2017考研数学一真题及答案
2017考研数一真题答案及详细解析
O 在 式中令y '=o得x = — l,x = l.
当x 分别取 — 1和1时 ,由x3 +y 3 -3x+3y — 2 = 0得 y ( —1) = O,y (1) =1.
将x = — l,y ( —l) = O 及 y '(-1) = 0代入@式得 y" ( —1) = 2.
因为y'c -1) =o,y"c -1)>o,所以y ( — 1) = 0是 y (x)的极小值.
2017年(数 一)真题答案解析
一、选择题
Cl) A
l —cos石 解由f(x) = { ax'
b'
x>O
'在
x
=
O
处连续
,
得limf(x) x一o+
=
b.
x�O
l — cos石
x
又limf(x)= lim-
= lim
=上 =b.
x-o +
_,. •ll I
ax
ce�千o + 2ax 2a
所以ab = —2 .故应选 A.
xn
=l
X +x·
所以,S(x )
=(1
X +x)
1
1 =o三) 2
,x
E
C — 1,1).
故应填 Cl+x)
2
·
03) 2
解 (Aa 1 ,Aa 2 ,Aa 3 ) = ACa 1 ,a z ,a 3 ),因为a 1 ,a z ,a 3 线性无关,故矩阵(a 1 心心)可逆, 所以,r(Aa 1 ,Aa 2 ,Aa 3 ) = r(A),易知,r(A) = 2. 故应填2. (14) 2
2017年全国研究生入学考试考研数学(一)真题及答案解析
一点的密度为 9 x2 y2 z2 ,记圆锥面与柱面的交线为 C 。
(I)求 C 在 xOy 面上的投影曲线的方程;
3
(9)已知函数
f
(x)
1 1 x2
,则
f
(3) (0)
_______。
【答案】 0
【解析】
因为
f
(
x)
1
1 x2
1 x2
x4
x6
n
( x2 )
n0
n
(1) x2n
n0
n
f (x) (1) 2n(2n 1)(2n 2)x 2n3
n0
将 x 0 带入 f (0) 0
(10)微分方程 y 2 y 3y 0 的通解为 y _______。
程或演算步骤.
(15)(本题满分 10 分)设函数
f (u, v) 具有 2 阶连续偏导数,y
f (ex , cos x) ,求 dy dx
d2y
x0
,
dx2
x0 。
【解析】由复合函数求导法则,可得:
dy dx
f1ex
f2(sin x)
dy 故 dx
x0
f1(1,1)
进一步地:
5
d2y dx2
ex
[V2
(t
)
V1
(t
)]dt
,由定积分的几何意义可知,
25
0 [V2
(t)
V1 (t )]dt
20
10
10
,可知
t0
25
,故选(C)。
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则
(A) E T 不可逆
(B) E T 不可逆
2017年考研数学一真题及答案解析
2 x + c2 sin 2 x)
ò
xdx - aydy 在区域 D = ( x, y) | x2 + y 2 < 1 内与路径无关,则 L x2 + y 2 - 1
{
}
a = __________
【答案】 a = 1 【解析】
¶P -2 xy ¶Q 2axy ¶P ¶Q = 2 , = 2 , 由积分与路径无关知 = Þ a = -1 2 2 2 2 ¶y ( x + y - 1) ¶x ( x + y - 1) ¶y ¶x
(5)设 a 是 n 维单位列向量, E 为 n 阶单位矩阵,则(
)
( A) E - aa T 不可逆 (C ) E + 2aa T 不可逆
【答案】A
( B ) E + aa T 不可逆 ( D ) E - 2aa T 不可逆
【解析】选项 A,由 ( E - aa T )a 不可逆。 选项 B,由 r (aa T )a 其它选项类似理解。
x =0
【答案】 【解析】
dy dx
= f1' (1,1),
x =0
d2y dx 2
'' = f11 (1,1), x =0
y = f (e x , cos x) Þ y (0) = f (1,1) Þ Þ dy dx
2 x =0
x =0
= ( f1'e x + f 2' ( - sin x ) )
结论:
dy dx
= f1' (1,1)
x =0 '' = f11 (1,1) + f1' (1,1) - f 2' (1,1) x =0
2017年考研数学一真题及答案(全)
2017年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆.(C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()ni i Xμ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2017考研数一真题及答案解析
设函数
f
(u, v) 具有 2 阶连续偏导数,
y
f (ex , cos x) ,求 dy dx
d2y x0 , dx2
x0
【答案】 dy dx
x0
f1'
(1,1),
d 2y dx 2
x0
f ''
11
(1,1),
【解析】
x0
y f (ex , cos x) y(0) f (1,1)
dy dx x0
() 方程 f (x) 0 在区间 (0,1) 内至少存在一个实根;
() 方程 f (x) f '(x) ( f '(x))2 0 在区间 (0,1) 内至少存在两个不同实根。
【答案】 【解析】
(I) f (x) 二阶导数, f (1) 0, lim f (x) 0 x x0
解:1)由于 lim f (x) 0 ,根据极限的保号性得 x x0
【答案】C
【解析】
f
(x)
f
'(x)
0,
f f
(x) 0 (1)
'(x) 0
或
f f
(x) 0 '(x) 0
(2)
,只有
C
选项满足
(1)
且满足
(2)
,所以选
C。
(3)函数 f (x, y, z) x2 y z2 在点 (1, 2, 0) 处沿向量 u 1, 2, 2 的方向导数为( )
(A)12 (B)6 (C)4 (D)2
【答案】D
【解析】 gradf {2xy, x 2, 2z}, gradf
(1,2,0)
{4,1, 0}
2017考研数学一答案及解析
2017考研数学一答案及解析(22)(本题满分11分)设随机变量X和Y相互独立,且X的概率分布为1(0)(2)2P X P X====,Y的概率密度为2,01 ()0,y yf y<<⎧=⎨⎩其他(Ⅰ)求{}P Y EY ≤;(Ⅱ)求Z X Y =+的概率密度。
