基因在大肠杆菌和酵母的高效表达

合集下载

基因工程课后习题答案

基因工程课后习题答案

2.质粒DNA和病毒(噬菌体)DNA作为载体的主要特征是什么为外源基因提供进入受体细胞的转移能力;为外源基因提供在受体细胞中的复制能力或整合能力;为外源基因提供在受体细胞中的扩增和表达能力;具有多种单一的核酸内切酶识别切割位点,具有合适的选择标记3.如何理解质粒的不相容性及其在DNA重组克隆过程中的运用意义质粒的不相容性:具有相同或相似复制子结构及调控模式的两种不同的质粒不能稳定存在于同一受体细胞内.4.列举表达质粒、穿梭质粒、探针质粒和cos质粒的不同用途表达质粒:在多克隆位点的上下游分别装有两套转录效率较高的启动子、合适的核糖体结合位点序列(SD)序列以及强有力的终止子结构,使得克隆在合适位点上的任何外源基因均能在受体细胞中高效表达。

穿梭质粒:质粒分子上含有两个亲缘关系不同的复制子以及相应的选择性标记,能在两种不同的受体细胞中复制并检测。

探针质粒:用来筛选克隆基因的表达调控元件。

通常含有报告基因,但缺少相应的调控序列(如启动子或终止子),只有含有启动子或终止子的调控序列被克隆进入载体后,报告基因才能别表达,表达量的大小直接反应了克隆进入的调控元件的强弱。

cos质粒:人工构建的含有λDNA的cos位点序列和质粒复制子的特殊类型的质粒载体。

具有大的装载量,可以用于构建基因组文库。

5. II类限制性核酸内切酶的主要酶学特征是什么分子量较小的单体蛋白,双链识别和切割活性仅需Mg2+,识别位点为4-6个bp的回文序列,切割位点在识别序列中或靠近识别序列7. KLenow酶与大肠杆菌DNA聚合酶I在结构和功能上的主要区别DNA聚合酶I包括大片段(klenow片段)和小片段功能上:DNA聚合酶I比klenow酶多了5’→3’核酸外切酶活性,两者都具有5’→3’DNA聚合酶活性和3’→5’核酸外切酶活性。

8.影响限制性核酸内切酶活性的主要因素有哪些?温度、盐度等物理因素,DNA样品纯度,DNA甲基化程度,限制性核酸内切酶的缓冲液性质,甘油和微量的金属离子会抑制限制性内切酶的活性9.如何理解粘性末端比平头末端更容易连接在退火条件下,粘性末端的连接为分子内反应,平头末端是分子间反应,平头末端的连接反应更加复杂,速度也慢。

大肠杆菌表达系统

大肠杆菌表达系统

大肠杆菌表达系统总结随着分子生物学和蛋白组学的迅猛发展,外源基因表达的遗传操作技术日趋成熟。

表达系统是外源基因表达的核心,常用表达系统一般为模式生物,包括真核表达系统和原核表达系统,其中真核系统包括了哺乳动物细胞表达系统、植物体表达系统、昆虫杆状病毒表达载体系统以及酵母表达系统,原核表达系统则主要为大肠杆菌表达系统。

大肠杆菌是目前应用最广泛的原核表达系统,也是最早进行研究的外源基因表达系统,其遗传学背景清晰、生长快、较易实现高密度培养、成本低、产量高,相较于其它表达系统具有难以比拟的优越性,是商业生产中应用最广泛的表达系统,取得了巨大的科研价值和经济效益。

大肠杆菌表达系统目前广泛应用于表达生产多种蛋白质/多肽类药物和生物化学产品,包括:重组人胰岛素、a2b型干扰素、兰尼单抗、紫色杆菌素和牡丹皮葡萄糖苷等。

据统计,1986-2018年由美国FDA和欧洲EMA批准上市的重组蛋白类药物中有26%来自于大肠杆菌。

与此同时,目前通过大肠杆菌表达的基因工程疫苗也进入市场或处于临床实验阶段,如戊型肝炎疫苗、人乳头瘤病毒疫苗、流感A型疫苗等。

常见的大肠杆菌表达系统有BL21系列、JM109系列、 W3110系列和K802系列等,其中大肠杆菌 BL21( DE3)菌株是目前应用于重组蛋白表达研究最广泛的菌株之一,BL21(DE3)是由大肠杆菌B系列与K-12系列的衍生菌株通过 P1 转导等遗传突变获得的。

该类菌株通常为宿主蛋白酶缺失型,以保证外源蛋白在表达过程中不被降解,维持表达的稳定性。

大肠杆菌表达系统在商业生产中具有巨大的优越性和价值,但建立高效匹配的表达系统是实现商业价值的关键,包括宿主菌、外源基因、载体的选择与匹配。

宿主菌的选择是第一步,对表达活性和表达量影响很大,理想的宿主菌株是蛋白酶缺陷型,避免蛋白酶过多引起的产物不稳定,常见的蛋白酶缺陷型菌株为BL21系列菌株。

其次是外源基因,外源基因决定了是否可获得目的产物,原核基因可在大肠杆菌中直接表达,而真核基因不能再大肠杆菌中直接表达。

第4章 基因在大肠杆菌和酵母中的表达

第4章  基因在大肠杆菌和酵母中的表达
产生包含体原因: 原核细胞缺乏真核细胞的修饰系统; 缺乏折叠所需的酶和辅助因子,无法正确折叠; 合成速度过快,产量太高; 蛋白质类型; 培养条件(温度及培养基)
降低包含体形成的措施: 降低培养温度;诱导物浓度; 培养基中加入添加剂;培养基组分、pH等。
包含体复性方法: 尿素; 透析、稀释和超滤复性法; PEG、TritonX、肝素、人工伴侣等
原核表达系统的优点与不足
优点:
产量高、表达高效; 操作简单(可调控表达、方便纯化); 可大规模发酵生产; 成本低。
不足:
缺乏真核中的修饰系统,产物有时缺乏活性。 表达产物易形成包含体。
第二节 真核表达——目的 基因在酵母中的表达
酵母菌表达外源蛋白的优点:
遗传背景清楚 属真核模式生物,具备蛋白质翻译后加 工系统 可发酵生产 不产生内毒素,属安全的表达系统
2
ü 优点: 1. 由于周质中蛋白质种类比较少,因此目标
蛋白质的纯化就比较简单
2. 蛋白质酶解的程度不甚严重
3. 促进了二硫键的形成及蛋白质的折叠作用 (氧化环境)
4. 蛋白质的N-末端结构真实
正确折叠的蛋白质,在转运过程中,在 体内对信号肽进行切割
五、包含体及复性
包含体(inclusion body):蛋白质在大肠杆菌中 大量表达时,在胞内聚集形成不可溶的、没有生物 活性的固体颗粒。
T7 RNA聚合酶/T7启动子的优点:
合成RNA的速度高;
只识别T7启动子,不启动其它基因的转录;
对利福平(能抑制大肠杆菌RNA聚合酶)等抗 生素有抗性,能表达一些大肠杆菌RNA聚合酶 不能转录的序列;
产物量大,可达总蛋白的25%以上。
1
94kDa 67 kDa 43 kDa

