡:qE=qv0B…①解得:根据正粒子所受电场力的方向与场强的方向相同,可知场强的方向由A指向C.(2)过Q点作半径OQ,它与CA的延长线交于圆心O,作QH⊥CA,垂足为H,设正粒子做匀速圆周运动的半径为R,则:…②在直角三角形HOQ中:HO2+HQ2=R2…③…④HO=OC﹣HC=(R+a)﹣HQ…⑤联立③④⑤解得:R=3a…⑥联立①②⑥解得:…⑦(3)粒子沿初速度v0方向做匀速直线运动:x=v0t…⑧粒子沿电场方向做匀加速直线运动:…⑨由几何关系:x+y=a=10…⑩由①⑦⑧⑨=10 ⑩得:解得:答:(1)求电场强度的方向和粒子进入场区的速度大小为;(2)粒子的比荷为;(3)粒子在△ACD区域中运动的时间为.【点评】:本题考查了粒子在电场与磁场中的运动,知道若粒子在混合场中做直线运动,则粒子受力平衡,能结合几何关系求解,难度适中.二.选考题:共45分.请考生从给出的3个物理模块中选做一个模块.【物理──选修3-3】(15分)13.(6分)下列说法中正确的是()A.布朗运动是指液体或气体中悬浮微粒的无规则运动B.将大颗粒的盐磨成细盐,就变成了非晶体C.一定量100℃的水变成100℃的水蒸气,其分子之间的势能增加D.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低E.空调机作为制冷机使用时,将热量从温度较低的室内送到温度较高的室外,所以制冷机的工作不遵守热力学第二定律【考点】:* 晶体和非晶体;热力学第二定律.【分析】:正确解答本题要掌握:温度是分子平均动能的标志;布朗运动是指液体或气体中悬浮微粒的运动;物体的内能;正确理解好应用热力学第二定律.【解析】:解:A、布朗运动是指液体或气体中悬浮微粒的运动,反映了液体或气体分子的无规则运动.故A正确.B、大颗粒的盐磨成细盐,不改变盐的晶体结构.故B错误.C、一定量100℃的水变成100℃的水蒸汽,温度没有变化,分子的平均动能不变,但是在这个过程中要吸热,内能增加,所以分子之间的势能必定增加.故C正确.D、温度是分子平均动能的标志,只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低.故D正确;E、将热量从温度较低的室内送到温度较高的室外,产生了其它影响,即消耗了电能,所以不违背热力学第二定律.故E错误故选:ACD.【点评】:本题考查了有关分子运动和热现象的基本知识,对于这些基本知识一定注意加强记忆和积累.其中对热力学第二定律的几种不同的表述要准确理解.14.(9分)如图,一上端开口、下端封闭的细长玻璃管,上部有长24cm的水银柱,封有长12cm的空气柱,此时水银面恰好与管口平齐.已知大气压强为p0=76cmHg,如果使玻璃管绕底端在竖直平面内缓慢地转动180°,求在开口向下时管中空气柱的长度.封入的气体可视为理想气体,在转动过程中气体温度保持不变,没有发生漏气.【考点】:理想气体的状态方程.【专题】:理想气体状态方程专题.【分析】:在玻璃管转动过程中,根据P=P0+hcosθ可知,转动的角度增大,封闭气体压强减小,体积增大,水银溢出,整个过程封闭气体等温变化,根据玻意耳定律列式求解即可.【解析】:解:设玻璃管开口向上时,空气柱的压强为p1=p0+ρgl1①式中,ρ和g分别表示水银的密度和重力加速度.玻璃管开口向下时,原来上部的水银有一部分会流出,设此时空气柱长度为x,则p2=p0﹣ρg[(l1+l2)﹣x]②式中,p2为管内空气柱的压强.由玻意耳定律有p1l2S=p2xS ③S为玻璃管的横截面积,由①②③式和题干条件得x=20 cm答:在开口向下时管中空气柱的长度为20cm.【点评】:本题关键是求出被封闭气体的压强即可正确解答,解答这类问题注意以水银柱为研究对象,根据平衡状态求解.【物理──选修3-4】(15分)15.一列简谐横波沿x轴正方向传播,在x=12m处的质元的振动图线如图1所示,在x=18m 处的质元的振动图线如图2所示.下列说法正确的是()A.该波的周期为12sB.x=12m处的质元在平衡位置向上振动时,x=18m处的质元在波峰C.在0~4s内x=12m处和x=18m处的质元通过的路程均为6cmD.该波的波长可能为8mE.该波的传播速度可能为2m/s【考点】:横波的图象;波长、频率和波速的关系.【专题】:振动图像与波动图像专题.【分析】:首先明确两种图象的意义,获取相关信息,如波长、周期和振幅;利用波速、波长和周期的关系求波速;利用质点的振动情况,判断波的传播方向.【解析】:解:A、由图可知,该波的周期为12s.故A正确;B、由图可知,t=3s时刻,x=12m处的质元在平衡位置向上振动时,x=18m处的质元在波峰,故B正确;C、据图2知t=2s时,在x=18m处的质元的位移为零,正通过平衡位置向上运动,在t=4s 时刻,在x=18m处的质元的位移大于2cm,所以在0~4s内x=18m处的质元通过的路程小于6cm.故C错误;D、由两图比较可知,x=12m处比x=18m处的质元早振动9s,即,所以两点之间的距离为:(n=0、1、2、3…)所以:(n=0、1、2、3…)n=0时,波长最大,为:m.故D正确;E、波的速度:m/s(n=0、1、2、3…)n=0时,最大速度:v=m/s;故E错误;故选:ABD.【点评】:首先明确两个图象的区别和联系,据图求出波长、周期是解题的前提,灵活应用波的传播方向与质点的振动关系是解题的核心.16.如图所示,横截面(纸面)为△ABC的三棱镜置于空气中,顶角∠A=60°.纸面内一细光束以入射角i射入AB面,直接到达AC面并射出,光束在通过三棱镜时出射光与入射光的夹角为φ(偏向角).改变入射角i,当i=i0时,从AC面射出的光束的折射角也为i0,理论计算表明在此条件下偏向角有最小值φ0=30°.求三棱镜的折射率n.【考点】:光的折射定律.【专题】:光的折射专题.【分析】:画出光路图,根据折射定律对AB面和AC面分别列式,再结合几何关系求解.【解析】:解:设光束在AB面的折射角为α,由折射定律:①设光束在AC面的入射角为β,由折射定律:②由几何关系:α+β=60°③φ0=(i0﹣α)+(i0﹣β)④联立解得:答:三棱镜的折射率n为.【点评】:本题是几何光学问题,作出光路图是解答的基础,关键能灵活运用数学知识求出折射角,并能掌握折射定律.【物理──选修3-5】(15分)。
【物理】湖南省长沙市浏阳一中2015-2016学年下学期高一(下)第一次段考
2015-2016学年湖南省长沙市浏阳一中高一(下)第一次段考物理试卷一、单项选择题(每小题只有一个选项符合题意,选对得3分,共30分)1.下列说法正确的是()A.物体在恒力作用下可能做曲线运动B.物体在变力作用下一定做曲线运动C.物体在恒力作用下一定做直线运动D.做圆周运动的物体,合外力一定指向圆心2.汽车在水平公路上转弯,沿曲线由M向N行驶.如图所示中分别画出了汽车转弯时所受合力F的四种方向,你认0为正确的是()A.B.C.D.3.关于平抛运动,下列说法中正确的是()A.它是速度大小不变的曲线运动B.它是加速度变化的非匀变速曲线运动C.它是水平方向的匀速直线运动和竖直方向的匀速直线运动的合运动D.它是水平方向的匀速直线运动和竖直方向的匀加速直线运动的合运动4.如图,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)()A.两次小球运动时间之比t1:t2=1:B.两次小球运动时间之比t1:t2=1:2C.两次小球抛出时初速度之比v01:v02=:1D.两次小球抛小时初速度之比v01:v02=1:25.关于向心力和向心加速度的说法中,正确的是()A.做匀速圆周运动的物体其向心力是恒定不变的B.向心力不改变做圆周运动物体的速度的大小C.做圆周运动的物体所受各力的合力一定是向心力D.缓慢地做匀速圆周运动的物体其向心加速度等于零6.如图,一物体停在匀速转动圆筒的内壁上,如果圆筒的角速度增大,则()A.物体所受弹力增大,摩擦力也增大了B.物体所受弹力增大,摩擦力减小了C.物体所受弹力和摩擦力都减小了D.物体所受弹力增大,摩擦力不变7.一快艇从离岸边100m远的河中向岸边行驶.已知快艇在静水中的加速度为0.5m/s2,流水的速度为3m/s.则()A.快艇的运动轨迹一定为直线B.快艇的运动轨迹可能为曲线,也可能为直线C.若快艇垂直于河岸方向的初速度为0,则快艇最快到达岸边所用的时间为20 sD.若快艇垂直于河岸方向的初速度为0,则快艇最快到达岸边经过的位移为100 m8.如图,汽车向在开动,系在车后缘的绳子绕过定滑轮拉着重物M上升,当汽车向左匀速运动时,重物M将()A.匀速上升 B.加速上升 C.减速上升 D.无法确定9.如图所示,倒置的光滑圆锥面内侧,有质量相同的两个小玻璃球A、B,沿锥面在水平面内作匀速圆周运动,关于A、B两球的角速度、线速度和向心加速度正确的说法是()A.它们的角速度ωA=ωB B.它们的线速度v A<v BC.它们的向心加速度相等 D.它们对锥壁的压力F NA≥F NB10.如图所示,圆弧形凹槽固定在水平地面上,其中ABC是以O为圆心的一段圆弧,位于竖直平面内.现有一小球从一水平桌面的边缘P点向右水平飞出,该小球恰好能从A点沿圆弧的切线方向进入轨道.OA与竖直方向的夹角为θ1,PA与竖直方向的夹角为θ2.下列说法正确的是()A.tanθ1tanθ2=2 B.cotθ1tanθ2=2 C.cotθ1cotθ2=2 D.tanθ1cotθ2=2二、多项选择题(每小题4分,漏选得2分,错选或多选不得分,共16分)11.如图,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮的2倍,它们之间靠摩擦传动,接触面不打滑.下列说法正确的是()A.A与B线速度大小相等 B.B与C线速度大小相等C.C与A角速度大小相等 D.A与B角速度大小相等12.铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度小于,则()A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.