【答案】 (Ⅰ)49(Ⅱ)()11()(1)22Z Y Y F z F z F z =+- 【解析】(Ⅰ)由数字特征的计算公式可知:1202()23EY yf y dy y dy +∞-∞===⎰⎰,则{}2233024()239P Y EY P Y f y dy ydy -∞⎧⎫≤=≤===⎨⎬⎩⎭⎰⎰ (Ⅱ)先求Z 的分布函数,由分布函数的定义可知:(){}{}Z F z P Z z P X Y z =≤=+≤。
由于X 为离散型随机变量,则由全概率公式可知(){}{}{}{}{}{}{}0|01|111Y z 12211()(1)22Z Y Y F z P X Y z P X P X Y z X P X P X Y z X P P Y z F z F z =+≤==+≤=+=+≤==≤+≤-=+- (其中()Y F z 为Y 的分布函数:(){}Y F z P Y z =≤)(23)(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X L 相互独立,且均服从正态分布2(,)N μσ,该工程师记录的是n 次测量的绝对误差||,(1,2,,)i i Z X i n μ=-=L ,利用12,,,n Z Z Z L 估计σ (Ⅰ)求1Z 的概率密度;(Ⅱ)利用一阶矩求σ的矩估计量;(Ⅲ)求σ的最大似然估计量。
【答案】(Ⅰ)()222,0()'0,0z z f z F z z σ-⎧>==≤⎩(Ⅱ)^1n i i Z σ===(Ⅲ)^σ=【解析】(Ⅰ)因为2~(,)i X N μσ,所以2~(0,)i i Y X N μσ=-,对应的概率密度为()22y Y f y σ-=,设i Z 的分布函数为()F z ,对应的概率密度为()f z ; 当0z <时,()0F z =;当0z ≥时,(){}{}{}22y z i i i F z P Z z P Y z P z Y z dy σ--=≤=≤=-≤≤=⎰;则iZ 的概率密度为()22,0()'0,0z z f z F z z σ-⎧>==≤⎩;(Ⅱ)因为2220z i EZ dz σ-+∞==⎰i σ=,从而σ的矩估计量为^1n i i Z σ===;(Ⅲ)由题可知对应的似然函数为()22121,,,i Z nn i L z z z σσ-==……,,取对数得:221ln ln 2n i i Z L σσ=⎛⎫=- ⎪ ⎪⎝⎭∑,所以231ln ()1n i i Z d L d σσσσ=⎛⎫=-+ ⎪⎝⎭∑,令ln ()0d L d σσ=,得σ=σ的最大似然估计量为^σ=。
考研数学一真题与解析汇总
2017 年考研数学一真题一、选择题1— 8 小题.每小题 4 分,共 32 分.1.若函数 f (x)1 cos x, x0 在 x 0 处连续,则axb, x 0( A ) ab1 ( B ) ab1( C ) ab0 ( D ) ab 222lim1cos x1 x 1 【详解 】 limf ( x)lim 2 , lim f ( x) b f (0) ,要使函数在 x 0 处连续,x 0x 0axx 0 ax2a x 0必须满足1 bab1 .所以应该选( A )2a22.设函数 f ( x) 是可导函数,且满足f ( x) f ( x)0 ,则( A ) f (1)f ( 1) ( B ) f (1) f ( 1) ( C ) f (1)f ( 1) ( D ) f (1)f ( 1)【详解 】设 g( x)( f ( x)) 2 ,则 g (x)2 f ( x) f ( x)0,也就是2是单调增加函数.也就得到f ( x)2f ( 1) 2f (1) f ( 1) ,所以应该选(C )f (1)3.函数 f ( x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n (1,2,2) 的方向导数为(A ) 12 (B ) 6(C ) 4(D ) 2【详解】f2xy,fx 2 , f2z , 所 以 函 数 在 点 (1,2,0) 处 的 梯 度 为 gradf4,1,0, 所 以xyzf ( x, y, z) x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方向导数为f gradf n4,1,01(1,2,2) 2 应该选( D )n34.甲、乙两人赛跑, 计时开始时, 甲在乙前方 10(单位:米)处,如图中,实线表示甲的速度曲线 v v 1 (t ) (单位: 米 /秒),虚线表示乙的速度曲线 v v 2 (t) (单位: 米 /秒),三块阴影部分的面积分别为10,20,3 ,计时开始后乙追上甲的时刻为 t 0 ,则()( A ) t 0 10( B ) 15 t 0 20( C ) t 025(D ) t 0 25【详解 】由定积分的物理意义:当曲线表示变速直线S(t) T 2 S 1, S 2 , S 3 分别运动的速度函数时, v(t )dt 表示时刻 T 1 ,T 2内所走的路程.本题中的阴影面积T 1表示在时间段 0,10 , 10,25 , 25,30 内甲、乙两人所走路程之差, 显然应该在 t25 时乙追上甲, 应该选( C ).5.设 为 n 单位列向量,E 为 n 阶单位矩阵,则(A ) ET不可逆(B ) E T不可逆(C ) E2T不可逆(D ) E2T不可逆【详解 】矩阵T的特征值为1和 n1个0,从而 E T, ET, E 2T,E 2T的特征值分别为 0,1,1,1; 2,1,1, ,1 ;1,1,1,,1 ; 3,1,1, ,1 .显然只有 ET存在零特征值,所以不可逆,应该选( A ).2 0 0 2 1 01 0 0 6.已知矩阵 A0 2 1 , B 0 2 0 , C 0 2 0 ,则0 010 010 0 2(A ) A,C 相似, B,C 相似 (B ) A,C 相似, B,C 不相似( C ) A,C 不相似, B, C 相似( D ) A, C 不相似, B,C 不相似【详解 】矩阵 A, B 的特征值都是122,31.是否可对解化,只需要关心2 的情况.0 0 0对于矩阵 A ,2E A0 0 1 ,秩等于 1 ,也就是矩阵 A 属于特征值2 存在两个线性无关的0 01特征向量,也就是可以对角化,也就是A~C .0 1 0对于矩阵 B ,2E B0 0 0 ,秩等于 2 ,也就是矩阵A 属于特征值2 只有一个线性无关的1特征向量,也就是不可以对角化,当然7.设 A, B 是两个随机事件,若B,C 不相似故选择( P(A) 1, 0 P( B)B ).1,则 P(A / B)P(A / B) 的充分必要条件是(A ) P(B / A)P(B / A) (B ) P(B / A) P(B / A)(C ) P(B / A)P(B / A)(D ) P(B / A)P(B / A)【详解】由乘法公式:P( AB ) P( B)P( A / B), P( AB) P(B)( P( A / B) 可得下面结论:类似,由 P( AB) P( A)P( B / A), P( AB)P( A) P(B / A) 可得所以可知选择(A).8.