(完整)高中数学必修4课后习题答案
高中数学必修4习题和复习参考题对应答案
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
人教版高中数学必修4课后习题答案.docx
练习(第5页)1.锐布是第象限仙.第-象限伯不一定是锐伽;K角不I4F任何-个象限.不M Fit何个象限的角不一定是I'ifd;钝伯是第二象限角.第二象限角不-定是钝角.说明认眼-锐伯二“宜漫二“钝角”和“象限角"的区别与联系.2.三.三.ft.说明本题的II的是将终边相同的角的符号表示应用到他篇期性何财匕魂11联系实际•把教科竹中的除数36<>换成每个械期的天数7.利川r •■同汆”(这里.余数是3)来确定7*犬后.7 k犬前也都/星期1.这样的练习不难.可以L1答.3.(1)第象Wff|: <2)第四象限ftl: (3)第二象限/(J. (4)第三象限角.说明俺作出给定的角.并判定以第儿象限角.图略.4.(1) 3O5F2'.第四象限/th (2) 35%'.第一象限ff|; (3) 249*30*.第•:象限角.说明能企给定范围内找出"指定的角终边相同的角・并判定是第儿象限而.5.(1) <仞夕I 30:ri8'+&・360°, A€Z), - 496—2', — 136,42*. 223*I8,|(2)伊I "= 225- I * • 360°. ACZ}. - 585°, — 225°, 135°.说明用乘。
表,K法和符时写出勺指定角终边相同的的的集合.并在给定范国内找出勺指定的角经边相同的仙.练习(第9页〉1.(1> ⑵一?: (3)亨.说明能进存度弧度的换算.2.(1> 15。
<2> 240七(3) 54*.说明fOir*度'j度的换卓.3.(I) {a| a M. A€Z};(2) ja | «=-|+*», A£z}.说明用弧度MA示绕边分别在.r轴和.V袖匕的角的集合.4.(I ) cos 0. 75'>«» 0. 75;(2> tan 1. 2*<ian I. 2.说明体会同数伉木同时位的角对成的三角函数ffi诃能不同•并进一步认识两种爪位制.注意在用计算器求-ffimSffrt之询.卷先对计算器中角的模式进行设??.如求co* 0.75°之询,要将角模式设置为I对;(伯度;M);求CON。
人教A版2019高中数学必修4讲义:第二章 2.3 2.3.4 平面向量共线的坐标表示_含答案
2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4
高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
人教版高中数学A版必修4习题 1.4.2.2正弦函数、余弦函数的单调性
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.函数f (x )=-2sin x +1,x ∈⎣⎡⎦⎤-π2,π的值域是( ) A .[1,3]B .[-1,3]C .[-3,1]D .[-1,1]解析: ∵x ∈⎣⎡⎦⎤-π2,π,∴sin x ∈[-1,1], ∴-2sin x +1∈[-1,3].答案: B2.函数y =|sin x |的一个单调递增区间是( )A .⎝⎛⎭⎫-π4,π4 B .⎝⎛⎭⎫π4,3π4 C .⎝⎛⎭⎫π,3π2 D .⎝⎛⎭⎫3π2,2π 解析: 由y =|sin x |的图象,易得函数y =|sin x |的单调递增区间为⎝⎛⎭⎫k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,3π2为函数y =|sin x |的一个单调递增区间. 答案: C3.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos |x |B .y =cos |-x |C .y =sin ⎝⎛⎭⎫x -π2D .y =-sin x 2解析: y =cos |x |在⎝⎛⎭⎫0,π2上是减函数,排除A ;y =cos |-x |=cos |x |,排除B ;y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x 是偶函数,且在(0,π)上单调递增,符合题意;y =-sin x 2在(0,π)上是单调递减的.答案: C4.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .22D .0解析: 确定出2x -π4的范围,根据正弦函数的单调性求出最小值. ∵x ∈⎣⎡⎦⎤0,π2,∴-π4≤2x -π4≤3π4,∴当2x -π4=-π4时,f (x )=sin ⎝⎛⎭⎫2x -π4有最小值-22. 答案: B二、填空题(每小题5分,共15分)5.已知函数y =3cos (π-x ),则当x =________时,函数取得最大值.解析: y =3cos (π-x )=-3cos x ,当cos x =-1,即x =2k π+π,k ∈Z 时,y 有最大值3. 答案: 2k π+π,k ∈Z6.y =sin x ,x ∈⎣⎡⎦⎤π6,2π3,则y 的范围是________. 解析: 由正弦函数图象,对于x ∈⎣⎡⎦⎤π6,2π3,当x =π2时,y max =1,当x =π6时,y min =12,从而y ∈⎣⎡⎦⎤12,1.答案: ⎣⎡⎦⎤12,17.函数y =sin (x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间为________. 解析: 因为sin (x +π)=-sin x ,所以要求y =sin (x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间,即求y =sin x 在⎣⎡⎦⎤-π2,π上的单调递减区间,易知为⎣⎡⎦⎤π2,π. 答案: ⎣⎡⎦⎤π2,π 三、解答题(每小题10分,共20分)8.比较下列各组数的大小:(1)sin 1017π与sin 1117π; (2)cos 5π3与cos 14π9. 解析: (1)∵函数y =sin x 在⎣⎡⎦⎤π2,π上单调递减,且π2<1017π<1117π<π,∴sin 1017π>sin 1117π. (2)cos 5π3=cos (2π-π3)=cos π3,cos 14π9=cos (2π-4π9)=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减,且0<π3<4π9<π,∴cos π3>cos 4π9,∴cos 5π3>cos 14π9. 9.求下列函数的最大值和最小值:(1)y = 1-12sin x ;(2)y =3+2cos ⎝⎛⎭⎫2x +π3. 解析: (1)∵⎩⎪⎨⎪⎧1-12sin x ≥0,-1≤sin x ≤1,∴-1≤sin x ≤1.∴当sin x =-1时,y max =62; 当sin x =1时,y min =22. (2)∵-1≤cos ⎝⎛⎭⎫2x +π3≤1, ∴当cos ⎝⎛⎭⎫2x +π3=1时,y max =5; 当cos ⎝⎛⎭⎫2x +π3=-1时,y min =1. 能力测评10.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A .⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z ) B .⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z ) C .⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z ) D .⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z ) 解析: 周期T =π,∴2πω=π,∴ω=2,∴y =2sin ⎝⎛⎭⎫2x +π4.由-π2+2k π≤2x +π4≤2k π+π2,k ∈Z ,得k π-38π≤x ≤k π+π8,k ∈Z . 答案: C11.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域为________. 解析: 由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2可得x +π6∈⎣⎡⎦⎤π6,2π3, 函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32.答案: ⎣⎡⎦⎤-12,32 12.求函数y =3-4sin x -4cos 2x 的值域.解析: y =3-4sin x -4cos 2x=3-4sin x -4(1-sin 2x )=4sin 2x -4sin x -1,令t =sin x ,则-1≤t ≤1.∴y =4t 2-4t -1=4⎝⎛⎭⎫t -122-2(-1≤t ≤1). ∴当t =12时,y min =-2, 当t =-1时,y max =7.即函数y =3-4sin x -4cos 2x 的值域为[-2,7].13.(1)求函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间; (2)求函数y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间. 解析: (1)因为y =cos ⎝⎛⎭⎫π3-2x =cos ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =cos ⎝⎛⎭⎫2x -π3, 所以要求函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间,只要求函数y =cos ⎝⎛⎭⎫2x -π3的单调递增区间即可.由于y =cos x 的单调递增区间为2k π-π≤x ≤2k π(k ∈Z ),则2k π-π≤2x -π3≤2k π(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ). 故函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间为⎣⎡k π-π3,k π+ ⎦⎤π6(k ∈Z ). (2)设u =π3-x 2,则y =3sin u . 当π2+2k π≤u ≤3π2+2k π,k ∈Z 时, y =3sin u 随u 增大而减小.又因为u =π3-x 2随x 增大而减小,所以当π2+2k π≤π3-x 2≤3π2+2k π,k ∈Z , 即-7π3-4k π≤x ≤-π3-4k π,k ∈Z , 即-7π3+4k π≤x ≤-π3+4k π,k ∈Z 时, y =3sin ⎝⎛⎭⎫π3-x 2随x 增大而增大. 所以函数y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间为 ⎣⎡⎦⎤-7π3+4k π,-π3+4k π(k ∈Z ).。