垂直于轨道平面对火车的支持力大于D.垂直于轨道平面对火车的支持力小于13.用细线悬吊着一个质量为m的小球,使小球在水平面内做匀速圆周运动,细线与竖直方向夹角为α,线长为L,如图所示,下列说法中正确的是()A.小球受重力、拉力、向心力 B.小球受重力、拉力C.小球的向心力大小为mgtanαD.小球的向心力大小为14.如图所示,可视为质点的,质量为m的小球,在半径为R的竖直放置的光滑圆形管内做圆周运动,下列有关说法中正确的是()A.小球能够通过最高点的最小速度为0B.小球能通过最高点的最小速度为C.如果小球在最高点时的速度大小为2,则此时小球对管道有向上的作用力D.如果小球在最低点时的速度大小为,则小球通过该点时与管道间无相互作用力三、实验题(每空2分,共12分)15.两个同学根据不同的实验条件,进行了“探究平抛运动规律”的实验:(1)甲同学采用如图(1)所示的装置.用小锤打击弹性金属片,金属片把A球沿水平方向弹出,同时B球被松开,自由下落,观察到两球同时落地,改变小锤打击的力度,即改变A球被弹出时的速度,两球仍然同时落地,这说明.(2)乙同学采用如图(2)所示的装置.两个相同的弧形轨道M、N分别用于发射小铁球P、Q,其中N的末端与可看作光滑的水平板相切;两轨道上端分别装有电磁铁C、D;调节电磁铁C、D的高度,使AC=BD,从而保证小铁球P、Q在轨道出口处的水平初速度v0相等,现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两小铁球能以相同的初速度v0同时分别从轨道M、N下端射出.实验可观察到的现象应是.仅仅改变弧形轨道M的高度(保持AC不变),重复上述实验,仍能观察到相同的现象,这说明.16.图为一小球做平抛运动的闪光照片的一部分.图中背景方格的边长均为2.5cm,如果取重力加速度g=10米/秒2:(1)照片的闪光频率为Hz.(2)小球做平抛运动的初速度的大小为m/s(3)小球经过B点时的竖直分速度为m/s.四、计算题(共42分,需写明计算过程和相应的文字说明)17.为了粗略测量弹簧枪射出的子弹(可视为质点)的初速度.某同学把弹簧枪放在水平桌面上,枪口恰在桌边缘处且枪管水平,发射子弹.记下子弹落地的位置,再测出子弹落地点距桌面边缘的水平距离s=90cm和距地面的竖直高度h=125cm.试由他测量的数据计算出弹簧枪射出子弹的初速度(取g=10m/s2).18.如图所示,小球质量为m.固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O 点在竖直平面内做圆周运动.如果小球经过最高点位置时,杆对球的作用力为拉力,拉力大小等于球的重力.求:(1)球的速度大小.(2)当小球经过最低点时速度为,试分析小球的向心加速度大小和杆对球的作用力的大小.19.如图所示,地面上有一高h的平台,平台下有一倾角可调的挡板,挡板的一端与平台边缘A点的正下方B点重合.将一个可视为质点的小球以v的速度水平推出.适当调节挡板的倾角,小球会刚好垂直撞在挡板上.已知小球下落过程中所受空气阻力忽略不计,当地重力加速度为g.求小球运动的时间是多少?20.如图所示,竖直刚性杆OO′固定在水平地面上,轻质细绳一端悬于O点,另一端连接一质量为m的小球(可视为质点),小球绕竖直轴OO′在某一水平面上做匀速圆周运动,细绳到轴OO′的垂直距离为R=0.1m,细绳与竖直轴OO′的夹角为θ=45°;当小球经过A点时,细绳在A点被烧断,A距地面的高度为h=1.2m(A′是A点在水平面上的投影),小球落地点为B,取g=10m/s2.求:(1)小球运动到A点时的速度大小;(2)B点距竖直轴OO′的水平距离(即O′B的长度).2015-2016学年湖南省长沙市浏阳一中高一(下)第一次段考物理试卷参考答案与试题解析一、单项选择题(每小题只有一个选项符合题意,选对得3分,共30分)1.【考点】物体做曲线运动的条件.【分析】物体做曲线运动的条件是合力与速度不在同一条直线上,速度的方向与该点曲线的切线方向相同.【解答】解:A、物体做曲线运动的条件是合力与速度不在同一条直线上,合外力大小和方向不一定变化,比如平抛运动,受到的就是恒力重力的作用,故A正确;B、物体做曲线运动的条件是合力与速度不在同一条直线上,对合力是否变化没有要求,物体在变力作用下可能做曲线运动,也可能做直线运动.故B错误;C、物体在恒力作用下可能做曲线运动,如平抛运动,所以C错误;D、做匀速圆周运动的物体,合外力一定指向圆心;做非匀速圆周运动的物体,合外力一定不指向圆心.故D错误.故选:A【点评】本题关键是对质点做曲线运动的条件的考查,匀速圆周运动,平抛运动等都是曲线运动,对于它们的特点要掌握住.2.【考点】物体做曲线运动的条件;曲线运动.【分析】做曲线运动的物体所受合力与物体速度方向不在同一直线上,速度方向沿曲线的切线方向,合力方向指向曲线的内测(凹的一侧),分析清楚图示情景,然后答题.【解答】解:汽车在水平公路上转弯,汽车做曲线运动,沿曲线由M向N行驶,汽车所受合力F的方向指向运动轨迹内测;A、力的方向与速度方向相同,不符合实际,故A错误;B、力的方向与速度方向相反,不符合实际,故B错误;C、力的方向指向外侧,不符合实际,故C错误;D、力的方向指向运动轨迹的内测,符合实际,故D正确;故选D.【点评】做曲线运动的物体,合力的方向指向运动轨迹弯曲的内侧,当物体速度大小不变时,合力方向与速度方向垂直,当物体速度减小时,合力与速度的夹角要大于90°,当物体速度增大时,合力与速度的夹角要小于90°.3.【考点】平抛运动.【分析】平抛运动的加速度不变,做匀变速曲线运动,在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.【解答】解:A、平抛运动的加速度不变,做匀变速曲线运动,速度大小和方向时刻改变,故A、B错误.C、平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,故C错误,D 正确.故选:D、【点评】解决本题的关键知道平抛运动的特点,加速度不变,速度大小和方向时刻改变,以及知道平抛运动在水平方向和竖直方向上的运动规律,基础题.4.【考点】平抛运动.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据高度求出运动的时间之比,水平方向做匀速运动,且小球水平位移之比为1:2,从而求出初速度之比.【解答】解:A、平抛运动在竖直方向上做自由落体运动,根据h=gt2,得t=.因为两次小球下降的高度之比为1:2,则运动时间之比为1:.故A正确,B错误.C、小球水平位移之比为1:2,由x=vt可知,则水平初速度之比为1:,故CD错误.故选:A.【点评】解决本题的关键知道平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.以及知道小球落在斜面上,竖直方向上的位移和水平方向上的位移比值一定.5.【考点】向心力;线速度、角速度和周期、转速;向心加速度.【分析】做匀速圆周运动的物体要受到指向圆心的向心力的作用,从而产生指向圆心的向心加速度,向心加速度只改变物体的速度的方向不改变速度的大小.而非匀速圆周运动,合外力指向圆心的分量提供向心力.【解答】解:A、向心力的方向始终指向圆心,在不同的时刻方向是不同的,所以A错误.B、匀速圆周运动的向心力的方向始终指向圆心,与速度方向垂直,只改变速度的方向,不改变速度的大小,所以B正确.C、非匀速圆周运动,合外力指向圆心的分量提供向心力,所以C错误.D、根据公式a=,缓慢地做匀速圆周运动的物体其向心加速度不等于零,只是接进零,故D错误.故选:B【点评】匀速圆周运动要注意,其中的匀速只是指速度的大小不变,合力作为向心力始终指向圆心,合力的方向也是时刻在变化的.6.【考点】向心力;牛顿第二定律.【分析】做匀速圆周运动的物体合力等于向心力,向心力可以由重力、弹力、摩擦力中的任意一种力来提供,也可以由几种力的合力提供,还可以由某一种力的分力提供;本题中物体做匀速圆周运动,合力指向圆心,对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,合力等于支持力,提供向心力.【解答】解:物体做匀速圆周运动,合力指向圆心,提供向心力.对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,如图,其中重力G与静摩擦力f平衡,与物体的角速度无关,支持力N提供向心力,由N=mω2r知,当圆筒的角速度ω增大以后,向心力变大,物体所受弹力N增大,故D正确,A、B、C错误.故选:D【点评】本题中要使静摩擦力与重力平衡,角速度要大于某一个临界值,即重力不能小于最大静摩擦力!7.【考点】运动的合成和分解.【分析】船参与了静水中的运动和水流运动,根据运动的合成判断运动的轨迹.当静水速与河岸垂直时,渡河时间最短.【解答】解:AB、快艇在静水中做匀加速直线运动,在水流中做匀速直线运动,知合速度的方向与合加速度的方向不再同一条直线上,所以运动轨迹是曲线.故AB错误.C、当静水速与河岸垂直时,渡河时间最短,则d=at2,a=0.5m/s2,则t==s=20s.故C正确.D、此时沿河岸方向上的位移x=vt=3×20m=60m,则s=>100m.故D错误.故选:C.【点评】解决本题的关键知道分运动与合运动具有等时性,各分运动具有独立性,以及知道当静水速与河岸垂直,渡河时间最短.8.【考点】运动的合成和分解.【分析】小车的运动可分解为沿绳方向和垂直于绳的方向两个运动,其中沿绳方向的运动与物体上升的运动速度相等,从而即可求解.【解答】解:(1)小车的运动可分解为沿绳方向和垂直于绳的方向两个运动,设绳子与水平面的夹角为θ,由几何关系可得:v M=vcosθ,(2)因v不变,而当θ逐渐变小,故v M逐渐变大,物体有向上的加速度,故B正确,ACD 错误;故选:B.