设X1, X2,, X n (n 2) 为来自正态总体N (1n,则下列结论中,1) 的简单随机样本,若 X X in i 1不正确的是()n)2服从 2 分布22 分布( A )( X i( B)2 X n X1服从i 1n2222服从C( X i X )分布(D) n(X)服从分布()i1)2 ~2 (1),i n解:( 1)显然( X i) ~ N (0,1)( X i1,2,n 且相互独立,所以( X i) 2服从i12(n) 分布,也就是(A)结论是正确的;n22(n1)S 22( 2)( X i X )(n 1)S~( n1),所以( C)结论也是正确的;2i1(3)注意X ~ N(,1)n( X) ~ N (0,1)n( X)2 ~2 (1),所以( D)结论也是正确的;n( 4)对于选项( B):( X n X1) ~ N (0,2)X n X1~ N (0,1)1( X n X1 )2 ~2 (1),所以(B)22结论是错误的,应该选择(B)二、填空题(本题共 6 小题,每小题 4 分,满分24 分 . 把答案填在题中横线上)9.已知函数f ( x)1,则 f (3) (0).1x2解:由函数的马克劳林级数公式: f (x) f(n ) (0) x n,知f(n )(0)n!a n,其中 a n为展开式中 x n的n 0n!系数.由于 f ( x)11x2x4( 1)n x2n, x1,1,所以 f (3) (0)0 .1x210.微分方程y 2 y 3 y 0 的通解为.【详解】这是一个二阶常系数线性齐次微分方程,特征方程 r 22r 30有一对共共轭的根r12i ,所以通解为y e x (C1 cos2x C2 sin2x)11xdx aydy 在区域D(x, y) | x2y21内与路径无关,则a ..若曲线积分Lx2y21【详解】设 P( x, y)x,Q ( x, y)ay,显然P( x, y), Q (x, y) 在区域内具有连续的偏x2y2x21y 2 1导数,由于与路径无关,所以有Q P1 xay12.幂级数( 1)n 1nx n 1在区间 ( 1,1)内的和函数为n 1【详解】(1)n 1 nx n 1n 1所以 s( x)12 , x (1x)1013.设矩阵A1101( 1)n 1 (x n )( 1)n 1 x n x1n 1n 1 1 x(1 x)2(1,1)12,1, 2 , 3为线性无关的三维列向量,则向量组 A 1,A 2,A 3的秩1为.101101101【详解】对矩阵进行初等变换 A 11201101 1 ,知矩阵A的秩为2,由于0110110001, 2, 3 为线性无关,所以向量组A1,A 2, A 3的秩为2.14.设随机变量X 的分布函数 F (x)0.5 ( x)0.5x4,其中( x) 为标准正态分布函数,则2EX.【详解】随机变量 X 的概率密度为 f (x) F (x)0.5( x)0.25( x 4) ,所以2三、解答题15.(本题满分 10 分)设函数 f (u, v) 具有二阶连续偏导数,y f (e x ,cos x) ,求dy|x 0, d 2 y|x 0.dx dx2【详解】dyx,cos x)exf2x,cos x)( sin x), dyf1 (1,1);dx f1 (e(e dx|x0d 2 y |0f1(1,1) f (1,1)f2(1,1).dx 2x11 16.(本题满分 10 分)求 lim n k2 ln1knk 1 n n 【详解】由定积分的定义17.(本题满分10 分)已知函数 y(x) 是由方程 x3y33x 3 y 2 0 .【详解】在方程两边同时对x 求导,得3x2 3 y2 y 3 3 y 0( 1)在( 1)两边同时对x 求导,得也就是 y 2( x y( y )2 )1y2令 y0 ,得x 1 .当x11时,y11;当x2 1 时, y20当 x11时, y0 , y10 ,函数 y y(x) 取极大值 y11;当 x2 1 时, y0 , y10函数 y y(x) 取极小值 y20 .18.(本题满分 10 分)设函数 f ( x) 在区间0,1 上具有二阶导数,且 f (1)0 , lim f ( x)0 ,证明:x0x( 1)方程f ( x)0在区间0,1至少存在一个实根;( 2)方程f ( x) f( x)( f( x)) 20 在区间0,1 内至少存在两个不同实根.证明:(1)根据的局部保号性的结论,由条件lim f ( x)0 可知,存在01,及 x1(0,) ,使得x 0xf ( x1 )0 ,由于 f (x) 在x1,1上连续,且 f ( x1 ) f (1)0 ,由零点定理,存在(x1,1)(0,1) ,使得 f ()0 ,也就是方程 f ( x)0 在区间0,1 至少存在一个实根;( 2)由条件lim f (x)0 可知 f (0)0 ,由(1)可知 f ()0 ,由洛尔定理,存在(0,) ,使得x0xf ( )0 ;设 F ( x) f ( x) f(x) ,由条件可知 F (x) 在区间0,1上可导,且 F (0)0,F( )0,F()0,分别在区间 0,,,上对函数 F (x) 使用尔定理,则存在1(0,)(0,1),2( ,)(0,1), 使得12, F( 1 )F( 2),0也就是方程 f ( x) f ( x) ( f( x)) 20 在区间0,1内至少存在两个不同实根.19.(本题满分10 分)设薄片型 S 是圆锥面 z x2y2被柱面z22x 所割下的有限部分,其上任一点的密度为9 x2y2z2,记圆锥面与柱面的交线为 C .( 1)求C在xOy布上的投影曲线的方程;(2)求 S 的质量 M .【详解 】( 1)交线 C 的方程为z x 2 y 2 ,消去变量 z ,得到 x 2y 22x .z 2 2x所以 C 在 xOy 布上的投影曲线的方程为x 2 y 2 2x .z 0( 2)利用第一类曲面积分,得20.(本题满分 11 分)设三阶矩阵 A 1 , 2 ,3有三个不同的特征值,且3122.( 1)证明: r ( A)2 ;( 2)若12 ,3 ,求方程组 Ax的通解.【详解 】( 1)证明:因为矩阵有三个不同的特征值,所以 A 是非零矩阵,也就是r ( A) 1 .假 若 r ( A )1时 , 则 r 0 是 矩 阵 的 二 重 特 征 值 , 与 条 件 不 符 合 , 所 以 有 r ( A )2,又因为31220 ,也就是1,2 ,3 线性相关, r ( A) 3 ,也就只有 r ( A) 2 .( 2)因为 r ( A)2 ,所以 Ax 0 的基础解系中只有一个线性无关的解向量.由于31220,1所以基础解系为 x2 ; 11又由12 ,3 ,得非齐次方程组Ax的特解可取为1 ; 1方程组 Ax的通解为 x21.