实验九 外源基因在大肠杆菌中的诱导表达和降解物阻遏作用

实验九 外源基因在大肠杆菌中的诱导表达和降解物阻遏作用

实验九外源基因在大肠杆菌中的诱导表达和降解物阻遏作用【实验目的】1.了解外源基因在原核细胞中表达的基础理论。

2.掌握乳糖操纵子的调节机制和操作方法。

【实验原理】1.外源基因在原核细胞中的表达蛋白质通常是研究的最终目标,因此蛋白质的表达在基因工程中占有非常重要的地位。

常用的表达系统有原核细胞和真核细胞。

原核细胞表达系统主要使用大肠杆菌,真核细胞表达系统主要有酵母细胞、哺乳动物细胞和昆虫细胞。

这些表达系统各有优缺点,应根据实验目的和实验室条件加以选择。

本实验主要介绍以大肠杆菌为代表的原核细胞表达系统。

(1)大肠杆菌表达系统的特点:生物学特性和遗传背景清楚,易于操作;已开发较多的克隆载体可供选择;容易获得大量的外源蛋白(外源蛋白可占细菌总蛋白50%左右)。

(2)蛋白质在原核细胞中的表达特点:原核细胞有其固有的RNA聚合酶,识别原核基因的启动子。

因此,在用原核细胞表达目的基因(无论是真核基因还是原核基因)时,一般应使用原核启动子。

原核基因的mRNA含有SD序列,启动蛋白质的合成。

而在真核基因上则缺乏该序列。

因此,一些商品化原核表达载体上设计有SD序列,以方便真核基因的表达。

原核细胞没有mRNA转录后加工的能力。

因此,在原核细胞中表达真核基因时,应使用cDNA 为目的基因。

原核细胞缺乏真核细胞对蛋白质进行翻译后加工的能力。

如表达产物的功能和蛋白质的糖基化、高级结构的正确折叠有关,必须慎重使用原核表达系统。

外源基因在大肠杆菌中高效表达时,表达产物往往在胞浆聚集,形成均一密度的包涵体。

包涵体的形成有利于保护表达产物不被胞内的蛋白酶降解,而且可以通过包涵体和胞内其他蛋白质密度不同来纯化包涵体蛋白。

但包涵体蛋白不具有该蛋白的所有生物学活性,往往需要通过变性复性的方法恢复活性,有时只能回复部分活性。

(3)蛋白质在原核细胞表达的调控启动子是转录水平调控的主要因素。

根据启动子起始mRNA合成效率的不同,可分为强、弱启动子,但是启动子的强弱是相对于不同基因而言的。

大肠杆菌酵母双杂交系统在基因互作研究中的应用

大肠杆菌酵母双杂交系统在基因互作研究中的应用

大肠杆菌酵母双杂交系统在基因互作研究中的应用生命科学研究中,基因互作是一个重要的研究领域,对了解基因的功能,及其在生物学中的重要性具有关键性意义。

近年来,越来越多的研究者运用酵母双杂交系统来研究基因互作。

其中,大肠杆菌酵母双杂交系统在基因互作研究中的应用越来越广泛。

1. 大肠杆菌酵母双杂交系统简介酵母双杂交系统(yeast two-hybrid system)最早是由Fields与Song在1989年提出的,它是一种通过互补形成基因蛋白质互作物的方法。

大肠杆菌酵母双杂交系统(E. coli yeast two-hybrid system)是在酵母双杂交系统的基础上发展而来的。

它是通过将酵母双杂交系统中的酵母菌GAL4基因融合到大肠杆菌中的一种表达载体,并在其上构建相应的表达基因来实现的。

通过这种方法,大肠杆菌系能够鉴定出与目标蛋白质相互作用的蛋白质,并通过一些方法进行确认和鉴定。

2. 大肠杆菌酵母双杂交系统的优点(1)鉴定简单:大肠杆菌酵母双杂交系统只需要一些特定的基因表达载体,而不需要其他繁琐的操作,使其鉴定基因互作关系的过程变得更加简单。