【点评】考查运动的合成与分解的应用,掌握牛顿第二定律的内容,注意正确将小车的运动按效果进行分解是解决本题的关键.9.【考点】向心力;线速度、角速度和周期、转速.【分析】对两小球分别受力分析,求出合力,根据向心力公式和牛顿第二定律列式求解,可得向心加速度、线速度和角速度.【解答】解:对A、B两球分别受力分析,如图由图可知F合=F合′=mgtanθ根据向心力公式有:mgtanθ=ma=mω2R=m解得:a=gtanθ,v=,,由于A球转动半径较大,故向心加速度一样大,A球的线速度较大,角速度较小,它们对锥壁的压力相等,故C正确.故选:C【点评】本题关键受力分析后,求出合力,然后根据向心力公式和牛顿第二定律列式求解,难度适中.10.【考点】平抛运动.【分析】从图中可以看出,速度与水平方向的夹角为θ1,位移与竖直方向的夹角为θ2.然后求出两个角的正切值.【解答】解:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.速度与水平方向的夹角为θ1,tanθ1==.位移与竖直方向的夹角为θ2,tanθ2=,则tanθ1tanθ2=2.故A 正确,B、C、D错误.故选A.【点评】解决本题的关键掌握处理平抛运动的方法,平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.以及知道速度与水平方向夹角的正切值是同一位置位移与水平方向夹角的正切值的两倍.二、多项选择题(每小题4分,漏选得2分,错选或多选不得分,共16分)11.【考点】线速度、角速度和周期、转速.【分析】靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,知A、B两点具有相同的线速度,A、C共轴转动,则角速度相等.根据v=rω,a=rω2,可得出角速度和加速度的关系.【解答】解:A、靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,知A、B两点具有相同的线速度.故A正确.B、A、B具有相同的线速度大小,又因为A、C具有相同的角速度,根据v=rω,可知B点的线速度大于C点的线速度.故B错误,C正确.D、已知A、B两点具有相同的线速度大小,即v A=v B,根据v=rω,知小轮转动的角速度是大轮的两倍,故D错误.故选AC.【点评】解决本题的关键掌握靠摩擦传动轮子边缘上的点,具有相同的线速度,共轴转动的点,具有相同的角速度.12.【考点】向心力;牛顿第二定律.【分析】火车在弯道处拐弯时火车的重力和轨道对火车的支持力的合力做为转弯需要的向心力,当合力恰好等于需要的向心力时,火车对内外轨道都没有力的作用,速度增加,就要对外轨挤压,速度减小就要对内轨挤压.【解答】解:A、B、火车的重力和轨道对火车的支持力的合力恰好等于需要的向心力时,此时火车的速度正好是,由题知,质量为m的火车转弯时速度小于,所以内轨对内侧车轮轮缘有挤压,故A正确,B错误.C、当内外轨没有挤压力时,受重力和支持力,N=,由于内轨对火车的作用力沿着轨道平面,可以把这个力分解为水平和竖直向上两个分力,由于竖直向上的分力的作用,使支持力变小.故C错误,D正确.故选:AD.【点评】火车转弯主要是分析清楚向心力的来源,再根据速度的变化,可以知道对内轨还是对外轨有作用力.13.【考点】向心力;物体的弹性和弹力.【分析】先对小球进行运动分析,做匀速圆周运动,再找出合力的方向,进一步对小球受力分析.【解答】解:小球在水平面内做匀速圆周运动,对小球受力分析,如图小球受重力、绳子的拉力,由于它们的合力总是指向圆心并使得小球在水平面内做圆周运动,故在物理学上,将这个合力就叫做向心力,即向心力是按照力的效果命名的,这里是重力和拉力的合力;根据几何关系可知:F向=mgtanθ,故AD错误,BC正确;故选:BC.【点评】向心力是效果力,匀速圆周运动中由合外力提供,是合力,与分力是等效替代关系,不是重复受力!14.【考点】向心力.【分析】圆形管道内能支撑小球,小球能够通过最高点时的最小速度为0.小球在最高点时的速度大小为2,由牛顿第二定律求出小球受到的管道的作用力大小和方向,再由牛顿第三定律分析小球对管道的作用力.小球从最低点运动到最高点的过程中,只有重力做功,其机械能守恒.在最低点时的速度大小为,根据机械能守恒定律求出小球到达最高点时的速度,再由牛顿第二定律求出小球受到的管道的作用力大小和方向.【解答】解:AB、圆形管道内能支撑小球,小球能够通过最高点时的最小速度为0.故A 正确,B错误.C、设管道对小球的弹力大小为F,方向竖直向下.由牛顿第二定律得:mg+F=m,v=2,解得F=3mg,方向竖直向下.根据牛顿第三定律得知:小球对管道有向上的弹力.故C正确.D、如果小球在最低点时的速度大小为,有向上的加速度,由牛顿运动定律可知小球通过该点时与管道间一定有作用力,故D错误.故选:AC.【点评】本题中圆管模型与轻杆模型相似,抓住两个临界条件:一是小球恰好到达最高点时,速度为零;二是小球经过最高点与管道恰好无作用力时速度为.三、实验题(每空2分,共12分)15.【考点】研究平抛物体的运动.【分析】明确该实验的实验目的以及平抛运动的规律即可正确解答本题.【解答】解:(1)两球同时落地,说明A、B两球在竖直方向运动规律相同.故答案为:平抛运动的物体在竖直方向上做自由落体运动.(2)平抛运动水平方向做匀速直线运动,根据实验可知,P球从M点平抛,而Q球从N 点在水平面上匀速运动,二者运动轨迹虽然不同,但是水平方向的运动规律相同,因此P 球会砸中Q球;仅仅改变弧形轨道M的高度,只是影响P球在空中运动时间,但是P、Q两球在水平方向上的运动规律是相同的,因此实验现象相同,应这个实验说明平抛运动的物体在水平方向上做匀速直线运动.故答案为:P球会砸中Q球,平抛运动的物体在水平方向上做匀速直线运动.【点评】该实验设计的巧妙,有创新性,使复杂问题变得更直观,因此在平抛运动的规律探究活动中不一定局限于课本实验的原理,要重视学生对实验的创新.16【考点】研究平抛物体的运动.【分析】正确应用平抛运动规律:水平方向匀速直线运动,竖直方向自由落体运动;解答本题的突破口是利用在竖直方向上连续相等时间内的位移差等于常数解出闪光周期,然后进一步根据匀变速直线运动的规律、推论求解.【解答】解:(1)在竖直方向上有:△h=gT2,其中△h=(6﹣2)×0.025m=0.1m,代入求得:T=0.1s,因此闪光频率为:(2)小球水平方向做匀速直线运动,故有:x=v0t,其中x=3L=7.5cm所以v0=0.75m/s(3)B点时的竖直分速度为故答案为:(1)10;(2)0.75;(3)2【点评】对于平抛运动问题,一定明确其水平和竖直方向运动特点,尤其是在竖直方向熟练应用匀变速直线运动的规律和推论解题.四、计算题(共42分,需写明计算过程和相应的文字说明)17.【考点】平抛运动.【分析】射出的子弹做平抛运动,根据高度求出平抛运动的时间,结合水平位移和时间求出子弹的初速度.【解答】解:子弹在空中运动时间为t,根据h=得:t=,则初速度.答:弹簧枪射出子弹的初速度为1.8m/s.【点评】解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,结合运动学公式灵活求解,基础题.18.【考点】向心力.【分析】(1)根据小球做圆运动的条件,合外力等于向心力,根据向心力公式求解;(2)在最低点对小球进行受力分析,合力提供向心力,列出向心力公式即可求解.【解答】解:(1)由牛顿第二定律可得:mg+F=m已知:F=mg解得:v=;(2)小球经过最低点时,小球的向心加速度大小a=又据题:v′=解得a=6g由牛顿第二定律得:F﹣mg=m。
16学年下学期高一期末考试物理试题(附答案)(5)
市一中2015-2016学年度第二学期期末考试高一物理(必修2)试题一、单项选择题(每小题3分,共30分,每个小题只有一个选项正确)1、下列说法不符合科学(史)的是()A.伽利略通过理想斜面实验得出:在水平面上运动的物体,若没有摩擦,将一直运动下去B.牛顿发现了万有引力定律,一百多年后卡文迪许利用扭秤实验装置比较准确地测出了引力常量GC.开普勒在前人关于天体运动的研究基础上,通过自己的观察与研究,提出了行星运动三定律D.爱因斯坦在20世纪初创立了相对论理论,这表明牛顿的经典力学已不再适用2、关于开普勒行星运动定律,下列说法中正确的是()A.所有行星都在同一椭圆轨道上绕太阳运动,太阳处在一个焦点上B.所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等C.离太阳越近的行星的运动周期越长D.行星绕太阳在椭圆轨道上运动时,线速度大小始终不变3、如图所示,在水平地面上做匀速直线运动的汽车,用绳子通过定滑轮吊起一个物体,若汽车和被吊物体在某一时刻的速度分别为v1和v2.下列说法正确的是()A.v1>v2B.v1<v2C.v1=v2D.无法确定哪个速度大4、有关圆周运动的基本模型如图所示,下列说法正确的是( )A.火车转弯超过规定速度行驶时,内轨对轮缘会有挤压作用B.如图a,汽车通过拱桥的最高点处于超重状态C.如图b所示是两个圆锥摆,摆线与竖直方向夹角θ不同,但圆锥的高相同,则两圆锥摆的角速度相同D.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A 、B 两位置小球的角速度及所受筒壁的支持力大小相等5、如图所示,相同的乒乓球1、2恰好在等高处水平越过球网,不计乒乓球的旋转和空气阻力,乒乓球自最高点到落台的过程中,正确的是( ) A .过网时球1的速度小于球2的速度 B .球1的飞行时间大于球2的飞行时间C .球1的速度变化率小于球2的速度变化率D .落台时,球1的重力功率等于球2的重力功率6、假设地球可视为质量均匀分布的球体。
湖南省长沙市高一物理下学期期末考试试题(含解析)
