九年级数学图形与坐标专题训练

合集下载

华师大版-数学-九年级上册- 图形的变换与坐标 典型例题

华师大版-数学-九年级上册- 图形的变换与坐标 典型例题

《图形的变换与坐标》典型例题例1 如图,已知在平面直角坐标系中有一个正方形ABCO .(1)写出A 、B 、C 、O 四个点的坐标.(2)若A 点向右移动两个单位,B 点也向右移动两个单位,写出A 、B 的坐标,这时四边形ABCO 是什么图形?(3)在(2)的图形中B 、C 两点再怎样的变化使四边形ABCO 为正方形?例2 如图,在直角坐标系中,第一次将OAB ∆变换成11B OA ∆,第二次将11B OA ∆变换成22B OA ∆,第三次将22B OA ∆变换成33B OA ∆.已知)0,16()0,8()0,4()0,2()3,8()3,4()3,2()3,1(321321B B B B A A A A ,,,,,,,.(1)观察每次变换后的三角形有何变化,找出规律,按此规律再将33B OA ∆变换成44B OA ∆,则4A 点的坐标是__________,4B 的坐标是__________.(2)若按第一题找到的规律将OAB ∆进行了n 次变换,得到n n B OA ∆,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是__________,n B 的坐标是__________.例3 在直角坐标中画出一个以)2,1()1,3()1,2(C B A ,,---为顶点的三角形,试说明“把图形各顶点的坐标都乘以一个正数)1(≠k k ,那么图形将扩大或缩小”。

例4 已知)4,(),3(b N a M 、-,根据下列条件求出b a 、的值;(1)N M 、两点关于x 轴对称;(2)N M 、两点关于y 轴对称;(3)N M 、两点关于原点对称;(4)x MN //轴;(5)N M 、在第一、三象限角平分线上;(6)点M 在某象限角平分线上,点N 到y 轴的距离等于5.例5 将图中的点)3,0(),6,6(),3,6(),0,6(D C B A 做如下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标加2,再将所得点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(3)纵坐标保持不变,横坐标分别乘以-1,所得的图案与原来的图案相比有什么变化?例6 (咸宁市中考题)一个平行四边形的三个顶点是)2,2(),0,0(),0,3(B O A -,求第四个顶点C 的坐标.参考答案例1 解 (1))0,0()4,0()4,4()0,4(O C B A ,,,.(2))4,6()0,6(B A ,,这时四边形ABCO 是矩形.(3))6,0()6,6(C B ,或)6,0()6,6(--C B ,,四边形ABCO 为正方形.例2 分析 此题无论是确定4A ,4B 的坐标,还是n A ,n B 的坐标,都是要找出它们的规律.例如对)3,8()3,4()3,2()3,1(321A A A A ,,,,其纵坐标都为3,而横坐标依次为32102222,,,,因此,)3,2(44A ,即)3,16(4A ;同理:)0,16()0,8()0,4()0,2(321B B B B ,,,,它们的纵坐标都是0,而横坐标依次是43212222,,,,因此得出)0,2(144+B ,即)0,32(4B . 解 (1)4A 点的坐标是)3,16(,4B 点的坐标是)0,32(.(2)n A 点的坐标是)3,2(n ,n B 点的坐标是)0,2(1+n .例3 解 如图画出ABC ∆。

华师版数学九年级上册强化专训:图形的变换与坐标

华师版数学九年级上册强化专训:图形的变换与坐标

华师版数学九年级上册阶段强化专训图形的变换与坐标【知识与技能】在同一直角坐标系中,感受到图形经过平移、旋转、轴对称、放大或缩小的变换之后,点的坐标相应发生变化.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律.【过程与方法】培养学生转化思想和知识迁移能力.【情感态度】让学生体悟数学变化中的规律,感受数学的乐趣.【教学重点】图形运动与坐标变换的关系.【教学难点】图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境导入,初步认识思考在同一个平面直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?二、思考探究,获取新知现在我们带着问题来一起探究.1.平移变换的坐标变化规律例1 如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?【归纳结论】三个顶点的纵坐标都没有改变,而横坐标都增加了3.例2 如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4、3)和(-1,3),将△ABC沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″,试写出现在三个顶点的坐标,看看发生了什么变化.【归纳结论】经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了3.【思考】通过以上例1、例2的探究你发现经过平移变换,点的坐标变化有什么特点?【归纳结论】(1)左、右平移,它们的纵坐标都不变,横坐标有变化,向右平移几个单位,横坐标就增加几个单位,向左平移几个单位,横坐标就减少几个单位.(2)上、下平移,它们的横坐标都不变,纵坐标有变化,向上平移几个单位,纵坐标就增加几个单位,向下平移几个单位,纵坐标就减少几个单位.2.轴对称变换的点的坐标变化规律例3 如图,△AOB关于x轴的轴对称图形是△A′OB,关于y轴的轴对称图形是△A″OB″,它们对应顶点的坐标有什么变化?【归纳结论】(1)关于x轴对称,横坐标不变,纵坐标互为相反数;(2)关于y轴对称,纵坐标不变,横坐标互为相反数.3.位似变换的点的坐标变化规律.例4 如图,将△AOB缩小后得到△COD,(1)它们的相似比是多少?。

中考数学总复习《二次函数图像与坐标轴的交点问题》专题测试卷带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》专题测试卷带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.抛物线y =x 2−2x +1与坐标轴的交点个数为( )A .无交点B .1个C .2个D .3个2.如图,已知二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x =1.下列结论:①abc >0;②4a +2b +c >0;③4ac ﹣b 2>8a ;④13<a <23; ⑤b >c.其中含所有正确结论的选项是( ) A .①②③B .②③④C .①④⑤D .①③④⑤3.已知二次函数y=ax 2+bx+c (a≠0,a ,b ,c 为常数)的y 与x 的部分对应值如下表:x 3.23 3.24 3.25 3.26 y﹣0.06﹣0.08﹣0.030.09判断方程ax 2+bx+c=0的一个解x 的取值范围是( ) A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25D .3.25<x <3.264.已知抛物线y =−3x 2+bx +c 与x 轴只有一个交点,且过点A(m −2,n)和B(m +4,n),则n 的值为( ) A .-9B .-16C .-18D .-275.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A.3B.4C.2D.16.坐标平面上某二次函敷图形的顶点为(2,-1),此函数图形与x轴相交于P、Q两点,且PQ=6若此函数图形通过(1,a)、(3,b)、(-1,c)、(-3,d)四点,则下列结论错误的是() A.a=b B.d>c C.c>a D.d<07.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是()A.图象的对称轴是直线x=1;B.一元二次方程ax2+bx+c=0的两个根是-1、3;C.当x>1时,y随x的增大而减小;D.当-1<x<3时,y<0.8.如图,已知抛物线l:y= 12(x-2)2-2与x轴分别交于0、A两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果山抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为()A.y= 12(x-2)2+4B.y= 12(x-2)2+3C.y= 12(x-2)2+2D.y= 12(x-2)2+19.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣112x2+ 23x+ 53,则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m10.已知函数y= x2+2x-3,当x=m时,y<0,则m的值可能是().A.-4B.0C.2D.311.对于二次函数y=(x+1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点12.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A.1B.2C.3D.4二、填空题(共6题;共6分)13.如图,抛物线y=a(x−4)(x+1)(a>0)与x轴交于A,B两点(点A在点B的左边)与y轴交于点C,连接BC,过点A作直线BC的平行线交抛物线于另一点E,交y轴于点D,则ADDE的值为.14.已知抛物线y=2x2+bx﹣1与x轴的交点坐标分别是(﹣3,0)和(2,0),那么关于x的一元二次方程2x2+bx﹣1=0的根是.15.抛物线y=(x+2)2+3上的点到x轴最短的距离是.16.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0).有下列结论:①图象的对称轴为直线:x=1;②a:b:c=﹣1:2:3;③若0<x<4,则5a<y<﹣3a;④一元二次方程cx2+bx+a=0的两个根分别为﹣1和13,其中正确的结论有(填序号).17.如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.18.如图,抛物线y=−x2+bx+c与x轴交于点A(1,0)、点B,与y轴相交于点C(0,3),下列结论:①b=−2﹔②B点坐标为(−3,0),③抛物线的顶点坐标为(−1,3),④直线y=ℎ与抛物线交于点D、E,若DE<2,则h的取值范围是3<ℎ<4﹔⑤在抛物线的对称轴上存在一点Q,使△QAC的周长最小,则Q点坐标为(−1,2).其中正确的有.三、综合题(共6题;共75分)19.已知二次函数y=x2−mx+m−2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若此函数y有最小值−54,求这个函数表达式.20.已知y=x2−(m+2)x+(2m−1)是关于x的抛物线解析式.(1)求证:抛物线与x轴一定有两个交点;(2)点A(−2,y1)、B(1,y2)和C(4,y3)是抛物线上的三个点,当抛物线经过原点时,判断y1、y2和y3的大小关系.21.如图,在平面直角坐标系中,抛物线y=12(x﹣1)2﹣2与x轴交于点A和点B(点A在点B 的左侧),第一象限内的点C在该抛物线上.(1)直接写出A、B两点的坐标;(2)若△ABC的面积为12,求点C坐标;(3)在(2)问的条件下,直线y=mx+n经过点A、C,12(x﹣1)2﹣2>mx+n时,直接写出x的取值范围.22.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.23.如图,已知抛物线y=−x2+bx+c与x轴、y轴分别相交于点A(-1,0)和B(0,3),其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E,求⊥ODE的面积;抛物线的对称轴上是否存在点P使得⊥PAB的周长最短.若存在请求出点P的坐标,若不存在说明理由.24.已知,如图,二次函数y=−x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0, 5),且经过点(1, 8)(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.(3)求△ABC的面积S△ABC.参考答案1.【答案】C 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】1514.【答案】x 1=−3,x 2=2 15.【答案】3 16.【答案】①②④ 17.【答案】③18.【答案】①②④⑤19.【答案】(1)证明: Δ=(−m)2−4(m −2)=m 2−4m +8=(m −2)2+4 ,不论 m 为何值时,都有 Δ>0此时二次函数图象与 x 轴有两个不同交点.(2)解: ∵4ac−b 24a =4(m−2)−m 24=−54, m 2−4m +3=0 , ∴m =1 或 m =3所求函数式为 y =x 2−x −1 或 y =x 2−3x +1 .20.【答案】(1)证明:y=x 2﹣(m+2)x+(2m ﹣1).∵⊥=[﹣(m+2)]2﹣4×1×(2m ﹣1)=(m -2)2+4>0,∴抛物线与x 轴一定有两个交点 (2)解:∵抛物线y=x 2﹣(m+2)x+(2m ﹣1)经过原点,∴2m ﹣1=0.解得:m =12 ,∴抛物线的解析式为y=x 2−52x.当x=﹣2时,y1=9;当x=1时,y2=-3.5;当x=4时,y3=6,∴y2<y3<y121.【答案】(1)解:令y=0,则12(x-1)2-2=0解得x1=−1,x2=3∴A(-1,0),B(3,0)(2)解:∵A(-1,0),B(3,0)∴AB=4∵S△ABC=12AB·yC=12∴12×4×y C=12解得y C=6∴12(x−1)2−2=6解得x1=5,x2=−3(不符题意,舍去)∴C(5,6)(3)解:由图象可知,当12(x−1)2−2>mx+n时,x的取值范围是x<-1或x>522.【答案】(1)解:∵h=2.6,球从O点正上方2m的A处发出∴抛物线y=a(x-6)2+h过点(0,2)∴2=a(0-6)2+2.6解得:a=- 1 60故y与x的关系式为:y=- 160(x-6)2+2.6(2)解:当x=9时,y=- 160(x-6)2+2.6=2.45>2.43所以球能过球网;当y=0时解得:x1=6+2 √39>18,x2=6-2 √39(舍去)故会出界;(3)解:当球正好过点(18,0)时,抛物线y=a(x-6)2+h还过点(0,2),代入解析式得:{2=36a+ℎ0=144a+ℎ解得: {a =−154ℎ=83此时二次函数解析式为:y=- 154 (x-6)2+ 83此时球若不出边界h≥ 83当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a (x-6)2+h 还过点(0,2),代入解析式得:{2.43=a(9−6)2+ℎ2=a(0−6)2+ℎ解得: {a =−432700ℎ=19375此时球要过网h≥19375故若球一定能越过球网,又不出边界,h 的取值范围是:h≥ 83.23.【答案】(1)解:根据题意得{−1−b +c =0c =3 ,解得 {b =2c =3∴抛物线解析式为y=-x 2+2x+3; (2)解:当y=0时,-x 2+2x+3=0解得x 1=-1,x 2=3,则E (3,0); y=-(x-1)2+4,则D (1,4), ∴S ⊥ODE = 12×3×4=6;连接BE 交直线x=1于点P ,如图,则PA=PE , ∴PA+PB=PE+PB=BE , 此时PA+PB 的值最小, 易得直线BE 的解析式为 y=-x+3, 当x=1时,y=-x+3=3, ∴P (1,2).24.【答案】(1)解:∵二次函数 y =−x 2+bx +c 的图象经过点 (0, 5) 和 B(1, 8)∴{c =5−1+b +c =8 解这个方程组,得 {b =4c =5∴该二次函数的解析式是 y =−x 2+4x +5 ; (2)解: y =−x 2+4x +5=−(x −2)2+9 ∴顶点坐标是 (2, 9) ;对称轴是x=2;(3)解:∵二次函数y=−x2+4x+5的图象与x轴交于A,B两点∴−x2+4x+5=0解这个方程得:x1=−1即二次函数y=−x2+4x+5与x轴的两个交点的坐标为A(−1, 0)和B(5, 0).∴△ABC的面积S△ABC=12AB×OC=12×|5−(−1)|×5=15.。

2021年九年级数学中考一轮复习专项突破训练:反比例函数图象上点的坐标特点(附答案)

2021年九年级数学中考一轮复习专项突破训练:反比例函数图象上点的坐标特点(附答案)