高中数学必修4课后练习题、习题答案优选教学课件
还有一件有趣的事也不得不提。我的前桌坐着一个很秀气的姑娘,常常梳着一个麻花辫,说起话来总是温温柔柔的,暂且起名叫她“淑女”吧!有一天早上,我惊奇地发现她纤纤的十指,涂了黑漆漆的指甲油,她迫不及待地和班上的人炫耀了她的杰作。很不巧的是第一堂课是内科,老师教的又是“叩诊”,国字脸的女老师,用严厉的目光环顾了教室一周,最后锁定了我的前座,她冷冷地说:“来,这位同学,你上黑板给大家演示一下—叩诊的方法。” “淑女”显得有些难为情,慢腾腾地起身走到在黑板前,低下头,缓慢地伸出涂着黑色指甲油的双手,给大家表演着“叩诊”。如果老师当时没问也还好,可老师偏偏问了,“你这手怎么弄的,指甲都成这样了,怎么没上医院啊?”这一问引起全班哄堂大笑,老师感到有些莫名其妙,纳闷地问:“你们都笑什么?”不料班级最捣蛋的一个男 生出卖了她,“她涂的是黑色指甲油,不是病。”从此以后,我没见她再涂过任何颜色的指甲油。
甚至不知所措。我傻傻地站在那里,也不知道是过去一个小时,还是几个小时,人才渐渐地少了,突然间我的耳朵捕获了一串数字,是住宿费的缴费窗口传出来的,我不由得摸了一下包,心里便有了主意:先把住宿费交了,其他再说。于是,我深吸了一口气,故作镇定地交了住宿费,领了被罩和盆,就忐忑不安地住进了宿舍。 宿舍共八个人,来自不同的地方,因为都是年轻人,很快都熟络了起来。我的班主任则是一个娇小的,长得很漂亮的女老师,叫李丽。医学虽然看上枯燥,但很多东西都与我们息息相关,所以学起来也没有那么难。不论解剖课的死人骷髅头,各类人骨,还是内外科的各种病理药理,以及活体的各种器官,我都学得津津有味。可是学习的高涨的热情,无法掩盖我内心的不安,我很害怕触碰到老师的目光,怕她对我说:白XX,你不知道学费没有交吗?就这样我怀着惴惴不安的心情,熬过了整整三个月。直到有一天,李丽老师气匆匆地走进教室,用鄙夷的略带愤怒的目光注视着我时,我心虚了,低下头不敢再去看她,我心跟明镜似的。她喝道:“白XX, 王校长要见你,在二楼校长室。” 走廊里我挪着步,每走一步都觉得很沉,不知道校长会怎么批评我,或者是严惩我,害怕与紧张让我在房门前不得不倒吸了一口气,接着又闭上眼睛静等五秒钟后,我才敢扣响房门,听到里面传出:进来,我才小心翼翼地推开那扇门。我径直地站在校长的办公桌前,不敢发出一点声响。看见王校长端坐在桌前书写着什么,看见我进来,便马上收起笔,他从椅子上慢慢站起来,用惊愕的眼神上下打量着我,他严肃的目光里还带着一股寒气,仿佛瞬间就能将我冰封,我连大气都不敢出。紧接着他开始发怒了,大声呵斥道:“你,你就是XXX。”我不敢说话,只是点点头。他猛然摘下眼镜,愤怒下的眼睛突出的更加厉害,手在不停地拍打着豪华的办公桌,来压抑着他内心的烦躁,他一声高过一声地责问我:“你小小年纪,也太有主意了,这么多钱没交,竟然能瞒这么久”。我羞愧地低下了头了,
高中数学必修四各章节练习题(附带答案解析)
1.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120°B .-120°C .270°D .-270°解析:分针旋转形成的角是负角,每60分钟转动一周,所以一节课45分钟分针旋转形成的角是-360°×4560=-270°.答案:D2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:-330°角是第一象限角,但不能作为三角形的内角,故A 错;280°角是第四象限角,它是正角,故C 错;-100°角是第三象限角,它比钝角小,故D 错.答案:B3.若α是第四象限角,则180°-α是第________象限角. 解析:∵角α与角-α的终边关于x 轴对称, 又∵角α的终边在第四象限,∴角-α终边在第一象限,又角-α与180°-α的终边关于原点对称,∴角180°-α的终边在第三象限. 答案:三4.在0°~360°范围内:与-1 000°角终边相同的最小正角是________,是第________象限角.解析:-1 000°=-3×360°+80°,∴与-1 000°角终边相同的最小正角是80°,为第一象限角. 答案:80° 一5.在角的集合{α|α=k ·90°+45°,k ∈Z }中, (1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?解:(1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k <72. 又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3, ∴满足条件的角共有8个.1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧C .1弧度是长度等于半径的弧所对的圆心角D .1弧度是1度的弧与1度的角之和解析:利用弧度的概念可直接推得C 为正确选项. 答案:C2.2 100°化成弧度是( ) A.35π3 B .10π C.28π3D.25π3解析:2 100°=2 100×π180=35π3. 答案:A3.若扇形的圆心角为60°,半径为6,则扇形的面积为________. 解析:扇形的面积S =12|α|r 2=12×π3×62=6π. 答案:6π4.若θ角的终边与8π5角的终边相同,在[0,2π)内与θ4角的终边相同的角是________.解析:由题设知θ=2k π+8π5,k ∈Z ,则θ4=k π2+2π5,k ∈Z . ∴当k =0时,θ4=2π5; 当k =1时,θ4=9π10; 当k =2时,θ4=7π5; 当k =3时,θ4=19π10. 答案:2π5,9π10,7π5,19π105.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α的终边在第几象限;(2)求 γ角,使γ与α角的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=14π9, ∴α=14π9+(-3)×2π,α角与14π9的终边相同, ∴α是第四象限角.(2)∵与α角终边相同的角为2k π+α,k ∈Z ,α与14π9终边相同, ∴γ=2k π+14π9,k ∈Z .又∵γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2, 当k =-1时,不等式成立, ∴γ=-2π+14π9=-4π9.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中不正确的个数为( ) A .0 B .1 C .2 D .3答案:D2.若点P 的坐标是(sin2,cos2),则点P 位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3.sin420°=________.答案:324.使得lg(cos αtan α)有意义的角α是第________象限角. 解析:要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.答案:一或二 5.求下列各式的值.(1)sin1 470°;(2)cos 9π4;(3)tan(-116π). 解:(1)sin1 470°=sin(4×360°+30°)=sin30°=12. (2)cos 9π4=cos(2π+π4)=cos π4=22. (3)tan(-11π6)=tan(-2π+π6)=tan π6=33.1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A .在x 轴上 B .在y 轴上 C .在直线y =x 上 D .在直线y =-x 上答案:B2.已知11π6的正弦线为MP ,正切线为AT ,则有( ) A .MP 与AT 的方向相同 B .|MP |=|AT | C .MP >0,AT <0D .MP <0,AT >0 解析:三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan 11π6<0.答案:A3.若角α的正弦线的长度为12,且方向与y 轴的正方向相反,则sin α的值为________.答案:-124.函数y =lg(sin x -cos x )的定义域为________.