2016-2017学年高一下学期期末考试物理试题一、单项选择题1. 关于能量和能源,下列说法正确的是A. 由于自然界的能量守恒,所以不需要节约能源B. 在利用能源的过程中,能量在总量上逐渐减少C. 能量耗散说明能量在转化过程中有方向性D. 人类在不断地开发和利用新能源,所以能量可以被创造【答案】C【解析】A、自然界的能量守恒,但能源需要节约,同时为了提高生活质量,故A错误;B、在利用与节约能源的过程中,能量在数量并没有减少,故B错误;C、能量耗散说明能量在转化过程中具有方向性,比如一杯热水过段时间,热量跑走啦,水冷了,所以转化具有方向性,故C正确;D、人类在不断地开发和利用新能源,但能量不能被创造,也不会消失,故D错误。
点睛:能量是守恒的,但能源需要节约;能量耗散具有方向性;能量不能被创造,也不会消失。
2. 如图是我国著名网球运动员李娜精彩的比赛瞬间,如果网球离开球拍后,沿图中虚线做曲线运动,则图中能正确表示网球在相应点速度方向的是A. v1B. v2C. v3D. v4【答案】B【解析】依据曲线运动特征可知:物体做曲线运动时,任意时刻的速度方向是曲线上该点的切线方向上,所以图中能正确表示网球在相应点速度方向的是,故B正确。
点睛:掌握物体做曲线运动的速度方向,知道速度方向是曲线上该点的切线方向上。
3. 电脑中用的光盘驱动器,采用恒定角速度驱动光盘,光盘上凹凸不平的小坑是存贮的数据,请问激光头在何处时,电脑读取数据的速率比较大A. 内圈B. 外圈C. 中间位置D. 与位置无关【答案】B【解析】试题分析:同一光盘,由于共轴,则角速度相等,当半径越大时,转动的速度也越大.即外圈半径大,线速度就大,读取数据速率就大.故B正确,ACD错误;故选B4. 关于功,下列说法正确的是A. 功只有大小而无方向,所以功是标量B. 力和位移都是矢量,所以功也是矢量C. 功的大小仅由力决定,力越大,做功越多D. 功的大小仅由位移决定,位移越大,做功越多【答案】A【解析】试题分析:功是标量,只有大小没有方向,所以A正确,B错误;力和力方向上的位移的乘积表示力对物体做的功的大小,所以C、D错误。
2015-2016学年湖南省长沙市第一中学、雅礼中学、南雅中学三校高一下学期期末联考物理试题
2015级高一下学期期末三校联考物理命题审题:一中物理备课组分值:100分时间 : 90分钟一、选择题:(本题包括13小超,每小题4分,共52分.其中11-13三个小题,每小题给出的四个选项中,有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法符合史实的是()A.牛顿发现了行星的运动规律B.开普勒发现了万有引力定律C.卡文迪许第一次在实验室里测出了万有引力常量D.牛顿发现了海王星和冥王星2.真空中两个完全相同的金属小球,分别带有+3Q和一Q的电量,当它们相距r时,它们之间的库仑力是F.若把它们接触后分开,再置于相距r/3的两点,则它们的库仑力的大小为()A.F/3B. FC. 9FD. 3F3.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R和r,且R=3r, A, B 分别为两轮边缘上的点,则皮带轮运动过程中,关于A, B两点下列说法正确的是()3.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R和r,且R=3r, A, B分别为两轮边缘上的点,则皮带轮运动过程中,关于A, B两点下列说法正确的是( )A.向心加速度之比aA :aB=1:3B.角速度之比ωA : ωB=3 : 1C.议线速度大小之比vA :vB=1:3D.在相同的时间内通过的路程之比SA::SB=3:14.如图所示,倾角为8的斜面长为L,在顶端水平抛出一小球,小球刚好落在斜面的底端,那么,小球初速度vo的大小为().cosA.cosB.sinC.sinD5.如图所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮。
在红蜡块从玻璃管的下端以速度v匀速上浮的同时,使玻璃管水平向右以速率v匀速运动。
红蜡块由管口上升到顶端.所需时间为t,相对地面通过的路程为L。
则下列说法正确的是()A. v增大时,t增大B. v增人时,t不变C. v增大时,L增大D.v增大时,L减小6.我国载人飞船“神舟七号”的顺利飞天,极大地振奋了民族精神。
湖南省长沙市长郡中学精选学高一下学期期末物理试卷解析版
湖南省长沙市长郡中学2015-2016学年高一下学期期末物理试卷一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,1--8小题只有一个正确答案,9--12小题中,至少有两个正确的.全部选对的得4分,少选的得2分,有选错或不选的得0分)1.(4分)历史上关于天体的运动和万有引力的研究,有许多科学家做出了贡献.下列说法正确的是()A.伽利略发现了行星运动的规律B.牛顿发现了万有引力定律C.开普勒测定了万有引力常量D.卡文迪许做了“月地检验”推导考点:万有引力定律的发现和万有引力恒量的测定.专题:万有引力定律的应用专题.分析:解答本题的关键是了解几个重要的物理学史,知道哪些伟大科学家的贡献.解答:解:A、开普勒发现了行星运动的规律,故A错误;B、牛顿发现了万有引力定律,故B正确;C、万有引力常数是由卡文迪许测出的,故C错误;D、牛顿做了“月地检验”推导,故D错误.故选:B.点评:本题考查了物理学史部分,要了解哪些伟大科学家的重要贡献,培养科学素质和为科学的奉献精神.2.(4分)两个分别带有电荷量﹣Q和+3Q的相同金属小球(均可视为点电荷),固定在相距为r的两处,它们间库仑力的大小为F.两小球相互接触后将其固定距离变为,则两球间库仑力的大小为()A.B.C.D.12F考点:库仑定律;电荷守恒定律.专题:计算题.分析:清楚两小球相互接触后,其所带电量先中和后均分.根据库仑定律的内容,根据变化量和不变量求出问题.解答:解:接触前两个点电荷之间的库仑力大小为F=k,两个相同的金属球各自带电,接触后再分开,其所带电量先中和后均分,所以两球分开后各自带点为+Q,距离又变为原来的,库仑力为F′=k,所以两球间库仑力的大小为.故选C.点评:本题考查库仑定律及带电题电量的转移问题.3.(4分)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积考点:万有引力定律及其应用.专题:万有引力定律在天体运动中的应用专题.分析:熟记理解开普勒的行星运动三定律:第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.第二定律:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等.第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.解答:解:A、第一定律的内容为:所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上.故A错误;B、第二定律:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;C、若行星的公转周期为T,则常量K与行星无关,与中心体有关,故C正确;D、第二定律:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等,是对同一个行星而言,故D错误;故选C.点评:正确理解开普勒的行星运动三定律是解答本题的关键.4.(4分)如图所示为电场中的一条电场线,A、B为其上的两点,以下说法正确的是()A.E A与E B一定不等,φA与φB一定不等B. E A与E B可能相等,φA与φB可能相等C.E A与E B一定不等,φA与φB可能相等D.E A与E B可能相等,φA与φB一定不等考点:电势;电场强度;电场线.专题:图析法.分析:电场强度的大小看电场线的疏密程度,电场线越密的地方电场强度越大,电势的高低看电场线的指向,沿着电场线电势一定降低.解答:解:电场线越密的地方电场强度越大,由于只有一条电场线,无法看出电场线的疏密,故E A 与E B可能相等、可能不相等;沿着电场线电势一定降低,故φA一定大于φB;故选D.点评:本题关键在于通过电场线的疏密程度看电场强度的大小,通过电场线的指向看电势的高低.5.(4分)某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k1和k2倍,最大速率分别为v1和v2,则()A.v2=k1v1B.v2=v1C.v2=v1D.v2=k2v1考点:功率、平均功率和瞬时功率.专题:功率的计算专题.分析:汽车在水平路面上行驶时,当牵引力等于阻力时,速度最大.根据功率与速度的关系,结合汽车阻力与车重的关系求解.解答:解:设汽车的功率为P,质量为m,则有:P=K1mgV1=K2mgV2,所以v2=v1故选:B.点评:解决本题的关键知道以额定功率行驶,汽车做加速度逐渐减小的加速运动,当牵引力等于阻力时,速度达到最大.6.(4分)用控制变量法,可以研究影响平行板电容器的因素(如图).设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.实验中,极板所带电荷量不变,若()A.保持S不变,增大d,则θ变大B.保持S不变,增大d,则θ变小C.保持d不变,减小S,则θ变小D.保持d不变,减小S,则θ不变考点:影响平行板电容器电容的因素.分析:静电计指针偏角θ表示电容器两端电压的大小,根据电容的定义式C=,判断电容的变化,再根据C=,判断电压的变化,从而得知静电计指针偏角的变化.解答:解:根据电容的定义式C=,保持S不变,增大d,电容C减小,再根据U=,知U 增大,所以θ变大.故A正确,B错误.保持d不变,减小S,电容减小,再根据C=,知U增大,所以θ变大.故CD错误.故选:A.点评:解决电容器的动态分析问题关键抓住不变量.若电容器与电源断开,电量保持不变;若电容器始终与电源相连,电容器两端间的电势差保持不变.7.