席位公平分配

合集下载

数学论文席位的公平分配问题

数学论文席位的公平分配问题

数学建模论文席位的公平分配问题姓名:学号:18 15 20公平的委员分配问题摘要:1.我们首先是用惯例分配法来解决这委员分配问题的,由于方法来解决存在很大的缺陷,因此,通过组内的讨论,我们想出了Q值法来解决此问题,发现这样能作到相对公平。

我们这一组开始就考虑到了该怎样分配能作到相对公平,就这个问题,我们开始了研讨。

我们采用惯例分配法分析发现:各楼所得到的委员数A 、B 、C楼分别为:3、3、4人,而Q值法其结果为:A、B、C楼分别为:2、3、5人。

2.“取其精华,去其糟粕”我们发现Q值法能很好的解决委员分配问题,Q 值法:我们用Qi=(Pi*Pi)/[n(n+1)],其中i=A、B、C,Pi为第i楼的人数,n 为分配到的委员数,我们采用将剩下的一位委员名额分给Q值最大的一方。

通过计算得到Qa=9204.16、Qb=9240.75、Qc=9331.2比较得到:Qa>Qb>Qc,所以我们决定把剩下的一名委员分给C楼。

3.我们用惯例分配法发现有一名委员不好分配,不知道分给谁更公平些。

建议:我们的思维不能太单一了,在考虑问题方面要做到全面些,这样才会少走弯路。

(无论在哪方面都一样。

)关键字:委员分配、比例法、Q值法1.1问题的重述分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中.分配问题涉及的内容十分广泛,例如:学校共有1000学生,235人住在A楼,333人住B楼,432人住C楼,学校要组织一个10人委员会,试用惯例分配法和Q值方法分配各楼的委员数并比较结果。

1.2问题的分析数学中通常人们用比例的方法来分配各个楼要派出几个人来组建委员会,当比例中有小数时人们有按照惯例使得各组中小数最大的组拥有更多的人数。

然而人们是怎样分配的呢?又因为没栋楼所占比例不是整数,可以会出现不公平的现象。

为了让席位分配更加公平我们不应该采用比例法,要引用不比例法更好的Q值法对其进行求解。

公平的席位分配

公平的席位分配


Q值法推广:当有m方,第i方人数 pi ,占有 ni 席位, 当总席位增加1席,计算
pi2 Qi ni (ni 1)
应将席位分给Q值最大的一方。
问题解决

先按比例计算结果将整数部分的19席分配完,有 n1 10, n2 6, n3 3 ,再用Q值法分配第20,21 席。
1032 632 342 第20席:Q1 , Q2 , Q3 , Q1最大分给甲。 1011 6 7 3 4 1032 第21席:Q1 , Q2 , Q3不变, Q3最大分给丙。 1112
公平的席位分配
问题背景
某校有3个系共200名学生,甲乙丙系各100, 60,40名。若学生代表席位设20个席位。 公平而简单的席位分配办法:按学生人数 的比例分配。 分配结果(席位):甲10;乙6;丙4。

若甲乙丙系人数分别:103、63和34,20个 席位如何分配? 若上述人数不变,增加一个席位,分配结 果如何? 这个结果对丙系太不公平,总席位增 加1席,而丙系席位却由4席减少为3席位。 找到衡量公平分配席位的指标,丙建立新 的分配方法。
练习
学校共1000名学生,235人住在A宿舍, 333人住在B宿舍,432人住在C宿舍。学生 门要组织一个10人的委员会,使用下列办 法分配各宿舍的委员数。 (1)按比例分配取整数的名额后,剩下的名 额按惯例分给小数部分较大者。 (2)用Q值法


(3)d’Hondt法:将A,B,C各宿舍的人数用 n=1,2,3等相除,其商如下
p1 p2 n1 n2 1
公平分配的原则:使得相对不公平度尽可能地小

若 rB (n1 1, n2 ) rA (n1 , n2 1) ,则席位分给A;反之分给B。 Q值法 2 2

公平的席位分配

公平的席位分配
绝对不公平值
每席代表人数: p1/ n1
不公平
Байду номын сангаас程度
例: 120:10 100:10→2 例: 1020:10 1000:10→2 改进
改进
对A相对不公平值
rA ( n1 , n 2 ) = p1 p2 − n1 n2 p2 n2 p2 p1 − n2 n1 p1 n1
绝对不公平值 基数
对B
rB ( n 1 , n 2 ) =
模型分析
总人数 p=∑pi ,总席位 n=∑ni 按人数比例 p
ni = [
i
p
n ]
则 则
pi p p < ≤ i ni +1 n n
pi Qi = n i ( n i + 1)
2
例: 120:10 100:10→2 → 0.2 例: 1020:10 1000:10→2 →0.02
目标:rA, rB 尽量小
2、确定分配方案
假设 A,B 占有 n1,n2 席 不妨设 p1/n1>p2/n2 则 p1/(n1 +1)>p2/n2 == p1/(n1 +1)<p2/n2 对A不公平值(相对)
某校 共200人 20席 调整 人数比例 20席 实际分配 21席 实际分配
甲系 100 10 103 51.3 10.3 10 10.815 11
乙系 60 6 63 31.5 6.3 6 6.615 7
丙系 40 4 34 17 3.4 4 3.57 3
产生问题:分配不公
原因 20个,丙多占0.6 21个,不充分的席位都在增加
p2 (n1 + 1) rA(n1 +1,n2)= -1 p1n2 p1/n1 )>p2/(n2 +1)