(2)兼容成熟技术:大肠杆菌酵母双杂交系统是在酵母双杂交系统技术的基础上发展起来的,因此,其技术兼容性是酵母双杂交系统的一个很好的特点。

大肠杆菌酵母双杂交系统可以通过一定的改变来应对不同的研究需求。

(3)识别特异性高:大肠杆菌酵母双杂交系统的识别特异性非常高,能够鉴定出相互作用蛋白的特异性差异。

3. 大肠杆菌酵母双杂交系统的应用大肠杆菌酵母双杂交系统的主要应用是用于了解蛋白质之间的定向互作关系。

例如,研究一个特定的基因是如何参与一个生物功能的,就需要找到与之相关的其他基因,以了解它们之间是否发生了相互作用。

在研究基因调控的过程中也能使用它进行分析。

此外,大肠杆菌酵母双杂交系统还能运用于感染病毒的分析。

例如:通过大肠杆菌酵母双杂交系统的研究,有学者发现存在于整个病毒基因组中、并参与了其复制的两个产生蛋白质。

极端耐热木聚糖酶基因在大肠杆菌和毕赤酵母中的高效表达

极端耐热木聚糖酶基因在大肠杆菌和毕赤酵母中的高效表达

极端耐热木聚糖酶基因在大肠杆菌和毕赤酵母中的高效表达杨梦华;李颖;关国华;江正强【期刊名称】《微生物学报》【年(卷),期】2005(45)2【摘要】以海栖热袍菌 (Thermotoga maritima) MSB8菌株基因组DNA为模板,通过PCR扩增出木聚糖酶(XylanaseB)基因, 将此基因克隆至大肠杆菌表达载体pET-28a(+)和毕赤酵母表达载体pPIC9K,并分别转化大肠杆菌 BL21和毕赤酵母GS115.该木聚糖酶在大肠杆菌细胞中表达量高, 但不能分泌; 而在毕赤酵母细胞的表达产物可分泌至胞外.酶学性质分析表明,此酶分子量约为40kD,其最适反应温度为90℃, 最适反应pH值为6.65,且在碱性条件下稳定,具有重要的工业应用前景.【总页数】5页(P236-240)【作者】杨梦华;李颖;关国华;江正强【作者单位】中国农业大学生物学院,北京,100094;中国农业大学生物学院,北京,100094;中国农业大学生物学院,北京,100094;中国农业大学食品科学与营养工程学院,北京,100083【正文语种】中文【中图分类】Q786【相关文献】1.木聚糖酶Xyn43A基因在大肠杆菌及毕赤酵母中的表达比较 [J], 周晨妍;刘振华;王丹丹;李同彪;朱新术;王燕2.极端耐热木聚糖酶基因在大肠杆菌中的高效表达 [J], 薛业敏;毛忠贵;邵蔚蓝3.耐热木聚糖酶基因在毕赤酵母中的表达及酶学性质 [J], 张慧敏;李剑芳;邬敏辰;魏喜换;杨严俊4.链霉菌Streptomyces olivaceoviridis A1 木聚糖酶基因xynA在大肠杆菌及毕赤酵母中的高效表达 [J], 张红莲;姚斌;王亚茹;袁铁峥;张王照;伍宁丰;范云六5.短小芽孢杆菌β-1,4-木聚糖酶基因在大肠杆菌中的高效表达 [J], 刘伟丰;毛爱军;祝令香;乔宇;于巍;董志扬因版权原因,仅展示原文概要,查看原文内容请购买。

基因在大肠杆菌、酵母中的高效的表达

基因在大肠杆菌、酵母中的高效的表达

c. 启动子与克隆基因间的距离对基因表达的影响
研究表明启动子和目的基因间的距离对基因的 表达效率影响很大,所以在构建新的表达载体时要考 虑到这一因素的影响。另外,在克隆基因的末端要就 近插入有效的终止子序列,否则会导致细胞能量的大 量消耗,或是形成不应有的二级结构,最终影响的目 的基因的表达效率。
影响目的基因在甲醇酵母中表达的因素
1.目的基因的特性 2.表达框的染色体整合位点与基因拷贝数 3.宿主的甲醇利用表型 4.分泌信号 5.产物稳定性 6.翻译后修饰
பைடு நூலகம்
b. 翻译起始序列对表达效率的影响
mRNA的有效翻译依赖于核糖体和其的稳定结 合,大肠杆菌的mRNA序列中,核糖体的结合位点是 起始密码子AUG和其上游的SD序列。所谓SD序列就 是由Shine-Dalgarno首先提出的一种位于位于起始密 码子上游的一段保守序列,为细菌核糖体有效结合和 翻译起始所必需。一般SD序列的长度约为3-9bp,位 于起始密码子上游3-11碱基的位置,它与16S核糖体 RNA的3‘端互补,控制了翻译的起始。 5’--AGGAGGUXXXAUG--- mRNA 3’AUUCCUCCACUAG----- 16S rRNA3’ 末端
构建表达载体的策略
⑴将真核基因克隆到一个强大的原核启动子和SD序列
的下游,使得真核基因处于原核调控体系中。 ⑵采用真核基因的cDNA序列作为构建表达载体的目的 基因,这样就解决了原核细胞没有RNA剪接功能的 问题。
⑶构建载体时,将真核基因插在几个原核密码子的后 面,翻译后就得到了原核多肽和真核多肽的融合 蛋白,这样就可以避免被原核蛋白酶的识别和降 解,最后可以将融合多肽切除。
3. mRNA合成后穿过核膜进入细胞质中后才进行翻译 工作,而且通常都有复杂的成熟和剪接过程; 4. 基因的启动子区和原核基因差异很大,而且有增强 子序列存在。

基因工程简答题总结

基因工程简答题总结

基因工程原理复习题思考题5、简单叙述同尾酶和同裂酶的差别。

同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。

同裂酶:识别序列相同,切割位点有些相同,有些不同。

分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。

不完全同裂酶:识别位点相同,但切点不同。

)6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些?类型:DNA连接酶和RNA连接酶异同点:相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。

不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。

7、试分析提高平端DNA连接效率的可能方法。

(传说中的网上答案)1、低温下长时间的连接效率比室温下短时间连接的好。

2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。

这样可避免载体自连,应该可以大大提高平端连接的效率。

3、足够多的载体和插入片段是最重要的。

4、平端的连接对于离子浓度很敏感5、尽可能缩小连接反应的体积6、建议放在四度冰箱连接两天效率更高比14度好8、基因工程中常用的DNA聚合酶主要有哪些?1)大肠杆菌DNA聚合酶2)Klenow fragment3)T7 DNA聚合酶4)T4 DNA聚合酶5)修饰过的T7 DNA聚合酶6)逆转录酶7)Taq DNA聚合酶第四章基因克隆的载体系统1、作为基因工程载体,其应具备哪些条件?具有针对受体细胞的亲缘性或亲和性(可转移性);具有合适的筛选标记;具有较高的外源DNA的载装能力;具有多克隆位点(MCS);具有与特定受体细胞相适应的复制位点或整合位点。

3、载体的类型主要有哪些?在基因工程操作中如何选择载体?基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。

这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。

木聚糖酶的研究进展

木聚糖酶的研究进展

木聚糖酶的研究进展陈洪洋;蔡俊;林建国;王常高;杜馨【摘要】木聚糖是仅次于纤维素的第二丰富的可再生资源,通过筛选出产木聚糖酶的菌株,利用基因工程技术,将木聚糖酶基因进行异源表达,提高木聚糖酶产量.该文综述了菌株产生的木聚糖酶酶学性质,并对酶学性质进行改善使木聚糖酶更符合应用的条件,同时研究木聚糖酶分离纯化的步骤,来提高木聚糖酶的酶活.文章重点介绍了木聚糖酶的产生菌和木聚糖酶在基因工程技术等方面研究进展,并对木聚糖酶的分离纯化方法做了简要地介绍.【期刊名称】《中国酿造》【年(卷),期】2016(035)011【总页数】6页(P1-6)【关键词】木聚糖酶;基因工程;酶学性质;分离纯化【作者】陈洪洋;蔡俊;林建国;王常高;杜馨【作者单位】湖北工业大学发酵工程教育部重点实验室,工业发酵湖北省协同创新中心,湖北武汉430068;湖北工业大学发酵工程教育部重点实验室,工业发酵湖北省协同创新中心,湖北武汉430068;湖北工业大学发酵工程教育部重点实验室,工业发酵湖北省协同创新中心,湖北武汉430068;湖北工业大学发酵工程教育部重点实验室,工业发酵湖北省协同创新中心,湖北武汉430068;湖北工业大学发酵工程教育部重点实验室,工业发酵湖北省协同创新中心,湖北武汉430068【正文语种】中文【中图分类】Q814.9木聚糖是植物半纤维素的主要组成部分,广泛存在于玉米芯、甘蔗渣、麦麸、秸秆等农作物废弃物中,由于木聚糖酶能够将木聚糖分解成不同长度的低聚木糖和木糖,该产物具有重要的经济价值,通过木聚糖酶将这些可利用资源充分利用,发挥其潜在的应用价值,木聚糖酶的研究也受到充分的重视。