解析:利用三角函数线,如下图,MN 为正弦线,OM 为余弦线,要使sin x ≥cos x ,即MN ≥OM ,则π4≤x ≤54π,(在[0,2π]内).∴定义域为{x |π4+2k π≤x ≤54π+2k π,k ∈Z }. 答案:{x |π4+2k π≤x ≤54π+2k π,k ∈Z }5.在单位圆中画出满足cos α=12的角α的终边,并写出α组成的集合.解:如图所示,作直线x =12交单位圆于M ,N ,连接OM ,ON ,则OM ,ON 为α的终边.由于cos π3=12,cos 5π3=12,则M 在π3的终边上,N 在5π3的终边上,则α=π3+2k π或α=5π3+2k π,k ∈Z . 所以α组成的集合为S =⎩⎨⎧⎭⎬⎫αα=π3+2k π或α=5π3+2k π,k ∈Z .1.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513D.213解析:因为α是第二象限角,所以cos α<0, 故cos α=-1-sin 2α=-1-(513)2=-1213.答案:A2.已知cos α-sin α=-12,则sin αcos α的值为( ) A.38 B .±38 C.34D .±34解析:由已知得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38,故选A.答案:A3.若sin θ=-45,tan θ>0,则cos θ=________.解析:由已知得θ是第三象限角,所以cos θ=-1-sin 2θ=-1-(-45)2=-35. 答案:-354.已知tan α=3,则2sin 2α+4sin αcos α-9cos 2α的值为________. 解析:原式=2sin 2α+4sin αcos α-9cos 2αsin 2α+cos 2α=2tan 2α+4tan α-9tan 2α+1 =2×32+4×3-932+1=2110.答案:21105.若π2<α<π,化简cos α1-cos 2α+sin α1-sin 2α1-cos 2α.解:因为π2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.1.cos(-20π3)等于( ) A.12 B.32 C .-12D .-32解析:cos(-20π3)=cos 20π3 =cos(6π+2π3)=cos 2π3=-12. 答案:C2.sin600°+tan240°的值是( ) A .-32 B.32 C .-12+ 3 D.12+3 解析:sin600°+tan240°=sin(360°+240°)+tan(180°+60°) =sin240°+tan60°=sin(180°+60°)+tan60° =-sin60°+tan60°=-32+3=32. 答案:B3.已知sin(45°+α)=513,则sin(135°-α)=________.解析:sin(135°-α)=sin[180°-(45°+α)] =sin(45°+α)=513. 答案:5134.已知α∈(0,π2),tan(π-α)=-34,则sin α=________. 解析:由于tan(π-α)=-tan α=-34, 则tan α=34,解方程组⎩⎨⎧sin αcos α=34,sin 2α+cos 2α=1,得sin α=±35,又α∈(0,π2),所以sin α>0. 所以sin α=35. 答案:355.化简tan (2π-θ)sin (-2π-θ)cos (6π-θ)cos (θ-π)sin (5π+θ).解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)(-sin θ)=(-tan θ)(-sin θ)cos θcos θsin θ=tan θ.1.已知sin40°=a ,则cos130°等于( ) A .a B .-a C.1-a 2D .-1-a 2解析:cos130°=cos(90°+40°)=-sin40°=-a .答案:B2.已知sin(α-π4)=13,则cos(π4+α)的值等于( ) A.223 B .-232 C.13D .-13解析:∵π4+α-(α-π4)=π2, ∴cos(π4+α)=cos[π2+(α-π4)] =-sin(α-π4)=-13. 答案:D3.已知sin(π6-θ)=13,则cos(π3+θ)等于________. 解析:cos(π3+θ)=cos[π2-(π6-θ)] =sin(π6-θ)=13. 答案:134.已知cos α=15,且α为第四象限角,那么cos(α+π2)等于________. 解析:∵α为第四象限角且cos α=15, ∴sin α=-1-cos 2α=-25 6. ∴cos(α+π2)=-sin α=25 6. 答案:2655.化简1+2sin (π2-2)·cos (π2+2).解:原式=1+2cos2·(-sin2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|. 又∵sin2>cos2,∴原式=sin2-cos2.1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:用特殊点来验证.x =0时,y =-sin0=0,排除选项A ,C ;又x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,排除选项B.答案:D2.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个D .无数个解析:设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出 f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根.答案:B3.用“五点法”画y =1-cos x ,x ∈[0,2π]的图象时,五个关键点的坐标是________.答案:(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝⎛⎭⎪⎫3π2,1,(2π,0)4.函数y =2cos x -2的定义域是________. 解析:由2cos x -2≥0得cos x ≥22, 借助y =cos x 的图象可得cos x ≥22的解集为 ⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z 5.在[0,2π]内用五点法作出y =-sin x -1的简图. 解:(1)按五个关键点列表xπ2π3π22πy -1 -2 -1 0 -1(2)描点并用光滑曲线连接可得其图象,如图所示:1.函数y =2cos(π3-ωx )的最小正周期是4π,则ω等于( ) A .2 B.12 C .±2D .±12解析:4π=2π|ω|,∴ω=±12. 答案:D2.定义在R 上的周期函数f (x )的一个周期为5,则f (2 011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 解析:f (2 011)=f (402×5+1)=f (1). 答案:A3.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=________. 解析:由于周期T =2πω,所以2πω=π,解得ω=2. 答案:24.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=________.解析:由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 答案:-15.若函数f (x )是以π2为周期的奇函数,且f (π3)=1,求 f (-176π)的值.证明:∵f (x )的周期为π2,且为奇函数, ∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6) =f (π6).而f (π6)=f (π2-π3)=f (-π3)=-f (π3)=-1, ∴f (-17π6)=-1.1.函数y =sin(2x +52π)的图象的一条对称轴方程是( ) A .x =-π2 B .x =-π4 C .x =π8D .x =54π解析:y =sin(2x +52 π)=cos2x ,令2x =k π(k ∈Z ),则x =k2 π(k ∈Z ).当k =-1时,x =-π2.答案:A2.函数y =2sin(2x -π4)的一个单调递减区间是( ) A .[3π8,7π8] B .[-π8,3π8] C .[3π4,5π4]D .[-π4,π4]解析:令z =2x -π4,函数y =sin z 的单调递减区间是[π2+2k π,3π2+2k π](k ∈Z ).由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z , 得3π8+k π≤x ≤7π8+k π,k ∈Z . 令k =0,3π8≤x ≤7π8. 答案:A3.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°解析:∵sin168°=sin(180°-168°)=sin12°,cos10°=sin80°, ∴sin11°<sin12°<sin80°. ∴sin11°<sin168°<cos10°. 答案:C4.设ω>0,若函数f (x )=2sin ωx 在[-π3,π4]上单调递增,则ω的取值范围是________.解析:令-π2≤ωx ≤π2,-π2ω≤x ≤π2ω,则[-π2ω,π2ω]是函数的关于原点对称的递增区间中范围最大的,即[-π3,π4]⊆[-π2ω,π2ω],则⎩⎪⎨⎪⎧π4≤π2ω,-π3≥-π2ω.