2021年九年级数学中考一轮复习专项突破训练:反比例函数图象上点的坐标特点(附答案)1.若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)2.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.3.如图,点A的坐标是(﹣1,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'BC′.若反比例函数y=的图象恰好经过A'B的中点D,则k的值是()A.19B.16.5C.14D.11.54.已知:如图,在直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB,AC相交于点D,反比例函数y=(x>0)经过点D,交BC的延长线于点E,且sin∠CBA=,则点E的坐标是()A.(6,8)B.(3,8)C.(6,)D.(,6)5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y=﹣的图象上,若y1<y2<0,则x1与x2的大小关系是()A.x1<x2B.x1>x2C.x1=x2D.无法确定6.反比例函数y=(k<0)的图象上的两点A(﹣1,y1)和B(﹣3,y2),则y1与y2的关系为()A.y1<y2 B.y1=y2 C.y1>y2D.无法确定7.如图,在平面直角坐标系内,矩形OABC的顶点O与原点重合,点A在第二象限,点B 和点C在第一象限,对角线OB的中点为点D,且D.C在反比例函数y=(k≠0)的图象上,若点B的纵坐标为4,且点BC:CO=:1,则k的值为()A.8﹣4B.1+C.4﹣2D.2+28.若反比例函数y=(k≠0)的图象经过点(﹣2,5),则这个函数的图象一定经过点()A.(5,﹣1)B.(﹣,2)C.(﹣2,﹣5)D.(,﹣20)9.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2 10.如图,在直角坐标系内,正方形OABC的顶点O与原点重合,点A在第二象限,点B,C在第一象限内,对角线OB的中点为D,且点D,C在反比例函数y=(k≠0)的图象上,若点B的纵坐标为4,则k的值为()A.1+B.3﹣C.2﹣2D.2+211.如图,在平面直角坐标系中,线段AB的端点为A(1,1)、B(3,1).当函数y=(x >0)的图象与线段AB有交点时,设交点为P(点P不与点A、B重合),将线段PB绕点P逆时针方向旋转90°得到线段PQ,以P A、PQ为边作矩形APQM,若函数y=(x >0)的图象与矩形APQM的边AM有公共点,则k的值不可能为()A.B.2C.D.12.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,OA在y轴上,将Rt△AOB绕点O顺时针旋转至△Rt△A'OB',其中点B'落在反比例函数y=﹣的图象上,OA'交反比例函数y=的图象于点C,且A′C=,则k的值为()A.6B.C.12D.13.如图,分别过反比例函数y=(x>0)图象上的点P1(1,y1),P2(2,y2)…P n(n,y n)作x轴的垂线,垂足分别为A1,A2,…A n,连结A1P2,A2P3,…A n﹣1P n,再以A1P1,A1P2为一组邻边作平行四边形A1P1B1P2,以A2P2,A2P3为邻边作平行四边形A2P2B2P3,以此类推,则B1的纵坐标为,B n的纵坐标为(用含n的代数式表示)14.如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y=(x>0)的图象经过AB的中点F和DE的中点G,则k的值为.15.已知M为双曲线y=(x>0)的点,点M作x轴,y轴的垂线分别交直线y=﹣x+m (m>0)于点D、C两点(点D在点M下方),若直线y=﹣x+m(m>0)与y轴交于点A,与x轴相交于点B,则AD•BC的值为.16.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转α度,tanα=,交反比例函数图象于点C,则点C的坐标为.17.已知点A(2,3)在反比例函数y=(k≠0)的图象上,当x>﹣2时,则y的取值范围是.18.如图,点A,B分别在反比例函数y=(x<0)与y=(x>0)的图象上,且△OAB 是等边三角形,则点A的坐标为.19.两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2015在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2015,纵坐标分别是1,3,5,…,共2015个连续奇数,过点P1,P2,P3,…,P2015分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…Q2015(x2015,y2015),则y2015=.20.如果四边形有一组对边平行,且另一组对边不平行,那么称这样的四边形为梯形,若梯形中有一个角是直角,则称其为直角梯形.下面四个结论中:①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上;②存在无数个直角梯形,其四个顶点在同一条抛物线上;③存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上;④至少存在一个直角梯形,其四个顶点在同一个圆上.所有正确结论的序号是.21.如图,在平面直角坐标系xOy中,已知菱形ABCD的顶点A(0,2)和C(2,0),顶点B在x轴上,顶点D在反比例函数y=的图象上,点E为边CD上的动点,过点E 作EF∥x轴交反比例函数图象于点F,过点F作FG∥CD交x轴于点G,当CE=CG时,点F的坐标为.22.平面直角坐标系中,点O为坐标原点,菱形OABC中的顶点B在x轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点C的坐标为(3,﹣4).(1)点A的坐标为;(2)若将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y=(x>0)的图象上,则该菱形向上平移的距离为.23.函数y=(m﹣1)x是反比例函数.(1)求m的值;(2)判断点(,2)是否在这个函数的图象上.24.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.25.已知反比例函数y=﹣.(1)若点(﹣t+,﹣2)在此反比例函数图象上,求t的值.(2)若点(x1,y1)和(x2,y2)是此反比例函数图象上的任意两点,①当x1>0,x2>0,且x1=x2+2时,求的值;②当x1>x2时,试比较y1,y2的大小.26.数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”.材料一:平方运算和开方运算是互逆运算.如a2±2ab+b2=(a±b)2,那么=|a±b|,如何将双重二次根式化简.我们可以把5±2转化为完全平方的形式,因此双重二次根式得以化简.材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y′)给出如下定义:若y′=,则称点Q为点P的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).问题:(1)点()的“横负纵变点”为;点(﹣3,﹣2)的“横负纵变点”为;(2)化简:;(3)已知a为常数(1≤a≤2),点M(﹣,m)是关于x的函数y=﹣()图象上的一点,点M′是点M的“横负纵变点”,求点M′的坐标.27.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y满足x=,y=,那么称点T是点A、B的“和美点”.(1)已知A(﹣1,8),B(4,﹣2),C(2,4).请判断点C(填“是”或“不是”)A、B两点的“和美点”.(2)平面直角坐标系中,有四个点A(8,﹣1),B(2,﹣4),C(﹣3,5),D(12,5),点P是点A、B的“和美点”,点Q是点C、D的“和美点”.求过P、Q两点的直线解析式.(3)若反比例函数y=图象上有两点A、B,点T是点A、B的“和美点”,试问点T 的横、纵坐标的积是否为常数?若是常数,请求出这个常数;若不是常数,请说明理由.28.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.29.如图,等腰△ABC中,AB=AC=,BC=4,点B在y轴上,BC∥x轴,反比例函数y=(x>0)的图象经过点A,交BC于点D.(1)若OB=3,求k的值;(2)连接CO,若AB=BD,求四边形ABOC的周长.30.已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.31.如图,在平面直角坐标系中,四边形ABCD的顶点A、B分别在y轴和x轴上,点C、D都在反比例函数y=(x>0)的图象上,设点A、B的坐标分别为(0,a)、(b,0)且a>0,b>0.(1)如果四边形ABCD是正方形,如图①,用a、b表示点C和点D的坐标;(2)如果四边形ABCD是矩形,如图②,若AB=6,BC=2,求k的值.32.如图,点A在双曲线y=(x>0)上,且OA=,过A作AC⊥x轴,垂足为C,线段OA的垂直平分线交线段OC于B.(1)求点A的坐标.(2)求△ABC周长.参考答案1.解:∵函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12,符合题意的只有C:k=﹣12×1=﹣12.故选:C.2.解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCP+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.3.解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣1,0),点B的坐标是(0,6),∴OA=1,OB=6,∴BH=OA=1,A′H=OB=6,∴OH=5,∴A′(6,5),∵BD=A′D,∴D(3,5.5),∵反比例函数y=的图象经过点D,∴k=16.5.故选:B.4.解:如图所示,过B作BF⊥x轴于F,∵四边形ABCO是菱形,∴BC∥AO,∴∠ABC=∠BAF,∵点A的坐标为(10,0),sin∠CBA=,∴AO=AB=10,BF=6,∴AF=8,∴OF=OA+AF=18,∴B(18,6),∵D是OB的中点,∴D(9,3),∴反比例函数解析式为y=,又∵点E的纵坐标为6,∴令y=6,可得x=,即点E的坐标是(,6),故选:D.5.解:∵反比例函数y=﹣的图象过第二、四象限,当y1<y2<0时,则x1<x2,故选:A.6.解:∵反比例函数y=(k<0),∴函数的图象在第二、四象限,并且在每个象限内,y随x的增大而增大,∵反比例函数y=(k<0)的图象上的两点A(﹣1,y1)和B(﹣3,y2),∴点A、B都在第二象限,∵﹣1>﹣3,∴y1>y2,故选:C.7.解:过A作AE⊥x轴于E,过C作CF⊥x轴于F,设C(a,b),则OF=a,CF=b,∵四边形OABC为矩形,∴OA=BC,AB=CO,∠AOC=90°,∴∠AOE+∠COF=90°,∵AE⊥x轴,∴∠AOE+∠EOA=90°,∴∠OEA=∠COF,∴△OAE∽△COF,∴==,∵BC:CO=:1,∴AO:CO=:1,∴AE=OF=a,OE=CF=b,∴A(﹣b,a),∵四边形OABC为矩形,D是OB的中点,∴D是AC的中点,∴D(,),∵点D,C在反比例函数y=(k≠0)的图象上,∴k=ab=•,即a2﹣b2=2ab,∵B点的纵坐标为4,∴D点纵坐标为=2,即a+b=4,联立方程组,解得,或(舍去),∴k=ab=8﹣4.故选:A.8.解:把(﹣2,5)代入y=得:5=,解得:k=﹣10,即y=﹣,A.把(5,﹣1)代入y=﹣得:左边≠右边,即反比例函数y=﹣的图象不经过点(5,﹣1),故本选项不符合题意;B.把(﹣,2)代入y=﹣得:左边≠右边,即反比例函数y=﹣的图象不经过点(﹣,2),故本选项不符合题意;C.把(﹣2,﹣5)代入y=﹣得:左边≠右边,即反比例函数y=﹣的图象不经过点(﹣2,﹣5),故本选项不符合题意;D.把(,﹣20)代入y=﹣得:左边≠右边,即反比例函数y=﹣的图象经过点(,﹣20),故本选项符合题意;故选:D.9.解:∵反比例函数为y=(k<0),∴函数图象在第二、四象限,在每个象限内,y随着x的增大而增大,又∵x1<x2<0<x3,∴y1>0,y2>0,y3<0,且y1<y2,∴y3<y1<y2,故选:D.10.解:过A作AE⊥x轴于E,过C作CF⊥x轴于F,设C(a,b),则OF=a,CF=b,∵四边形ABCO为正方形,∴OA=CO,∠AOC=90°,∴∠AOE+∠COF=90°,∵AE⊥x轴,∴∠AOE+∠OEA=90°,∴∠OEA=∠COF,在△OAE和△COF中,,∴△OAE≌△COF(AAS),∴AE=OF=a,OE=CF=b,∴A(﹣b,a),∵四边形ABCO为正方形,D是OB的中点,∴D是AC的中点,∴D(),∵点D,C在反比例函数y=(k≠0)的图象上,∴k=ab=,即a2﹣b2=4ab,∵B点的纵坐标为4,∴D点纵坐标为,即a+b=4,联立方程组,解得,,或(舍去),∴k=ab=2﹣2.故选:C.11.解:分析图形可知:当函数y=(x>0)的图象与矩形APQM的边AM有公共点为M时,k取得最大值,∵P在y=上且y P=1,∴P(k,1),设PB=a,则Q(k,1+a),∵四边形APQM是矩形,∴M(1,1+a),而M在y=上,∴1+a=k,∵AP=MQ,∴2﹣a=k﹣1,由,解得,∴0<k≤2,∴k=不符合条件.故选:A.12.解:作CM⊥x轴于点M,作B′N⊥x轴于点N,由题意知OB=OB′,OA=OA′,∠BOB′=∠AOC=∠OCM.又∵∠ONB′=∠OMC,∴△OB′N∽△COM,∵AO=3BO,且A′C=,∴OC=2OB′,∴CM=2ON,OM=2B′N,∵ON•B′N=3,∴CM•OM=4ON•B′N=12,即k=12.故选:C.13.解:∵点P1(1,y1),P2(2,y2)在反比例函数y=的图象上,∴y1=3,y2=,∴P1A1=y1=3,又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2 ,∴点B1的纵坐标是:y2+y1=+3=;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…∴点B n的纵坐标是:y n+1+y n=+=.故答案是:,.14.解:∵A(4,0),E(0,3),∴OE=3,OA=4,由▱OABC和▱OCDE得:OE∥DC,BC∥OA且DC=OE=3,BC=OA=4,设C(a,b),则D(a,b+3)、B(4+a,b),∵AB的中点F和DE的中点G,∴G(),F(),∵函数y=(x>0)的图象经过点G和F,则,3a=4b,a=,∵OC=5,C(a,b),∴a2+b2=52,,b=±3,∵b>0,∴b=3,a=4,∴F(6,),∴k=6×=9;故答案为:9.15.解:设M(a,b),则ab=,y=﹣x+m(m>0)与x轴、y轴的交点为A(0,m)、B(m,0),∴OA=OB=m,即△AOB是等腰直角三角形,过点D作DN⊥y轴,垂足为N,则△ADN是等腰直角三角形,∴AD=DN=a,同理:BC=b,∴AD•BC=a•b=2ab=2.故答案为:2.16.解:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△AEF∽△FDB,∵tanα=,∴==,∴设BD=a,则EF=2a,∵点A(2,3)和点B(0,2),∴DF=2﹣2a,OD=OB﹣BD=2﹣a,∴AE=2DF=4﹣4a,∵AE+OD=3,∴4﹣4a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=x+,∵点A在反比例函数y=的图象上,∴y=,解方程组,可得或,∴C(﹣,﹣),故答案为(﹣,﹣).17.解:∵点A(2,3)在反比例函数y=(k≠0)的图象上,∴k=2×3=6,∴y=,∴图象在一三象限,在每个象限内y随x增大而减小,当x=﹣2时,y==﹣3,∴当x>﹣2时,y<﹣3或y>0.故答案为:y<﹣3或y>0.18.解:延长BA到C,使得BC=AB,连接OC,作AM⊥x轴于M,CN⊥x轴于N.设A (m,).∵△OAB是等边三角形,∴OB=BA=BC,∴∠AOC=90°,∵∠OAC=60°,∴∠ACO=30°,∴OC=OA,∵∠AMO=∠AOC=∠CNO=90°,∴∠AOM+∠MAO=90°,∠AOM+∠CON=90°,∴∠OAM=∠CON,∴△AMO∽△ONC,∴===,∵OM=﹣m,AM=﹣,∴ON=﹣,CN=﹣m,∴C(﹣,m),∴B(,),∵点B在y=﹣上,∴×=﹣4,整理得:m4+4m2﹣4=0,解得m=1﹣(不合题意的根已经舍弃),∴A(1﹣,﹣﹣1).故答案为(1﹣,﹣﹣1).19.解:由题意可知:P2015的坐标是(x2015,4029),又∵P2015在y=上,∴x2015=,∵Q2015在y=上,且横坐标为x2015,∴y2015===2014.5.故答案为2014.5.20.解:①如图1中,点P是正方形ABCD的边AD上的任意一点,则四边形ABCP是直角梯形,这样的直角梯形有无数个,故①正确.②如图2中,四边形ABCO是直角梯形,这样的直角梯形有无数个,故②正确.③如图3中,四边形ABCD是直角梯形,这样的直角梯形有无数个,故③正确.④直角梯形的四个顶点,不可能在同一个圆上,故④错误,故答案为①②③.21.解:连接AC,过点F作FM⊥x轴,垂足为M,∵A(0,2)),C(2,0),∴OA=2,OC=2,∴AC==4,tan∠OCA===,∴∠OCA=60°,∵菱形ABCD,∴△ABC是正三角形,∴AB=BC=CA=4=AD=CD,∴D(4,2),∴反比例函数的关系式为y=,∵EF∥x轴,FG∥CD,CE=CG,∴四边形CGFE是菱形,且∠ECG=60°,在Rt△FMG中,∠GFM=30°,设GM=x,则CG=GF=2x,FM=x,∴点F(2+3x,x),又∵点F(2+3x,x)在y=的图象上,∴(2+3x)•x=8,解得,x1=﹣2(舍去),x2=,∴点F(6,),故答案为:(6,).22.解:(1)∵菱形OABC关于x轴为对称,∴A,C关于x轴为对称,∵C的坐标为(3,﹣4),∴A(3,4),故答案为(3,4);(2)∵A(3,4)在反比例函数y=(x>0)的图象上,∴k=3×4=12,∴y=,若将菱形OABC向上平移m个单位长度,当点C落在反比例函数y=(x>0)的图象上,则点C的坐标为(3,m﹣4),∵点C恰好落在反比例函数图象上,∴3(m﹣4)=12,解得:m=8;连接AC交x轴于于D,∵四边形AOCB是菱形,∴OB=2OD=6,∴B(6,0),若将菱形OABC向上平移m个单位长度,当点B落在反比例函数y=(x>0)的图象上,则点B的坐标为(6,m),∵点B恰好落在反比例函数图象上,∴6m=12,解得:m=2,∴将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y=(x>0)的图象上,则该菱形向上平移的距离为2或8,故答案为:2或8.23.解:(1)由题意:,解得m=0.(2)∵反比例函数y=﹣,当x=,y=﹣2,∴点(,2)不在这个函数图象上.24.解:(1)根据题意画出树状图如下:(2)当x=﹣1时,y==﹣2;当x=1时,y==2;当x=2时,y==1.∴一共有9种等可能的情况,点(x,y)落在双曲线y=上有2种情况:(1,2),(2,1),∴点(x,y)落在双曲线y=上的概率为:.25.解:(1)把点(﹣t+,﹣2)代入反比例函数y=﹣得,(﹣t+)×(﹣2)=﹣3,解得,t=1;(2)①当x1>0,x2>0,且x1=x2+2时,这两个点在第四象限,=﹣=﹣+==﹣;②根据函数的图象可知,Ⅰ)当0>x1>x2时,y1>y2>0,Ⅱ)当x1>0>x2时,y1<0<y2,Ⅲ)当x1>x2>0时,0>y1>y2,26.解:(1)点()的“横负纵变点”为(),点(﹣3,﹣2)的“横负纵变点”为(﹣3,2),故答案为(,﹣),(﹣3,2);(2)∵2+5=7,2×5=10,∴==;(3)∵1+(a﹣1)=a,1•(a﹣1)=a﹣1,∴=+=2,∴函数y=﹣,∵点M(﹣,m)在y=﹣上,∴m=,∴M(﹣,),∴点M的“横负纵变点”M′的坐标为(﹣,﹣).27.解:(1)∵点A(﹣1,8),B(4,﹣2),∴点A,B的“和美点”的横坐标为=2,纵坐标为=4,∴点A,B的“和美点”的坐标为(2,4),∴点C是A,B两点的“和美点”,故答案为:是;(2)∵点A(8,﹣1),B(2,﹣4),且点P是点A、B的“和美点”,∴P(4,2),∵点C(﹣3,5),D(12,5),且点Q是点C、D的“和美点”,∴Q(6,5),设直线PQ的解析式为y=kx+m,∴,∴,∴直线PQ的解析式为y=x﹣4;(3)点T的横、纵坐标的积是常数4,理由:设点A(n,),B(h,),∵点T是点A、B的“和美点”,∴T(,),∴点T的横、纵坐标的积是•==4,28.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;29.解:(1)过A作AE⊥BC于E交x轴于F,则AF∥y轴,∵BC∥x轴,∴四边形BOFE是矩形,∴EF=OB=3,∵AB=AC=,BC=4,∴BE=BC=2,∴AE==,∴A(2,),∵反比例函数y=(x>0)的图象经过点A,∴k=2×=9;(2)设OB=a,∵BD=AB=,∴A(2,+a),D(,a),∵反比例函数y=(x>0)的图象经过点A,交BC于点D,∴2(+a)=a,解得:a=6,∴OB=6,∴OC===2,∴四边形ABOC的周长=AB+OB+OC+AC=11+2.30.解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.31.解:(1)如图1,过点C作CM⊥x轴,垂足为M,过点D作DN⊥y轴,垂足为N,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠DAB=90°,∵∠ABO+∠BAO=90°,∠ABO+∠CBM=90°,∴∠BAO=∠CBM,∴△AOB≌△BMC(AAS),∴OA=BM=a,OB=MC=b,∴点C(a+b,b),同理,D(a,a+b);(2)如图2,由(1)的方法可得,△AOB∽△BMC,∴====,∴BM=OA=a,CM=b,∴点C(b+a,b),同理,点D(a,a+b),∵点C、D在反比例函数的图象上,∴(b+a)×b=a×(a+b),∴a=b,在Rt△AOB中,a=b=AB=3,∴k=(b+a)×b=8,答:k的值为8.32.解:(1)∵点A在双曲线y=(x>0)上,AC⊥x轴,∴设AC=a,∴oOC=,∵AC2+OC2=OA2,∴a2+()2=13,解得:a=3或a=2(负值舍去),∴A(2,3)或(3,2);(2)∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC=2+3=5。