现在木聚糖酶已广泛应用于造纸、食品、饲料和能源等领域,带来了很大的经济效益。

目前木聚糖酶的生产主要来源于微生物发酵,对发酵得到的木聚糖酶的酶学性质进行研究,以便了解该酶的应用范围,使木聚糖酶在工业应用中发挥其巨大的潜能,增加更多的经济效益,为各领域的发展做出更大的贡献。

实验七 外源基因在大肠杆菌中的诱导表达

实验七  外源基因在大肠杆菌中的诱导表达

大肠杆菌包涵体的分离与蛋白质纯化
1 细菌的裂解: 常用方法有:① 高温珠磨法;② 高压匀浆;③ 超声破碎法; ④ 酶溶法;⑤ 化学渗透等。前三种方法属机械破碎法,并且方 法① 、② 已在工业生产中得到应用,后三种方法在实验室研究 中应用较为广泛。 下面介绍酶溶法和超声破碎法的实验步骤。
1、酶溶法。常用的溶解酶有溶菌酶;β-1,3 -葡聚糖酶;β-1,6 -葡聚糖酶;蛋白酶;壳 多糖酶;糖昔酶等。溶菌酶主要对细菌类有作用,而其他几种酶对酵母作用显著。 主要步骤为: ① 4 ℃ ,5000rpm 离心,15 min ,收集诱导表达的细菌培养液(100 mL )。弃 上清,约每克湿菌加3 mL 裂解缓冲液,悬浮沉淀。 ② 每克菌加8μL PMSF 及80μL 溶菌酶,搅拌20 min ;边搅拌边每克菌加4 mg 脱 氧胆酸(在冷室中进行)。 ③ 37 ℃ ,玻棒搅拌,溶液变得粘稠时加每克菌20μL DNase I。室温放置至溶液不 再粘稠。 2、超声破碎法。声频为15-20 kHz 的超声波在高强度声能输入下可以进行细胞破碎, 在处理少量样品时操作简便,液体量损失较少,同时还可对染色体DNA 进行剪切 ,大大降低液体的粘稠度。 ① 收集1 L 诱导表达的工程菌,40 ℃ ,5000r pm 离心,15 min ;弃上清,约每 克湿菌加3 mLTE 缓冲液。 ② 按超声处理仪厂家提供的功能参数进行破菌;10 000g 离心,15min ,分别收集 上清液和沉淀。 ③ 分别取少量上清和沉淀,加入等体积的2× 凝胶电泳加样缓冲液,进行SDS PAGE 。 注意事项:超声破碎与声频、声能、处理时间、细胞浓度、菌种类型等因素有关, 应根据具体情况掌握;超声波破菌前,标本经3 -4 次冻溶后更容易破碎。
实验七 外源基因在大肠杆菌中的诱导表达

8基因表达,大肠杆菌基因工程

8基因表达,大肠杆菌基因工程

核糖体结合位点
核糖体结合位点的结构
大肠杆菌核糖体结合位点包括下列四个特征结构要素:
位于翻译起始密码子上游的6-8个核苷酸序列5’ UAAGGAGG 3’
,即Shine-Dalgarno(SD)序列,它通过识别大肠杆菌核糖体小 亚基中的16S rRNA 3’端区域3’ AUUCCUCC 5’并与之专一性结合, 将mRNA定位于核糖体上,从而启动翻译; 翻译起始密码子:以AUG;GUG或UUG作为翻译起始密码子; SD序列与翻译起始密码子之间的距离及碱基组成; 基因编码区5’ 端若干密码子的碱基序列。
C末端的丙氨酸交换下来,所形成的人胰岛素叔丁酯再用三氯乙酸脱
去叔丁酯基团,最终获得人胰岛素。该过程的总转化率为60%,工 艺路线耗时,分离纯化操作复杂,产品的价格不菲。
人胰岛素的生产方法
利用基因工程菌发酵生产人胰岛素
1982年,美国Ely LiLi公司首先使用重组大肠杆菌生产人胰岛素, 成为世界上第一个上市的基因工程药物;1987年,Novo公司又推出
A链和B链分别表达法
基因工程菌的构建战略: 化学合成A链 和B链的编码
Apr
tac
Met b-Gal Met A peptide Apr
tac
Met b-Gal Met B peptide
序列
ori
ori
M
M
M
M
N
C
N
C
重组人胰岛素的大肠杆菌工程菌的构建
A链和B链分别表达法
表达产物的后处理路线:
b-Gal
外源基因在原核细胞中的表达
现将真核基因在原核细胞中表达: 1、外源基因克隆在表达载体并导人宿主菌。
2、外源基因不能有间隔序列(内含子),因而必须用cDNA或全

蛋白质的高效表达和纯化技术

蛋白质的高效表达和纯化技术

蛋白质的高效表达和纯化技术蛋白质是细胞中最为基本的分子,不仅构成细胞的基本结构,也参与到细胞的代谢、信号转导等生命活动中。

因此,蛋白质的高效表达和纯化技术是生命科学研究的重要基础。

蛋白质的表达技术主要包括原核和真核表达系统。

原核表达系统包括大肠杆菌和酵母表达系统,这两种表达系统都具有高效的蛋白质表达能力,并且易于操作和大规模生产。

在酵母表达系统中,通常会将目的蛋白质基因插入到酵母表达载体中,然后通过转化酵母细胞实现表达。

大肠杆菌表达系统则是将目的蛋白质基因插入到大肠杆菌表达载体中,然后通过转化大肠杆菌细胞进行表达。

相比于酵母表达系统,大肠杆菌表达系统具有更高的表达速率,但表达的蛋白质常常是未折叠的形态,需要进一步的纯化和折叠过程。

真核表达系统则利用真核细胞本身的细胞器完成蛋白质的表达和折叠,这类表达系统可以用于表达大多数复杂的蛋白质。

例如,哺乳动物细胞表达系统(如CHO细胞和HEK293细胞)是利用哺乳动物细胞自身的蛋白合成机制进行表达的,这种表达系统通常会得到高质量的蛋白质,但生产成本相对较高。