(4分)如图所示,厚薄均匀的矩形金属薄片边长ab=10cm,bc=5cm,当将A与B接入电压为U的电路中时,电流为1A;若将C与D接入电压为U的电路中,则电流为()A.4A B.2A C. A D. A点:电阻定律;欧姆定律.专题:恒定电流专题.分析:根据电阻定律公式确定两次电阻值之比,然后根据欧姆定律确定电流之比.解答:解:根据电阻定律公式,有①②故根据欧姆定律,电压相同时,电流与电阻成反比.故两次电流之比为1:4,故第二次电流为4A;故选A.点评:本题主要考察电阻定律和欧姆定律的灵活运用.8.(4分)如图所示是同一轨道平面上的三颗人造地球卫星,下列说法正确的是()A.根据v=,可知v A<v B<v CB.根据万有引力定律,可知引力F A>F B>F CC.运动周期T A>T B<T CD.向心加速度αA>αB>αC考点:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.专题:人造卫星问题.分析:研究卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式把要比较的物理量表示出来.根据已知条件结合表达式求解.解答:解:A、卫星绕地球做圆周运动,由万有引力提供圆周运动即==mrω2=ma,v=可知A、B、C三卫星轨道依次增加,线速依次减小,v=仅指计算近地轨道卫星绕行的线速度;故A错误;B、由于未知三颗卫星的质量大小关系,故仅根据半径关系无法判断其万有引力的大小,故B错误;C、由万有引力提供圆周运动即=m,T=2π,A、B、C三卫星轨道依次增加,所以T A<T B<T C,故C错误;D、向心加速度a=,A、B、C三卫星轨道依次增加,所以αA>αB>αC,故D正确;故选:D.点评:比较一个物理量,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.不能考虑一个变量而忽略了另一个变量的变化.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.9.(4分)直流电动机的电枢电阻为R,正常工作时,电动机两端电压为U,通过的电流强度为I.工作时间为t时,下列说法正确的是()A.电动机线圈产生的热量为UIt B.电机线圈产生的热量为I2RtC.电动机消耗电能为UIt D.电动机输出的机械能为UIt考点:电功、电功率.专题:恒定电流专题.分析:在计算电功率的公式中,总功率用P=IU来计算,发热的功率用P=I2R来计算,如果是计算纯电阻的功率,这两个公式的计算结果是一样的,但对于电动机等非纯电阻,第一个计算的是总功率,第二个只是计算发热的功率,这两个的计算结果是不一样的.解答:解:A、电动机为非纯电阻,线圈产生的热量要用Q=I2Rt来计算,所以A错误,B正确.C、电动机消耗电能为电动机的总功,为W=UIt,所以C正确D、电动机输出的机械能为UIt﹣I2Rt,D错误.故选:BC.点评:对于电功率的计算,一定要分析清楚是不是纯电阻电路,对于非纯电阻电路,总功率和发热功率的计算公式是不一样的.10.(4分)如图是用灵敏电流计改装成的某多量程电表内部电路图,图中a为公共接线柱,b、c分别为两个量程的接线柱.对该电表下列说法正确的是()A.该电表是多量程电流表B.当使用a、b两个接线柱时量程较大C.R1越大,该电表量程越大D.该电表两量程的大小与R1和R2的阻值成反比考点:多用电表的原理及其使用.专题:恒定电流专题.分析:要熟悉多用表的原理和结构,根据电表的结构选出欧姆表、电压表和电流表;由串并联特点,结合欧姆定律,可知,量程的大小;由图,结合欧姆定律,可知,R1越大,该电表量程越小;因电阻R2与电表串联后与R1并联,则量程大小不与阻值成反比.解答:解:A、电表与电阻相并联即为电流表,故A正确;B、当接a、b两个接线柱时,导致R1两端的电压增大,则流过此电阻的电流也增大,因电表电流不变,则量程较大,故B正确;C、由欧姆定律可知,R1越大,电流越小,该电表量程越小,故C错误;D、因电阻R2与电表串联后与R1并联,则量程大小不与阻值成反比,故D错误;故选:AB.点评:考查电表改装的原理,掌握欧姆定律的应用,注意灵敏电流计的最大电压、电阻与最大电流均是恒定的.11.(4分)如图,真空中有两个点电荷Q1=+×10﹣8C和Q2=﹣×10﹣8C,分别固定在x轴的x=0和x=6cm 的位置上.则在x轴上()A.x=﹣6cm和x=6cm处的点的电场强度为零B.只有x=12cm处的点的电场强度为零C.电场强度方向沿x轴正方向的区域有两处D.电场强度方向沿x轴正方向的区域只有一处考点:电场强度.专题:电场力与电势的性质专题.分析:某点的电场强度是正电荷Q1和负电荷Q2在该处产生的电场的叠加,是合场强.运用合成进行分析.解答:解:A、某点的电场强度是正电荷Q1和负电荷Q2在该处产生的电场的叠加,是合场强.根据点电荷的场强公式E=所以要使电场强度为零,那么正电荷Q1和负电荷Q2在该处产生的场强大小相等方向相反.不会在Q1的左边,因为Q1的电荷大于Q2,也不会在Q1 Q2之间,因为它们电荷电性相反,在中间的电场方向都是一样的;所以,只能在Q2右边.设该位置据Q2的距离是L,所以=解得L=6cm;所以x坐标轴上x=12cm处的电场强度为零,故A错误,B正确;C、在Q1 Q2之间,正电荷Q1和负电荷Q2在该处产生的场强方向沿x轴正方向,所以实际场强也是沿x 轴正方向,根据点电荷的场强公式得x坐标轴大于12cm区域电场强度方向沿x轴正方向区域.所以x坐标轴上电场强度方向沿x轴正方向区域是(0,6cm)和(12cm,∞),故C正确,D错误.故选:BC.点评:空间中某一点的电场,是空间所有电荷产生的电场的叠加,场强是矢量,其合成遵守平行四边形定则.12.(4分)把质量是0.2kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示;迅速松手后,弹簧把球弹起,球升至最高位置C(图丙)途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1m,C、B的高度差为0.2m,弹簧的质量和空气阻力均忽略不计.重力加速度g=10m/s2,则有()A.小球从A上升至B的过程中,弹簧的弹性势能一直减小,小球的动能一直增加B.小球从B上升到C的过程中,小球的动能一直减小,势能一直增加C.小球在位置A时,弹簧的弹性势能为D.小球从位置A上升至C的过程中,小球的最大动能为考点:功能关系;弹性势能.分析:小球从A上升到B位置的过程中,平衡位置速度最大,动能增大;小球上升和下落过程与弹簧组成的系统机械能守恒.解答:解:A、球从A上升到B位置的过程中,先加速,当弹簧的弹力k△x=mg时,合力为零,加速度减小到零,速度达到最大,之后小球继续上升弹簧弹力小于重力,球做减速运动,故小球从A上升到B的过程中,动能先增大后减小,A错误;B、小球从B到C的过程中,小球的弹力小于重力,故小球的动能一直减小;因小球高度增加,故小球的重力势能增加;故B正确;C、根据能量的转化与守恒,小球在图甲中时,弹簧的弹性势能等于小球由A到C位置时增加的重力势能:E p=mgAC=×10×=;故C正确;D、由于无法确定小球受力平衡时的弹簧的形变量,故无法求出小球的最大动能;故D错误;故选:BC.点评:解决本题的关键掌握机械能守恒的条件,在只有重力或弹簧弹力做功的情形下,系统机械能守恒.在解题时要注意,单独对小球来说,小球和弹簧接触过程中机械能不守恒.二、填空题(本题共3小题,每小题6分,共18分)13.(6分)某同学用图(a)所示的实验装置验证机械能守恒定律.已知打点计时器所用电源的频率为50Hz,当地重力加速度为g=9.80m/s2.实验中该同学得到的一条点迹清晰的完整纸带如图(b)所示.纸带上的第一个点记为O,另选连续的三个点A、B、C进行测量,图中给出了这三个点到O点的距离h A、h B和h C的值.回答下列问题(计算结果保留3位有效数字)(1)打点计时器打B点时,重物速度的大小v B= 3.90m/s;(2)设重物质量为m,OB对应的下落过程中,重力势能减少量△E P=7.70m J,动能增加量△E k= 7.61m J,在误差允许范围内,可以认为两者相等,因此验证了机械能守恒定律.考点:验证机械能守恒定律.专题:实验题.分析:解决实验问题首先要掌握该实验原理,了解实验的仪器、操作步骤和数据处理以及注意事项.纸带法实验中,若纸带匀变速直线运动,测得纸带上的点间距,利用匀变速直线运动的推论,可计算出打出某点时纸带运动的瞬时速度和加速度,从而求出动能.解答:解:(1)利用匀变速直线运动的推论v B===3.90 m/s(2)重力势能减小量△E p=mgh=×=.E kB=mv B2==7.61m J△E k=E kB﹣0=0.48m J故答案为:(1);(2)7.70m,7.61m.点评:运用运动学公式和动能、重力势能的定义式解决问题是该实验的常规问题.要注意单位的换算和有效数字的保留.14.(6分)小灯泡通电后其电流I随所加电压U变化的图线如图所示,P为图线上一点,PN为图线上的切线,PQ为U轴的垂线,PN为I轴的垂线,随着所加电压的增大,小灯泡的功率增大(选填“增大”、“减小”或“不变”);小灯泡的电阻增大(选填“增大”、“减小”或“不变”);对应P点小灯泡的电阻为.考点:欧姆定律.专题:恒定电流专题.分析:由图看出此灯泡是非线性元件,根据电阻是指对电流的阻碍作用判断灯泡电阻与电压之间的关系;找到P点对应的电压和电流,根据欧姆定律求出此时灯泡的电阻;由功率公式可知功率对应图线的“面积”.解答:解:由图象可知,灯泡的电阻等于R=,等于图线上的点与原点O连线斜率的倒数,由数学知识可知,电压增大,此斜率减小,则灯泡的电阻增大.由图象可知,P点对应的电压为U1,电流为I2,则灯泡的电阻R=;因P=UI,所以图象中矩形PQOM所围的面积为对应P点小灯泡的实际功率,故可知,电压增大时,功率也将增大;故答案为:增大;增大;点评:注意U﹣I图象的意义,知道斜率等于电阻的倒数,明确功率借助图象分析时所围得面积;明确灯泡伏安特性曲线不直的原因.15.