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。

初中数学专题复习(二次函数图像与坐标轴交点问题)

初中数学专题复习(二次函数图像与坐标轴交点问题)

初中数学专题复习(二次函数图像与坐标轴交点问题)1.二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,a取满足条件的最小整数,将图象在x 轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,当直线y=kx﹣2与新图象恰有三个公共点时,则k的值不可能是()A.﹣1B.﹣2C.1D.2解:∵二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,当△=(﹣2a+3)2﹣4(a﹣1)(a﹣4)=8a﹣7>0时,解得a>,∵a取满足条件的最小整数,而a≠1,故a=2,当a=2时,y=(a﹣1)x2﹣(2a﹣3)x+a﹣4=x2﹣x﹣2,设原抛物线交x轴于点A、B,交y轴于点C,将图象在x轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,如下图所示,对于y=x2﹣x﹣2,令y=0,则y=x2﹣x﹣2=0,解得x=﹣1或2,令x=0,则y=﹣2,故点A、B、C的坐标分别为(﹣1,0)、(2,0)、(0,﹣2),由直线y=kx﹣2知,该直线过点C,①当k>0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过点B、C,将点B的坐标代入y=kx﹣2得:0=2k﹣2,解得k=1;②当k<0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过A、C点或直线与y=x2﹣x﹣2只有一个交点,当直线过点A、C时,将点A的坐标代入直线表达式得:0=﹣k﹣2,解得k=﹣2,当直线与y=x2﹣x﹣2只有一个交点时,联立直线和抛物线的表达式得:x2﹣x﹣2=kx﹣2,即x2﹣(k+1)x=0,则△=(﹣k﹣1)2﹣4×1×0=0,解得k=﹣1,综上,k=1或﹣2或﹣1,答案:D.2.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),答案:B.3.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④解:依照题意,画出图形如下:∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.∴a<0,c>0,对称轴为x=﹣=﹣1,∴b=2a<0,∴abc>0,故①正确,∵对称轴为x=﹣1,∴x=1与x=﹣3的函数值是相等的,故②错误;∵顶点为(﹣1,n),∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,联立方程组可得:,可得ax2+(2a﹣k)x+a+n﹣1=0,∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,∵无法判断△是否大于0,∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;当﹣3≤x≤3时,当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,答案:C.4.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点解:A、将二次函数向上平移10个单位,再向左平移2个单位后,表达式为:,若过点(4,5),则,解得:a=﹣5,故选项正确;B、∵,开口向上,∴当x=12时,y有最小值a﹣9,故选项正确;C、当x=2时,y=a+16,最小值为a﹣9,a+16﹣(a﹣9)=25,即x=2对应的函数值比最小值大25,故选项错误;D、△=,当a<0时,9﹣a>0,即方程有两个不同的实数根,即二次函数图象与x轴有两个不同的交点,故选项正确,答案:C.5.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<<1B.>1C.0<<1D.>1解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=﹣=﹣5,∴x3<x1<﹣5,由图象可知:0<<1一定成立,答案:A.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,答案:B.7.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴这两个整数根是﹣4或2,答案:B.8.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0解:A、错误.由M1=2,M2=2,可得a2﹣4>0,b2﹣8>0,取a=3,b2=12,则c==4,此时c2﹣16=0.故A错误.B、正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b4﹣16=(b4﹣64)=(b2+8)(b2﹣8)<0,∴M3=0,∴选项B正确,C、错误.由M1=0,M2=2,可得a2﹣4<0,b2﹣8>0,取a=1,b2=18,则c==18,此时c2﹣16>0.故C错误.D、由M1=0,M2=0,可得a2﹣4<0,b2﹣8<0,取a=1,b2=4,则c==4,此时c2﹣16=0.故D错误.答案:B.二.填空题(共7小题)9.我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为(1,0)、(2,0)和(0,2).解:根据题意,令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,△=(﹣m﹣2)2﹣4×2m=(m﹣2)2>0,∴mx2+(﹣m﹣2)x+2=0有两个根,且m≠2,由求根公式可得x=,x=,x1==1,x2===,当m=1时符合题意;此时x2=2;所以这个函数图象上整交点的坐标为(2,0),(1,0);令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).综上所述,这个函数图象上整交点的坐标为(2,0),(1,0)和(0,2);故答案为:(2,0),(1,0)和(0,2).10.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是2.解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.11.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是k>﹣1.解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是﹣3<x<1.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为4.解:∵点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,∴,解得,b=﹣4,∴抛物线解析式为y=x2﹣4x+1=(x﹣2)2﹣3,∵将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,∴n的最小值是4,故答案为:4.14.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc <0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2;④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为①④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,符合题意;②△ABC的面积=AB•y C=AB×2=2,解得:AB=2,则点A(0,0),即c=0与图象不符,故②错误,不符合题意;③函数的对称轴为x=1,若x1+x2>2,则(x1+x2)>1,则点N离函数对称轴远,故y1>y2,故③错误,不符合题意;④抛物线经过点(3,﹣1),则y′=ax2+bx+c+1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax2+bx+c+1=0的两根为﹣1,3,故④正确,符合题意;故答案为:①④.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.三.解答题(共5小题)16.如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).17.如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.解:(1)∵A(﹣1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x﹣2),将C代入得:4=﹣2a,解得:a=﹣2,∴该抛物线的解析式为:y=﹣2(x+1)(x﹣2)=﹣2x2+2x+4;(2)连接OP,设点P坐标为(m,﹣2m2+2m+4),m>0,∵A(﹣1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=×1×4+×4m+×2×(﹣2m2+2m+4)=﹣2m2+4m+6=﹣2(m﹣1)2+8,当m=1时,S最大,最大值为8.18.如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.解:(1)直线与抛物线的对称轴交于点D(2,﹣3),故抛物线的对称轴为x=2,即﹣b=2,解得:b=﹣4,(2)∵b=﹣4∴抛物线的表达式为:y=x2﹣4x;把y=﹣3代入y=x2﹣4x并解得x=1或3,故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,∵四边形PBCQ为平行四边形,∴PQ=BC=2,故x2﹣x1=2,又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,故|(x12﹣4x1)﹣(x22﹣4x2)|=2,|x1+x2﹣4|=1.∴x1+x2=5或x1+x2=3,由,解得;由,解得.19.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴为直线x=2,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移到点A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.。

23.6 图形与坐标 华东师大版数学九年级上册堂堂练(含答案)

23.6 图形与坐标 华东师大版数学九年级上册堂堂练(含答案)