数学建模论文 - 席位公平分配问题1

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103, 63, 34, 问20席如何分配。

若增加为21席,又如何分配。

因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。

宴会席位安排的原则

宴会席位安排的原则

宴会席位安排的原则
宴会席位安排的原则根据不同的文化和传统可能有所不同,但以下是一些常见的原则:
1.以右为尊原则:在安排席位时,通常以右为尊,左为卑。

例如,如果男女主人并座,则男左女右,以右为大。

如果席设两桌,男女主人分开主持,则以右桌为大。

2.职位或地位高者为尊原则:在安排席位时,职位或地位高者通常被视为尊贵的人,应该被安排在上席或主位。

这是根据职位或地位的高低来确定的,不能逾越。

3.以职位或地位相同者为原则:如果参加者的职位或地位相同,那么可以按照传统习惯或按照他们的姓名笔画或字母顺序来排列。

4.遵守外交惯例原则:当一国政府的首长如总统或总理款宴外宾时,各国惯例是外交部长的排名在其他各部部长之前。

5.方便交谈原则:在安排席位时,应该尽量让客人之间能够
方便交谈,避免让他们背对背或者面对面地坐着。

这有助于创造一个友好和和谐的氛围。

6.美观原则:在安排席位时,也要注意整体布局的美观性。

桌布、餐具、鲜花和灯光等元素都应该被精心选择和布置,以增加整个宴会的美感和氛围。

这些原则在大多数情况下都适用,但具体的应用可能会因不同的场合和文化背景而有所调整。

在安排宴会席位时,最好提前了解相关文化和礼仪,以确保整个宴会的顺利进行。

公平的席位分配问题

公平的席位分配问题

公平的席位分配问题席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。

通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。

符号设定:N :总席位数 i n :分配给第i 系席位数 (1,2,3i =分别为甲,乙,丙系)P :总人数 i P :第i 系数 (1,2,3i =分别为甲,乙,丙系)iQ :第i 系Q 值 (1,2,3i =分别为甲,乙,丙系)Z :目标函数方法一,比例分配法:即:某单位席位分配数 = 某单位总人数比例⨯总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。

这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。

方法二,Q 值法: 采用相对标准,定义席位分配的相对不公平标准公式:若2211n p n p >则称11221222211-=-n p np n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ,若 2211n p n p < 则称 12112111122-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。

确定分配方案:使用不公平值的大小来确定分配方案,不妨设11n p >22n p ,即对单位A 不公平,再分配一个席位时,关于11n p ,22n p 的关系可能有 1. 111+n p >22n p ,说明此一席给A 后,对A 还不公平;2. 111+n p <22n p ,说明此一席给A 后,对B 还不公平,不公平值为1)1(11),1(212111112221-⋅+=++-=+n p p n n p n p n p n n r B3. 11n p >122+n p ,说明此一席给B 后,对A 不公平,不公平值为1)1(11)1,(121222221121-⋅+=++-=+n p p n n p n p n p n n r A4.11n p <122+n p ,不可能上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。

公平席位分配

公平席位分配

公平的名额分配摘要:公平分配的问题是关乎国家大局,人民情绪的重要问题。

多年以来,我们都在努力寻找“真正的公平”,就此本文讨论了两种常用的分配方法和一种名为d’Hondt方法,并结合人们公认的衡量公平分配的理想化原则,对两种基本方法进行深入剖析。

对于10个名额(席位)的分配,我们先按三个宿舍学生人数比例分配得到2:3:4,然后剩余的一个名额参照惯例分给比例中小数最大的A宿舍,这就是常用且简单的比例加惯例分配法。

当然若按照Q值方法,就必须舍弃所谓惯例,建立新的衡量指标——不公平度,按此指标计算,则多的一个名额应给C宿舍。

十个名额如此,十五个亦然。

d’Hondt法,对于名额(席位)不多的情况更易实施:只需将A,B,C三宿舍人数依次除以自然数列,商数按名额取大值即可,直观简单。

最小方差原则是希望各单位每个席位代表的人数差异不要太大,特别地应该与整个分配方案中平均每个席位所代表的人数P/N差异不要太大。

模型简化后,可直接用比例分配的方差大小表示差异大小,方差小,则说明分配合理,反之,则是不合理。

关键词:比例惯例不公平度Q值方差。

一、问题的重述我们身边时时刻刻都能遇到分配问题,大到一个国家的政策,小到你我家庭中的琐事,任何一个处理不好,都可能引发意想不到的恶果。

因此,公平分配就显得尤为重要。

现在我们已知某校学生要组织一个一定人数的委员会,各宿舍人数给定,总人数亦可知道。

摆在我们面前有三种分配方案,我们需要做的是找到一种方案,这个方案一方面满足委员会的要求,另一方面也让个宿舍成员满意。

怎样做才既能让委员会发挥已有的作用,又不失公平。

这是个问题。

二、模型假设与符号说明假设:1、学校近期没有学生转入或转走现象2、此A,B,C三宿舍人员不再变动(即没有搬入,搬出或互换)。

3、此委员会需三个宿舍共同参与,且此三宿舍均想参与委员会管理。

4、此委员会中无职位差别。

符号表示:n0i比例法得到的整数部分Pi参与分配各方的人数N分配名额总数P参与分配总人数di模型衡量指标m参与分配的单位数量m’初次分配后待定名额ni各方最终分配名额[qiqi向左取整]-[qiqi向右取整]+Z目标函数z0变量名、z01三、问题分析与模型建立有了以上的假设,我们可按下面的思路得到分配方案的结果模型一:第一步:按各宿舍占总人数比例,计算得到固定名额部分第二步:将比例法所得各数取小数部分比较大小,剩余待定名额大者得。