⇒ω≤32.答案:[0,32]5.求函数y =1-2cos 2x +5sin x 的最大值和最小值. 解:y =1-2cos 2x +5sin x =2sin 2x +5sin x -1 =2(sin x +54)2-338.∵sin x ∈[-1,1],而y 在[-1,1]上是增函数, ∴当sin x =-1时,函数取得最小值-4; 当sin x =1时,函数取得最大值6.1.y =tan(x +π)是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数答案:A2.函数y =2tan ⎝ ⎛⎭⎪⎫3x -π4的一个对称中心是( )A.⎝ ⎛⎭⎪⎫π3,0B.⎝ ⎛⎭⎪⎫π6,0 C.⎝ ⎛⎭⎪⎫-π4,0 D.⎝ ⎛⎭⎪⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12 令k =-2得x =-π4.故选C. 答案:C3.函数y =2tan ⎝ ⎛⎭⎪⎫π3-x 2的定义域是________.解析:由π3-x 2≠k π+π2,得x ≠-2k π-π3,k ∈Z ,故函数y =2tan ⎝⎛⎭⎪⎫π3-x 2的定义域是:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z4.使函数y =2tan x 与y =cos x 同时为单调增的区间是________. 解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为(2k π-π2,2k π)(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z ).答案:⎝ ⎛⎭⎪⎫2k π-π2,2k π(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z )5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎪⎫-π4,π3的值域.解:y =tan(π-x )=-tan x ,在⎝ ⎛⎭⎪⎫-π4,π3上为减函数,所以值域为(-3,1).1.把函数y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π8个单位长度,所得到的图象对应的函数是( )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数解析:y =sin ⎝⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8,向左平移π8个单位长度后为y =sin[2(x -π8+π8)]=sin2x ,为奇函数,故选A.答案:A2.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π2个单位长度 D .向右平移π2个单位长度 解析:由y =sin ⎝ ⎛⎭⎪⎫2x +π6――→x →x +φy=sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π6=sin ⎝ ⎛⎭⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个单位长度.答案:B3.用“五点法”画函数y =2sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在一个周期内的简图时,五个关键点是(-π6,0),(π12,2),(π3,0),(712 π,-2),(5π6,0),则ω=________.解析:周期T =5π6-(-π6)=π. ∴2πω=π,ω=2. 答案:24.把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象对应的一个解析式为________.解析:把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,得函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π6+π4=2sin ⎝ ⎛⎭⎪⎫3x -π4的图象,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫12x -π4的图象,即y =2sin ⎝ ⎛⎭⎪⎫32x -π4.答案:y =2sin ⎝ ⎛⎭⎪⎫32x -π45.已知函数y =sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)用“五点法”画出函数的草图.(2)函数图象可由y =sin x 的图象怎样变换得到? 解:(1)列表:2x +π4 0 π2 π 3π2 2π x -π8 π8 3π8 5π8 7π8 y1211描点、连线如图所示.将y =sin ⎝ ⎛⎭⎪⎫2x +π4+1在⎣⎢⎡⎦⎥⎤-π8,7π8上的图象向左(右)平移k π(k ∈Z )个单位,即可得到y =sin(2x +π4)+1的整个图象.1.函数y =2sin(x 2+π5)的周期、振幅依次是( ) A .4π,-2 B .4π,2 C .π,2D .π,-2解析:在y =A sin(ωx +φ)(A >0,ω>0)中,T =2πω,A 叫振幅(A >0),故y =2sin(x 2+π5)的周期T =2π12=4π,振幅为2,故选B.答案:B2.已知函数f (x )=2 sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:∵函数f (x )的最小正周期为6π,∴2πω=6π,得ω=13,在x =π2时,函数f (x )取得最大值, ∴13×π2+φ=2k π+π2,k ∈Z . 又∵-π<φ≤π,∴φ=π3. ∴f (x )=2sin(13x +π3).由2k π-π2≤13x +π3≤2k π+π2(k ∈Z ), 得6k π-52π≤x ≤6k π+12π(k ∈Z ).∴f (x )的增区间是[6k π-52π,6k π+π2](k ∈Z ). 取k =0,得[-52π,π2]是f (x )的一个增区间. ∴函数f (x )在区间[-2π,0]上是增函数. 答案:A3.函数y =|5sin(2x +π3)|的最小正周期为________. 解析:∵y =5sin(2x +π3)的最小正周期为π, ∴函数y =|5sin(2x +π3)|的最小正周期为π2. 答案:π24.使函数f (x )=3sin(2x +5θ)的图象关于y 轴对称的θ为________. 解析:∵函数f (x )=3sin(2x +5θ)的图象关于y 轴对称, ∴f (-x )=f (x )恒成立,∴3sin(-2x +5θ)=3sin(2x +5θ). ∴sin(-2x +5θ)=sin(2x +5θ).∴-2x +5θ=2x +5θ+2k π(舍去)或-2x +5θ+2x +5θ=2k π+π(k ∈Z ).即10θ=2k π+π,故θ=k π5+π10(k ∈Z ). 答案:θ=k π5+π10,k ∈Z5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图,试求这个函数的解析式.解:方法一:易知A =22,T4=6-2=4. ∴T =16,∴2πω=16,∴ω=π8. 又∵图象过点(2,22). ∴22sin(π8×2+φ)=2 2. 又∵|φ|<π2,∴φ=π4. 于是y =22sin(π8x +π4).方法二:易知A =22,由图可知,第二、第三两关键点的横坐标分别为2和6.∵⎩⎨⎧2ω+φ=π2,6ω+φ=π,∴⎩⎪⎨⎪⎧ω=π8,φ=π4.∴y =22sin(π8x +π4).1.已知某人的血压满足函数解析式f (t )=24sin(160πt )+115.其中f (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( )A .60B .70C .80D .90解析:由题意可得频率f =1T =160π2π=80(次/分),所以此人每分钟心跳的次数是80.答案:C2.如图表示电流I 与时间t 的关系I =A sin(ωt +φ)(A >0,ω>0)在一个周期内的图象,则该函数的解析式为( )A .I =300sin ⎝ ⎛⎭⎪⎫50πt +π3B .I =300sin ⎝ ⎛⎭⎪⎫50πt -π3C .I =300sin ⎝ ⎛⎭⎪⎫100πt +π3D .I =300sin(100πt -π3)解析:由图象得周期T =2(1150+1300)=150,最大值为300,图象经过点(1150,0),则ω=2πT =100π,A =300,∴I =300sin(100πt +φ). ∴0=300sin(100π×1150+φ). ∴sin(2π3+φ)=0.取φ=π3, ∴I =300sin(100πt +π3). 答案:C 3.如图为某简谐运动的图象,则这个简谐运动需要________s 往复一次.解析:由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往复一次.答案:0.84.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.解析:由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2,B =6.周期T =2(7-3)=8,∴ω=2πT =π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6. ∴sin ⎝ ⎛⎭⎪⎫3π4+φ=1.