(本题满分 11 分)设 二 次 型 f ( x , x , x )12311k 21 ,其中 k 为任意常数. 112 2 x2在x 正x 交 变 换下的标准形为2xa x 2 x x 8 x x 2x Qy12312132 31 y 12 2 y 22 ,求 a 的值及一个正交矩阵Q .2 1 4【详解 】二次型矩阵 A1 1 14 1a因为二次型的标准形为1 y 122 y 22.也就说明矩阵 A 有零特征值,所以A 0 ,故 a 2.令 E A0 得矩阵的特征值为13, 26, 3 0 .1(iEA)x 0 得矩阵的属于特征值3 的特征向量 11通过分别解方程组 11 ,属于特征值特31111征值 2 6 的特征向量, 3 0 的特征向量1232 ,21611 1 13 2 6所以 Q1, 2,1 0 2为所求正交矩阵.33 61 1 132622.(本题满分 11 分)设随机变量 X,Y 相互独立,且 X的概率分布为 P X0 P{X 2}1,Y 的概率密度为22y,0y 1f ( y)0, 其他 .( 1)求概率 P (Y EY ); (2)求 ZX Y 的概率密度.12 . 【详解 】( 1) EYyf Y ( y)dy2y 2dy0 32 24 .所以PYEYP Y32 ydy39( 2) ZX Y 的分布函数为故 Z X Y 的概率密度为23.(本题满分 11 分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了 n 次测量,该物体的质量是已知的,设 n 次测量结果 X 1,X 2, , X n 相互独立且均服从正态分布 N ( , 2). 该工程师记录的是 n 次测量的绝对误差 Z i X i,( i 1,2, , n) ,利用 Z 1, Z 2 , , Z n 估计参数.( 1)求 Z i 的概率密度; ( 2)利用一阶矩求的矩估计量;( 3)求参数 最大似然估计量.【详解 】( 1)先求 Z i 的分布函数为当 z0 时,显然 F Z ( z) 0 ;当 z0 时, F Z (z) P Z i z P X iX iz2zz P1 ;2 所以 Z i 的概率密度为 f Z ( z) F Z ( z)e20,z 222, z 0 .z 02z 22( 2)数学期望EZ izf ( z)dzze22,0 0dz221n2Z2n令EZ ZZ i ,解得 的矩估计量 22nZ i .n i1i 1(3)设 Z 1, Z 2, , Z n 的观测值为 z 1 , z 2 ,, z n .当 z i0, i 1,2,n 时n1nz i 2似然函数为 L()n)2ef (z ,2 2 i 1 ,i 1i ( 2 )nnln(21n取对数得: ln L() n ln 2 )nln2 z i222i 1d ln L( )n1n20 ,得参数 最大似然估计量为 1 n 2.令3z in iz i di 11。
2017年考研数学一真题及答案解析
2017年考研数学一真题及答案解析跨考教育 数学教研室一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x xf x ax ax a++→→-==Q 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩Q 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=TE 。
2017年考研数学一真题与解析
2017 年考研数学一真题一、选择题1— 8 小题.每题4 分,共 32 分.1.若函数 f (x)1 cos x, x 0在 x 0 处连续,则 axb, x 0( A ) ab1( B ) ab1( C ) ab0 ( D ) ab 222lim1cos x1 x1【详解 】 limf (x)lim2, lim f (x)bf (0) ,要使函数在 x0 处连续,x 0x 0axx 0ax2ax 0一定知足1bab 1 .因此应当选( A )2a22.设函数 f (x) 是可导函数,且知足f ( x) f ( x) 0 ,则( A ) f (1)f ( 1) (B ) f (1) f ( 1)( C ) f (1)f ( 1)( D ) f (1) f ( 1)【详解 】设 g (x)( f (x))2 ,则 g ( x)2 f ( x) f (x) 0 ,也就是2是单一增添函数.也就获得f ( x) 2f ( 1)2f (1)f ( 1) ,因此应当选( C )f (1)3.函数 f (x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方导游数为( A ) 12 (B ) 6(C ) 4( D ) 2【 详 解 】f2xy, fx 2 , f2z , 所 以 函 数 在 点 (1,2,0) 处 的 梯 度 为 gradf 4,1,0 , 所 以xyzf (x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方导游数为fr gradfuur1(1,2, 2) 2n4,1,0应当选( D )n34.甲、乙两人赛跑, 计时开始时, 甲在乙前面 10(单位:米)处,如图中,实线表示甲的速度曲线 v v 1 (t )(单位:米 /秒),虚线表示乙的速度曲线 v v 2 (t ) (单位:米 /秒),三块暗影部分的面积分别为10,20,3 ,计时开始后乙追上甲的时辰为t 0 ,则()( A ) t 0 10( B ) 15 t 0 20( C ) t 025( D ) t 025【详解 】由定积分的物理意义:当曲线表示变速直线S(t)T2S1 ,S2 , S3分别运动的速度函数时,v(t )dt 表示时辰 T1 ,T2内所走的行程.此题中的暗影面积T1表示在时间段0,10, 10,25 , 25,30内甲、乙两人所走行程之差,明显应当在t25时乙追上甲,应当选( C).E5为 n 阶单位矩阵,则.设为 n 单位列向量,( A)E T 不行逆( B)E T 不行逆( C)E2T 不行逆( D )E 2T 不行逆【详解】矩阵T的特点值为 1和 n 1个 0 ,进而E T , E T , E2T , E2T 的特点值分别为 0,1,1,L1; 2,1,1,L,1 ;1,1,1,L,1 ; 3,1,1,L,1 .明显只有 E T 存在零特点值,因此不行逆,应当选( A ).2002101006.已知矩阵A021, B020, C020,则001001002( A)A,C相像,B,C相像( B)A,C相像,B,C不相像( C)A,C不相像,B,C相像( D)A,C不相像,B, C不相像【详解】矩阵 A, B 的特点值都是122,31.