席位公平分配的比例极差法及其改进方法

席位公平分配的比例极差法及其改进方法

席位公平分配的比例极差法及其改进方法
座位公平分配比例极差法作为一种在座位分配时所采用的策略,它将每一位参
与者被分配到相同比例的座位上。

例如:A、B、C三人有80个座位可以分配,则A 获得80/3=26.7%的座位数、B获得80/3=26.7%与C获得80/3=26.7%。

传统的比例极差法存在一定的问题,例如座位数为80,比例可能会分成80/3、80/4、80/5等不同的份额,使参与者出现无中生有的状况,容易引起争端,因此,为了改变这种情况,人们提出了比例极差法的改进方法。

其一是将座位分成多个不同的比例份额,以增加参与者的分配数量,同时提供
精确的分配细节,使不同参与者分配到不同程度的座位数量。

例如,同样有80个
座位总数,通过多比例份额的分配,则可以将这80个座位分成四个比例:A:20%、B:30%、C:25%、D:25%,以此来更精确地分配该座位。

其二是采用多层次座位分配策略。

这种方法将参与者按照职业、年龄或其他标
准进行分组,以便相同的参与者可以获得相同程度的座位分配比例。

例如,A、B、
C三个群体,其中A群体有80/3=26.7%的座位,B群体有80/3=26.7%且C群体有
80/3=26.7%;而经过多层次座位分配策略处理,A群体在原有的26.7%的比例上可
以再次分配成20%、30%、30%,如此,不同参与者可以获得不同程度的分配权,也
可以有效地避免出现某种参与者突然受益的情况。

以上是座位公平分配比例极差法及其改进方法的简介,此法虽然可以很好的解
决座位分配的问题,但其也可能某些情况下产生偏差,如果要进一步改善,可以考虑采取机器学习、人工智能或者更高级的策略。

公平的席位分配模

公平的席位分配模

C宿舍已具备“分配资格” 3)下面每增加一个名额,则重复如下步骤,直至A宿舍具有“分配资格”止, 不失一般性,设 pc p B ,其中m,n分别为已分配给B、C的名额数.
m 1 n 1 pc p p B A a)如果 m 1 n 1 1 ,则A宿舍仍不具备“分配资格”;B、C运用Q值 法,确定这一名额给B还是给C. b)如果 p c p A p B ,则A宿舍仍不具备“分配资格”;且C宿舍的Q m 1 1 n 1
2013-9-22
3模型的优缺点
比例加惯例法存在较大缺陷,Q值法但这种方法缺 点是要求参与分配的各方至少已有一个名额, d’Hondt法尽可能将不公平降低到最低限度,将 d’Hondt和Q值法结合起来的d’Hondt+Q值法是基 于d’Hondt法和Q值法的,后面三种方法都是基于 比例加惯例法进一步得出的,则它们互相有关联, 在一定程度上会受到影响;其次上述四种模型考 虑的实际问题太少,不具有很大的推广性.但是对 于一些简单的分配问题,可以用d’Hondt法模型进 行席位分配.
5
8 11 14
93312.0
31104.0 15552.0 9331.2 6220.8 4443.4
4
6 9 10 13
10个席位的分配,分配名额是4,5,6.
获得名额
2013-9-22
4
5
6
观察结果可得:当席位增至15人时,除了d’Hondt法分
配是3,5,7,其他三种方法3个宿舍分配的人数都是4,5,6, 相比较当3个宿舍分配的人数为3,5,7时,各个宿舍分配 到的每个席位代表的人数更接近,则席位分配更合理.
2013-9-22
3
4.995
5544.5

案例一 公平的席位分配

案例一 公平的席位分配
不失一般性可设 p1 n1 p2 n2 ,即对 A 不公平。当再 分配1个席位时, 关于 Pi ni (i 1,2) 的不等式可能有如下3 种情况:

1、 p1 (n1 1) p2 n2 ,这说明即使 A 方增加1席仍对 A 方不公平,所以应分给 A 方。

2、 p1 (n1 1) p2 n2 ,说明 A 方增加1席时将 变为对 B 方不公平
与(6)式等价 其它两种情况可同样推导(略)
结论:当(6)式成立时增加的1席应分给 A 方,反之则 分给 B 方。 Qi pi2 ni (ni 1) , i 1 , 2 ,则增加的1席 更一般的:若记
应分给 Q 值较大的一方。
推广到有 m 方分配席位的情况:
设第 i 方人数为 pi ,已占有 ni 个席位, i 1,2,3...m 。 当总席位增加1席时,计算
11 7 3 21
因为有 20 个席位的代表会议在表决提案时可能出现 10: 的局面, 10 会议决定下一届增加 1 席。按照上述方法重新分配席位,计算结果见表 6、7 列,而丙系却由 4 席减为 3 席
思考:
要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指 标,并由此建立新的分配方法
寻找新的分配方法
(1)建立数量指标:
讨论 A、 两方公平分配席位的情况。 B 设两方人数分别为 p1 和 p2 , 占有席位分别是 n1 和 n2 , 则两方每个席位代表的人数分别为 p1 n1 和
p2 n2 。显然仅当 p1 n1 = p2 n2 分配才是公平的。
系别
学生 人数
20 个席位的分配 学生人 比例分 参照惯 数的比 例(%) 配的席 例的结 位 果
A B C
1 235 333 432