由于|φ|<π2,∴φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6.答案:2sin ⎝ ⎛⎭⎪⎫π4x -π4+65.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮做匀速转动,每3 min 转一圈,摩天轮上的P 点的起始位置在最低点处.(1)试确定在时刻t min 时P 点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间P 点距离地面超过70 m? 解:(1)以中心O 为坐标原点建立如图所示的坐标系,设t min 时P 距地面的高度为y ,依题意得y =40sin ⎝⎛⎭⎪⎫2π3t -π2+50.(2)令40sin ⎝ ⎛⎭⎪⎫2π3t -π2+50>70,则sin ⎝ ⎛⎭⎪⎫2π3t -π2>12,∴2k π+π6<2π3t -π2<2k π+5π6(k ∈Z ),∴2k π+2π3<2π3t <2k π+4π3(k ∈Z ),∴3k +1<t <3k +2(k ∈Z ).令k =0得1<t <2. 因此,共有1 min P 点距地面超过70 m.单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .-4 3 B .±43 C. 3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-4 3. 答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( ) A .-33 B.33 C .- 3D.3 解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=- 3. 答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6) B .y =sin(x 2+π6) C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称, ∴f (π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z ),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α, cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C. 答案:C5.已知A 是三角形的内角,且sin A +cos A =52,则tan A 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sin A +cos A =52,所以2sin A cos A =14>0.所以A 为锐角.又(sin A -cos A )2=1-2sin A cos A =1-14=34,所以sin A -cos A =±32.从而可求出sin A ,cos A 的值,从而求出tan A =4±15.答案:C6.函数y =2sin(π6-2x )(x ∈[0,π])的单调递增区间是( ) A .[0,π3] B .[π12,7π12] C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π 可得π3+k π≤x ≤5π6+k π(k ∈Z ).∵x ∈[0,π],∴单调递增区间为[π3,5π6]. 答案:C7.为得到函数y =cos ⎝⎛⎭⎪⎫x +π3的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移5π6个单位长度D .向右平移5π6个单位长度 解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2 =sin ⎝ ⎛⎭⎪⎫x +5π6, ∴只需将y =sin x 的图象向左平移5π6个单位长度. 答案:C8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12 C.⎣⎢⎡⎦⎥⎤-π4,π6 D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2, ∴φ=-π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3, 其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z ), 取k =1,即得选项D. 答案:D9.设a 为常数,且a >1,0≤x ≤2π,则函数f (x )=cos 2x +2a sin x -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f (x )=cos 2x +2a sin x -1 =1-sin 2x +2a sin x -1 =-(sin x -a )2+a 2,∵0≤x ≤2π,∴-1≤sin x ≤1,又a >1,∴f (x )max =-(1-a )2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2π B .x =π2 C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2(22)2-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cos π15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z .又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32. 答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=l r =128=32, 扇形面积S =12lr =12×12×8=48.答案:32 4814.方程sin x =lg x 的解的个数为________.解析:画出函数y =sin x 和y =lg x 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数.若f (2 013)=-1,则f (2 014)=________.解析:f (2 013)=a sin(2 013π+α)+b cos(2 013π+β) =-1,f (2 014)=a sin(2 014π+α)+b cos(2 014π+β) =a sin[π+(2 013π+α)]+b cos[π+(2 013π+β)] =-[a sin(2 013π+α)+b cos(2 013π+β)]=1. 答案:116.关于函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f (x )的值域是[0,2];②点⎝⎛⎭⎪⎫-512π,0是函数f (x )的图象的一个对称中心;③直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f (x )图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cosπ+1=0,函数取得最小值,∴直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π, (1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值. 解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0, ∴75°+α为第四象限角,∴sin(75°+α)=-1-cos 2(75°+α) =-1-⎝ ⎛⎭⎪⎫132=-223, ∴cos(105°-α)+sin(α-105°) =-13+223=22-13. (2)由已知得cos(θ-9π)=-35, ∴cos(π-θ)=-35,∴cos θ=35, ∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45, ∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f (x )=2cos(2x -π4),x ∈R . (1)求函数f (x )的最小正周期和单调递增区间.(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos(2x -π4),所以函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)因为f (x )=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f (-π8)=0,f (π8)=2,f (π2)=2cos(π-π4)=-2cos π4=-1,所以函数f (x )在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)把f 1(x )的图象向右平移π4个单位长度得到f 2(x )的图象,求f 2(x )取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin(2x +π6),得A =2.故f 1(x )=2sin(2x +π6).(2)依题意,f 2(x )=2sin[2(x -π4)+π6] =-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时, y max =2.