对于高效的蛋白质表达来说,关键是基因的优化和载体的选择。

在基因的优化方面,通常会进行基因的序列优化、信号肽的选取、启动子的选择等操作,以提高蛋白质的表达量和纯度。

而载体的选择则需要根据具体的表达需求进行选择,例如对于大肠杆菌表达系统来说,常用的载体有pET系列载体和pBAD系列载体;对于酵母表达系统来说,常用的载体有pYES2和pGAPZ系列载体;对于哺乳动物细胞表达系统来说,常用的载体有pCDNA3.1和pEF系列载体。

在蛋白质的纯化方面,常用的方法有离子交换层析、亲和层析、凝胶过滤等。

离子交换层析是利用离子交换树脂对带有带电的蛋白质进行分离,在这个过程中,可以通过改变洗脱缓冲液的pH或离子浓度来调节分离效果。

亲和层析则是通过利用蛋白质与其特异性配体之间的亲和性实现分离,例如亲和层析树脂中的金属离子会与带有多个组氨酸残基的蛋白质结合形成配位键,从而实现分离。

生物技术制药-第二章-基因工程制药(201309-201401-2)

生物技术制药-第二章-基因工程制药(201309-201401-2)


7、目的cDNA克隆的分离和鉴定
cDNA克隆示意图
mRNA
逆转录酶
ss-DNA
DNA聚合酶I Klenow片段
ds-cDNA 核酸酶S1
ds-cDNA
二、逆转录-聚合酶链反应法(RT-PCR)
1985,PCR发明以后,RT-PCR得到了广泛的应用。
特异引物 mRNA 逆转录酶 ss-DNA PCR 目的cDNA链
优点:表达产物可由重组转化细胞分泌到培养 液中,纯化容易。产物是糖基化的接近天然物。 缺点:生长慢,生产率低,培养条件苛刻,费 用高,培养液浓度稀。
二、大肠杆菌体系中的基因表达
(一)表达载体 表达载体必须具备的条件
(1)载体能独立地进行复制 (复制起点,ori)
(2)应具有灵活的克隆位点和方便的筛选标记
核酸酶S1
第三节 目的基因的获得
克隆真核基因常用方法:逆转录法和化学合 成法。(不能直接分离?)
一、逆转录法
逆转录法就是先分离纯化目的基因的mRNA,再 反转录成 cDNA,然后进行 cDNA 的克隆表达。 cDNA与模板mRNA序列严格互补,而不含内含子。
逆转录法的步骤
1、mRNA的纯化 2、cDNA第一链的合成 3、cDNA第二链的合成 4、cDNA克隆
利用基因工程技术生产药品的优点:
(1)可以大量生产过去难以获得的生理活性蛋 白和多肽; (2)可以提供足够数量的生理活性物质;
(3)利用基因工程技术可以发现、挖掘更多的
内源性生理活性物质;
(4)基因工程和蛋白质工程进行改造和去除 内源性生理活性物质的不足之处。 (5)利用基因工程技术可获得新型化合物,
又分为普通表达载体和精确表达载体

基因工程-外源基因在酵母菌中的表达

基因工程-外源基因在酵母菌中的表达

基因工程刘夫锋2019.11.27基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化7.1酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌的分类学特征酵母菌(Yeast )是一群以芽殖或裂殖方式进行无性繁殖的单细胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。

如果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最成熟的真核生物表达系统。

7.1 酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌表达外源基因的优势全基因组测序,基因表达调控机理比较清楚,遗传操作相对简单能将外源基因表达产物分泌至培养基中具有原核细菌无法比拟的真核蛋白翻译后加工系统大规模发酵历史悠久、技术成熟、工艺简单、成本低廉不含有特异性的病毒、不产内毒素,美国FDA 认定为安全的基因工程受体系统,食品工业有数百年历史酵母菌是最简单的真核模式生物7.2 酵母菌的宿主系统7 外源基因在酵母菌中的表达7.2.2提高重组蛋白表达产率的突变宿主菌7.2.3 抑制超糖基化作用的突变宿主菌7.2.4 减少泛素依赖型蛋白降解作用的突变宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌目前已广泛用于外源基因表达和研究的酵母菌包括:酵母属如酿酒酵母(Saccharomyces cerevisiae )克鲁维酵母属如乳酸克鲁维酵母(Kluyveromyces lactis )毕赤酵母属如巴斯德毕赤酵母(Pichia pastoris )裂殖酵母属如非洲酒裂殖酵母(Schizosaccharomyces pombe )汉逊酵母属如多态汉逊酵母(Hansenula polymorpha )裂殖酵母属如粟酒裂殖酵母(Schizosaccharomyces pombe )如解脂耶氏酵母(耶氏酵母属Yarrowia lipolytica )如腺嘌呤阿氏酵母(阿氏酵母属Arxula adeninivorans )其中芽殖型酿酒酵母的遗传学和分子生物学研究最为详尽。

《基因工程》课程教学大纲

《基因工程》课程教学大纲

《基因工程》课程教学大纲课程名称:基因工程课程类别:专业主干课适用专业:生物技术考核方式:考试总学时、学分:32 学时 2 学分其中实验学时:0 学时一、课程教学目的通过对本门课程的学习,使学生掌握基因工程技术的基本原理、常用技术和工作思路,了解基因工程技术的应用及发展趋势,为进一步学习有关专业课及参加相关领域的生产和科研工作奠定基础。

二、课程教学要求本门课是以遗传学、生物化学、微生物学、细胞生物学、分子生物学等学科为基础的学科,要求学生有扎实的上述课程基础。

本课程的主要内容包括: 基因工程载体、基因工程的酶学基础、目的基因的克隆、DNA连接和转化、转化子的筛选与重组子的鉴定、大肠杆菌基因工程、酵母菌基因工程、高等动物基因工程、高等植物基因工程等。

要求学生掌握基因工程的基本原理和常用方法与技术,了解该领域的研究动态与发展方向。

课程的基本内容随着本学科的发展而调整并限定其广度和深度,在保证达到一定培养规格的前提下,考虑学生的接受能力和学习负担,同时注意本课程和其它相关课程的相互联系与衔接,防止疏漏和不必要的重复。