23.6图形与坐标—2022-2023学年华东师大版数学九年级上册堂堂练1.如图,已知表示棋子“馬”的坐标为,则表示棋子“車”的点的坐标为( )A. B. C. D.2.如图,在平面直角坐标系中,的顶点坐标分别是,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段的长度为( )A. B.2 C.4 D.3.如图,把先向右平移3个单位长度,再向上平移2个单位长度得到,则顶点对应点的坐标为( )A. B. C. D.4.如图,和是以点E为位似中心的位似图形,已知点,点,点,则点D的对应点B的坐标是( )A.(4,2)B.(4,1)C.(5,2)D.(5,1)5.如图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A的坐标是,经过2020次变换后所得的点A的坐标是( )A. B. C. D.6.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为(0,3),(-1,1),(3,1),是关于x轴的对称图形,将绕点逆时针旋转180°,点的对应点为M,则点M的坐标为__________.7.如图,在平面直角坐标系中,与位似,位似中心是坐标原点O.若点,点,则与周长的比值是_____.8.如图,在边长为1的正方形网格中建立平面直角坐标系,已知三个顶点分别为.(1)画出关于x轴对称;(2)以原点O为位似中心,在x轴的上方画出,使与位似,且位似比为2,并求出的面积.答案以及解析1.答案:C解析:建立平面直角坐标系,如答图,表示棋子“車”的点的坐标为.故选C.2.答案:D解析:与成位似图形,且相似比为2:1,∴点D的坐标为(2,4),点F的坐标为(6,2),.3.答案:D解析:由题意可知点C的对应点F的坐标为,即.故选D.4.答案:C解析:设点B的坐标为.和是以点E为位似中心的位似图形,,解得点B的坐标为(5,2).故选C.5.答案:D解析:点A第1次关于y轴对称后在第一象限,点A第2次关于x轴对称后在第四象限,点A第3次关于y轴对称后在第三象限,点A第4次关于x轴对称后在第二象限,即点A回到原始位置,所以,每4次对称为—个循环. ,所以经过第2020次变换后所得的A点与原始位置相同,其坐标为.故选D.6.答案:解析:将绕点逆时针旋转180°,如答图,所以点M的坐标为(-2,1).7.答案:解析:与位似,位似中心是坐标原点O,点,点.,,与的位似比为:,与周长的比值为:,故答案为:.8.答案:(1)(2);28解析:(1)如图所示,就是所求三角形.(2)如图所示,就是所求三角形.如图,分别过,点作y轴的平行线,过点作x轴的平行线,交点分别为.与位似,且位似比为2,,,.。

九年级数学 专题10 平面直角坐标系与点的坐标

九年级数学 专题10 平面直角坐标系与点的坐标

九年级数学平面直角坐标系与点的坐标一.选择题1.(2015•湖南株洲,第10题3分)在平面直角坐标系中,点(-3,2)关于y轴的对称点的坐标是。

【试题分析】本题考点是:坐标的对称问题。

可以利用图形解答,也可以记住规律,关于哪条轴对称,哪个坐标不变,关于原点对称都变。

答案为:(3,2)2.(2015•江苏南京,第13题3分)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A 关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______ ,_____).【答案】﹣2;3.【解析】试题分析:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.考点:关于x轴、y轴对称的点的坐标.3. (2015•四川省宜宾市,第8题,3分)在平面直角坐标系中,任意两点A (x1,y1),B (x2,y2)规定运算:①A○+B=( x1+ x2, y1+ y2);②A○⨯B= x1 x2+y1 y2③当x1= x2且y1= y2时A=B有下列四个命题:(1)若A(1,2),B(2,–1),则A○+B=(3,1),A○⨯B=0;(2)若A○+B=B○+C,则A=C;(3)若A○⨯B=B○⨯C,则A=C;(4)对任意点A、B、C,均有(A○+B )○+C=A○+( B○+C )成立.其中正确命题的个数为(C)A. 1个B. 2个C. 3个D.4个4. (2015•浙江金华,第3题3分)点P(4,3)所在的象限是【】A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A.【考点】平面直角坐标系中各象限点的特征.【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点P(4,3)位于第一象限. 故选A.5. (2015•四川凉山州,第9题4分)在平面直角坐标系中,点P(﹣3,2)关于直线对称点的坐标是()A.(﹣3,﹣2)B.(3,2)C.(2,﹣3)D.(3,﹣2)【答案】C.【解析】试题分析:点P关于直线对称点为点Q,作AP∥x轴交于A,∵是第一、三象限的角平分线,∴点A的坐标为(2,2),∵AP=AQ,∴点Q的坐标为(2,﹣3).故选C.考点:坐标与图形变化-对称.6. (2015山东省德州市,12,3分)如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=-x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是()A. B. C. D.【答案】B标系与点的坐标7. (2015•山东威海,第6 题3分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标..分析:根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.解答:解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.点评:本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.8.(2015•北京市,第8题,3分)右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

九年级数学上册《关于原点对称的点的坐标》练习题及答案

九年级数学上册《关于原点对称的点的坐标》练习题及答案

九年级数学上册《关于原点对称的点的坐标》练习题及答案学校:___________姓名:___________班级:______________一、填空题1.已知点A 与B (1,−6)关于y 轴对称,则点A 关于原点对称的点C 的坐标是__________.2.已知点M (3,-2),点N (a ,b )是M 点关于y 轴的对称点,则a =________,b =_________ .3.已知点A (a ,3)与点B (4,b )关于原点对称,则a -b 的值是______.4.若点()2A a ,与点()3B b ,关于x 轴对称,则a b +=______. 5.若点(),7A m 与点4,B n 关于原点成中心对称,则m n +=______.6.若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.二、解答题7.如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).8.如图所示,在平面直角坐标系中,已知()0,1A 、()2,0B 、()4,3C .(1)在平面直角坐标系中画出ABC ,则ABC 的面积是______;(2)若点D 与点C 关于y 轴对称,则点D 的坐标为______;(3)已知P 为x 轴上一点,若ABP △的面积为1,求点P 的坐标.9.已知点A(2a+2,3-3b)与点B(2b -4,3a+6)关于坐标原点对称,求a 与b 的值.10.如图,△ABC 在直角坐标系中,(1)把△ABC 向上平移2个单位,再向右平移3个单位得△A ′B ′C ′,在图中画出两次平移后得到的图形△A ′B ′C ′,并写出A ′、B ′、C ′的坐标.(2)如果△ABC 内部有一点Q ,根据(1)中所述平移方式得到对应点Q ′,如果Q ′坐标是(m ,n ),那么点Q 的坐标是 .(3)求平移后的三角形面积.11.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中10<x ≤30)(1)写出y 与x 之间的函数关系式及自变量的取值范围;(2)当销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?三、单选题13.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 关于原点对称的M '的坐标是( )A .(2,-5)B .(-2,5)C .(5,-2)D .(-5,2)14.若点(),2A m ,()3,B n 关于原点对称,则m 、n 的值为( )A .3m =-,2n =B .3m =,2n =-C .3m =-,2n =-D .3m =,2n =15.在平面直角坐标系内,将点A (1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是( )A .(3,1)B .(3,3)C .(﹣1,1)D .(﹣1,3)16.将若干只鸡放入若干个笼,若每个笼里放4只则有一只鸡无笼可放;若每个笼放5只,则只有一笼未放满且每笼内都有鸡,那么笼的个数t 的范围是( )A .16t ≤≤B .16t ≤<C .16t <≤D .16t <<17.解集如图所示的不等式组为( )A .12x x >-⎧⎨≤⎩B .12x x ≥-⎧⎨>⎩C .12x x ≤-⎧⎨<⎩D .12x x >-⎧⎨<⎩18.如图,在□ABCD 中,将△ABD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若△ABD =48°,△CFD =40°,则△E 为( )A .112°B .118°C .120°D .122°19.如图,正方形ABCD 的顶点A ,B 的坐标分别为(1,1),(3,1),若正方形ABCD 第1次沿x 轴翻折,第2次沿y 轴翻折,第3次沿x 轴翻折,第4次沿y 轴翻折,第5次沿x 轴翻折,…则第2021次翻折后点C 对应点的坐标为( )A .(3,﹣3)B .(3,3)C .(﹣3,3)D .(﹣3,﹣3)参考答案与解析:1.(1,6)【分析】根据点A 和点B (1,-6)关于y 轴对称,先求出点A 的坐标,继而点A 与点C 关于原点对称,求出点C 的坐标.【详解】解:△点A 和点B (1,-6)关于y 轴对称,△点A 的坐标为(-1,-6),又△点A 与点C 关于原点对称,△点C 的坐标为(1,6).故答案为:(1,6).【点睛】本题考查了平面直角坐标系关于坐标轴或原点对称的两点的坐标之间的关系.平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(-x ,y ),关于原点的对称点是(-x ,-y ). 2. 3- 2-【分析】根据平面直角坐标系中关于y 轴对称的点的坐标特征即可得到结论.【详解】解:根据平面直角坐标系中关于y 轴对称的点的坐标特征:横坐标互为相反数、纵坐标不变可知,当点M (3,-2)与点N (a ,b )关于y 轴时,3,2a b =-=-,故答案为:3,2--.【点睛】本题考查平面直角坐标系中关于y 轴对称的点的坐标特征,熟练掌握平面直角坐标系点的坐标特征是解决问题的关键.3.-1【分析】根据已知条件关于原点对称的点的坐标特征,横纵坐标互为相反数,求出a ,b ,代入求值即可、【详解】△点A (a ,3)与点B (4,b )关于原点对称,△a =−4,b =−3,△a -b =(−4)-(−3)=−1;故答案是:−1.【点睛】本题主要考查了平面直角坐标系的点关于原点对称的特征,准确计算是解题的关键.4.1【分析】根据若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:△点()2A a ,与点()3B b ,关于x 轴对称, △3,2a b ==-,△321a b +=-=.故答案为:1.【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y 轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.5.-3【分析】利用关于原点对称点的性质得出m ,n 的值进而得出答案.【详解】△点(),7A m 与点4,B n 关于原点对称,△m =4,n =﹣7,△()473m n +=+-=-故答案为:﹣3.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6.110n ≤<【分析】先判断22m -<<,再根据二次函数的性质可得:()222211n m m m =++=++,再利用二次函数的性质求解n 的范围即可. 【详解】解:点P 到y 轴的距离小于2, 22m ∴-<<,点(),P m n 在二次函数222=++y x x 的图象上,()222211n m m m ∴=++=++,∴当1m =-时,n 有最小值为1. 当2m =时,()221110n =++=,n ∴的取值范围为110n ≤<. 故答案为:110n ≤<【点睛】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.7.(1)见解析;()15,3A -(2)见解析;()22,4A(3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.(1)解:如图所示△A 1B 1C 1即为所求,()15,3A -;(2)如图所示△A 2B 2C 2即为所求,()22,4A ;(3)△115AC = △点1A 旋转到点2A 所经过的路径长为90π55π1802⨯=. 【点睛】题目主要考查坐标与图形,图形的平移,旋转,勾股定理及弧长公式等,熟练掌握和灵活运用这些知识点是解题的关键.8.(1)4(2)(4,3)-(3)P 点坐标为()4,0或()0,0【分析】(1)直接利用ABC 所在矩形面积减去周围三角形面积进而得出答案;(2)利用关于y 轴对称的点的坐标得出答案;(3)利用三角形面积得2BP =,即可得.(1)解:如图所示:ABC 的面积为:111341224234222⨯-⨯⨯-⨯⨯-⨯⨯=. (2)解:△点D 与点C 关于y 轴对称,C (4,3),△点D 的坐标为:(-4,3),故答案为:(-4,3).(3)解:△P 为x 轴上一点,ABP △的面积为1,△2BP =,△点P 的横坐标为:224+=或220-=,故P 点坐标为:()4,0或()0,0.【点睛】本题考查了三角形面积和关于y 轴对称点的性质,解题的关键是掌握这些知识点9.a=-1,b=2.【详解】试题分析:关于原点对称后,点的横纵坐标都变为相反数,根据题意列出关于a 和b 的二元一次方程组,从而求出a 和b 的值.试题解析:根据题意,得(2a+2)+(2b -4)=0, (3-3b)+(3a+6)=0,解得:a=-1,b=2.10.(1)()()()2,1,7,4,4,5A B C '''(2)(m -3,n -2)(3)7【分析】(1)把△ABC 的各顶点分别向上平移2个单位,再向右平移3个单位,得到平移后的各点,顺次连接各顶点即可得到A B C ''';(2)根据(1)平移的方向和距离即可得到点Q 的坐标;(3)A B C '''的面积等于边长为4和5的长方形的面积减去直角边长为1,3的直角三角形的面积,直角边长为2,4的直角三角形的面积,直角边长为5,3的直角三角形的面积.(1)解:如图,A B C '''即为所求,()()()2,1,7,4,4,5A B C ''';(2)△把△ABC 向上平移2个单位,再向右平移3个单位得A B C ''',△△ABC 内的任意一点都向上平移2个单位,再向右平移3个单位得到对应点,△△ABC 内部有一点Q ,平移后得到对应点Q ',Q '坐标是(m ,n ),△点Q 的坐标是(m -3,n -2),故答案为(m -3,n -2);(3)A B C '''的面积=4×5-12×2×4-12×1×3-12×3×5=7. 【点睛】此题考查了平移作图,平移的性质,解决本题的关键是得到相应顶点的平移规律;图形的平移要归结为各顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.11.(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.12.(1)640(1014)20920(1430)y x y y x x =<≤⎧=⎨=-+<≤⎩(2)当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元【分析】(1)由图像可知,当10<x ≤14时,y =640;当14<x ≤30时,设y =kx +b ,将(14,640),(30,320)代入得到解方程组求解即可;(2)分10<x ≤14和14<x ≤30两种情况,分别求出函数最值,然后比较即可解答.(1)解:(1)由图像知,当10<x ≤14时,y =640;当14<x ≤30时,设y =kx +b ,将(14,640),(30,320)代入得1464030320k b k b +=⎧⎨+=⎩,解得20920k b =-⎧⎨=⎩, △y 与x 之间的函数关系式为y =-20x +920;综上所述,640(1014)20920(1430)y xyy x x=<≤⎧=⎨=-+<≤⎩;(2)解:设每天的销售利润为w元,当10<x≤14时w=640×(x-10)=640x-6400,△k=640>0,△w随着x的增大而增大,△当x=14时,w=4×640=2560元;当14<x≤30时,w=(x-10)(-20x+920)=-20(x-28)2+6480,△-20<0,14<x≤30,△当x=28时,w有最大值,最大值为6480,△2560<6480,△当销售单价x为28元时,每天的销售利润最大,最大利润是6480元.【点睛】本题主要考查了求一次函数解析式、二次函数的应用等知识点,根据题意得到每天的销售利润的关系式是解答本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.13.B【分析】可先根据题意得到点M的坐标;然后由“两个点关于原点对称时,它们的坐标符号相反”得到M'的坐标.【详解】解:△M到x轴的距离为5,到y轴的距离为2,△M纵坐标可能为±5,横坐标可能为±2,△点M在第四象限,△M坐标为(2,−5).△点M关于原点对称的M'的坐标是(−2,5).故选:B.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;两个点关于原点对称时,它们的坐标符号相反.14.C【分析】直接利用关于原点对称点的性质:横纵坐标互为相反数,得出答案.【详解】解:△点A(m,2)与点B(3,n)关于对称,△m=-3,n=-2.【点睛】本题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15.A【分析】直接利用平移中点的变化规律求解即可.【详解】解:△点A (1,2),△先向右平移2个单位长度,再向下平移1个单位长度后的坐标为(1+2,2-1),即:(3,1).故选:A .【点睛】本题主要考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.D【分析】根据题意列出不等式0<(4t +1)-5(t ﹣1)<5,求出t 的范围,即可得到答案【详解】解:根据题意列不等式得,0<(4t +1)-5(t ﹣1)<5,解得16t <<,故选:D .【点睛】本题考查了一元一次不等式组的应用,解题关键是准确理解题意,列出不等式组.17.A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.【详解】解:根据图象可得,数轴所表示的不等式组的解集为:12x -<≤,A 选项解集为:12x -<≤,符合题意;B 选项解集为:2x >,不符合题意;C 选项解集为:1x ≤-,不符合题意;D 选项解集为:12x -<<,不符合题意;故选:A .【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.18.A【分析】运用翻折的性质,结合平行四边形的性质,推导DBF FDB ∠=∠,在结合三角形内角和定理,算得【详解】解:△△ABD 沿对角线BD 折叠,得到△EBD ,△ADB FDB ∠=∠,ABD EBD ∠=∠,△平行四边形ABCD ,△AD BC ∥,△ADB DBF ∠=∠,△ADB FDB ∠=∠,△DBF FDB ∠=∠.△CFD FDB DBF ∠=∠+∠,40CFD ∠=︒,DBF FDB ∠=∠,△20DBF FDB ∠=∠=︒.△48ABD EBD ∠=∠=︒,20DBF ∠=︒,△482028FBE DBE DBF ∠=∠-∠=︒-︒=︒.在BEF 中,△40BFE DFC ∠=∠=︒,28FBE ∠=︒,△1801804028112E BFE FBE ∠=︒-∠-∠=︒-︒-︒=︒.故选:A .【点睛】本题考查了图形翻折的性质,平行四边形性质,通过以上性质,证得DBF FDB ∠=∠是解题关键.19.A【分析】由A ,B 的坐标分别为(1,1),(3,1),四边形ABCD 是正方形,可得点C 对应点的坐标,再求出第1次翻折、第2次翻折、第3次翻折、第4次翻折后点C 对应点的坐标,然后根据规律即可得经过第2021次翻折后点C 对应点的坐标.【详解】解:△A ,B 的坐标分别为(1,1),(3,1)△AB =2△四边形ABCD 是正方形△BC =AB =2△C 点坐标为(3,3)△第1次翻折后点C 对应点的坐标为(3,﹣3),第2次翻折后点C 对应点的坐标为(﹣3,﹣3),第3次翻折后点C 对应点的坐标为(﹣3,3),第4次翻折后点C 对应点的坐标为(3,3),即翻折4次为一个周期.△2021÷4=505 (1)△经过第2021次翻折后点C对应点的坐标为(3,﹣3).故选:A.【点睛】本题考查了正方形的性质和平面直角坐标系中坐标点的变换,属于规律性题目,熟悉相关性质并在平面直角坐标系中找到规律是解题的关键.。