六、公平的席位分配

六、公平的席位分配

甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
对本例,Q值法可以从 n1 n2 n3 1 (即初始时每系已经占有1
席)开始计算,一直计算到19席的分配结果是 n1 10, n2 6, n3 3 . 再每次增加一席计算。
系别
学生人数
学生人数 的比例
%
20个席位的分配
按比例分 配的席位 10.3 6.3 3.4 20 参照惯例 的结果 10 6 4 20
21个席位的分配
按比例分 配的席位 10.815 6.615 3.570 21 参照惯例 的结果 11 7 3 21
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
%
20个席位的分配
按比例分 配的席位 10.3 6.3 3.4 20 参照惯例 的结果 10 6 4 20
21个席位的分配
按比例分 配的席位 10.815 6.615 3.570 21 参照惯例 的结果 11 7 3 21
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
按比例分 配的席位 10.3 6.3 3.4 20 参照惯例 的结果 10 6 4 20
21个席位的分配
按比例分 配的席位 10.815 6.615 3.570 21 参照惯例 的结果 11 7 3 21
甲 乙 丙 总和
103 63 34 200
51.5 31.5 17.0 100
因为有20个席位的代表会议在表决提案时可能出现10:10的局 面,会议决定增加一席。仍按照比例分配的原则进行,丙系却 因总席位增加了一席,而由4席减少为3席。这个结果显然是不 公平的。

席位公平分配模型

席位公平分配模型

1 席位公平分配模型1.1Q值法Matlaba=[100,202,67,40,59,32];%各单位人数n=length(a);p=30;%总席数S=sum(a);%总人数x=ones(1,n);%各单位初始席位数Q=zeros(1,n);L=sum(x);while(L<p)%所有席位分配完为止for i=1:nQ(i)=a(i)^2/(x(i)*(x(i)+1));%计算各单位Q值end[u,k]=max(Q);%求最大Q值和对应单位kx(k)=x(k)+1;%该单位席位数加1L=L+1;%已分配席位数加1endfprintf('各单位分配席数:')for i=1:nfprintf(' %2d',x(i));endfprintf('\n')2 录音机计数模型t=[1;2;3;4;5;10;15;20;25;30;31];n=[9;18;28;37;47;97;151;211;280;362;382];A=[n,n.*n];[b,bin,r,rint,stats]=regress(t,A);%线性回归fprintf('回归方程为t= %7.5f*n+%7.5f*n^2.\n’,b(1),b(2)');fprintf('复数关系数R^2= %6.4f F= %8.2f 概率p= %7.5f\n’,stats(1),stats(2),stats(3)'); num=500nn=zeros(num,1);tt=zeros(num,1);dt=max(n)/num;for i=1:numnn(i)=i*dt;tt(i)=b(1)*nn(i)+b(2)*nn(i)^2;endplot(n,t,'*b',nn,tt,'r')%作比较图3足球比赛排名问题建立邻接矩阵A ,i 和j ,若i 胜j 场次多,则令][ij a =1,ji a =0;若i 和j 胜的场次一样多,但i 比j 净剩球多女,则令ij a ij=1,0=ji a ,若i 和j 胜得场次一样多,净球也一样,或者i 和j 没有交站,则令1,1=-=ji ij a a %不完全令节矩阵A=[0 -1 0 1 1 1 0 0 1 -1 -1 -1 -1 0 0 1 0 1 0 -1 1 0 -1 -1 1 1 0 1 1 1 0 1 -1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 1 0 0 -1 -1 -1 -1 -1 0 0 0 0 1 1 0 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1 0 1 1 1 1 1 1 -1 0 1 -1 -1 0 0 -1 -1 1 -1 0 0 -1 1 -1 -1 0 -1 0 1 1 1 -1 1 0 1 -1 -1 0 -1 0 0 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 -1 -1 -1 -1 1 -1 0 -1 0 0 1 0]; [m,n]=size(A); D=A; for i=1:m for j=1:nif(D(i,j)==-1) D(i,j)=2;end end end%获得一级得分向量 a1=zeros(1,n); for i=1:m s=0; for j=1:nif(A(i,j)==1) s=s+A(i,j);end enda1(i)=s;end%获得二级得分向量 a2=zeros(1,n); for i=1:m s=0; for j=1:nif(A(i,j)==1) s=s+A(i,j);endenda2(i)=s;end%根据一级和二级得分向量完善邻接矩阵A for i=1:mfor j=1:nif(A(i,j)==-1)if(a1(i)>a1(j)) A(i,j)=1;A(j,i)=0;endif(a1(i)<a1(j)) A(i,j)=0;A(j,i)=1;end endendendfor i=1:mfor j=1:nif(A(i,j)==-1)if(a2(i)>a2(j)) A(i,j)=1;A(j,i)=0;endif(a2(i)<a2(j)) A(i,j)=0;A(j,i)=1;end endendendfor i=1:mfor j=1:nif(A(i,j)==-1)r=rand(1,1);if(r>=0.5) A(i,j)=1;A(j,i)=0;else A(i,j)=0;A(j,i)=1;endendendendnum=20;Y=ones(n,1);B=A;for i=1:numY=A*Y;B=B*A;end[u,v]=eig(A);for i=1:nz(i)=v(i,i);end[p,k]=max(z)%获取最大特征值及位置w=u(:,k)%获取最大特征值对应的特征向量w=w/sum(w);fprintf('序号得分特征向量\n');for k=1:nfprintf(' %2d %-7d %-5.3f\n',k,Y(k),w(k));end4健康疾病模型4.1人的健康状态分为健康和疾病,以一年作为一个阶段,设转移率为;今年健康明年健康概率为0.8,今年健康明年疾病的概率为0.2;今年疾病明年健康的概率为0.7,今年疾病明年疾病的概率为0.3.若按此规律一直继续下去,处于健康和疾病状态的人的概率分布如何?n=50000;x=zeros(n,1);rd=rand(n,1);x(1)=1;%设定初始状态为健康for i=1:n-1if(x(i)==1)%当前为健康状态if(rd(i)<0.8) x(i+1)=1;else x(i+1)=0;endelse%当前状态为疾病if(rd(i)<0.7) x(i+1)=1;else x(i+1)=0;endendendp1=sum(x)/n;p2=1-p1;fprintf('处于健康状态频率%6.4f,处于疾病状态频率%6.4f\n',p1,p2);fprintf('处于健康状态概率%6.4f,处于疾病状态概率%6.4f\n',7/9,2/9);4.2 若人的状态分为健康、疾病、死亡,以一年作为一个阶段,设转移概率为:今年健康,明年健康概率为0.8,明年疾病的概率为0.2,明年死亡概率为0.18;今年疾病,明年健康的概率为0.7,今明年疾病的概率为0.3.明年死亡概率为0.25若按此规律一直继续下去,处于健康、疾病和死亡状态的人的概率分布如何?n=50000;x=zeros(n,1);rd=rand(n,1);x(1)=1;%设定初始状态为健康%1 健康2 疾病3 死亡for i=1:n-1if(x(i)==1)%当前为健康状态if(rd(i)<0.8)x(i+1)=1;elseif(rd(i)<0.98) x(i+1)=2;else x(i+1)=3;endelseif(x(i)==2)%当前为疾病状态if(rd(i)<0.65) x(i+1)=1;elseif(rd(i)<0.9) x(i+1)=2;else x(i+1)=3;endelse%当前为死亡状态x(i+1)=3endends1=0;s2=0;s3=0;for i=1:nif(x(i)==1) s1=s1+1;else if(x(i)==2) s2=s2+1;else s3=s3+1;endendp1=s1/n;p2=s2/n;p3=s3/n;fprintf('处于健康状态频率%6.4f,处于疾病状态频率%6.4f\n,处于死亡状态的频率%6.4f\n',p1,p2,p3);用时注意n=? rand(n,1)n=5;L=zeros(n,n);L(1,:)=[0 0 0 0 0 ];L(2,1)=0.6296;L(3,2)=0.9592;L(4,3)=0.679;L(5,4)=0.9091;p=abs(eig(L));for i=1:nif p(i)>1lp=p(i);h=1-1.0/lp;endendX=floor(6*rand(5,1));XX=[];s=[];s(1)=sum(X);for i=2:100XX=L*X;%XX=floor(XX+0.5);s(i)=sum(XX);if s(i)>100X=(1-h)*XX;elseX=XX;endendplot(s);model:sets:point/1..4/;road(point,point):W,X;endsetsdata:W=2 8 1 02 0 6 08 6 0 71 0 7 0enddatamin=@sum(road(i,j):w(i,j)*x(i,j);!最短路;@for(point(i)|i#ne#1#and#i#ne#11:@sum(point(k):x(k,i))=@sum(point(j):x(i,j))); @sum(point(j)|j#ne#1:X(1,j))=1;!起始点要出去;@sum(point(k)|k#ne#1:x(k,1))=0;!不能回到起始点;@sum(point(k)|k#ne#11:x(k,11))=1;!不能达目标点;@sum(point(j)|j#ne#11:x(11,j))=0;!目标不能出去;@for(road(i,j):x(i,j)<=W(i,j));!不能到达的路不考虑;@for(road(i,j):@bin(x(i,j)));end。