三、先修课程生物化学、微生物学、遗传学、细胞生物学、分子生物学。

四、课程教学重、难点教学重点:基因工程载体、基因工程的酶学基础、目的基因的克隆、DNA连接和转化、转化子的筛选与重组子的鉴定。

教学难点:目的基因的克隆、DNA连接和转化、转化子的筛选与重组子的鉴定。

五、课程教学方法与教学手段以教师讲授为主,要求教师认真备课,熟悉本课程的基本内容以及该学科的最新发展趋势,以合适的形式进行教学,提倡采用多媒体作为辅助教学手段;学生可以通过阅读相关的英文资料了解本学科的研究状况与发展方向,也可以阅读一些感兴趣的参考资料,训练其针对所感兴趣的问题进行深入探讨的能力。

六、课程教学内容第一章概述(1学时)1.教学内容(1)基因工程的概念;(2)基因工程的发展和历史;(3)基因工程的研究意义。

2.重、难点提示(1)重点:基因工程的概念;(2)难点:基因工程的基因原理及在生物工程中的地位。

基因工程药物的生产原理及其应用

基因工程药物的生产原理及其应用

基因工程药物的生产原理及其应用第一篇:基因工程药物的生产原理及其应用基因工程药物的生产原理及其应用摘要:近年来,基因工程药物在目的基因制备、载体的构建、基因转移技术、宿主表达系统和生物反应发生器等方面取得了令人瞩目的成就。

本文简单介绍基因工程药物的生产原理及其重要应用。

关键词:基因工程药物生产原理应用随着基因研究的深入,人类已经可以生产出许多基因工程产品。

基因工程药物引入医药产业,由此引起了医药工业的重大变革,使得医药产业成为最活跃、发展最快的产业之一,同时大大提高了21世纪人类的整体健康状况。

基因工程药物又称生物技术药物是指利用基因工程技术研制和生产的药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。

主要种类有:胰岛素、单克隆抗体、荷尔蒙、干扰素、白细胞介素、组织型纤溶酶原激活因子、红细胞生成素、集落刺激因子。

生产原理基因工程制药技术分获取目标基因的上游技术和大量培养上游技术阶段。

上游技术实质就是基因工程技术。

下游技术则包括菌体培养,细胞破碎,大量培养以及分离纯化几个步骤。

1.1 基因工程制药的上游技术基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。

所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。

它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达。

基因工程研究采用的技术方法很多,以下介绍常见基本两种:聚合酶链反应技和Sanger双脱氢链终止法。

基因工程习题集

基因工程习题集

《基因工程》习题集第一章基因工程概述1.什么是基因工程,基因工程的基本流程?2.基因工程诞生的条件与标志分别是什么?3.简述基因工程的发展简史。

4.基因工程有哪些主要应用?5.通过本章的学习,请举两个基因工程应用的具体例子并加以简单说明。

第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件?2. 质粒载体有什么特征,有哪些主要类型?3. 噬菌体载体有哪些?携带能力分别有多大?4. 什么是人工微小染色体?有哪些类型?5. 什么是穿梭载体?6. 表达载体应该具备什么条件?7. 限制性内切核酸酶的特点与使用注意事项有哪些?8. DNA聚合酶和Klenow大片段各有什么作用?9. DNA连接酶在什么情况下使用?如何将不同DNA分子末端进行连接?10. 碱性磷酸酶有什么作用?11. 末端脱氧核苷酸转移酶有哪些作用?12. 在基因工程研究和应用中,为什么必须使用载体来克隆外源DNA片段?13. 分析影响限制性内切核酸酶酶切的因素有哪些?14. 举例说明大肠杆菌DNA聚合酶Ι在基因工程中的应用。

15. 请描述用载体pUC18来克隆DNA片段的过程。

在这个克隆实验中,你怎样选择含有克隆片段的重组子?第三章基因工程的常规技术1. 琼脂糖凝胶电泳的原理是什么2. 琼脂糖凝胶电泳的影响因素有哪些?3. 探针有哪些类型?探针标记有哪些方法?4. 探针的间接标记有什么优点?什么是ABC荧光(显色酶)标记法?5. Southern杂交的基本原理、流程与主要目的分别是什么?6. Northern杂交的基本原理、流程与主要目的分别是什么?7. Western杂交的基本原理、流程与主要目的分别是什么?8. 菌落(嗜菌斑)原位杂交的基本原理、流程与主要目的分别是什么?9. 简述PCR技术的基本原理。

10. PCR反应体系的主要成分与主要程序是怎样的?11. 提高PCR反应特异性的因素有哪些?12. 什么是逆转录PCR?13. 什么是反向PCR?14. 什么是多重PCR?15. 什么是荧光定量PCR?16. 什么是基因芯片技术?17. DNA芯片有哪些主要的应用?18. 什么是蛋白质芯片?19. 什么是基因组文库?其构建方法是怎样的?20. 什么是cDNA文库?它的构建流程是什么?21. 构建cDNA文库需要用到哪些工具酶?22. 合成cDNA第二条链有哪些方法?23. 简述酵母双杂交系统的基本原理。