中考数学练习《坐标与图形的变换》(含答案解析)

中考数学练习《坐标与图形的变换》(含答案解析)

坐标与图形的变换一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为52.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:;(2)求经过第2008次跳动之后,棋子落点与点P的距离.坐标与图形的变换参考答案与试题解析一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为5【考点】立方根;无理数;二次根式有意义的条件;函数自变量的取值范围;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】对每个选项分别求出正确结论,然后就可以进行验证.【解答】解:A、=2,是一个有理数,故A错误;C、正数有一个正的立方根,故C错误;D、两点若共于x轴对称,则横坐标相等,纵坐标互为相反数,得a=3,b=﹣2,则a+b=1,故D错误;B、根据二次根式和分式有意义的条件得x>1,故B正确;故选B.【点评】判断一个数是否是无理数,应先化简后判断;二次根式有意义的条件是被开方数大于或等于0,分式有意义的条件是分母不等于0;掌握立方根的性质和关于x轴对称的两点的坐标之间的关系.2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可在此题平移规律是(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).故选A.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:从B到B1,点的移动规律是(x﹣2,y),如此规律计算可知B1的坐标为(0,1).故选B.【点评】本题考查图形的平移变换.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据矩形的特点和旋转的性质来解决.【解答】解:矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点评】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′【考点】关于x轴、y轴对称的点的坐标.【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),从而求解.【解答】解:根据轴对称的性质,可知横坐标都乘以﹣1,即是横坐标变成相反数,则实际是作出了这个图形关于y轴的对称图形.故选:B.【点评】考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:原三角形中点A的坐标是(﹣4,1),将△ABC向右平移6个单位后,平移后点的横坐标变为﹣4+6=2,而纵坐标不变,所以点A的坐标变为(2,1).故选B.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【考点】坐标与图形变化﹣平移.【专题】压轴题;网格型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:A点坐标为(﹣3,﹣2),平移后,A'的坐标为(0,0);故①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P'的坐标为(a+3,b+2).故选C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化﹣旋转.【专题】压轴题;数形结合.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.【点评】本题考查了旋转与坐标与图形的变化,根据网格结构找出点B旋转后的位置是解题的关键.二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是10 .【考点】轴对称﹣最短路线问题.【专题】压轴题.【分析】本题首先要明确奶站应建在何处,点A关于x轴的对称点A的坐标是1B与x轴的交点就是奶站应建的位置.从A、B两点到奶(0,﹣3),则线段A1B的长.通过点B向y轴作垂线与C,根据勾股定站距离之和最小时就是线段A1理就可求出.的坐标是(0,﹣3),过点B向x轴作【解答】解:点A关于x轴的对称点A1和x轴平行的直线交于C,垂线与过A1C=6,BC=8,则A1B==10∴A1∴从A、B两点到奶站距离之和的最小值是10.故填10.【点评】本题考查了轴对称的应用;正确确定奶站的位置是解题的关键,确定奶站的位置这一题在课本中有原题,因此加强课本题目的训练至关重要.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是(4,﹣4).【考点】坐标与图形变化﹣旋转.【分析】根据旋转的性质,旋转不改变图形的大小和形状.【解答】解:旋转后已知OB=OA=4,做BC⊥x轴于点C,那么△OBC是等腰直角三角形,∴OC=BC=4,∵在第四象限,∴点B的坐标是(4,﹣4).【点评】解答此题要注意旋转前后线段的长度不变,构造直角三角形求解即可.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是(2,﹣1).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据旋转的性质,旋转不改变图形的大小和形状,准确把握旋转的方向和度数.【解答】解:把Rt△OAB的绕点O按顺时针方向旋转90°,就是把它上面的各个点按顺时针方向旋转90度.点A在y轴上,且OA=2,正好旋转到x轴正半轴.则旋转后A′点的坐标是(2,0);又旋转过程中图形不变,OA=2,AB=1,故点B′坐标为(2,﹣1).【点评】本题将一个图形的旋转放在坐标系中来考查,是一道考查数与形结合的好试题,也为高中后续学习做了良好的铺垫.从考试情况看,还有非常多考生没完全理解旋转的三大要素即中心、方向、角度,故失分的较多.本题综合考查学生旋转和坐标知识.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是().【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据A点坐标可知∠AOB=30°,因此旋转后OA在y轴上.如图所示.作B′C′⊥y轴于C′点,运用三角函数求出B′C′、OC′的长度即可确定B′的坐标.【解答】解:将△OAB绕O点,逆时针旋转60°后,位置如图所示,作B′C′⊥y轴于C′点,∵A的坐标为,∴OB=,AB=1,∠AOB=30°,∴OB′=,∠B′OC′=30°,∴B′C′=,OC′=,∴B′(,).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向逆时针,旋转角度60°,通过画图计算得B′坐标.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为(2,3).【考点】坐标与图形变化﹣旋转.【专题】压轴题;网格型.【分析】正确作出A旋转以后的点,即可确定坐标.【解答】解:由图知A点的坐标为(﹣3,2),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(2,3).【点评】本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是(﹣3,﹣2).【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【专题】网格型.【分析】(1)根据图形,可得出AC的坐标,可得纵横坐标的关系,进而可求出AC的长;(2)根据图形,可得出ABC的坐标,向右平移2个单位可得A'的坐标;(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标.【解答】解:(1)根据图形,可得出A的坐标为(﹣1,2),C的坐标为(0,﹣1),故AC的长等于=;(2)根据图形,可得出A的坐标为(﹣1,2),B的坐标为(3,1),C的坐标为(0,﹣1),将△ABC向右平移2个单位得到△A'B'C',则A点的对应点A'的坐标是(1,2);(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标为(﹣3,﹣2).【点评】此题主要考查图形的平移及平移特征﹣﹣﹣在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图﹣轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:(﹣2,0),(4,4);(2)求经过第2008次跳动之后,棋子落点与点P的距离.【考点】作图﹣轴对称变换.【专题】压轴题;规律型.【分析】(1)点P关于点A的对称点M,即是连接PA延长到M使PA=AM,所以M的坐标是M(﹣2,0),点M关于点B的对称点N处,即是连接MB延长到N 使MB=BN,所以N的坐标是N(4,4);(2)棋子跳动3次后又回点P处,所以经过第2008次跳动后,棋子落在点M 处,根据勾股定理可知PM的值.【解答】解:(1)M(﹣2,0),N(4,4);故答案为:M(﹣2,0),N(4,4);(2)棋子跳动3次后又回点P处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M处,∴PM=.答:经过第2008次跳动后,棋子落点与P点的距离为.【点评】考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.。