公平的席位分配

公平的席位分配

公平的席位分配问题提出:某学校有3个系⼀共200名学⽣,其中甲系100名,⼄系60名,丙系40名。

如果学校代表会议设置20个席位,怎样公平地分配席位?思考:按照传统的思维⽅式,按照每个系的⽐例进⾏席位的分配。

在该问题中,甲⼄丙三个系的⼈数⽐例为100:60:40=5:3:2。

因此按照这个⽐例进⾏席位的分配可以公平简单的实现席位分配。

但是上⾯的例⼦有些特殊,因为每个系的⼈数⽐例正好是整数,并且能够恰好分配所有的席位。

现在将问题进⼀步⼀般化。

假设甲系学⽣103⼈,⼄系学⽣63⼈,丙系学⽣34⼈。

此时甲⼄丙学⽣⼈数所占⽐例分⽐为51.5%、31.%、17.0%。

仍然分配20个席位,此时甲⼄丙按⽐例分配的席位个数分别为:10.3、6.3、3.4三个系进过协商同意将最后⼀个席位分配给⽐例中⼩数部分最⼤的丙系。

此时甲⼄丙席位分别为10、6、4现在问题进⼀步复杂。

由于决策过程可能出现10:10的现象,会议决定将增加⼀个席位。

依旧按照上述的将最后⼀个席位分配给⼩数⽐例最⼤的那个系。

见下⾯表格不过现在通过表格可以看出:总席位的增加,反⽽导致丙系由4个席位减少⾄3个席位,这样的分配⽅法(将最后⼀个席位分配给⼩数⽐例最⼤的那个系)对丙系不公平。

因此问题出现在分配席位的⽅法上⾯。

该分配席位的⽅法称为最⼤剩余法或者最⼤分数法最⼤分数法明显的缺陷:⼈⼝悖论,某⽅⼈⼝增加反⽽导致该⽅席位数⽬减少。

例如上述三系学⽣变为114,64,34.按照最⼤剩余法,21个席位的分配结果应该是:11、6、4,⼄系学⽣⼈数增加席位反⽽⽐原来少1席,丙系学⽣数量不变席位反⽽多了1席。