3-3 基因工程的应用(教学课件)——高中生物人教版(2019) 选择性必修3

3-3 基因工程的应用(教学课件)——高中生物人教版(2019) 选择性必修3

5.目前大量生产干扰素的方法是什么?
用基因工程方法从大肠杆菌及酵母菌细胞内获得 6.我国批准生产的第一个基因工程药物的名称叫什么?用 于治疗哪些疾病? 重组人干扰素α-1b 主要用于治疗慢性乙型肝炎、慢性丙型肝炎等
2、让转基因哺乳动物批量生产药物
乳腺生物反应器或乳房生物反应器
转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所 需药品。
从社会中来
胰岛素是治疗糖尿病的特效药物。传统生产 胰岛素的人使用一年的胰岛素需 要上千头牛,生产的成本非常高。
1978年,科学家将编码人胰岛素的基因导入大 肠杆菌细胞中,使大肠杆菌表达重组人胰岛素。
我国拥有自主知识产权的基因工程物---重组 人胰岛素已经研制成功并得到广泛应用。
三、基因工程在食品工业方面的应用
利用基因工程菌除了可以生产药物,还能生产食品工业用酶、氨基酸和维生素等。
1、基因工程菌
概念
:用基因工程的方法,使外源基因得到高效表达的菌类。
获得方法;
细菌拟核 质 粒
质粒
核酸切割 插入质粒
重组 质粒
送入 细胞
重组 细菌
基因工程菌生产的优点: 基因工程获得的工业用酶纯度更高,生产成本显著降低,生 产效率较高。 实例: ①阿巴斯甜——一种普遍使用的甜味剂,主要由天冬氨酸和苯丙 氨酸形成,这两种氨基酸可通过基因工程实现大规模生产。 ②加工转化糖浆需要的淀粉酶,加工烘烤食物需要的脂酶等也可 通过构建基因工程菌,结合发酵技术大量生产。 ③凝乳酶——奶酪-生产需要凝乳酶来凝聚固化奶中的蛋白质。
有的还能吞食转化汞、镉等重金属,分解DD21T等毒害物质。
1. 将大肠杆菌的质粒连接上人生长激素的基因后,重新导入大肠杆菌的细胞内,再通 过发酵工程就能大量生产人生长激素。下列相关叙述正确的是 ( ) C A. 转录生长激素基因需要解旋酶和DNA连接酶 B. 发酵产生的生长激素属于大肠杆菌的初生代谢物 C. 大肠杆菌获得的能产生人生长激素的变异可以遗传 D. 大肠杆菌质粒标记基因中腺瞟吟和尿囉曉的含量相等

大肠杆菌和酵母类生物的基因组编辑

大肠杆菌和酵母类生物的基因组编辑

大肠杆菌和酵母类生物的基因组编辑近年来,基因组编辑技术迅速发展,被广泛应用于生物医学、农业、环境保护等领域。

其中大肠杆菌和酵母类生物的基因组编辑技术受到越来越多的关注,成为研究热点。

一、大肠杆菌基因组编辑技术大肠杆菌是一种常见的细菌,具有广泛的应用价值。

通过基因编辑技术,可以在大肠杆菌中增加、删除、替换特定的基因,进而改变其代谢通路、获得所需产物或者制备新药物等。

基因编辑技术的主要手段包括CRISPR/Cas9系统、TALEN系统、ZFN系统等,其中CRISPR/Cas9系统最为常用。

该系统借助RNA导向蛋白Cas9剪切DNA的特性,靶向编辑目标基因,实现精准的基因组编辑。

大肠杆菌基因组编辑技术的主要应用包括:1. 代谢工程。

利用基因组编辑技术调控代谢通路,可改变细菌的代谢产物,例如利用大肠杆菌菌株结合基因组编辑技术,生产出可溶性人类胰岛素。

此外,还可以通过基因组编辑技术提升大肠杆菌对废弃物或渣滓的生物降解能力,促进废物资源化利用。

2. 蛋白生产。

利用基因组编辑技术可以改变大肠杆菌的蛋白表达水平,从而提升蛋白的合成产量。

此外,还可以利用大肠杆菌高效、稳定的蛋白质表达系统,将外源基因导入大肠杆菌进行蛋白质工程研究。

3. 基因疗法。

基因组编辑技术可用于纠正生物体中的基因突变,治疗遗传性疾病。

例如,可以利用基因组编辑技术修复大肠杆菌中的缺陷基因,防止癌症等疾病的发生。

二、酵母类生物基因组编辑技术酵母类生物是常见的真核细胞,具有广泛的实用价值。

利用基因编辑技术控制酵母类生物基因表达,可生产出新型酵母菌株,进而制备生物材料、生产化学品,还可以促进生物剂量的研究等。

酵母类生物基因组编辑技术的主要应用包括:1. 生物材料生产。

酵母菌株具有广泛的生物材料生产应用。

通过基因组编辑技术可设计合成新的代谢途径,提高生物合成产物的效率。

例如,利用酵母细胞制备出使用情况更为广泛的高强度酒精及生物丁醇生产方式,实现较高内生LOGy。

表达载体

表达载体

一、大肠杆菌表达载体大肠杆菌表达载体都是质粒载体。

作为表达载体首先必须满足克隆载体的基本要求,即能将外源基因运载到大肠杆菌细胞中。

在基本骨架的基础上增加表达元件,就构成了表达载体。

各种表达载体的不同之处在于其表达元件的差异。

1.表达融合蛋白的表达载体当蛋白质表达以后,有效的分离纯化或分泌就成为获得目标蛋白的关键因素。

通过以融合蛋白的形式表达,并利用载体编码的蛋白或多肽的特殊性质可对目标蛋白进行分离和纯化。

用作分离的载体蛋白被称为标签蛋白或标签多肽(Tag),常用的有谷胱甘肽转移酶(glutathione S-transferase, GST)、六聚组氨酸肽(polyHis-6)、蛋白质 A(protein A)和纤维素结合位点(cellulose binding domain)等。

1.1 表达 LacZ 融合蛋白的载体如 pEX1/2/3 载体(图 3-31),P R 受 cIts857 控制,宿主 M5219 含缺陷性原噬菌体,编码 cIts857 和 N 蛋白。

cIts857 强烈抑制基因转录。

N 基因可使 RNA polymerase 跨过基因内部潜在终止位点。

一般采用 42-45 ℃灭活 cIts857 阻遏物,此处采用40℃ 以减少热激蛋白的诱导并使细菌能继续生长。

因为温度转换不仅可诱导 PL/PR 启动子,也可诱导热激基因,而后者有些可编码蛋白酶。

1.2 表达 GST 融合蛋白的表达载体GST 表达载体在启动子tac 和多克隆位点之间加入了两个与分离纯化有关的编码序列,其一是谷胱甘肽转移酶基因,其二是凝血蛋白酶(Thrombin)切割位点的编码序列。

当外源基因插入到多克隆位点后,可表达出由三部分序列组成的融合蛋白。

GST 是来源于血吸虫的小分子酶( 26kDa),在E.coli 易表达,在融合蛋白状态下保持酶学活性,对谷胱甘肽有很强的结合能力。

将谷胱甘肽固定在琼脂糖树脂上形成亲和层析柱,当表达融合蛋白的全细胞提取物通过层析柱时,融合蛋白将吸附在树脂内,其它细胞蛋白就被洗脱出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MCS
T7启动子 lacZ pET28a 结构
三、 蛋白质的融合表达

蛋白质融合表达是指外源基因与载体已有的担体蛋白的 编码基因拼接在一起,并作为一个新的开放阅读框进行
表达。

在这种融合蛋白结构中,通常载体的担体蛋白部分位于
N端,目的蛋白位于C端。

通过人工设计引入的蛋白酶切割位点或化学试剂特异性
载体与受体系统

载体:pET表达系统(pET15,pET16,pET28,pET30,pET42 等a/b/c三套,及pRSET)