湘教版2021年中考数学二轮复习专题16图形与坐标【含答案】

湘教版2021年中考数学二轮复习专题16图形与坐标【含答案】

湘教版备考2021年中考数学二轮复习专题16图形与坐标一、单选题A A→B→C→D→A···A1.如图,平面直角坐标系中,一蚂蚁从点出发,沿着循环爬行,其中点的(2,−2)B(−2,−2)C(−2,6)D(2,6)坐标为,点的坐标为,点的坐标为,点的坐标为,当蚂蚁2020爬了个单位时,蚂蚁所处位置的坐标为()(−2,−2)(2,−2)(−2,6)(0,−2)A. B. C. D.2.如图所示,动点P在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),……,按这样的运动规律,经过2020次运动后,动点P的坐标是( )A. (2020,2020)B. (505,505)C. (1010,1010)D. (2020,2021)3.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A. (1010,0)B. (1010,1)C. (1009,0)D. (1009,1)4.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A3020的坐标为()A. (1007,1)B. (1007,﹣1)C. (504,1)D. (504,﹣1)5.如图,在平面直角坐标系 中,点 .点 第1次向上跳动1个单位至点 ,紧接xOy P(1,0)P P 1(1,1)着第2次向左跳动2个单位至点 ,第3次向上跳动1个单位至点 ,第4次向右跳动3个单P 2(−1,1)P 3位至点 ,第5次又向上跳动1个单位至点 ,第6次向左跳动4个单位至点 ,……,照此规律,P 4P 5P 6点 第2020次跳动至点 的坐标是( )P P 2020A. B. C. D. (−506,1010)(−505,1010)(506,1010)(505,1010)6.第一次:将点A 绕原点O 逆时针旋转90°得到A 1;第二次:作点A 1关于x 轴的对称点A 2;第三次:将点A 2绕点O 逆时针旋转90°得到A 3;第四次:作点A 3关于x 轴的对称点A 4…,按照这样的规律,点A 35的坐标是( )A. (﹣3,2)B. (﹣2,3)C. (﹣2.﹣3)D. (3.﹣2)7.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)8.在平面直角坐标系 中,对于点 ,我们把点 叫做点P 的伴随点.已知xOy P(x,y)P ′(−y +1,x +1)点 的伴随点为 ,点 的伴随点为 ,点 的伴随点为 ,…,这样依次得到点 A 1A 2A 2A 3A 3A 4 .若点 的坐标为 ,则点 的坐标为( )A 1,A 2,A 3,⋯,A n ,⋯A 1(3,1)A 2019A. B. C. D. (0,−2)(0,4)(3,1)(−3,1)9.已知,平面直角坐标系中,A 1(1,1)、A 2(﹣1,1)、A 3(﹣1,﹣1)、A 4(2,﹣1)、A 5(2,2)、A 6(﹣2,2)、A 7(﹣2,﹣2)、A 8(3,﹣2)、A 9(3,3)、……、按此规律A 2020的坐标为( )A. (506,﹣505)B. (505,﹣504)C. (﹣504,﹣504)D. (﹣505,﹣505)10.如图,已致点 的坐标为 ,点 在 轴的正半轴上,且 .过点 作 A 1(0,1)A 2x ∠A 1A 20=30°A 2 ,交 轴于点 ;过点 作 ,交 轴于点 ;过点 作 A 2A 3⊥A 1A 2y A 3A 3A 3A 4⊥A 2A 3x A 4A 4 ,交 轴于点 ;……;按此规律进行下去,则点 的坐标为( )A 4A 5⊥A 3A 4y A 5A 2021A. B. C. D. (0,31011)(−31011,0)(0,31010)(−31010,0)二、填空题11.如图,已知A 1(0,1),A 2( ,),A 3( , ),A 4(0,2),A 5( ,-1),A 6( 32−12−32−123 ,-1),A 7(0,3),A 8( , ),A 9( , )……则点A 2010的坐标是________ −3332−32−332−3212.如图,在平面直角坐标系中,点 的坐标 ,将线段 绕点O 按顺时针方向旋转45°,再P 1(22,22)OP 1将其长度伸长为 的2倍,得到线段 ;又将线段 绕点O 按顺时针方向旋转45°,长度伸长为 OP 1OP 2OP 2 的2倍,得到线段 ;如此下去,得到线段 、 ,……, (n 为正整数),则点 OP 2OP 3OP 4OP 5OP n 的坐标是________. P 202013.规定:在平面直角坐标系xOy 中,任意不重合的两点 M(x 1 , y 1),N(x 2 , y 2)之间的折线距离为 .如图①点M(-2,3)与点 N(1,-1)之间的折线距离为 d(M,N)=|x 1−x 2|+|y 1−y 2|d(M,N)=________;如图②点 P(3,-4),若点 Q 的坐标为(t ,3),且 ,则t 的值为________. d(P,Q)=814.在平面直角坐标系中,已知 , , 三点,其中 , 满足关系式 A(0,a)B(b,0)C(b,6)a b .若在第二象限内有一点 ,使四边形 的面积与三角形 的面积相a =b 2−16+16−b 2b +4+3P(m,1)ABOP ABC 等,则 ________, ________,点 的坐标为________.a =b =P 15.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…, 则第 200 个点的横坐标为________.16.点P(x ,y)经过某种变换后到点 (-y+1,x+2),我们把点 (-y+1,x+2)叫做点P(x ,y)的终结点,P ′P ′已知点 的终结点为 ,点 的终结点为 ,点 的终结点为 ,这样依次得到 、 P 1P 2P 2P 3P 3P 4P 1P 2、 、 … 若点 的坐标为(2,0),则点 的坐标为________P 3P 4P n P 1P 202017.如图,在平面直角坐标系内,∠OA 0A 1=90°,∠A 1OA 0=60°,以OA 1为直角边向外作Rt △OA 1A 2 , 使∠A 2A 1O =90°,∠A 2OA 1=60°,按此方法进行下去,得到 Rt △OA 2A 3 , Rt △OA 3A 4…,若点A 0的坐标是(1,0),则点A 13的横坐标是________.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 2016的坐标为________.19.如图,长方形ABCD 的各边分别平行于x 轴或y 轴,A , B , C , D 的坐标分别为(﹣2,1)(2,1)(2,﹣1)(﹣2,﹣1)物体甲和物体乙分别由E (﹣2,0)和F (2,0)同时出发,沿长方形的边按逆时针方向同向行进,甲的速度每秒4个单位长度,乙的速度每秒1个单位长度,则两个物体第2019次相遇地点的坐标为________.20.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1 , 第二次将△OA 1B 1变换成△OA 2B 2 , 第三次将△OA 2B 2变换成△OA 3B 3 , …,将△OAB 进行n 次变换,得到△OA n B n , 观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是________三、解答题21.如图,已知A (-2,0),B (4,0),C (2,4).D (0,2)(1)求三角形ABC 的面积;(2)设P 为坐标轴上一点,若 ,求P 点的坐标.S ΔAPC =12S ΔABC 22.对于平面直角坐标系xOy 中的点P (a ,b ),若点P′的坐标为(a+kb ,ka+b )(其中k 为常数,且k≠0),则称点P′为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P (﹣2,3)的“3属派生点”P′的坐标为________;(2)若点P 的“5属派生点”P′的坐标为(3,﹣9),求点P 的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.23.如果△ABC关于x轴进行轴对称变换后,得到△A1B1C1,而△A1B1C1关于y轴进行轴对称变换后,得到△A2B2C2,若△ABC三个顶点坐标分别为A(-2,3)、B(-4,2)、C(-1,0),请你分别写出△A1B1C1与△A2B2C2各顶点坐标.四、作图题24.在平面直角坐标系中,顺次连结A(-3,1),B(-3,-1),C(3,-3),D(3,4)各点,你会得到一个什么图形?试求出该图形的面积.五、综合题25.五子连珠棋的棋盘是15行15列的正方形,规定黑子先下,双方交替进行,在任意一个方向上,先连成5个子的一方获胜,如图所示的是两人所下的棋局的一部分,A点的位置记作(8,3),执白子的一方若想再放一子便获胜,应该把子落在什么位置?A、B(−1,0)、(3,0)A、B26.如图,在平面直角坐标系中,点的坐标分别为,现同时先将点分别向上A、B C、D AC、BD、CD平移2个单位长度,再向右平移1个单位长度,得到的对应点,连接 .(1)直接写出点 的坐标;C、D (2)在 轴上是否存在一点 ,使得三角形 的面积是三角形 面积的2倍?若存在,请求出x F DFC DFB 点 的坐标;若不存在,请说明理由.F 27.对于平面直角坐标系 xOy 中的点 A ,给出如下定义:若存在点 B (不与点 A 重合,且直线 AB 不与 坐标轴平行或重合),过点 A 作直线 m ∥x 轴,过点 B 作直线 n ∥y 轴,直线 m ,n 相交于点 C .当线段 AC ,BC 的长度相等时,称点 B 为点 A 的等距点,称三角形 ABC 的面积为点 A 的等距面积. 例如:如 图,点 A (2,1),点 B (5,4),因为 AC= BC=3,所以 B 为点 A 的等距点,此时点 A 的等距面积为 .92(1)点 A 的坐标是(0,1),在点 B 1(2,3),B 2 (-1, -1) , B 3 (-3, -2) 中,点A 的等距点为________.(2)点 A 的坐标是 (-3,1) ,点 A 的等距点 B 在第三象限,①若点 B 的坐标是 (-5, -1) ,求此时点 A 的等距面积;②若点 A 的等距面积不小于 2,请直接写出点 B 的横坐标 t 的取值范围.28.如图 1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接 AC ,交y 轴于 D ,且a =3−125, . (b)2=5(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.△QBC(3)如图3,若Q(m,n)是x轴上方一点,且的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.29.在直角坐标系中,已知A(1,5),B(﹣4,﹣2),C(1,0)三点.(1)点A关于x轴的对称的A′的坐标为________;点B关于y轴的对称点B′的坐标为________;点C关于y轴的对称点C′的坐标为________.(2)求(1)中的△A′B′C′的面积.答案解析部分一、单选题1. A解:∵A 点坐标为(2,﹣2),B 点坐标为(﹣2,﹣2),C 点坐标为(﹣2,6), ∴AB =2﹣(﹣2)=4,BC =6﹣(﹣2)=8,∴从A→B→C→D→A 一圈的长度为2(AB+BC )=24.∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A 左边4个单位长度处,即(-2,﹣2).故A2. C解:由图可知,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),第四次运动到点(2,2),第二次接着运动到点(2,3),第三次接着运动到点(3,3),……,不难发现,偶次运动到的点的横纵坐标都是次数的,12∴经过2020次运动后,动点P 的坐标是,即(1010,1010).(20202,20202)故C .3. A解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2020÷4=505,所以A 2020的坐标为(505×2,0),则A 2020的坐标是(1010,0).故A .4. A解:观察点的坐标变化特征可知:A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),A 5(2,﹣1),A 6(2,0),A 7(2,1),A 8(3,1),A 9(3,0),…发现规律:横坐标每3个为一组循环,纵坐标第6个为一组循环,3020÷3=1006…2,3020÷6=503…2,所以第3020个点的坐标为(1007,1),故A .5. C解:经过观察可得: 和 的纵坐标均为1, 和 的纵坐标均为2, 和 的纵坐标均为P 1P 2P 3P 4P 5P 63,因此可以推知 点的纵坐标为 ;再观察图可知4的倍数的跳动都在y 轴的右P 20202020÷2=1010侧,那么第2020次的跳动得到的横坐标也在y 轴的右侧. 的横坐标为1, 的横坐标为2, 的P 1P 4P 8横坐标为3,依此类推可得到 的横坐标为 (n 是4的倍数).故点 的横坐标是 P n n ÷4+1P 2020 ;所以点 第2020次跳动至点 的坐标是 .2020÷4+1=506P P 2020(506,1010)故C .6. D解:由题意知A 1(﹣2,3)、A 2(﹣2,﹣3)、A 3(3,﹣2)、A 4(3,2)、A 5(﹣2,3)……∴每4个点的坐标为一周期循环,∵35÷4=8……3,∴点A 35的坐标与点A 3的坐标一致,为(3,﹣2),故D.7. B解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n 的正方形有2n+1个点,∴边长为n 的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故B .8. D解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故D.9. A解:∵A 1(1,1)、A 2(﹣1,1)、A 3(﹣1,﹣1)、A 4(2,﹣1)、A 5(2,2)、A 6(﹣2,2)、A 7(﹣2,﹣2)、A 8(3,﹣2)、A 9(3,3)、……、∴得出:每4个点一循环∴ ,刚好循环505次结束2020÷4=505又∵A 4(2,﹣1)、A 8(3,﹣2)、A 12(4,﹣3)即:A 4(1+1,﹣1)、A 8(1+2,﹣2)、A 12(1+3,﹣3)∴A 2020(1+505,-505)∴A 2020(506,-505)故答案选:A10. C解:∵∠A 1A 2O=30°,OA 1=1,∴OA 2= ,3∴点A 2的坐标为( ,0),3同理,A 3(0,-3,),A 4(-3 ,0),A 5(0,9),A 6(9 ,0),A 7(0,-27),…,33∴点A 4n+1的坐标为(0,32n )(n 为正整数).∵2021=505×4+1,∴点A 2021的坐标为(0,31010).故C.二、填空题11. ( ,-335)−3355解:根据所给出的这9个点的坐标,可以发现规律:A 1、A 4、A 7……横坐标为0,纵坐标大1;A 2、A 5、A 8……,横坐标依次扩大为原来的2倍、3倍……;A 3、A 6、A 9……横纵坐标依次扩大为原来的2倍、3倍……。

图形变换专项训练-2023年九年级中考数学复习

图形变换专项训练-2023年九年级中考数学复习

图形变换专项训练题(满分100分)一、单选题(每题2分,共24分)1.下列现象中,属于平移的是()①小朋友在荡秋千;①打气筒打气时,活塞的运动;①钟摆的摆动;①瓶装饮料在传送带上移动.A.①①B.①①C.①①D.①①2.以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有().A.4个B.5个C.6个D.3个3.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A.(-2,6)B.(1,2)C.(2,6)D.(1,3)4.如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是().A.2B.12C.1D.145.如图,将△AOB绕点O按顺时针方向旋转45°后得到△COD,若①AOB=27°,则①BOC的度数是()A.18°B.27°C.45°D.72°6.如图,在ABC中,∠CAB=70°,现将ABC绕点A顺时针旋转一定角度后得到AB′C′,连接BB′,若BB′∠AC′,则∠CAB′的度数为()A.20°B.25°C.30°D.40°(4题图)(5题图)(6题图)7.在平面直角坐标系中,把直线y=2x+4绕着原点O顺时针旋转90°后,所得的直线l一定经过下列各点中的()A .(2,0)B .(4,2)C .(6,−1)D .(8,−1) 8.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为 ( )A .(2.8,3.6)B . 2.8,6()3.--C .(3.8,2.6)D .( 3.8, 2.6)-- 9.如图,将边长为3的正方形绕点B 逆时针旋转30︒,那么图中阴影部分的面积为( ) A .3 B .3 C .33- D .332- 10.如图,①ABO 是由①A′B′O 经过位似变换得到的,若点P′(m ,n)在①A′B′O 上,则点P′经过位似变换后的对应点P 的坐标为 ( )A .(2m ,n)B .(m ,n)C .(m ,2n)D .(2m ,2n)(8题图) (9题图) (10题图)11.如图,将含30°角的直角三角尺ABC 绕点B 顺时针旋转150°后得到∠EBD ,连接CD .若AB=4cm .则∠BCD 的面积为( )A .43B .23C .3D .2 12将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =3和x 轴围成的图形的面积S (图中阴影部分)是( )A .5B .6C .7D .8(11题图) (12题图)二、填空题(每题3分,共30分)13.已知点()(),23,A a B b -、关于x 轴对称,则a b + = ________ .14.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.15.如图,把Rt①ABC (①ABC =90°)沿着射线BC 方向平移得到Rt①DEF ,AB =8,BE =5,则四边形ACFD 的面积是________.16.如图,Rt △AOB 的斜边OA 在y 轴上,且OA=5,OB=4.将Rt △AOB 绕原点O 逆时针旋转一定的角度,使直角边OB 落在x 轴的负半轴上得到相应的Rt △A′OB′,则A′点的坐标是_____.(14题图) (15题图) (16题图) 17.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC =______. 18.已知:如图A'B'//AB ,B'C'//BC ,且OA':A'A 4:3=,则ABC 与________是位似图形,位似比为________.19.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .(17题图) (18题图) (19题图)20如图,矩形ABOC 的顶点O 在坐标原点,顶点B 、C 分别在x 轴、y 轴的正半轴上,顶点A 在反比例函数k y x=(k 为常数,0,0k x >>)的图像上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形'''AB O C ,若点O 的对应点'O 恰好落在此反比例函数的图像上,则OB OC的值是_______. 21.如图,在①ABC 中,①ACB =90°,AC =BC =2,将①ABC 绕AC 的中点D 逆时针旋转90°得到①A 'B ′C ',其中点B 的运动路径为BB ',则图中阴影部分的面积为_____.22.将一副三角板的两个直角顶点叠放在一起拼成如下的图形.若∠EAB=40°,则∠CAD=____;将∠ABC 绕直角顶点A 旋转时,保持AD 在∠BAC 的内部,设∠EAC=x°,∠BAD=y°,则x 与y 的关系是_______.(20题图) (21题图) (22题图)三、解答题(23--25每题6分,26题8分,27--28每题10分)23.如图1,是由2个白色和2个黑色全等正方形组成的“L ”型图案,请你分别在图2,图3,图4上按下列要求画图:()1在图案中,添1个白色或黑色正方形,使它成轴对称图案;()2在图案中,添1个白色或黑色正方形,使它成中心对称图案;()3在图案中,先改变1个正方形的位置,再添1个白色或黑色正方形,使它既成中心对称图案,又成轴对称图案.24.如图所示,每个小正方形的边长为1个单位长度.(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.(2)y 轴上有一点Q ,使AQ +CQ 的值最小,求点Q 的坐标.25.如图(1),已知①ABC的面积为3,且AB=AC,现将①ABC沿CA方向平移CA长度得到①EF A.(1)求①ABC所扫过的图形面积;(2)试判断,AF与BE的位置关系,并说明理由;(3)若①BEC=15°,求AC的长.26.已知矩形纸片ABCD,AB=2,AD=1.将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD,AB交于点F,G(如图(1)),AF=23求DE的长.(2)如果折痕FG分别与CD,AB交于点F,G(如图(2)),①AED的外接圆与直线BC 相切,求折痕FG的长.27.四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转2α(0°<α<45°),得到线段CE ,连接DE ,过点B 作BF ①DE 交DE 的延长线于F ,连接BE .(1)依题意补全图1;(2)直接写出①FBE 的度数;(3)连接AF ,用等式表示线段AF 与DE 的数量关系,并证明.28.如图1,在Rt ABC △中,90,4,2B AB BC ∠=︒==,点,D E 分别是边,BC AC 的中点,连接DE .将CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当0α=︒时,AE BD =______;①当180α=︒时,AE BD =______; (2)拓展探究试判断当0360α︒<<︒时,AE BD的大小有无变化?请仅就图2的情形给出证明; (3)问题解决当CDE 绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长。