此时x 的取值为{x |x =k π+5π12,k ∈Z }. 21.(12分)已知函数f (x )=2sin(2x +π6)-1.(1)若点P (1,-3)在角α的终边上,求f (α2-π12)的值; (2)若x ∈[-π6,π3],求f (x )的值域.解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12,所以f (α2-π12)=2sin[2×(α2-π12)+π6]-1 =2sin α-1=2×(-32)-1=-3-1. (2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sin t 在[-π6,π2]上单调递增, 在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sin t 在[-π6,5π6]上的最大值为1, 最小值为-12,即-12≤sin(2x +π6)≤1, 所以f (x )的值域是[-2,1].22.(12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T , 得T =11π6-(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3,B -A =-1.解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3, ∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的最小正周期为2π3, 又k >0,∴k =3,令t =3x -π3, ∵x ∈[0,π3],∴t ∈[-π3,2π3],若sin t =s 在[-π3,2π3]上有两个不同的解, 则s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由题知OB →,OC →,AO →对应的有向线段都是圆的半径,因此它们的模相等.答案:C2.下列说法中正确的是( ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a ∥bD .若a ≠b ,则a 与b 不是共线向量解析:向量不能比较大小,所以A 不正确;a =b 需满足两个条件:a ,b 同向且|a |=|b |,所以B 不正确,C 正确;a 与b 是共线向量只需方向相同或相反,所以D 不正确.答案:C3.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.解析:∵四边形ABCD 为正方形,O 为正方形的中心, ∴OA =BO ,即|OA →|=|BO →|,|AC →|=|BD →|. 答案:OA →与BO →,AC →与BD →4.如图所示,四边形ABCD 和ABDE 都是平行四边形. (1)与向量ED →相等的向量为______;(2)若|AB →|=3,则向量EC →的模等于________. 解析:(1)在平行四边形ABCD 和ABDE 中, ∵AB →=ED →,AB →=DC →,∴ED →=DC →. (2)由(1)知ED →=DC →,∴E 、D 、C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6. 答案:(1)AB →、DC →(2)65.一个人从点A 出发沿东北方向走了100 m 到达点B ,然后改变方向,沿南偏东15°方向又走了100 m 到达点C .(1)画出AB →,BC →,CA →. (2)求|CA →|. 解:(1)如图所示. (2)|AB →|=100 m , |BC →|=100 m ,∠ABC =45°+15°=60°, 则△ABC 为正三角形. 故|CA →|=100 m.1.在四边形ABCD 中,AC →=AB →+AD →,则( ) A .ABCD 一定是矩形 B .ABCD 一定是菱形 C .ABCD 一定是正方形D .ABCD 一定是平行四边形解析:由AC →=AB →+AD →知由A ,B ,C ,D 构成的四边形一定是平行四边形.答案:D2.下列等式不成立的是( ) A .0+a =a B .a +b =b +a C.AB →+BA →=2BA →D.AB →+BC →=AC →解析:对于C ,∵AB →与BA →是相反向量, ∴AB →+BA →=0. 答案:C3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO → )+(OM →+MB → )+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →4.若a =“向北走8 km ”,b =“向东走8 km ”,则|a +b |=________;a +b 的方向是________.解析:由向量加法的平行四边形法则,知|a +b |=82,方向为东北方向.答案:8 2 km 东北方向5.在水流速度为4 3 km/h 的河中,要使船以12 km/h 的实际航速与河岸成直角行驶,求船在静水中的航行速度的大小和方向.解:设AB →表示水流的速度,AC →表示船的实际航行速度,如图,作出AB →,AC →,连接BC ,作AD 綊BC ,连接DC ,则AD →为所求船的静水航速,且AD →+AB →=AC →.∵|AB →|=43,|AC →|=12, tan ∠ACB =4312=33. ∴∠ACB =30°=∠CAD , |AD →|=|BC →|=83,∠BAD =120°.∴船在静水中的航行速度的大小为8 3 km/h ,方向与水流速度成120°角.1.下列等式: ①0-a =-a ②-(-a )=a ③a +(-a )=0 ④a +0=a ⑤a -b =a +(-b ) ⑥a +(-a )=0正确的个数是( )A .3B .4C .5D .6解析:根据向量的加减运算易知①②③④⑤均正确. 答案:C2.设AB →,BC →,AC →是三个非零向量,且AB →+BC →=AC →,则( ) A .线段AB ,BC ,AC 一定构成一个三角形 B .线段AB ,BC 一定共线 C .线段AB ,BC 一定平行D .线段AB ,BC ,AC 构成三角形或共线解析:由于三角形法则对于共线时也成立,因此线段AB ,BC ,AC 可以构成三角形,也可以共线,但线段AB ,BC 不可能平行.答案:D3.若向量a 与b 共线,且|a |=|b |=1,则|a -b |=________. 解析:∵a 与b 共线, ∴两向量同向或反向. 又|a |=|b |=1,∴|a -b |=0或2. 答案:0或24.化简:(1)(AD →-BM →)+(BC →-MC →)=________. (2)(PQ →-MO →)+(QO →-QM →)=________. 答案:(1)AD → (2)PQ →5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BE →,CE →.解:∵四边形ACDE 为平行四边形, ∴CD →=AE →=c ,BC →=AC →-AB →=b -a . ∴BD →=BC →+CD →=b -a +c , BE →=AE →-AB →=c -a , CE →=AE →-AC →=c -b .1.在四边形ABCD 中,若AB →=-12CD →,则此四边形是( ) A .平行四边形 B .菱形 C .梯形D .矩形解析:由AB →=-12CD →可得,在四边形ABCD 中有AB ∥CD ,但|AB |≠|CD |,故为梯形.答案:C2.已知非零向量a ,b 满足a =λb ,b =λa (λ∈R ),则λ=( ) A .-1 B .±1 C .0D .0解析:∵a =λb ,b =λa ,∴a =λ2a ,∴λ±1.答案:B3.化简:2(a -2b )+3(13a +b )=________. 答案:3a -b4.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b . 解析:∵b 与a 方向相反,∴设a =λb (λ<0) ∴|a |=|λ||b |,∴5=|λ|×7,∴|λ|=57, ∴λ=±57,又λ<0,∴λ=-57. 答案:-57 5.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:在四边形ANMD 中,有 MN →=MD →+DA →+AN → =-12DC →-AD →+12AB → =-AD →-12(12AB →)+12AB →=-AD →+14AB →=14a -b . 在四边形ABCD 中,有BC →=BA →+AD →+DC →=-AB →+AD →+12AB → =AD →-12AB →=b -12a .1.已知e 1,e 2是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是( )A .e 1,e 1+e 2B .e 1-2e 2,e 2-2e 1C .e 1-2e 2,4e 2-2e 1D .e 1+e 2,e 1-e 2解析:因为4e 2-2e 1=-2(e 1-2e 2),从而e 1-2e 2与4e 2-2e 1共线.答案:C2.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,以b 与c 作为基底,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴AD →-c =2(b -AD →),∴AD →=13c +23b . 答案:A。