大肠杆菌菌株:BL21(DE3)和BL21(DE3)pLysS。(DE3)菌株基 因组上以溶原形式携带一个克隆的T7RNA聚合酶基因,IPTG (异丙基硫代β-D-半乳糖苷)可诱导T7RNA聚合酶大量合 成。
4.3 基因在酵母中的高效表达 4.3.1 酵母表达系统概述 4.3.2 甲醇酵母表达系统 4.3.3 组织纤溶酶原激活剂在甲醇酵母中的表达
第一节 基因的表达系统与表达策略

基因的表达系统 基因的高效表达策略

一、基因的表达系统


表达载体的组成:
DNA复制及质粒DNA的筛选: 有DNA复制起点ori, 性基因 及Amp, Tet抗
融合型目的蛋白表达系统的构建
用于融合蛋白构建的担体蛋白: 谷胱甘肽转移酶(GST) 维持良好空间构象 免疫亲和层析 pRIT2T
金黄色葡萄球菌蛋白A(SAPA)
硫氧化还原蛋白(TrxA)
b-半乳糖苷酶(LacZ) 泛素蛋白(Ubi)
本章目录
4.1 基因的表达系统与表达策略 4.1.1 基因的表达系统 4.1.2 根据表达蛋白用途选择基因的表达策略 4.2 基因在大肠杆菌中的高效表达 4.2.1 基于T7噬菌体RNA聚合酶/启动子的大肠杆菌表达系统 4.2.2 蛋白质的融合表达 4.2.3 蛋白质的分泌型表达 4.2.4 蛋白质的包含体形式表达与蛋白质复性
二、 基于T7噬菌体RNA聚合酶/启动子的大肠杆菌 表达系统
优点: 1)T7噬菌体RNA聚合酶合成RNA的速度高于大肠杆菌5倍;
2)T7噬菌体RNA聚合酶只识别自己的启动子序列,不启动大肠 杆菌DNA任何序列的转录; 3)T7噬菌体RNA聚合酶对抑制大肠杆菌RNA聚合酶的抗生素有 抗性; 4)T7噬菌体RNA聚合酶/启动子系统在一定条件下,基因表达 产物可占细胞总蛋白的25%以上。
葡萄糖代谢
cAMP浓度降低
基底水平转录
Plac
O
高效转录
Plac UV5
O
2.
核糖体结合位点
大肠杆菌核糖体结合位点包括下列四个特征结构: ①位于翻译起始密码子上游的6-8个核苷酸序列:5’ UAAGGAGG 3’,即Shine-Dalgarno(SD)序列,它与大 肠杆菌核糖体小亚基中的16S rRNA 3’端区域3’ AUUCCUCC 5’并与之专一性结合; ②翻译起始密码子AUG; ③ SD序列与翻译起始密码子之间的距离(7bp)及碱基 组成; ④基因编码区5’ 端若干密码子的碱基序列
-35 区序列
T T G A C A
-10 区序列
G A T A C T
PrecA
PtraA Ptrp Plac Ptac
T T G A T A
T A G A C A T T G A C A T T T A C A T T G A C A
T A T A A T
T A A T G T T T A A C T T A T A A T T A T A A T

目的基因转录的调控系统:这一系统包括启动子,抑制物基因和 转录终止子.启动子位于目的基因的上游,常用的如Placz等. 蛋白质的翻译系统:包括核糖体识别位点SD,翻译起始密码子和 终止密码子.

表达系统的种类

原核表达系统 真核表达系统 酵母 植物拟南芥 昆虫 哺乳动物细胞系
一) 原核表达系统:细菌
细胞周质内含有种类繁多的内毒素
二)真核表达系统
酵母表达系统

全基因组测序,基因表达调控机理比较清楚,遗传操作简便
大规模发酵历史悠久、技术成熟、工艺简单、成本低廉
具有原核细菌无法比拟的真核蛋白翻译后加工系统 能将外源基因表达产物分泌至培养基中 不含有特异性的病毒、不产内毒素,美国 FDA认定为安全的
断裂位点,可以在体外从纯化的融合蛋白分子中释放回
收目的蛋白。
谷胱甘肽S-转移
酶(GST)融合蛋
白表达系统
pGEX载体
酶促裂解法:多残基位点
亲和层析
启动子 担体基因 接头 目的基因
表达
Met
Arg Ile-Glu-gly-Arg
Stop
凝血因子Xa的识别、作用序列
Ile-Glu-gly-Arg
酶解回收
Ptac = 3 Ptrp = 11 Plac
启动子
启动子的可控性 乳糖启动子Plac的可控性:
阻遏蛋白 基底水平转录
P 乳糖 异丙基-b-D-硫代半乳 糖苷(IPTG)
O 诱导
高效转录
P
O
启动子
启动子的可控性 乳糖启动子Plac的可控性:
CAP
Plac 基因工程中使用的乳糖启动 子均为抗葡萄糖代谢阻遏的 突变型,即Plac UV5 O cAMP 高效转录


第二节
基因在大肠杆菌中的高效表达
大肠杆菌高效表达设计 基于T7噬菌体RNA聚合酶/启动子的大肠杆菌表达系统
蛋白质的融合表达
蛋白质的分泌型表达 蛋白质的包含体形式表达与蛋白质复性
一、外源基因在大肠杆菌中高效表达的设计
启动子
终止子
核糖体结合位点 密码子 质粒拷贝数
1.启动子
启动子的构建
启动子
PlL
哺乳动物细胞系


可以悬浮培养, 生 长快, 连续传代 精确的糖基化 胞外表达 人本身的细胞系, 人的表达系统二、基Fra bibliotek的高效表达策略

用于生物化学和分子生物学研究: 重点考虑如何保持 蛋白质原有的功能 表达蛋白用作抗原:合成天然蛋白及表达融合蛋白的策 略,考虑如何便于分离 用于蛋白质结构研究:形成可溶性蛋白质,保持结构 完整
大肠杆菌表达外源基因的优势
繁殖迅速、培养简单、操作方便、遗传稳定 基因克隆及表达系统成熟完善 全基因组测序,共有4405个开放型阅读框架 被美国FDA批准为安全的基因工程受体生物
大肠杆菌表达外源基因的劣势
缺乏对真核生物蛋白质的修饰加工系统 缺乏对真核生物蛋白质的复性功能
内源性蛋白酶降解空间构象不正确的异源蛋白
相关文档
最新文档