数学:24.6图形与坐标同步练习(华东师大版九年级上)

数学:24.6图形与坐标同步练习(华东师大版九年级上)

24.6《图形与坐标》同步练习第1题. 已知平面直角坐标系中有一线段AB ,其中A (1,3)B (4,5),若A 、B纵坐标不变,横坐标扩大为原来的2倍,则线段AB______向拉长为原来的______倍,若点A 、B 纵坐标不变,横坐标变成原来的,则线段AB ______向缩短为原来的______. 答案:横,2,横 ,.第2题. 将绕坐标原点旋转后,各顶点坐标的变化特征是_________________________.答案:横坐标、纵坐标均为原来的相反数.第3题. 在直角坐标系内,将坐标为(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)的点依次边结起来,组成一个图形.⑴每个点的纵坐标不变,横坐标乘以2,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有什么变化? ⑵横坐标不变,纵坐标加3呢? ⑶横坐标,纵坐标均乘以-1呢? ⑷横坐标不变,纵坐标乘以-1呢?答案:⑴所得的图形被横向拉长了一倍;⑵所得的图形向y 轴正方向平移了3个单位;⑶所得的图形与原图形关于原点对称;⑷所得的图形与原图形关于x 轴对称.第4题. 请你把图中的三角小旗降到旗杆底部,并写出下降后小旗各顶点的坐标,你发现各点的横纵坐标发生了哪些变化?答案:下降后顶点坐标为:(2,2),(2,0),(4,0).各点坐标横坐标不变,纵坐标减4. 第5题. 如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下方的点的坐标是(0,0),右下方的点的坐标是(32,0),左上方的点的坐标是(0,28),则右上方的点的1212ABC △180坐标是______. 答案:(32,28)第6题. 如图所示,作字母“M ”关于y 轴的轴对称图形,并写出所得图形相应各顶点的坐标.答案:(图略)第7题. 如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B 1(4,0),B 2(8,0),B 3(16,0).⑴观察每次变换前后的三角形有何变化,找出规律,按次变化规律再将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是 ,B4的坐标是 .⑵若按第⑴题找到的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是 .B n 的坐标是 . 答案:⑴(16,3),(32,0);(2)(2n ,3),(2n +1,0).第8题. 如图所示,铅笔图案的五个顶点的坐标分别是(0,1),(4,1),(5,1.5),(4,2),(0,2).将图案向下平移2个单位长度,画出相应的图案,并写出平移后相应的5个点的坐标.(4,0),(4,3),(2.5,0),(1,3),(1,0)A B C D E '''''21345yxO1 23C (-2.5,0)ACED (-1,3)B (-4,3)答案:图略.五个顶点的坐标分别是:(0,-1)、(4,-1)、(5,-0.5)、(4,0)、(0,0). 第9题. ⑴将图中三角形各点的横坐标都乘以-1,纵坐标不变,画出所得到的图形.你所画的图形与原图形发生了什么变化?⑵若把原图中各点横坐标保持不变,纵坐标都乘以-2,画出所得到的图形,并说明该图与原图相比发生了什么变化?答案:⑴所得图形与原图形关于y 轴对称.(图略)⑵所得图形:先将原图纵向拉长为原来的2倍以后的图形沿x 轴对折.(图略) 第10题. 已知:如图.(1)画出,使与关于直线 对称;(2)画出,使与关于点中心对称;(3) 与是对称图形吗?若是,请在图上画出对称轴或对称中心.答案:解:(1)如图,,就是所求的平行四边形.ABCD 1111A B C D 1111A B C D ABCD MN 2222A B C D 2222A B C D ABCD O 1111A B C D 2222A B C D 1111A B C D1 21345y2 xOxyO 5 4 2 1 3 12 43 56 -1-3 -4 -2 A BCD ONM(2)如图,,就是所求的平行四边形. (3)是轴对称图形,对称轴是直线. `第11题. 平面直角坐标系中一三角形ABC 三个顶点的坐标保持横坐标不变,纵坐标都减去2,则得到的新三角形与原三角形相比向______平移了______个单位. 答案:下,2.第12题. 八年学生毛毛为了做航模,急需一块如图所示形状的塑料板,她打电话给她的爸爸,请爸爸帮她加工这块板子,毛毛为了在电话里讲明白,就运用了老师在课堂刚讲的“图形与坐标”的知识,请你也说说看,这个电话该怎样打?答案:参考答案:可建立直角坐标系,给出每个点的坐标(如图)B (0,0),A (0,2),C (5,0),D (5,3),E (2,2)第13题. 在图中,分别写出五边形ABCDE 的五个顶点的坐标,然后作出:⑴关于原点O 对称的图形,并写出对称图形的顶点的坐标; ⑵以原点O 为中心,把它缩小为原图形的,并写出新图形的顶点坐标. 答案:A (0,5),B (-4,3),C (-3,-5),D (1,-4),E (4,1) ⑴A′(0,-5),B′(4,-3),C′(3,5),D′(-1,4),E′(-4,-1) ⑵A′(0,),B′(-2,),C′(),D′(,-2),D′2222A B C D EF 12523235,22--122AA B CD ON M FExy 1 2 3 4-4 -3 -2 -1 65 4 3 2-1 -2 -3-4 ED CBA O(2,) 第14题. 将△ABC 作下列运动,画出相应图形(如图所示),并写出顶点的新坐标. ⑴沿x 轴负方向平移3个单位; ⑵关于x 轴对称.答案:⑴A′(-2,-1),B′(0,-4),C′(2,1)(图略). ⑵A′(1,1),B′(3,4),C′(5,-1).第15题. 如图,将图中的△ABC 分别作下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.⑴向上平移4个单位; ⑵关于y 轴对称;⑶以A 点为位似中心,放大到两倍.. 答案:⑴平移后得,横坐标不变,纵坐标都加4. ⑵为关于y 轴对称的图形,纵坐标不变,横坐标为对应点横坐标的相反数.⑶放大后得,A 的坐标当然不变,在B 的基础上纵坐标不变,横坐标加AB 的长,的横坐标加AB 的长,纵坐标加BC 的长.12111A B C 222A B C 23AB C 2B 3C yxOBA第16题. 将的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将原图向x 轴的负方向平移了1个单位 答案:B .第17题. 在平面直角坐标系内有一个平行四边形ABCD ,如果将此四边形水平向x 轴正方向移动3个单位,则各点坐标的变化特征是____________________________. 答案:纵坐标不变,横坐标都加上3.第18题. 在平面直角坐标系中,已知A (2,0),B (1,-2),⑴若C (-2,0),D (-1,-2),则线段AB 与CD 关于____轴对称;⑵若E (2,2),F (1,0),则线段EF 由线段AB ____________得到;⑶若M (-1,0),N (-2,-2),则线段MN 由线段AB ____________得到. 答案:y 轴,向上平移2个单位长度,向左平移3个单位长度. 第19题. 一游泳池长90米,甲、乙两人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,如图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间变化而变化的图像,甲的图像经过什么变化,就变成了乙的图像,甲的图像上的各点坐标发生了什么变化? 答案:答案不唯一,以下是参考答案: ①拉伸:横坐标乘以1.5,纵坐标不变; ②反折:横坐标不变,纵坐标乘以-1;③平移:沿y 轴正方向移动90个单位长,横坐标不变,纵坐标加90.ABC △第20题. 某个图形上各点的横坐标不变,而纵坐标变为原来的相反数,此时图形与原图形关于y 轴对称,你认为对吗?举例说明.答案:不对.此时图形关于x 轴对称,因为关于x 轴对称的点的横坐标不变,纵坐标互为相反数.第21题. 画一个正五角星形,并以它的中心为位似中心,画出它的放大到2倍、3倍、4倍的图形,然后以中心为原点,建立直角坐标系,分别写出原图形和放大到4倍的图形的各顶点坐标. 答案:略.第22题. 画一个正方形,并以它的中心为位似中心,画出它的放大到2倍、3倍、4倍的图形,然后以中心为原点,建立直角坐标系,分别写出原图形和放大到4倍的图形的各顶点坐标. 答案:略.第23题. △ABC 为等腰直角三角形,其中斜边BC 长为6, ⑴建立适当的直角坐标系,并写出各个顶点坐标.⑵若将△ABC 各顶点的纵坐标不变,横坐标都加上2后,所得的三个点连成的三角形与原三角形有何关系?画图说明.答案:⑴以BC 所在的直线为x 轴,以BC 垂直平分线为y 轴建立坐标系.因为是等腰,斜边BC =6,∴.(其它方案也可以)⑵所得三角形与原三角形相比,向右平移了2个单位.第24题. 如图所示,将下列图形按要求画出相应的图形,并标出变化后图形各顶点的坐标.答案:⑴ ⑵(图略)ABC Rt (0,3),(3,0),(3,0)A B C -(0,0),(1,2),(3,2),(2,0)O C B A '''--(1,2),(1,0),(1,0)(1,2)A B C D ''''--x作关于x 轴的轴对称图形x沿y 轴向上平移一个单位。

第9讲 平面直角坐标系 2023年中考数学一轮复习专题训练(浙江专用)(含解析)

第9讲 平面直角坐标系 2023年中考数学一轮复习专题训练(浙江专用)(含解析)

第9讲平面直角坐标系 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,-2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校2.(2022·桐乡模拟)如图,在平面直角坐标系xOy中,线段AB两端点的坐标分别为A(3,0),B(2,2),以点P(1,0)为位似中心,将线段AB放大得线段CD,若点C坐标为(7,0),则点D的坐标为()A.(3,6)B.(4,6)C.(5,6)D.(6,6) 3.(2022·萧山模拟)如图,直线m⊥n,在某平面直角坐标系中,x轴/m⁄,y 轴/n⁄,点P的坐标为(−1,2),点Q的坐标为(−3,−1),则坐标原点为()A.点A B.点B C.点C D.点D 4.(2022·仙居模拟)如图,已知点A,B的坐标分别为(1,1),(-2,-1),四边形ACDB是平行四边形,点C的坐标为(4,1),则点D的坐标为()A.(1,−1)B.(2,1)C.(2,−1)D.(−2,3)5.(2022·临海模拟)如图,已知点A,B的坐标分别为(1,1),(−2,−1),四边形ACDB是平行四边形,点C的坐标为(4,1),则点D的坐标为()A.(1,−1)B.(2,1)C.(2,−1)D.(−2,3)6.(2022·临安模拟)在平面直角坐标系中,点A(m,2)是由点B(3,n)向上平移2个单位得到,则()A.m=3,n=0B.m=3,n=4C.m=1,n=2D.m= 5,n=27.(2022·温岭模拟)如图,网格格点上三点A,B,C在某平面直角坐标系中的坐标分别为(a,b)、(c,d).(a+c,b+d),则下列判断错误的是()A.a<0B.b=2d C.a+c=b+dD.a+b+d=c8.(2022·杭州模拟)在平面内,下列数据不能确定物体位置的是()A.北偏东30°B.钱塘明月4号楼301室C.金惠路97号D.东经118°,北纬40°9.(2021·南湖模拟)如图,在直角坐标系中,△ABC的顶点B的坐标为(−1,1),现以坐标原点O为位似中心,作与△ABC的位似比为23的位似图形△A′B′C′,则B′的坐标为()A.(−23,23)B.(23,−23)C.(−23,23)或(23,−23)D.(−23,23)或(−23,−23)10.(2021·西湖模拟)如图,已知平面直角坐标系中,点A,B坐标分别为A(4,0),B(﹣6,0).点C是y轴正半轴上的一点,且满足∠ACB=45°,圆圆得到了以下4个结论:①△ABC的外接圆的圆心在OC上;②∠ABC=60°;③△ABC的外接圆的半径等于5 √2;④OC=12.其中正确的是()A.①②B.②③C.③④D.①④11.(2021·海曙模拟)在平面直角坐标系中,点P(m,2m−2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2021·临海模拟)平面直角坐标系中,把点A(-3,2)向右平移2个单位,所得点的坐标是()A.(-3,0)B.(-3,4)C.(-5,2)D.(-1,2)13.(2021·丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3,5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位14.(2021·普陀模拟)如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)二、填空题15.(2021·杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC∠DAE(填“>”、“=”、“<”中的一个)16.(2021·嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.17.(2021·杭州模拟)在平面直角坐标系中,已知点A的坐标是(﹣3,3),点B在x 轴上,若△OAB是直角三角形(O为原点),则线段AB上任意一点可表示为.18.(2021·西湖模拟)矩形ABCD中,A(﹣3,2),B(0,2),C(0,3),则点D坐标为.19.(2022·丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣√3,3),则A点的坐标是20.(2022·上城模拟)已知点A和点B为平面直角坐标系内两点,且点A的坐标为(1,1),将点A向右平移3个单位至点B,则线段AB上任意一点的坐标可表示为.21.(2022·滨江)在平面直角坐标系中,将点A(−3,4)向左平移3个单位后所得的点的坐标是.22.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=35,则点F的坐标是.23.(2020·新昌模拟)在平面直角坐标系中,如果一个图形向右平移1个单位,再向上平移3个单位,称为一个变换,已知点A(1,-2),经过一个变换后对应点为A1,经过2个变换后对应点为A2,…经过n个变换后对应点为A n,则用含n的代数式表示点A n的坐标为。

专题23.1 图形的旋转-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)

专题23.1 图形的旋转-2020-2021学年九年级数学上册课时同步练(人教版)(解析版)