能否可对解化,只要要关怀 2 的状况.000关于矩阵 A ,2E A00 1 ,秩等于1,也就是矩阵 A 属于特点值2存在两个线性没关的特001征向量,也就是能够对角化,也就是 A ~ C .010关于矩阵 B ,2E B000,秩等于 2,也就是矩阵 A 属于特点值2只有一个线性没关的特001征向量,也就是不能够对角化,自然B,C不相像应选择(B).7A, B是两个随机事件,若0P( A)1,0 P( B)1,则 P( A / B)P( A / B) 的充足必需条件是.设( A)P(B / A) P( B / A)( B)P( B / A) P(B / A)( C)P(B / A)P( B / A)( D)P(B / A) P( B / A)【详解】由乘法公式:P( AB) P( B) P(A / B), P( AB )P(B)( P( A / B) 可得下边结论:P( A / B)P( A / B)P( AB)P( AB) P( A)P( AB)P( AB) P( A)P( B) P( B)P(B)1P( B)近似,由 P( AB ) P( A) P(B / A), P( AB) P( A)P( B / A) 可得P(B / A)P(B / A)P( AB)P( AB) P( B)P( AB)P( AB)P( A)P( B) P( A)P( A)1P( A)因此可知选择( A ).8.设X1, X2,L , X n(n 2)为来自正态整体N (,1) 的简单随机样本,若1 nX i,则以下结论中不Xn i 1正确的是()n) 2听从 2 散布(B )2 X n 22 散布( X i( A)X1听从i 1nX ) 2听从 2 散布)2听从 2 散布( C)( X i( D)n( Xi1)2 ~2 (1),i n解:( 1)明显( X i) ~ N (0,1)( X i1,2,L n 且互相独立,因此( X i)2听从i 12( n) 散布,也就是(A)结论是正确的;n22(n1)S 22( 2)( X i X )(n1)S~( n1),因此( C)结论也是正确的;2i1( 3)注意X ~ N (, 1)n ( X) ~ N (0,1)n( X) 2 ~2 (1) ,因此(D)结论也是正确的;n( 4)关于选项( B ):( X n X1 ) ~ N (0, 2)X n X1~ N (0,1)1( X n X1) 2 ~2 (1) ,因此(B)结22论是错误的,应当选择(B)二、填空题(此题共 6 小题,每题 4 分,满分24 分 . 把答案填在题中横线上)9.已知函数 f ( x)1,则 f (3) (0).1 x2解:由函数的马克劳林级数公式: f (x) f( n) (0) x n,知f( n)(0)n! a n,此中 a n为睁开式中 x n的系n0n!数.因为f ( x)11x2x4L( 1)n x2 n L, x1,1 ,因此 f (3) (0)0 .1 x210.微分方程y 2 y3y0的通解为.【详解】这是一个二阶常系数线性齐次微分方程,特征方程 r 22r 30 有一对共共轭的根r12i ,因此通解为y e x (C1 cos2x C2 sin2x)11.若曲线积分xdxaydy在地区 D( x, y) | x 2 y 21 内与路径没关,则 a .Lx 2y 2 1【详解 】设P( x, y)x,Q( x, y)ay ,明显 P( x, y), Q (x, y) 在地区内拥有连续的偏 x 2 y 2x 2y 21 1导数,因为与路径没关,因此有Q Pa1xy12.幂级数( 1)n 1 nx n 1 在区间 ( 1,1)内的和函数为n 1【详解 】( 1)n 1 nx n 1( 1)n 1( x n )( 1)n 1 x nx 1 n 1n 1n 11 x(1 x)2因此 s(x)12 , x( 1,1)(1 x)1 0 113 . 设 矩 阵 A1 12 , 1,2 ,3 为 线 性 无 关 的 三 维 列 向 量 , 则 向量 组 A 1, A 2 , A 3 的 秩0 1 1为.1 0 1 1 0 1 1 0 1【详解 】对矩阵进行初等变换 A1 12 0 1 1 0 1 1 ,知矩阵 A的秩为 2,因为0 1 11 10 01, 2 , 3 为线性没关,因此向量组 A 1, A 2 , A 3 的秩为 2.14.设随机变量X 的散布函数F (x)( x)x4 ,此中( x) 为标准正态散布函数,则2EX.【详解 】随机变量 X 的概率密度为f ( x) F (x)(x)(x4) ,因此2E(X ) xf ( x)dxx ( x)dxx x 4)dx(2x (x42(2t 4) (t) dt22(t) dt2三、解答题15.(此题满分 10 分)设函数 f (u, v) 拥有二阶连续偏导数,yf ( x,cos )dy, d 2 y.ex ,求|x 0dx 2 |x 0dx【详解 】dyxxx, dy;f 1 (e ,cos x)ef 2 ( e ,cos x)( sin x)|x 0dxf 1 (1,1)dxd 2 ye xf 1 x,cos x) xxxsin xf 12xx,cos x)dx 2(ee (f 11 (e ,cos x)e(e ,cos x))cos xf 2 (esin xe x f 21 (e x ,cos x) sin 2 xf 22 (e x ,cos x)d 2 2y|x 0 f 1 (1,1) f 11(1,1)f 2 (1,1).dx16.(此题满分 10 分)求 limn k2 ln 1k nk 1nn【详解 】由定积分的定义nk 2k lim1nklnk1lim ln 11 x ln(1 x)dxn1 nnnn k 1 nn 0k1 1 x)dx 212 ln(1 417.(此题满分 10 分)已知函数 y( x) 是由方程 x 3 y 33x 3y 20 .【详解 】在方程两边同时对x 求导,得3x 2 3 y 2 y 3 3 y 0( 1)在( 1)两边同时对 x 求导,得2x 2 y( y ) 2 y 2 yy也就是 y2( x y( y ) 2 )1 y2令 y 0 ,得 x1 .当 x 11时, y 1 1 ;当 x 21时, y 2 0 当 x 1 1 时, y 0 , y 1 0 ,函数 y y( x) 取极大值 y 11 ;当 x 21时, y 0 , y1 0 函数 yy( x) 取极小值 y 2 0 .18.(此题满分 10 分)设函数 f ( x) 在区间 0,1 上拥有二阶导数,且f (1) 0f (x), lim0 ,证明:x 0x( 1)方程 f (x)0 在区间 0,1 起码存在一个实根;( 2)方程 f (x) f (x)( f ( x))20 在区间 0,1 内起码存在两个不一样实根.