高中数学必修四练习册(后含答案)
C.{α|α=k·180°,k∈Z}
D.{α|α=k·180°+90°,k∈Z}
6.射线 OA 绕端点 O 逆时针旋转 120°到达 OB 位置,由
OB 位置顺时针旋转 270°到达 OC 位置,则∠AOC=
()
A.150°
B.-150°
C.390°
D.-390°
7.若集合 M={α|α=±30°+k·180°,k∈Z},N={α|α=(-
D.α|α=2kπ+53π,k∈Z
3.已知集合 A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-
4≤α≤4},则 A∩B=( )
A.
B.{α|0≤α≤π|
C.{α|-4≤α≤4|
D.{α|-4≤α≤-π 或 0≤α≤π}
4.一条弦的长等于半径,则这条弦所对的圆心角是____
弧度 ( )
1.1.1 任意角
一、选择题
1.下列各命题正确的是( )
A.终边相同的角一定相等
B.第一象限角都是锐角
C.锐角都是第一象限角
D.小于 90°的角都是锐角
2.若 α 是第一象限角,则下列各角中属于第四象限角的
是( )
A.90°-α
B.90°+α
C.360°-α
D.180°+α
3.在“①160°,②480°,③-960°,④-1600°”这四个角
A.sinα+cosα<0
B.tanα-sinα<0
π
π
π
A.π
B.2
C.3
D.4
5.如图中,圆的半径为 5,圆内阴影部分的面积是( )
175π A. 36
125π B. 18
75π C. 18
人教版高中数学必修4课后习题答案详解
5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -. 10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+. 13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点, 所以EF AC //且12EF AC =, 即12EF AC =; 同理,12HG AC =, 所以EF HG =.习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=. 4、(1)四边形ABCD 为平行四边形,证略(2)四边形ABCD 为梯形.证明:∵13AD BC =, ∴AD BC //且AD BC ≠∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形. (第11题) (第12题) (第13题) E H GF D CA B 丙甲乙(第1题) (第4题(2)) B A C D证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=,OD OC CD -=而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即AB ∥CD .因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示练习(P100) 1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-;(3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-;(3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3- 7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32A P P B =- (,)(2,3)(2,A P x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩ (第4题(3)) A D C B A D M O B C(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-.1(1,2)2A C A B ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)O C O A A C =+=,所以,点C 的坐标为(0,3); (3,9)O D O A A D =+=-,所以,点D 的坐标为(3,9)-; (2,1)O E O A A E =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线.7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)O B O B '==-,所以点B '的坐标为(3,9-;故 (3,9)(2,4)(5,5)A B ''=--=-习题2.3 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP =. (2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106) 1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为32,0,32-. 图略练习(P107)1、22(3)45a =-+=,225229b =+=,35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒.习题2.4 A 组(P108)1、63a b ⋅=-,222()225123a b a a b b +=+⋅+=-,25123a b +=-.2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=.4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅== ()c o s a b a b λλθ⋅= ()cos cos a b a b a b λλθλθ⋅==所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=- ()cos cos a b a b a b λλθλθ⋅==- ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-所以 ()()()a b a b a b λλλ⋅=⋅=⋅;综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-, 1cos 2a b a b θ⋅==-,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯=∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y y x ⎧+=⎪⎨=⎪⎩,解得355655x y ⎧=⎪⎪⎨⎪=⎪⎩,或355655x y ⎧=-⎪⎪⎨⎪=-⎪⎩.于是3565(,)55a =或3565(,)55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y x y ⎧+=⎨+=⎩,解得55255x y ⎧=⎪⎪⎨⎪=-⎪⎩或55255x y ⎧=-⎪⎪⎨⎪=⎪⎩. 于是525(,)55e =-或525(,)55e =-. 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即1231()()0x x x y y y -+-= 而2323(,)b c x x y y -=--,所以()0a b c ⋅-=再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.c o s ,u v u v u v ⋅=<>,所以2222cos ,ac bd a b c d u v +=++<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.C证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB = 又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC ∠=所以212AB AC AB AM AB ⋅== 5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+.由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=- 由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =.2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+ (2)因为1()2AE a b =+ 所以23AO AE =,因此,,A O E 三点共线,而且2AO OE = 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD=== 3、解:(1)(2,7)B A v v v =-=-;(2)v 在A v 方向上的投影为135AA v v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°. 