第23章旋转图形的旋转一、基础巩固1.下列事件中,属于旋转运动的是()A.小明向北走了4米B.时针转动C.电梯从1楼到12楼D.一物体从高空坠下【解答】解:A.小明向北走了4米是平移,不合题意;B.时针转动是旋转运动,符合题意;C.电梯从1楼到12楼是平移,不合题意;D.一物体从高空坠下是平移,不合题意;故选:B.【知识点】生活中的旋转现象2.在直角坐标系中,将点A(0,2)绕原点O逆时针方向旋转60°后的对应点B的坐标是()A.()B.()C.()D.()【解答】解:将点A(0,2)绕原点O逆时针方向旋转60°后的对应点B的坐标是(﹣,1),故选:B.【知识点】坐标与图形变化-旋转3.如图,将△ABC绕点C(0,)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)【解答】解:设A′(m,n),∵CA=CA′,C(0,),A(a,b),∴∴m=﹣a,n=2﹣b,∴A′(﹣a,2﹣b),故选:D.【知识点】坐标与图形变化-旋转4.如图,点D是等边△ABC内一点,将△DBC绕点B旋转到△EBA的位置,则∠EBD的度数是()A.45°B.60°C.90°D.120°【解答】解:∵将△DBC绕点B旋转到△EBA的位置,∴△DBC≌△EBA,∴∠ABE=∠CBD,∵△ABC是等边三角形,∴∠ABC=60°,∴∠EBD=∠ABE+∠ABD=∠CBD+∠ABD=∠ABC=60°.故选:B.【知识点】旋转的性质、等边三角形的性质5.如图,△ABC绕点B顺时针旋转到△EBD位置,若∠A=30°,∠D=15°,A、B、D在同一直线上,则旋转的角度是()A.50°B.45°C.40°D.30°【解答】解:∵△ABC绕点B顺时针旋转到△EBD位置,∴∠C=∠D=15°,∠CBD等于旋转角,∵∠CBD=∠A+∠C=30°+15°=45°,∴旋转角的度数为45°.故选:B.【知识点】旋转的性质6.如图,在平面直角坐标系中,P为x轴上一动点,把线段AB绕点P逆时针旋转90°得线段A'B',已知A(1,y)(0≤y≤1),当P点从(﹣2,0)运动到原点时,则A'B'扫过的面积为()A.1B.C.D.2【解答】解:分析图象可知,A'B'的运动轨迹为平行四边形,所以A'B'扫过的过面积为1×2=2故选:D.【知识点】坐标与图形变化-旋转、扇形面积的计算7.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是()A.B.1C.D.【解答】解:由旋转的特性可知,BM=BN,又∵∠MBN=60°,∴△BMN为等边三角形.∴MN=BM,∵点M是高CH所在直线上的一个动点,∴当BM⊥CH时,MN最短(到直线的所有线段中,垂线段最短).又∵△ABC为等边三角形,且AB=BC=CA=2,∴当点M和点H重合时,MN最短,且有MN=BM=BH=AB=1.故选:B.【知识点】等边三角形的判定与性质、垂线段最短、旋转的性质8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°【解答】解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.【知识点】旋转的性质9.已知:如图,在等边△ABC中取点P,使得P A,PB,PC的长分别为3,4,5,将线段AP以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④【解答】解:连PD,如图,∵线段AP以点A为旋转中心顺时针旋转60°得到线段AD,∴AD=AP,∠DAP=60°,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴∠DAB+∠BAP=∠P AC+∠BAP,∴∠DAP=∠P AC,∴△ABD可以由△APC绕点A顺时针旋转60°得到,所以①正确;∵DA=P A,∠DAP=60°,∴△ADP为等边三角形,∴PD=P A=3,所以②正确;在△PBD中,PB=4,PD=3,由①得到BD=PC=5,∵32+42=52,即PD2+PB2=BD2,∴△PBD为直角三角形,且∠BPD=90°,由②得∠APD=60°,∴∠APB=∠APD+∠BPD=60°+90°=150°,所以③正确;∵△ADB≌△APC,∴S△ADB=S△APC,∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=×32+×3×4=6+,所以④不正确.故选:C.【知识点】旋转的性质、等边三角形的性质10.如图,将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,直线BC与直线DE所夹的锐角是.【解答】解:∵将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,∴直线BC与直线DE所夹的锐角=旋转角=55°,故答案为:55°.【知识点】旋转的性质11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是﹣.【解答】解:如图,把△OAB绕坐标原点O逆时针旋转90°得到△OA′B′,则A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,所以点A′的坐标为(4,﹣3).故答案为(4,﹣3).【知识点】坐标与图形变化-旋转12.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是.【解答】解:∵∠BAC=90°,∠B=60°,∴∠ACB=90°﹣60°=30°,∵△AB′C由△ABC绕点A顺时针旋转90°得到,∴AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,∴△ACC′为等腰直角三角形,∴∠AC′C=45°,∴∠CC′B′=∠AC′C﹣∠AC′B′=45°﹣30°=15°.故答案为15°.【知识点】旋转的性质13.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=.【解答】解:∵四边形ABCD是正方形,∴AB=AD=3,∠ABC=∠D=∠BAD=90°,∴AP==,∵△ADP旋转后能够与△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠P AP′=∠BAD=90°,∴△P AP′是等腰直角三角形,∴PP′=AP=2;故答案为:2.【知识点】旋转的性质14.如图,把一副三角板如图摆放,点E在边AC上,将图中的△ABC绕点A按每秒5°速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边BC恰好与边DE平行.【解答】解:如图1所示:当B′C′∥DE时,由题意可得:∠B′=∠DF A=60°,∠D=45°,则∠F AD=75°,故∠CAF=15°,则∠BAF=105°,故边BC恰好与边DE平行时,旋转的时间为:=21(秒),如图2,当B″C″∥DE时,由(1)同理可得:∠BAB″=75°,则BA绕点A顺时针旋转了360°﹣75°=285°,则在旋转的过程中:第=57(秒)时,边BC恰好与边DE平行.综上所述:在第21或57秒时,边BC恰好与边DE平行.故答案为:21或57.【知识点】平行线的判定、旋转的性质15.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′.(1)求证:ED=EB′;(2)求图中阴影部分的面积.【解答】解:(1)连接AE.在直角△ADE和直角△AB'E中,,∴△ADE≌△AB'E,∴DE=EB';(2)∵△ADE≌△AB'E,∴∠DAE=∠DAD',又∵∠BAB'=30°,∠BAD=90°,∴∠ADE=30°,在直角△ADE中,ED=AD•tan30°=×=1,则S△ADE=AD•ED=××1=,∴S△AB'E=S△ADE=,又∵S正方形ABCD=()2=3,∴S阴影=3﹣2×=3﹣.【知识点】正方形的性质、旋转的性质16.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.(1)旋转中心是点,旋转了度;(2)如果AB=7,AC=4,求中线AD长的取值范围.【解答】解:(1)∵将△ACD旋转后能与△EBD重合,∴旋转中心是点D,旋转了180度;故答案为:D,180;(2)∵将△ACD旋转后能与△EBD重合,∴BE=AC=4,DE=AD,在△ABE中,由三角形的三边关系得,AB﹣BE<AE<AB+BE,∵AB=7,∴3<AE<11,即3<2AD<11,∴1.5<AD<5.5,即中线AD长的取值范围是1.5<AD<5.5.【知识点】三角形三边关系、旋转的性质17.如图,△ABC是等边三角形,点D是△ABC外一点,试证明:DB+DC≥AD.【解答】证明:将△BCD绕点C顺时针旋转60°得到△CAM,连接AM,如图所示:则AM=DB,CM=DC,∠DCM=60°,∴△DCM是等边三角形,∴DM=CD=CM,∴AM+DM≥AD(当M在AD上时等号成立),∴DB+DC≥AD.【知识点】旋转的性质、等边三角形的判定与性质、三角形三边关系18.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.【解答】解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.【知识点】等边三角形的性质、旋转的性质二、拓展提升19.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.【解答】解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠F AD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.【知识点】翻折变换(折叠问题)、旋转的性质20.如图,E是正方形ABCD上一点,△ABF由△ADE旋转所得(1)旋转中心是,旋转角等于°(2)点G在BC上,若∠EAG=45°,AD=8,DE=6,求CG的长.【解答】解:(1)旋转的中心是点A,旋转的角度是90°,故答案为:A,90;(2)∵AD=8,DE=6,∴AE=10,∵∠GAE=45°,∠EAF=90°,∴AG是∠EAF的平分线,∴AG是线段EF的垂直平分线,∴GE=GF,又∵AF=AE,∴EF=AE=10,∴CF===14,∵DE=BF,∴DE+GB=BF+BG=GF.∵CG2+CE2=EG2,即CG2+22=(14﹣CG)2,∴CG=.【知识点】旋转的性质、正方形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学第一轮复习专题训练
(十六)
(图形与坐标)
一、填空题:(每题3分,共36分)
1、点A (3,-2)关于 x 轴对称的点是_____。

2、P (2,3)关于原点对称的点是_____。

3、P (-2,3)到 轴的距离是_____。

4、小红坐在第 5 排 24 号用(5,24)表示,则(6,27)表示小红坐在第__排__号。

5、以坐标平面内点A (2,4),B (1,0),C (-2,0)为顶点的三角形的面积是__。

6、如图1,△AOB 的顶点A 的坐标为_____。

7、如图1,△AOB 沿x 轴向右平移1个单位后,得到△A'O'B',则点A'的坐标为___。

8、如图2,矩形ABOC 的长OB =3,宽AB =2,则点A 的坐标为____。

9、如图3,正方形的边为2,则顶点C的坐标为_____。

10、如图4,△AOB 和它缩小后得到的△COD 。

则△AOB 和△COD 的相似比为___。

11、小东要在电话中告诉同学如图5的图形,他应当怎样描述。

_________________________。

12、如图6,一个机器人从O 点出以,向正东方走3米到达A 点,再向正北方走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走12米到达A 4点,再向正东走15米到达A 5点,按如此规律走下去,当机器人走到A 6点时,离O点的距离是_____米。

二、选择题:(每题 4 分,共 24 分)
1、若点A (m ,n )在第三象限,则点B (-m ,n),在( )
A 、第一象限
B 、第二象限
C 、第三名象限
D 、第四象限
2、若P (m ,2)与点Q (3,n )关于 轴的对称,则m 、n 的值是( ) A 、-3,2 B 、3,-2 C 、-3,-2 D 、3,2 3、A 在B 的北偏东30°方向,则B 在A 的( )
A 、北偏东30°
B 、北偏东60°
C 、南偏西30°
D 、南偏西60° 4、下列说法正确的是( )
A 、两个等腰三角形必是位似图形
B 、位似图形必是全等图形
C 、两个位似图形对应点连线可能无交点
D 、两个位似形对应点连线只有一个交点
5、将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是( )
A 、关于 x 轴对称
B 、关于 轴对称
C 、关于原点对称
D 、原图形向 轴负方向平移1个单位
6、如图,每个小正方形的边长为1个单位,对于A 、B 的位置,下列说法错误的是( )
A 、
B 向左平移 2 个单位再向下移 2 个单位与 A 重合
y y y
y …………………………密……………………封……………………装……………………订…………………
学校:______ 班级:_____ 姓名:______ 座号:____
1 2
3
4 A A' O 1 2 3 4
y
x B B' (1) A C B O x y (2) A C O B y x (3) 北
东 南 西 A 1 A 5 A 3 A 2
A 4 (6) A
B D y C
1 2 3
x (4) 1 2 3
B、A 向左平移2 个单位再向下移2 个单位与B 重合
C、B 在A 的东北方向且相距22个单位
D、若点B 的坐标为(0,0),则点A 的坐标为(-2,-2)
三、解答题:(每题9 分,共54 分)
1、在如图所示的国际象棋棋盘中,双方四只子的位置分别是A(b,3),B(d,5),C(f,7),D(h,2),请在图(1)中描出它们的位置。

图(1)图(2)
2、小明的家在学校的北偏东45°方向,距离学校3km 的地方,请在图(2)中标出小明家P 的位置。

3、将图中的△ABC,沿y轴正方向平移3 个单位,画出相应的图形,指出三个顶点的坐标所发生的变化。

4、下列是小明所在学校的平面示意图小明可以如何描述他所住的宿舍位置,以便来访的小学同学能顺利地找到他的宿舍。

5、小海龟位于图中点A处,按下述中令移动:向前前进3
格;向右移90°,前进5
格;向左移90°,前进3格;向左移90°,前进6格,向右移90°,后退6格;最后向右移90°,前进1格,用粗线将小海龟经过的路线描绘出来,看一看是什么图形。

6、假期中,小王与同学到某海岛上旅游,按照旅游图(如图),他们在A点登陆后应当如何走才能到达景点B?
四、(12分)某城市A 地和B 地之间经常有车辆来
往,C 地和D 地也经常有车辆来往,建立如图所示 的直角坐标条,四地的坐标为A (-3,2), B (-1,-4),C (-5,-3),D (1,1) 拟建一座加油站,那么加油站建在哪里, 对大家都方便?给出具体位置。

五、(12分)如图是某镇的部分单位的示意图,若用(2,5)表示图上镇政府的位置,试在图上建立直角坐标系,并用坐标表示出其他各单位的位置。

六、(12分)在直角坐标系中,第一次将△OAB 变换成OA 1B 1,第二次将△OA 1B 1变
换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A(1,3) ,
A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),
B 1(4,0),B 2(8,0),B 3(16,0)。

(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA 3B 3变换成
△OA 4B 4,则A 4的坐标为______,B 4的坐标为______。

(2)按以上规律将△OAB 进行n 次变换得到△AnBn ,则可知An 的坐标为_____,Bn 的坐标为______。

(3)可发现变换的过程中 A 、A 1、A 2…An 纵坐标均为______。

答案:
(十六)
一、1、(3, 2) 2、(-2, -3) 3、2 4、6 27 5、6 6、(1, 3) 7、(2, 3) 8、(-3, 2) 9、(1, 1) 10、3∶2 11、建立坐标,告诉各点的坐标 12、15 A A 1
A
2 A
3 B
B 1 B 2 B 3
y
x
二、1、D2、A3、C4、D5、A6、B
三、1-2、略3、横坐标不变纵坐标加34、略5、一面旗子6、向东前进800米,再向北前进
,再向西走300米,再向北前进600米,最后向东前进100米,就可以到达B点
四、找出AB与CD的交叉点,P(-2,-15)
五、小学(3, 6)中学(5, 6)市场(4, 2)公司(5, 1)化工厂(-1, 1)供电所(-1, 3)
六、(1)(16, 3)(32, 0)(2)(2n, 3)(2n+1, 0)(3)3。

相关文档
最新文档