为了寻找新的公平的席位分配⽅法,先讨论衡量公平的数量指标不公平度指标为了简单,只考虑A,B两⽅分配席位的情况。

设两⽅⼈数分别为p1,p2,占有席位分别为n1,n2.则⽐例p1/n1,p2/n2为两⽅每个席位所代表的⼈数。

显然只有当p1/n1=p2/n2时,分配才公平。

席位公平分配

席位公平分配

席位公平分配的“绝对+优化”摘 要: 为了使席位分配达到更高的公平度.本文采用了“绝对+优化”选择法.不是像以往那样直接地用Q 值法或d’Hondt 法进行分配.而是在分配之前又做了一次“深加工”,即将所有的组数随机的分为两组选出最优的,进行分配,再在选出的两组中每组再分成两组选出最优的再分配依次进行直到分配结束,整个过程都是在优选中完成的.充分的展示了优化组合的合理性、公平性.关键词: 公平度;优化组合;绝对值;深加工;最优 0 引言席位分配的公平与否历来受到人们的普遍关注,特别是在政治学、管理、对策论和能源利用等领域具有广泛的应用.1974 年,M.L.Balinski 和H. P. Young 引入了席位分配问题的公理化体系,认为合理的分配方法f 应该包含五条公理:人口单调性公理、无偏性公理、席位单调性公理、公平分摊性公理和接近份额性公理[]1.其中席位单调性和公平分摊性由于在美国众议院引起诸多悖论而广受关注.我们知道,不存在绝对公平的分配方案,于是,人们便致力于研究席位分配的相对公平问题,寻找不同公平原则下的分配方法,如比例+惯例法、Q 值法、x 2拟合法、0 -1规划法、最大熵法、最小极差法、最大概率法等[]9-2.究竟如何分配才算是最为公平的呢?本文为此提出了一种新方法——“绝对+优化”.1 席位公平分配问题的数学模型1.1 席位分配问题的描述假设m 方,第i 方的人数为i n (i=1,2,3…,m),共有n=Σm i 1=i n 人,从中选出k 个代表,第i 方的席位为w i (i=1,2,3…,m),如何寻找一组非负整数,,21w w …m w ,使k=Σmi 1=w i,并尽可能公平.理想的公平分配方案是按人数比例分配,即第i 方应分配w i =(i n /n)k 个席位,但在实际中此数往往不是整数,这是如果按四舍五入或上下取整的方法可能导致分配更不公平.1.2 绝对+优化记t=[m/2],将m 按t:m-t 随机的组合为1组,2组,共有w=c m i 种情况,当m=2时,直接按Q 值法进行分配,当m>2时,直接按Q 值法不满足平均分配的公理一,记Δ=∣(n a 1-[k n a 1/n][n/k]-(n a 2-[k n a 2/n][n/k]∣( n a 1 ,n a 2为第a 次组合时1组,2组的总人数,a=1,2,…w).当Δ=0时为最优组合,当Δ>0时,从所有组合中选取最大的为最优组合,然后按Q 值法进行分配,再在选出的两组中再组合、分配,直到结束.1.3 理论证明(a):当Δ=0时,显然知两组的相对不公平度为零.(b):当Δ>0时,则有[k n a 1/n]+ [k n a 2/n]=k-1,即余下一位未分配,令x 1=n i 1-[k n i 1/n][n/k], x 2=n i 2[k n i 2/n][n/k],不妨设x 1< x 2 ,则x 2/( x 1+ x 2)所占的比例越大,对1组来说失去这一席位的不公平度越小,如1组2组的比例分别为(0.1,0.9),(0.4,0.6)显然按第一种情况分配更公平.2 实例分析例1: 某学校共1000名学生,235人住在A 单元,333人住在B 单元 ,432人住在C 单元,学生们要组织一个15人的委员会,请给出具体的分配方案?当增加为20时的分配结果?2.1模型求解有题知种情况分别是:,之差的绝对值为:知为最优组合.按组合比例法对其分配如下:,总的分配结果:直接按Q值法求得的结果为:,d’Hondt法分配结果:当为20名委员时:为:知为最优组合.分配结果: Q值法分配结果:d’Hondt法分配结果:表1 三种方法的分配结果比较表2A B C表示其值越大表示分配时越不公平,显然可以看出优化法还是比较公平的,虽然和Q 值法较接近,但当数据和组数较多时优化法显然要优于Q法.经过下面的较量,优化法的优越性,公平性,合理性能的到更好的展示.3模型的优越性较量此过程将证明为什么先组合再分配是最优的,若所有的都等于z时则最公平,但这种结果是在极少的情况下才会出现的,那么对于一般的情况而言,只有充分接近Z时分配才是最公平的,即越小越公平.那么也就是说将连续化做成图形其波动越小越公平.例2当n =1500,i=16,k=50时,各单位人数如表3所示.有表3中的数据可得表4,表5,表6,表7,图1.图1:系列1、系列2、系列3、系列4纵轴分别表示,总单元数分别分为16组、8组、4组、2组的人数与席位数之比.从图中可以清晰地看出分的组数越少曲线越平缓.当分两组时曲线近似接近直线,也即是说两者之间的不公平性非常的小,席位分配的也就越合理,越公平.从而证明了优化组合分配的优越性,公平性.5 结束语本模型打破了原有的老路,利用了优化组合的思想,使每一次分配都达到了最优,最公平.若将其应用到能源的分配、资金投资、人员安排上将会达到物尽其用,人尽其才的效果.参考文献[1] 吴建国.数学建模案例精编.北京:中国水利水电出版社,2005.[2] 林健良.席位公平分配的最小极差法的改良.华南理工大学学报:自然科学版,2002,30(3):22-23.[3] 万中,罗汉.席位分配问题的数学模型[J].湖南大学学报:自然学版,2001,28(6):5-9.[4] 郭文旌,周幼英,胡奇英.带有初始风险证券的最优组合投资[J].系统工程学报,2003,18(5):391-396.[5] 岳林.关于Q值法的一种新定义[J].系统工程,1995,13(4):70-72.。