证明:( 1)依据的局部保号性的结论,由条件limf ( x)1,及 x 1(0, ) ,使得0 可知,存在x 0 xf (x 1) 0 ,因为 f ( x) 在 x 1,1 上连续,且 f ( x 1 ) f (1) 0,由零点定理,存在 ( x 1 ,1) (0,1) ,使得f ( )0 ,也就是方程 f (x)0 在区间 0,1 起码存在一个实根;( 2)由条件 limf (x)0 可知 f (0)0 ,由( 1)可知 f ( )0 ,由洛尔定理,存在(0, ) ,使得xxf ( )0 ;设 F ( x) f (x) f (x) ,由条件可知 F ( x) 在区间 0,1 上可导, 且 F (0)0, F ( ) 0, F ( ) 0 ,分别在区间 0,, , 上 对 函 数 F (x) 使 用 尔 定 理 , 则 存 在 1(0, )(0,1), 2 ( , ) (0,1), 使 得12 , F ( 1 )F ( 2 )0 ,也就是方程 f (x) f ( x) ( f ( x))20 在区间 0,1 内起码存在两个不一样实根.19.(此题满分 10 分)设 薄 片 型 S 是 圆 锥 面 zx 2 y 2 被 柱 面 z 2 2 x 所 割 下 的 有 限 部 分 , 其 上 任 一 点 的 密 度 为9 x 2 y 2 z 2 ,记圆锥面与柱面的交线为 C .( 1)求 C 在 xOy 布上的投影曲线的方程;( 2)求 S 的质量 M .【详解 】( 1)交线 C 的方程为z x 2 y 2 ,消去变量 z ,获得 x 2 y 22x .z 2 2x因此 C 在 xOy 布上的投影曲线的方程为x 2 y 22xz 0.( 2)利用第一类曲面积分,得M(x, y, z)dS9 x 2 y 2 z 2 dSSS9 x 2 y 2 x 2y 21x 2 y 2 y 2 dxdy x 2y 22xx 2 y 2x 218x 2y 2 dxdy 64x 2y 22x20.(此题满分 11 分)设三阶矩阵 A 1, 2 , 3 有三个不一样的特点值,且312 2 .( 1)证明: r ( A)2 ;( 2)若12 ,3 ,求方程组 Ax的通解.【详解 】( 1)证明:因为矩阵有三个不一样的特点值,因此A 是非零矩阵,也就是 r ( A) 1.假 若 r ( A) 1 时 , 则 r0 是 矩 阵 的 二 重 特 征 值 , 与 条 件 不 符 合 , 所 以 有 r ( A) 2 , 又 因 为312 20,也就是1 ,2 ,3 线性有关, r ( A) 3 ,也就只有 r ( A) 2 .( 2)因为 r ( A)2 ,因此 Ax 0 的基础解系中只有一个线性没关的解向量.因为312 2 0 ,所1 以基础解系为 x2 ;11 又由12,3 ,得非齐次方程组Ax的特解可取为 1 ;11 1方程组 Ax的通解为 xk 21 ,此中 k 为随意常数.1121.(此题满分 11 分)设 二 次 型 f (x 1, x 2 , x 3 ) 2x 12 x 22 ax 32 2x 1x 28x 1 x 3 2x 2 x 3 在 正 交 变 换 x Qy 下 的 标 准 形 为1 y 122 y 22,求 a 的值及一个正交矩阵Q .2 1 4 【详解 】二次型矩阵 A11 14 1a因为二次型的标准形为1 y 12 2 y 22 .也就说明矩阵A 有零特点值,因此A 0 ,故 a 2.1 1 4E A1 11(3)(6)412令E A 0 得矩阵的特点值为13,26,30 .1 1经过分别解方程组( i EA) x 0 得矩阵的属于特点值13 的特点向量 11 ,属于特点值特311 112 6 的特点向量, 30 的特点向量1征值 2232,1611 1 13 2 6因此 Q1 ,2 ,31 02为所求正交矩阵.3 611 132622.(此题满分 11 分)设 随 机 变 量 X ,Y 相 互 独 立 , 且 X 的 概 率 分 布 为 P X 0 P{ X 2}1 , Y 的 概 率 密 度 为22 y,0 y1f ( y)0,其余.( 1)求概率 P ( Y EY ); ( 2)求 ZX Y 的概率密度.12 . 【详解 】( 1) EYyf Y ( y)dy2 y 2 dy0 32 24.因此 P YEYP Y32ydy39( 2) ZX Y 的散布函数为F Z (z) P Z z P X Y z P X Y z, X 0 P X Y z, X 2P X0,Y z P X2,Y z 21P{ Yz}1P Yz2221F Y( z) F Y( z 2)2故 Z X Y 的概率密度为f Z ( z) F Z ( z)1 f (z)f ( z 2)2z, 0 z 1 z 2,2 z 30,其余23.(此题满分 11 分)n 次丈量,该物体的质量某工程师为认识一台天平的精度,用该天平对一物体的质量做了是已知的,设n 次丈量结果 X 1, X 2 ,L , X n 互相独立且均听从正态散布N ( ,2). 该工程师记录的是 n 次丈量的绝对误差Z i X i,( i 1,2, L , ) ,利用 Z 1 , Z 2 ,L , Z n 预计参数.n( 1)求 Z i 的概率密度; ( 2)利用一阶矩求的矩预计量;( 3)求参数最大似然预计量.【详解】( 1)先求Z i的散布函数为F Z ( z) P Z i z P X iX i z z P当 z0时,明显 F Z (z)0 ;当 z0时, F ( z) P Z z P X X i z2z1;i i z PZ2因此 Z i的概率密度为 f Z (z) F Z ( z)e20,z222,z 0 .z 02z22( 2)数学希望EZ i zf (z) dz ze 22dz,0022令 EZ Z 1 n Z i,解得的矩预计量2Z2n Z i.n i 122n i 1( 3)设Z1, Z2,L, Z n的观察值为 z1, z2,L , z n.当 z i0, i1,2,L n 时1nn2n z i2似然函数为 L( ) f ( z i ,))n e22 i 1,i 1(2nln(21n取对数得: ln L ()n ln 2)n ln2z i222i 1令d ln L( )n1n20 ,得参数最大似然预计量为1 n2.d3z in i 1z ii 1。
2017数学一考研真题-答案
T
2
λ
0, λ
λn
0或λ
1
1,
1
αT α
1
λ1
λn 得 A 的特征值为 λ1
0, λn
E - ααT 的特征值为 λ1
即 E - αα 不可逆,应选(A)
T
λn
1
1 , λn
0 ,从而 E - ααT
0,
2 0 0 2 1 0 1 0 0 (6)已知矩阵 A 0 2 1 B 0 2 0 C 0 2 0 ,则 0 0 1 0 0 1 0 0 0
S2
S1
10 ,所以 t0
25
)
(5)设 为 n 维单元列向量,E 为 n 阶单位矩阵,则(
(A) E- T 不可逆(B) E+ T 不可逆(C) E+2 T (D) E-2 T A 【答案】 令 A = αα , A2 = A , 【解析】 令 AX = λX ,由 A - A X = λ - λ X = 0 得 λ 因为 tr A