(6分)用如图所示装置做“探究功和物体速度变化的关系”实验时,下列说法正确的是()A.该实验通过改变橡皮筋的长度来改变拉力做功的数值B.每次实验必须算出橡皮筋对小车做功的具体数值C.通过打点计时器打下的纸带来测定小车加速过程中获得的最大速度D.通过打点计时器打下的纸带来测定小车加速过程中获得的平均速度考点:探究功与速度变化的关系.专题:实验题.分析:在探究橡皮筋的拉力对小车所做的功与小车速度变化的关系的实验中应注意:n根相同橡皮筋对小车做的功就等于系一根橡皮筋时对小车做的功的n倍,这个设计很巧妙地解决了直接去测量力和计算功的困难;该实验需要平衡摩擦力以保证动能的增量是只有橡皮筋做功而来;小车最大速度即为后来匀速运动的速度.解答:解:A、该实验中利用相同橡皮筋形变量相同时对小车做功相同,通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整数倍增加,这个设计很巧妙地解决了直接去测量力和计算功的困难.故AB错误;C、实验中我们要知道小车获得的最大速度,即橡皮筋把功做完,所以应该对应纸带上点迹均匀匀速运动的部分计算速度,故C正确;D、实验中我们要知道小车获得的最大速度,即橡皮筋把功做完,所以应该对应纸带上点迹均匀匀速运动的部分计算速度.不是测量小车加速阶段的平均速度,故D错误.故选:C.点评:此题的关键是熟悉橡皮筋拉小车探究做功与物体速度变化的关系实验步骤细节和原理,知道平衡摩擦力.三、解答题(本题共4小题,共34分.解答时应写出必要的文字说明、方程式和重要的演算步骤.只写出最后结果的不能给分,有数值计算的题,答案中必须明确写出数值和单位)16.(8分)用一条绝缘轻绳悬挂一个带电小球,小球质量为×10﹣2kg,所带电荷量为+×10﹣8C,现加一水平向右的匀强电场,平衡时绝缘绳与铅垂线成30°夹角,求这个匀强电场的电场强度.考点:匀强电场中电势差和电场强度的关系.专题:电场力与电势的性质专题.分析:小球受重力、电场力和拉力处于平衡,根据共点力平衡求出电场力的大小,从而得出电场强度的大小.解答:解:小球受力如图所示,根据共点力平衡有:qE=mgtan30°,解得电场强度为:E=.答:这个匀强电场的电场强度为.点评:解决本题的关键能够正确地受力分析,运用共点力平衡进行求解,基础题.17.(8分)把一个小球用细线悬挂起来,就成为一个摆,摆长为l,最大偏角为θ.小球到达最低点的速度是多大?此时绳受到的拉力为多大?考点:向心力.分析:小球在摆动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律求出小球运动到最低位置时的速度大小.在最低点,小球靠重力和拉力的合力提供向心力,根据牛顿第二定律求出细线的拉力大小.解答:解:由最大偏角θ处下落,到最低点时,竖直的高度差是h=l(1﹣cosθ),由机械能守恒定律知:mg(l﹣lcosθ)=解得:v=在最低点合外力提供向心力:F﹣mg=m解得:F=3mg﹣2mgcosθ答:小球运动到最低位置时的速度是;在最低点,细线的拉力为3mg﹣2mgcosθ.点评:本题综合考查了机械能守恒定律和牛顿第二定律,难度不大,需加强这方面的训练,基础题.18.(8分)地球半径为6400km,在贴近地表附近环绕地球做匀速圆周运动的卫星速度为×103m/s.求:(1)卫星的周期为多大?(2)估算地球的平均密度(取G=×l0﹣11N?m2/kg2)考点:人造卫星的加速度、周期和轨道的关系.专题:人造卫星问题.分析:根据圆周运动的公式求出卫星的周期,根据密度的定义以及万有引力提供向心力求出地球的平均密度.解答:解:(1)球半径为6400km,在贴近地表附近环绕地球做匀速圆周运动的卫星速度为×103m/s.根据圆周运动的公式得卫星的周期T==5088s,(2)由万有引力提供圆周运动即=m,M=根据密度的定义得ρ===×103kg/m3,答:(1)卫星的周期为5088s,(2)地球的平均密度是×103kg/m3.点评:需要掌握万有引力提供向心力的应用,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.19.(10分)如图,水平放置的两平行金属板,板长L0=10cm,两极板间距d=2cm,一束电子以v0=4×107m/s 的初速度从两板中央水平射入板间,然后从板间飞出射到距离板L=45cm,宽D=20cm竖直放置的荧光屏上(不计重力,荧光屏中点在两板间的中央线上,电子质量为m=×10﹣30kg,电荷量e=×10﹣19C).求:(1)若电子飞入两板前,是从静止开始经历了加速电场的加速,则该电场的电压为多大?(2)为了使带电粒子能射中荧光屏所有的位置,两板间所加的电压应取什么范围?考点:带电粒子在匀强电场中的运动.专题:带电粒子在电场中的运动专题.分析:(1)电子在加速电场中,电场力做功为W=eU1,根据动能定理列式求加速电场的电压;(2)电子恰好能打在荧光屏的上边缘,偏转电压最大.由几何知识求出电子在电场中的偏转位移y,再根据牛顿第二定律和运动学公式推导出y与偏转电压的关系,即可求出偏转电压的范围.解答:解:(1)设加电场的电压为U1,由动能定理得:eU1=①代入数据解得.(2)设所加电压为U2时,电子恰好能打在荧光屏的上边缘,电子的轨迹恰好与上极板边缘相切,则由类平抛运动规律及几何知识可得:③其中y为电子在电场中的偏转位移.又y=④且y=⑤由③④⑤可得:U2=,代入数据解得U2=364V同理要使电子能打在荧光屏下边缘应加反向电压364V ⑦所以两板间所加电压范围为:﹣364V≤U2≤364V ⑧答:(1)电子飞入两板前所经历的加速电场的电压是×103V.(2)为了使带电粒子能射中荧光屏所有位置,两板间所加电压应取的范围是:﹣364V≤U2≤364V.点评:本题是带电粒子在组合场中运动的类型,根据动能定理研究加速过程,运用分解的方法研究类平抛运动,这些常规方法要熟悉.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖南省长沙一中等三校联考高一(下)期末物理试卷一、选择题(本題包括13小题.毎小题题4分,共52分.其中11〜13三个小题,每小题给出的四个选项中,有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法符合史实的()A.牛顿发现了行星的运动规律B.开普勒发现了万有引力定律C.卡文迪许第一次在实验室里测出了万有引力常量D.牛顿发现了海王星和冥王星2.两个完全相同的金属小球,分别带有+3Q和﹣Q的电量,当它们相距r时,它们之间的库仑力是F.若把它们接触后分开,再置于相距的两点,则它们的库仑力的大小将变为()A.B.3F C.4F D.9F3.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R和r,且R=3r,A、B分别为两轮边缘上的点,则皮带轮运动过程中,关于A、B两点下列说法正确的是()A.角速度之比ωA:ωB=3:1B.向心加速度之比a A:a B=1:3C.速率之比υA:υB=1:3D.在相同的时间内通过的路程之比s A:s B=3:14.如图所示,倾角为θ的斜面长为L,在顶端水平抛出一小球,小球刚好落在斜面的底端,那么,小球初速度v0的大小为()A.B.C.D.5.如图所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.在红蜡块从玻璃管的下端匀速上浮的同时,使玻璃管以速度v水平向右匀速运动.红蜡块由管口上升到顶端,所需时间为t,相对地面通过的路程为L,则()A.v增大时,t增大B.v增大时,t减小C.v增大时,L增大D.v增大时,L减小6.我国载人飞船“神舟七号”的顺利飞天,极大地振奋了民族精神.“神七”在轨道飞行过程中,宇航员翟志钢跨出飞船,实现了“太空行走”,当他出舱后相对于飞船静止不动时,以下说法正确的是()A.他处于平衡状态B.他不受任何力的作用C.他的加速度不为零 D.他的加速度恒定不变7.关于圆周运动,以下说法正确的是()A.做匀速圆周运动的物体,所受各力的合力一定是向心力B.做匀速圆周运动的物体除了受到其它物体的作用,还受到一个向心力C.物体做离心运动时,是因为它受到了离心力的作用D.汽车转弯时速度过小,会因离心运动造成交通事故8.如图所示,滑块A和B叠放在固定的斜面体上,从静止开始以相同的加速度一起沿斜面加速下滑.己知B与斜面体间光滑接触,则在AB下滑的过程中,下列说法正确的是()A.B对A的支持力不做功B.B对A的作用力做负功C.B对A的摩擦力做正功D.B,A的重力做功的平均功率相同9.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径.现将一物体沿与水平面成α角的方向以速度υ0抛出,如图(b)所示.则在其轨迹最高点P处的曲率半径是()A. B.C.D.10.起重机的钢索将重物由地面吊到空中某一个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是图中的哪一个()A.B. C. D.11.如图所示,a、b、c是北斗卫星导航系统中的3颗卫星,下列说法正确的是()A.b,c的向心加速度大小相等,且小于a的向心加速度B.c加速可追上同一轨道上的b,b减速可等候同一轨道上的cC.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能增大D.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能减小12.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中动作.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网的压力,并在计算机上作出压力﹣时间图象,假设作出的图象如图所示.