数学建模论文 - 席位公平分配问题1

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103, 63, 34, 问20席如何分配。

若增加为21席,又如何分配。

因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。

公平席位分配Q值法

公平席位分配Q值法

1 问题的假设与符号定义1.1问题的假设:1.席位是以整数计量的,并且为有限个,设为N个;2.每个系别有有限个人,席位是按各集体的人员多少来分配的;3.每个系别的每个人被选举都是等可能的;4.每个单位至少应该分配到一个名额,如果某个单位,一个名额也不应该分到的话,则应将其剔除在分配之外;5.在名额分配的过程中,分配是稳定的,不受任何其他因素所干扰.1.2符号的定义:n----表示某系别的席位数(n1、n2、n3分别表示甲、乙、丙的席位数);p----表示某系别的人数(p1、p2、p3分别表示甲、乙、丙的人数);q-------表示总席位数;N-------表示总的席位人数.Q-------表示某单位的Q值.3 问题的分析通常人们都是按照人数比例来进行分配的.当比例中有小数时,人们又按照惯例将多余的席位分给比例中小数最大者.我们能得出以下结论:*公式:Npqn/4 模型建立目标:建立公平的席位分配方案.4.1 引出绝对不公平值并给出相对不公平值:设A,B 两方人数分别为21,p p ;分别占有 1n 和2n 个席位,则两方每个席位所代表的人数分别为11n p 和 22n p. 我们称 2211n p n p - 为.例:10,100,1202121====n n p p则22211=-n p n p ; 又 10,1000,10202121====n n p p 则22211=-n p n p 由上例可知,用绝对不公平程度作为衡量不公平的标准,并不合理,下面我们给出相对不公平值.①若 2211n p n p >则称 11221222211-=-n p n p n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ;②若 2211n p n p <则称 12112111122-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B .4.2给出相对公平的席位分配方案:如果,A B 两方分别占有1n 和2n 席,利用相对不公平值A r 和B r 讨论,当总席位增加1席时,应该分配给A 还是B.不妨设1122>p n p n ,即对A 不公平,当再分配一个席位时,有以下三种情况:I .当221>+11p pn n 时,这说明即使给A 增加1席,仍然对A 不公平,所以这一席显然应给A 方.II.当221<+11p pn n 时,这说明给A 增加1席,变为对B 不公平,此时对B 的相对不公平值为:21121211-1 ++=()(,)B p n r n n p n (3)III.当221>+11p pn n 时,这说明给B 增加1席,将对A 不公平,此时对A 的相对不公平值为:12122111-1 ++=()(,)A p n r n n p n (4)因为公平分配席位的原则是使相对不公平值尽可能小,所以如果121211+<+(,)(,)B A r n n r n n (5)则这1席给A 方,反之这1席给B 方.由(3)(4)可知,(5)等价于21222211<11++()()p p n n n n (6)不难证明上述的第I 种情况221>+11p pn n 也与(6)式等价,于是我们的结论是当(6)式成立时,增加的1席应给A 方,反之给B 方.若记:2, =1,21=+()i i i i p Q i n n则增加的1席给Q 值大的一方.4.3模型内部推广:上述方法可以推广到有m 方分配席位的情况.设第i 方人数为i p ,已占有i n 个席位.当总席位增加1席时,计算:2, =1,21=+()L i i i i p Q i m n n ,,则增加的1席应分配给Q 值大的一方.这种席位分配的方法称为Q 值法.5 模型求解5.1下面用Q 值法讨论甲,乙,丙系分配20个席位的问题:先按照比例将整数部分的10席分配完毕n 1=10, n 2=6, n 3=3,.再用Q 值法分配第20席和第21席;分配第20席,计算得:Q1=96.4; Q2=94.5; Q3=96.3Q1最大,于是这1席应分给甲系.分配第21席,计算得:Q1=80.4;Q2=94.5;Q3=96.3;Q3最大,于是这1席应分给丙系.5.2现象分析及结果:根据Q值分配结果与假定情况一的现象,易得出:惯例分配总席位为21时,分配不公平,以至得出总席位数N增加一个,丙的席位数反而减少了一个的错误结论.6 模型评价●我们巧用绝对值,避免了分两种情况.从而简化了运算.●改进后的Q值法席位分配方案应用性推广,分配更公平.。

公平分配席位数学建模

公平分配席位数学建模

公平分配席位是一种数学建模问题,通常涉及到在一个组织或机构内,如何公平地分配有限的席位或资源给不同的成员或利益相关者。

该问题可通过以下步骤建立数学模型:
1.定义问题:明确参与者、资源和目标,确定席位数量和分配规则。

2.建立评价指标:根据目标和分配规则,建立评价指标来衡量分配方案的公平性和效
率性。

3.确定算法:选择合适的算法来进行席位分配,例如最大剩余法、顺序分配法、随机
分配法等。

4.模型求解:通过计算机程序或手工计算,进行模型求解,得出最优分配方案。

5.结果分析:对比各个方案的评价指标,选择最优方案并进行结果分析,验证模型的
可靠性和有效性。

公平分配席位模型可以应用于政治、教育、医疗、社会保障等领域,如选举、大学招生、医疗资源分配、社会福利等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