数学一
一、选择题:1~8 小题,每小题 4 分,共 32 分。下列每题给出的四个选项中,只有一个选 项是符合题目要求的
1 cos x ,x 0 (1) 若函数 f x 在 x 0 连续,则 ax b, x 0
(A) ab A 【答案】
1 1 (B) ab (C) ab 0 (D) ab 2 2 2
lim
n
1 1 1 x (2 1 ) 1 1 1 2 1x ) dx l n (1 x d) x ( ) x 2 l n ( 2 20 1 x 2 0 0
1 1 1 1 1 1 1 1 1 l n 2 x( 1 d) x l n 2 l n 2 0 2 2 1 x 2 4 2 2 4
2017年考研数学一试卷真题及答案解析
2017年考研数学一真题及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在 .答题纸..指定位置上. (1)若函数1,0(),0x f x axb x ì->ï=íï£î在0x =处连续,则( )()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x x f x ax ax a++®®-==!在0x =处连续11.22b ab a \=Þ=选A. (2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >ì>\í>î!或()0(2)'()0f x f x <ìí<î,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D 【答案】D【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradf gradf u ¶=Þ=Þ=×=×=¶选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s 0000()10()1520()25()25A tB tC tD t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt òò则乙要追上甲,则210(t)v (t)10t v dt -=ò,当025t =时满足,故选C.(5)设a 是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T T T A E B E C E D E aa aa aa aa -++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0aa a a a -=-=T E 得()0aa -=T E x 有非零解,故0aa -=T E 。
2017考研数学一真题及解析
{2xy, x2 , 2z} ,将点 (1, 2, 0) 代入得 gradf
(1,2,0)
{4,1, 0}
,则
f u
gradf . u u
{4,1,
0}.
1
3
,
2 3
,
2 3
2
.
(4) 甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中,实线表示甲的速度曲线
v v1 t (单位:m/s),虚线表示乙的速度曲线 v v2 t ,三块阴影部分面积的数值依次
2017 考研数学一真题及解析
2017 年考研数学真题
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个是 符合题目要求的,请将所选项前的字母填在答.题.纸.指定的位置上.
(1)
若函数
f
(x)
1
cos ax
x ,x0
在x=0连续,则
b, x 0
(A) ab 1 2
0 0 1
0 0 1
0 0 2
(A) A 与 C 相似, B 与 C 相似 (B) A 与 C 相似, B 与 C 不相似 (C) A 与 C 不相似, B 与 C 相似 (D) A 与 C 不相似, B 与 C 不相似
【答】应选(B).
【解】由 ( E A) O 可知 A 的特征值为 2,2,1.又 3 r(2E A) 1,故 A 可相似
)dt
要使乙追上甲,则有
t0 0
[V2
(t
)
V1
(t
)]dt
,由定积分的几何意义可知,
25
0 [V2 (t) V1(t)]dt 20 10 10 ,可知
t向量, E 为n阶单位矩阵,则
2017-数一真题大全及答案
2017年考研数学一真题及答案解析跨考教育 数学教研室一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧−>⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==−==【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >−<−>−<−【答案】C 【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradf gradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt −=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα−++−不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα−=−=T E 得()0αα−=T E x 有非零解,故0αα−=TE 。
2017年考研数学一真题及解析
(A)t0 10 (B)15 t0 20 (C)t0 25 (D)t0 25
【答案】B
【解析】从 0 到 t0 这段时间内甲乙的位移分别为
t0 0
v1
(t)dt
,
t0 0
v2
(t)dt
,
则乙要追上甲,则
t0 0
v2 (t)
v1 (t)dt
10
,当 t0
25 时满足,故选
C.
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则( )
故可逆。其它选项类似理解。
2 0 0 2 1 0 1 0 0 (6)设矩阵 A 0 2 1 , B 0 2 0 ,C 0 2 0 ,则( )
0 0 1 0 0 1 0 0 2
( A) A与C相似, B与C相似 B A与C相似, B与C不相似 (C) A与C不相似, B与C相似 D A与C不相似, B与C不相似
(A)12 (B)6 (C)4 (D)2
长理资料群:五,八,6 8,8,六,7,7,五
【答案】D
【解析】 gradf {2xy, x2, 2z}, gradf
(1,2,0)
{4,1, 0}
f u
gradf
u {4,1, 0}{ 1,
|u|
3
2, 3
2} 2. 3
选 D.