设运动员在空中运动时可视为质点,忽略空气阻力,则根据图象判断下列说法正确的是(g取10m/s2)()A.在1.1s﹣2.3s时系统的弹性势能保持不变B.运动员在5.5s时刻运动方向向上C.运动员跃起的最大高度为5.0 mD.运动员在空中的机械能在增大13.如图所示,一轻质弹簧的下端,固定在水平面上,上端叠放着两个质量均为M的物体A、B(物体B与弹簧拴接),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F作用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v﹣t图象如图乙所示(重力加速度为g),则()A.施加外力的瞬间,A、B间的弹力大小为M(g﹣a)B.A、B在t1时刻分离,此时弹簧弹力大小不为零C.弹簧恢复到原长时,物体B的速度达到最大值D.B与弹簧组成的系统的机械能先逐渐减小,后保持不变二、填空題及实验题:(每空2分,共计14分)14.“用DIS研究机械能守恒定律”的实验中,让轻杆连接摆锤由A点释放,用光电门测定摆锤在某一位置的瞬时速度,从而求得摆锤在该位罝的动能,同时输入摆锤的高度(实验中A,B,C,D)四点高度为0.150m、0.100m、0.050m,0.000m,己由计算机默认),求得摆锤在该位置的重力势能,进而研究势能与动能转化时的规律.(1)实验时,把点作为了零势能点.(2)(单选)若实验测得D点的机械能明显偏大,造成该误差的原因可能是A、摆锤在运动中受到空气阻力的影响B、光电门放在D点上方C、摆锤在A点不是由静止释放的D、摆锤释放的位罝在AB之间.15.某同学査资料得知,弹簧的弹性势能E P=kx2,其中k是弹簧的劲度系数,x是弹簧长度的变化量.于是设想用压缩的弹簧推静止的小球(质量为m)运动来初步探究“外力做功与物体动能变化的关系”.为了研究方便,把小球放在水平桌面上做实验,让小球在弹力作用下运动,即只有弹簧弹力做功.(重力加速度为g)该同学设计实验如下.(1)首先进行如图甲所示的实验:将轻质弹簧竖直挂起来,在弹簧的另一端挂上小球,静止时测得弹簧的伸长量为d,在此步骤中,目的是要确定弹簧的劲度系数k,用m、d、g表示为.(2)接着进行如图乙所示的实验:将这根弹簧水平放在桌面上,一端固定,另一端被小球压缩,测得压缩量为x,释放弹簧后,小球被推出去,从高为h的水平桌面上抛出,小球在空中运动的水平距离为L.小球的初动能E k1=;小球离开桌面的动能E k2=(用m、g、L、h表示),弹簧对小球做的功W=(用m、x、d、g表示).对比W和E k2﹣E k1就可以得出“外力做功与物体动能变化的关系”.需要验证的关系为(用所测物理量d,x、h、L表示).三、计算题:(本題4个大题,共34分,其中第16-18题均为8分,第19题10分)16.有三根长度皆为l=0.30m的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m=1.0×10﹣2kg的带电小球A和B,它们的电荷量分别为﹣q 和+q,q=1.0×10﹣6C.A、B之间用第三根线连接起来,空间中存在大小为E=2.0×105 N/C 的匀强电场,电场强度的方向水平向右.平衡时A,B球的位置如图所示.已知静电力常量k=9×109N•m2/C2重力加速度g=10m/s2.求:(1)A,B间的库仑力的大小(2)连接A,B的轻线的拉力大小.17.滑板运动是一种陆地上的“冲浪运动”,滑板运动员可在不同的滑坡上滑行,做出各种动作,给人以美的享受.如图是模拟的滑板组合滑行轨道,该轨道由足够长的斜直轨道、半径R1=1m的凹形圆弧轨道和半径R2=1.6m的凸形圆弧轨道组成,这三部分轨道处于同一竖直平面内且依次平滑连接,其中M点为凹形圆弧轨道的最低点,N点为凸形圆弧轨道的最高点,凸形圆弧轨道的圆心O点与M点处在同一水平面上,一质量为m=1kg可看作质点的滑板,从斜直轨道上的P点无初速滑下,经过M点滑向N点,P点距M点所在水平面的高度h=1.8m,不计一切阻力,g取10m/s2.(1)滑板滑到M点时的速度多大?(2)滑板滑到N点时对轨道的压力多大?(3)改变滑板无初速下滑时距M点所在平面的高度h,用压力传感器测出滑板滑至N点时对轨道的压力大小为零,则P与N在竖直方向的距离多大?18.地球可视为球体,其自转周期为T,在它的两极处,用弹簧秤测得一物体重为P;在赤道上,用弹簧秤测得同一物体重为0.9P,已知引力常量为G,则地球的平均密度是多少?19.如图所示,原长为L的轻质弹簧一端固定在O点,另一端与质量为m的圆环相连,圆环套在粗糙竖直固定杆上的A处,环与杆间动摩擦因数μ=0.5,此时弹簧水平且处于原长.让圆环从A处由静止开始下滑,经过B处时速度最大,到达C处时速度为零.过程中弹簧始终在弹性限度之内.重力加速度为g.求:(1)圆环在A处的加速度为多大?(2)若AB间距离为,则弹簧的劲度系数k为多少?(3)若圆环到达C处时弹簧弹性势能为E p,且AC=h,使圆环在C处时获得一个竖直向上的初速度,圆环恰好能到达A处.则这个初速度应为多大?2015-2016学年湖南省长沙一中等三校联考高一(下)期末物理试卷参考答案与试题解析一、选择题(本題包括13小题.毎小题题4分,共52分.其中11〜13三个小题,每小题给出的四个选项中,有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法符合史实的()A.牛顿发现了行星的运动规律B.开普勒发现了万有引力定律C.卡文迪许第一次在实验室里测出了万有引力常量D.牛顿发现了海王星和冥王星【考点】物理学史;万有引力定律的发现和万有引力恒量的测定.【分析】开普勒发现了行星的运动规律;牛顿发现了万有引力定律;卡文迪许第一次在实验室里测出了万有引力常量;亚当斯发现的海王星.【解答】解:A、开普勒发现了行星的运动规律.故A错误;B、牛顿发现了万有引力定律.故B错误;C、卡文迪许第一次在实验室里测出了万有引力常量.故C正确;D、亚当斯发现的海王星.故D错误.故选:C2.两个完全相同的金属小球,分别带有+3Q和﹣Q的电量,当它们相距r时,它们之间的库仑力是F.若把它们接触后分开,再置于相距的两点,则它们的库仑力的大小将变为()A.B.3F C.4F D.9F【考点】库仑定律.【分析】接触带电的原则是先中和再平分.根据库仑定律公式F=k求出库仑力的大小.【解答】解:根据库仑定律公式得,F=k.接触再分离后所带电量各为Q,F′=k=k=3F.故B正确,A、C、D错误.故选:B.3.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R和r,且R=3r,A、B分别为两轮边缘上的点,则皮带轮运动过程中,关于A、B两点下列说法正确的是()A.角速度之比ωA:ωB=3:1B.向心加速度之比a A:a B=1:3C.速率之比υA:υB=1:3D.在相同的时间内通过的路程之比s A:s B=3:1【考点】线速度、角速度和周期、转速;向心加速度.【分析】两轮通过皮带传动,皮带与轮之间不打滑,说明它们边缘的线速度相等;再由角速度、向心加速度的公式逐个分析即可.【解答】解:A、由于AB的线速度大小相等,由v=ωr知,ω═,所以ω于r成反比,所以角速度之比为1:3,故A错误.B、由a n=可知,a n于r成反比,所以向心加速度之比a A:a B=1:3,所以B正确.C、两轮通过皮带传动,皮带与轮之间不打滑,说明它们边缘的线速度相等,所以C错误.D、由于AB的线速度大小相等,在相同的时间内通过的路程之比应该是s A:s B=1:1,所以D错误.故选B.4.如图所示,倾角为θ的斜面长为L,在顶端水平抛出一小球,小球刚好落在斜面的底端,那么,小球初速度v0的大小为()A.B.C.D.【考点】平抛运动.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据下落的高度求出运动的时间,再根据水平位移和时间求出小球的初速度.【解答】解:在竖直方向上有:Lsinθ=,解得t=.则初速度=.故A正确,B、C、D错误.故选:A.5.如图所示,竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.在红蜡块从玻璃管的下端匀速上浮的同时,使玻璃管以速度v水平向右匀速运动.红蜡块由管口上升到顶端,所需时间为t,相对地面通过的路程为L,则()A.v增大时,t增大B.v增大时,t减小C.v增大时,L增大D.v增大时,L减小【考点】运动的合成和分解.【分析】蜡块参与了竖直方向和水平方向两个方向的分运动,根据分运动与合运动具有等时性确定运动的时间,根据运动的合成,确定蜡块相对于地面的路程.【解答】解:蜡块在水平方向上和竖直方向上都做匀速直线运动,在竖直方向上,t=,管长不变,竖直方向上的分速度不变,根据合运动与分运动具有等时性,知蜡块由管口到顶端的时间不变.v增大,水平方向上的位移增大,根据运动的合成,知蜡块相对于地面的路程L增大.故C正确,A、B、D错误.故选C.6.我国载人飞船“神舟七号”的顺利飞天,极大地振奋了民族精神.“神七”在轨道飞行过程中,宇航员翟志钢跨出飞船,实现了“太空行走”,当他出舱后相对于飞船静止不动时,以下说法正确的是()A.他处于平衡状态B.他不受任何力的作用C.他的加速度不为零 D.他的加速度恒定不变【考点】万有引力定律及其应用;牛顿第二定律.【分析】翟志钢出舱后相对于飞船静止不动,与飞船一起绕地球做圆周运动,处于非平衡状态.他受到地球的万有引力,加速度不是零,而且加速度是变化的.【解答】解:A、翟志钢出舱后相对于飞船静止不动,与飞船一起绕地球做圆周运动,处于非平衡状态.故A错误.B、翟志钢出舱后仍受到地球的万有引力.故B错误.C、翟志钢出舱后与飞船一起绕地球做圆周运动,加速度不是零.故C正确.D、翟志钢的加速度方向时刻在变化,加速度是变化的.故D错误.故选C7.关于圆周运动,以下说法正确的是()A.做匀速圆周运动的物体,所受各力的合力一定是向心力B.做匀速圆周运动的物体除了受到其它物体的作用,还受到一个向心力C.