席位公平分配的“绝对+优化”
摘 要: 为了使席位分配达到更高的公平度.本文采用了“绝对+优化”选择法.不是像以往那样直接地用
Q 值法或d’Hondt 法进行分配.而是在分配之前又做了一次“深加工”,即将所有的组数随机的分为两组选出最优的,进行分配,再在选出的两组中每组再分成两组选出最优的再分配依次进行直到分配结束,整个过程都是在优选中完成的.充分的展示了优化组合的合理性、公平性.
关键词: 公平度;优化组合;绝对值;深加工;最优 0 引言
席位分配的公平与否历来受到人们的普遍关注,特别是在政治学、管理、对策论和能源利用等领域具有广泛的应用.1974 年,M.L.Balinski 和H. P. Young 引入了席位分配问题的公理化体系,认为合理的分配方法f 应该包含五条公理:人口单调性公理、无偏性公理、席位单调性公理、公平分摊性公理和接近份额性公理[]1.其中席位单调性和公平分摊性由于在美国众议院引起诸多悖论而广受关注.我们知道,不存在绝对公平的分配方案,于是,人们便致力于研究席位分配的相对公平问题,寻找不同公平原则下的分配方法,如比例+惯例法、Q 值法、x 2
拟合法、0 -1规划法、最大熵法、最小极差法、最大概率法等[]
9-2.究竟如何分配
才算是最为公平的呢?本文为此提出了一种新方法——“绝对+优化”.
1 席位公平分配问题的数学模型
1.1 席位分配问题的描述
假设m 方,第i 方的人数为i n (i=1,2,3…,m),共有n=Σ
m i 1
=i n 人,从中选出k 个代表,第i 方的席位
为w i (i=1,2,3…,m),如何寻找一组非负整数,,21w w …m w ,使k=Σ
m
i 1=w i
,并尽可能公平.
理想的公平分配方案是按人数比例分配,即第i 方应分配w i =(i n /n)k 个席位,但在实际中此数往往不是整数,这是如果按四舍五入或上下取整的方法可能导致分配更不公平.
1.2 绝对+优化
记t=[m/2],将m 按t:m-t 随机的组合为1组,2组,共有w=c m i 种情况,当m=2时,直接按Q 值法进行分配,
当m>2时,直接按Q 值法不满足平均分配的公理一,记Δ=∣(n a 1-[k n a 1/n][n/k]-(n a 2-[k n a 2/n][n/k]∣( n a 1 ,n a 2为第a 次组合时1组,2组的总人数,a=1,2,…w).当Δ=0时为最优组合,当Δ>0时,从所有组合中选取最大的为最优组合,然后按Q 值法进行分配,再在选出的两组中再组合、分配,直到结束.
1.3 理论证明
(a):当Δ=0时,显然知两组的相对不公平度为零.(b):当Δ>0时,则有[k n a 1/n]+ [k n a 2/n]=k-1,
即余下一位未分配,令x 1=n i 1-[k n i 1/n][n/k], x 2=n i 2[k n i 2/n][n/k],不妨设x 1< x 2 ,则x 2/( x 1+ x 2)所占的比例越大,对1组来说失去这一席位的不公平度越小,如1组2组的比例分别为(0.1,0.9),(0.4,0.6)显然按第一种情况分配更公平.
2 实例分析
例1: 某学校共1000名学生,235人住在A 单元,333人住在B 单元 ,432人住在C 单元,学生们要组织一个
15人的委员会,请给出具体的分配方案?当增加为20时的分配结果?
2.1模型求解
有题知
种情况分别是
:
,之
差的绝对值为:知为最优组合.按组合比例法对其分配如下:
,总的分配结果:
直接按Q值法求得的结果为:,d’Hondt法分配结果:
当为20名委员时:为:知为最优组合.
分配结果
: Q值法分配结果:d’Hondt法分配结果:表1 三种方法的分配结果比较
表2
A B C
表示其值越大表示分配时越不公平,显然可以看出优化法还是比较公平的,虽然和Q 值法较接近,但当数据和组数较多时优化法显然要优于Q法.经过下面的较量,优化法的优越性,公平性,合理性能的到更好的展示.
3模型的优越性较量
此过程将证明为什么先组合再分配是最优的,若所有的都等于z时则最公平,
但这种结果是在极少的情况下才会出现的,那么对于一般的情况而言,只有充分接
近Z时分配才是最公平的,即越小越公平.那么也就是说将连续化做成图形其波动越小越公平.
例2当n =1500,i=16,k=50时,各单位人数如表3所示.
有表3中的数据可得表4,表5,表6,表7,图1.
图1:
系列1、系列2、系列3、系列4纵轴分别表示,总单元数分别分为16组、8组、4组、2组的人数与席位数之比.
从图中可以清晰地看出分的组数越少曲线越平缓.当分两组时曲线近似接近直线,也即是说两者之间的不公平性非常的小,席位分配的也就越合理,越公平.从而证明了优化组合分配的优越性,公平性.
5 结束语
本模型打破了原有的老路,利用了优化组合的思想,使每一次分配都达到了最优,最公平.若将其应用到能源的分配、资金投资、人员安排上将会达到物尽其用,人尽其才的效果.
参考文献
[1] 吴建国.数学建模案例精编.北京:中国水利水电出版社,2005.
[2] 林健良.席位公平分配的最小极差法的改良.华南理工大学学报:自然科学版,2002,30(3):22-23.
[3] 万中,罗汉.席位分配问题的数学模型[J].湖南大学学报:自然学版,2001,28(6):5-9.
[4] 郭文旌,周幼英,胡奇英.带有初始风险证券的最优组合投资[J].系统工程学报,2003,18(5):391-396.
[5] 岳林.关于Q值法的一种新定义[J].系统工程,1995,13(4):70-72.。

相关文档
最新文档