(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m)处,图中实线表示甲的速度曲线 v v1(t) (单位: m / s ),虚线表示乙的速度曲线 v v2 (t) ,三块阴影部分面积的数值依次为 10,20,3,计时 开始后乙追上甲的时刻记为 t0 (单位:s),则( )
2017 年考研数学一真题及答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题
17考研数一真题答案及解析
2017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A. (2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩ 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()10()15A t B =【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则()s210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=T E x 有非零解,故0αα-=T E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017考研数学一真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x xf x ax ax a++→→-==Q 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩Q 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂2选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=T E 。
即αα-T E 不可逆。
选项B,由()1ααα=Tr 得ααT 的特征值为n-1个0,1.故αα+T E 的特征值为n-1个1,2.故可逆。
其它选项类似理解。
(6)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( )()()(),,(),,A A C B C B A C B C C A C B C D A C B C 与相似与相似与相似与不相似与不相似与相似与不相似与不相似【答案】B【解析】由()0E A λ-=可知A 的特征值为2,2,1因为3(2)1r E A --=,∴A 可相似对角化,且100~020002A ⎛⎫ ⎪⎪ ⎪⎝⎭由0E B λ-=可知B 特征值为2,2,1.因为3(2)2r E B --=,∴B 不可相似对角化,显然C 可相似对角化, ∴~A C ,且B 不相似于C(7)设,A B 为随机概率,若0()1,0()1P A P B <<<<,则()()P A B P A B >的充分必要条件是( )()()()()()()()()()()()()A PB A P B A B P B A P B AC P B A P B AD P B A P B A ><><【答案】A【解析】按照条件概率定义展开,则A选项符合题意。
(8)设12,(2)n X X X n ⋅⋅⋅≥为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论中不正确的是( )()()22221122221()()2()()()()ni n i ni i A X B X X C X X D n X μχχχμχ==----∑∑服从分布服从分布服从分布服从分布【答案】B 【解析】4221222122221(,1),(0,1)()(),(1)()(1)C 1~(,)(0,1),()~(1),()~(0,2),~(1),B 2i ni i ni i n X N X N X n A n S X X n X N X N n X D nX X N μμμχχμμμχχ==-⇒-⇒-=--⇒---⇒∑∑:::::正确,正确,正确,故错误.由于找不正确的结论,故B 符合题意。
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 已知函数21()1f x x=+,则(3)(0)f =__________ 【答案】(0)6f =- 【解析】222200'''23'''211()()(1)11()()(1)2(21)(22)(0)0nn nn n n n n f x x x x x f x n n n x f ∞∞==∞-====-=-+--=---⇒=∑∑∑(10) 微分方程'''230y y y ++=的通解为y =_________【答案】12()x y e c c -=+,(12,c c 为任意常数)【解析】齐次特征方程为21,22301λλλ++=⇒=-故通解为12()x e c c -+ (11) 若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则 a =__________【答案】1a = 【解析】22222222,,(1)(1)P xy Q axy y x y x x y ∂-∂==∂+-∂+-由积分与路径无关知1P Q a y x∂∂=⇒=-∂∂(12) 幂级数111(1)n n n nx ∞--=-∑在区间(1,1)-内的和函数()S x =________【答案】()21()1s x x =+【解析】''1112111(1)(1)1(1)n n n n n n x nx x x x ∞∞---==⎛⎫⎛⎫-=-== ⎪ ⎪++⎝⎭⎝⎭∑∑(13)设矩阵101112011A ⎛⎫⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的3维列向量组,则向量组123,,A A A ααα的秩为_________【答案】2【解析】由123,,ααα线性无关,可知矩阵123,,ααα可逆,故()()()()123123,,,,r A A A r A r A αααααα==再由()2r A =得()123,,2r A A A ααα=(14)设随机变量X 的分布函数为4()0.5()0.5()2x F x x -=Φ+Φ,其中()x Φ为标准正态分布函数,则EX =_________【答案】2【解析】0.54()0.5()()22ϕϕ-'=+x F x x ,故0.540.5()()22ϕϕ+∞+∞-∞-∞-=+⎰⎰x EX x x dx x dx()0ϕ+∞-∞==⎰x x dx EX 。
令42-=x t ,则4()2ϕ+∞-∞-⎰x x dx =()242()814()8ϕϕ+∞+∞-∞-∞+=⋅+=⎰⎰t t dt t t dt因此()2E X =.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求0x dy dx=,22x d y dx=【答案】2'''1112(1,1),(1,1),x x dyd yf f dxdx====6【解析】()()'''''1212102''2''''''2''111221221222''''111220(,cos )(0)(1,1)sin (1,1)1(1,1)0(1,1)(sin )(sin )sin cos (1,1)(1,1)(1,1)x xx x x x x x x x y f e x y f dy f e f x f f f dxd y fef e x f e x f x f e f x dx d y f f f dx =====⇒=⇒=+-=⋅+⋅=⇒=+-+-++-⇒=+- 结论:'102''''11122(1,1)(1,1)(1,1)(1,1)x x dy f dxd yf f f dx ====+-(16)(本题满分10分)求21limln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑ 【答案】14【解析】21112212000111111lim ln(1)ln(1)ln(1)(ln(1))2214nn k k k x x x dx x dx x x dx nn x →∞=-++=+=+=+⋅-=+∑⎰⎰⎰(17)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值【答案】极大值为(1)1y =,极小值为(1)0y -= 【解析】 两边求导得:2233'33'0x y y y +-+= (1)令'0y =得1x =±对(1)式两边关于x 求导得 ()2266'3''3''0x y y y y y +++= (2)将1x =±代入原题给的等式中,得1110x x or y y ==-⎧⎧⎨⎨==⎩⎩, 将1,1x y ==代入(2)得''(1)10y =-<将1,0x y =-=代入(2)得''(1)20y -=>故1x =为极大值点,(1)1y =;1x =-为极小值点,(1)0y -=(18)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且0()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。