物体做离心运动时,是因为它受到了离心力的作用D.汽车转弯时速度过小,会因离心运动造成交通事故【考点】向心力;牛顿第二定律.【分析】物体做匀速圆周运动,合力提供向心力,向心力并不是实际受到的力,分析受力时不单独分析.离心运动产生的条件是合外力突然消失,或者合外力不足以提供圆周运动所需的向心力.根据这些知识进行分析.【解答】解:A、做匀速圆周运动的物体,沿圆周切线方向的合力为零,所受各力的合力一定是向心力,故A正确.B、做匀速圆周运动的物体,合力提供向心力,物体不再受到一个向心力,故B错误.C、物体做离心运动时,并不是因为受到了离心力的作用,而是由于合外力减小或消失,合外力不足以提供圆周运动所需的向心力.故C错误.D、汽车转弯时速度过大,地面提供的最大静摩擦力不足以提供汽车所需要的向心力,从而产生离心运动,造成交通事故,速度小时不会造成交通事故,故D错误.故选:A8.如图所示,滑块A和B叠放在固定的斜面体上,从静止开始以相同的加速度一起沿斜面加速下滑.己知B与斜面体间光滑接触,则在AB下滑的过程中,下列说法正确的是()A.B对A的支持力不做功B.B对A的作用力做负功C.B对A的摩擦力做正功D.B,A的重力做功的平均功率相同【考点】牛顿第二定律;力的合成与分解的运用.【分析】B与斜面间光滑接触,对整体进行受力分析可知AB的加速度为gsinα,B对A有向左的摩擦力,B对A的作用力方向与斜面垂直,故B对A的支持力做负功,B对A的作用力不做功,B对A的摩擦力做正功.B、A的重力未知,故重力做功的平均功率是否相同也未知.【解答】解:A、B对A的支持力竖直向上,A和B一起沿着斜面下滑的,所以B对A的支持力与运动方向之间的夹角大于90°,所以B对A的支持力做负功,所以A错误;B、B对A的作用力包括B对A的支持力和摩擦力的作用,它们的合力的方向垂直斜面向上,所以B对A的作用力不做功,故B错误;C、B对A的摩擦力是沿着水平面向左的,与运动方向之间的夹角小于90°,所以B对A的摩擦力做正功,故C正确;D、因为B、A的重力未知,故重力做功的平均功率是否相同也未知,故D错误;故选:C9.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径.现将一物体沿与水平面成α角的方向以速度υ0抛出,如图(b)所示.则在其轨迹最高点P处的曲率半径是()A. B.C.D.【考点】牛顿第二定律;匀速圆周运动.【分析】由题目的介绍可知,求曲率半径也就是求在该点做圆周运动的半径,利用向心力的公式就可以求得.【解答】解:物体在其轨迹最高点P处只有水平速度,其水平速度大小为v0cosα,在最高点,把物体的运动看成圆周运动的一部分,物体的重力作为向心力,由向心力的公式得mg=m,所以在其轨迹最高点P处的曲率半径是ρ=,故C正确.故选:C.10.起重机的钢索将重物由地面吊到空中某一个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是图中的哪一个()A.B. C. D.【考点】功率、平均功率和瞬时功率.【分析】钢索拉力的功率P=Fv,根据速度图象分析重物的运动情况,根据牛顿第二定律得出拉力与重力的关系,再由功率公式得出功率与时间的关系式,选择图象.【解答】解:在0﹣t1时间内:重物向上做匀加速直线运动,设加速度大小为a1,根据牛顿第二定律得:F﹣mg=ma1,解得:F=mg+ma1拉力的功率:P1=Fv=(mg+ma1)a1t,m、a1均一定,则P1∝t.在t1﹣t2时间内:重物向上做匀速直线运动,拉力F=mg,则拉力的功率P2=Fv=mgv,P2不变,根据拉力的大小得到,P2小于t1时刻拉力的功率.在t2﹣t3时间内:重物向上做匀减速直线运动,设加速度大小为a2,根据牛顿第二定律得:mg﹣F=ma2,F=mg ﹣ma2,拉力的功率P3=Fv=(mg﹣ma2)(v0﹣a2t),m、a2均一定,P3与t是线性关系,随着t延长,P3减小.t2时刻拉力突然减小,功率突然减小.故选:A11.如图所示,a、b、c是北斗卫星导航系统中的3颗卫星,下列说法正确的是()A.b,c的向心加速度大小相等,且小于a的向心加速度B.c加速可追上同一轨道上的b,b减速可等候同一轨道上的cC.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能增大D.b卫星由于某原因,轨道半径缓慢减小,其线速度增大,机械能减小【考点】人造卫星的加速度、周期和轨道的关系.【分析】卫星绕地球做圆周运动时,万有引力提供圆周运动的向心力,据此讨论卫星做圆周运动时线速度、向心加速度与半径大小的关系,卫星线速度减小,机械能减小时做向心运动.【解答】解:由图示可知,卫星轨道半径间的关系为:r a<r b=r c;A、万有引力提供向心力,由牛顿第二定律得:G=ma,解得:a=,由于r a<r b=r c,则:a a>a b=a c,故A正确;B、c卫星加速时,做圆周运动向心力增加,而提供向心力的万有引力没有变化,卫星c加速后做离心运动,轨道高度将增加,故不能追上同一轨道的卫星b,同理减速会降低轨道高度,也等不到同轨道的卫星,故B错误;C、万有引力提供向心力,由牛顿第二定律得:G=m,解得:v=,b卫星的轨道半径r减小,则其线速度增大,卫星b的轨道半径r减小,卫星做向心运动,卫星在原轨道上运动时其线速度要减小,卫星动能减小,卫星的机械能减小,故C错误,D正确;故选:AD.12.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中动作.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网的压力,并在计算机上作出压力﹣时间图象,假设作出的图象如图所示.设运动员在空中运动时可视为质点,忽略空气阻力,则根据图象判断下列说法正确的是(g取10m/s2)()A.在1.1s﹣2.3s时系统的弹性势能保持不变B.运动员在5.5s时刻运动方向向上C.运动员跃起的最大高度为5.0 mD.运动员在空中的机械能在增大【考点】功能关系.【分析】运动员离开弹性网后做竖直上抛运动,图中压力传感器示数为零的时间即是运动员在空中运动的时间,根据平抛运动的对称性可知,运动员竖直上抛或自由下落的时间为空中时间的一半,据此可求出运动员跃起是最大高度.对照机械能守恒的条件和功能关系进行分析.【解答】解:A、由图象可知,弹性网压力增大时运动员向下运动,1.1s﹣2.3s内运动员先向下运动再向上运动,则弹性网的弹性势能先增大后减小,故A错误.B、弹性网的压力为零运动员在空中运动,5.4s﹣7.4s内运动员在空中先向上运动再向下运动,所以运动员在5.5s时刻运动方向向上,故B正确.C、由图可知运动员在空中的最长时间为:t=4.3s﹣2.3s=2s运动员做竖直上抛运动,所以跃起的最大高度为:h=g()2=5m,故C正确.D、运动员在空中运动时,只受重力,机械能保持不变,故D错误.故选:BC13.如图所示,一轻质弹簧的下端,固定在水平面上,上端叠放着两个质量均为M的物体A、B(物体B与弹簧拴接),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F作用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v﹣t图象如图乙所示(重力加速度为g),则()A.施加外力的瞬间,A、B间的弹力大小为M(g﹣a)B.A、B在t1时刻分离,此时弹簧弹力大小不为零C.弹簧恢复到原长时,物体B的速度达到最大值D.B与弹簧组成的系统的机械能先逐渐减小,后保持不变【考点】机械能守恒定律.【分析】弹簧的弹力可根据胡克定律列式求解,先对物体AB整体受力分析,根据牛顿第二定律列方程;再对物体B受力分析,根据牛顿第二定律列方程;t1时刻是A与B分离的时刻之间的弹力为零.【解答】解:A、施加F前,物体A、B整体平衡,根据平衡条件,有:2Mg=kx;解得:x=施加外力F的瞬间,对B物体,根据牛顿第二定律,有:F﹣Mg﹣F AB=Ma弹=2Mg其中:F弹解得:F AB=M(g﹣a),故A正确.B、物体A、B在t1时刻分离,此时A、B具有共同的v与a;且F AB=0;′﹣Mg=Ma对B:F弹′=M(g+a)≠0,故B正确.解得:F弹C、B受重力、弹力及压力的作用;当合力为零时,速度最大,而弹簧恢复到原长时,B受到的合力为重力,已经减速一段时间;速度不是最大值;故C错误;D、B与弹簧组成的系统,开始时A对B的压力对A做负功,故开始时机械能减小;AB分离后,B和弹簧系统,只有重力和弹力做功,系统的机械能守恒.故D正确;故选:ABD二、填空題及实验题:(每空2分,共计14分)14.“用DIS研究机械能守恒定律”的实验中,让轻杆连接摆锤由A点释放,用光电门测定摆锤在某一位置的瞬时速度,从而求得摆锤在该位罝的动能,同时输入摆锤的高度(实验中A,B,C,D)四点高度为0.150m、0.100m、0.050m,0.000m,己由计算机默认),求得摆锤在该位置的重力势能,进而研究势能与动能转化时的规律.(1)实验时,把点作为了零势能点.(2)(单选)若实验测得D点的机械能明显偏大,造成该误差的原因可能是A、摆锤在运动中受到空气阻力的影响B、光电门放在D点上方C、摆锤在A点不是由静止释放的D、摆锤释放的位罝在AB之间.【考点】验证机械能守恒定律.【分析】(1)由于高度都是相对于D点的,因此选择D点为零势能点,便于运算.(2)若实验测得D点的机械能明显偏大,说明重锤不是由静止释放的,开始时的机械能不仅仅是重力势能.【解答】解:(1)由于重锤的高度都是相对于D点的,因此选择D点为零势能点,将把光电门传感器放在标尺盘最低端的D点,测出重锤速度,可以进行机械能守恒的验证.故答案为:D.(2)若实验测得D点的机械能明显偏大,说明重锤不是由静止释放的,开始时的机械能不仅仅是重力势能,还有一定的动能.故C正确.而受到空气阻力、光电门放在D点上方,或摆钟放在AB之间均会使测出的D点的机械能减小;故ABD错误.。