习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001s i n ,()2c o s h v t g t g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v g θ,最大投掷距离为20sin 2v g θ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v v v θθα==,0.5sin 20sin v d αθ==. ∴120sin d vθ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-O DF E A B C (第2题) (第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=-- 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()22()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+ 2233AD a b =+,1133BC a b =+ 1133EF a b =--,1233FA DC a b ==- 1233CD a b =-+,2133AB a b =- CE a b =-+ 5、(1)(8,8)AB =-,82AB =; (2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)NMOABS(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111()4242AM AE EM a b a a b =+=++=+5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(1)实际前进速度大小为224(43)8+=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为42千米/时, 沿与水流方向成690arccos3︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦121222221122cos A A B B A BA B θ+=++;(4)0022Ax By Cd A B++=+DOP 3P 1P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.c o s (2)c o s 2c o ss i n 2s i n 1c o s 0παπαπαααα-=+=⨯+⨯=. 2、解:由3cos ,(,)52πααπ=-∈,得2234sin 1cos 1()55αα=-=--=;所以23242cos()cos cos sin sin ()444252510πππααα-=+=⨯-+⨯=.3、解:由15sin 17θ=,θ是第二象限角,得22158cos 1sin 1()1717θθ=--=--=-;所以811538153cos()cos cos sin sin 33317217234πππθθθ-+-=+=-⨯+⨯=.4、解:由23sin ,(,)32πααπ=-∈,得2225cos 1sin 1()33αα=--=---=-;又由33cos ,(,2)42πββπ=∈,得2237sin 1cos 1()44ββ=--=--=-.所以3co4βα-+-=+=⨯-+-⨯-=. 练习(P131) 1、(1)624-; (2)624-; (3)624+; (4)23-. 2、解:由3cos ,(,)52πθθπ=-∈,得2234sin 1cos 1()55θθ=-=--=;所以4133433sin()sin cos cos sin ()333525210πππθθθ-+=+=⨯+-⨯=.3、解:由12sin 13θ=-,θ是第三象限角,得22125cos 1sin 1()1313θθ=--=---=-;所以3c o66ππθθ-++=-=⨯--⨯-=. 4、解:tan tan314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4)32-;(5)原式=1(cos34cos26sin34sin26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin 70(sin 20cos70cos20sin 70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=312(sin cos )2(sin cos cos sin )2sin()22666x x x x x πππ+=+=+;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x πππ-=-=-; (4)原式=1322(cos sin )22(cos cos sin sin )22cos()22333x x x x x πππ-=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是2234cos 1sin 1()55ββ=--=---=-. 因此55s i 44ππββ+=.练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得243sin 1()855α=---=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437c o s c o s (2)c o s s i n ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--= 3、解:由sin 2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得2213sin 1cos 1()22αα=-=--=,所以s i n3ta n(2)3c o s2ααα==⨯-=-. 4、解:由1t a n 23α=,得22t a n 11t a n 3αα=-. 所以2t a n 6t a n 10αα+-=,所以t a n 310α=-± 5、(1)11sin15cos15sin3024︒︒=︒=; (2)222cos sin cos 8842πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=2cos 452︒=. 习题3.1 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得2234sin 1cos 1()55αα--=-=,所以4331433cos()cos cos sin sin 666525210πππααα+-=+=⨯+⨯=.3、解:由2sin ,(,)32πααπ=∈,得2225cos 1sin 1()33αα=--=--=-,又由33cos ,(,)42πββπ=-∈,得2237sin 1cos 1()44ββ=--=---=-,所以5co 3αβ--=. 4、解:由1cos 7α=,α是锐角,得22143sin 1cos 1()77αα=-=-=因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以221153sin()1cos ()1()1414αβαβ+=-+=--= 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++11153431()1471472=-⨯+⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得2234cos(30)1sin (30)1()55αα︒+=--︒+=--=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒4331433525210-+=-⨯+⨯= 6、(1)624+-; (2)264+-; (3)23-+.7、解:由2sin ,(,)32πααπ=∈,得2225cos 1sin 1()33αα=--=--=-.又由3c o s4β=-,β是第三象限角,得2237sin 1cos 1()44ββ=--=---=-.所以cos()cos cos sin sin αβαβαβ+=-5327()()3434=-⨯--⨯- 352712+=sin()sin cos cos sin αβαβαβ-=-2357()()()3434=⨯---⨯- 63512--=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得2234cos 1sin 1()55θθ=--=--=-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒βαDACB(第12题)13、(1)65sin()6x π+; (2)3sin()3x π-; (3)2sin()26x π+;(4)27sin()212x π-; (5)22; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9)3-; (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得22cos 1sin 10.80.6αα=-=-=∴sin 22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由3cos ,1802703ϕϕ=-︒<<︒,得2236sin 1cos 1()33ϕϕ=--=---=- ∴6322sin 22sin cos 2()()333ϕϕϕ==⨯-⨯-= 2222361cos 2cos sin ()()333ϕϕϕ=-=---=- sin 222tan 2(3)22cos23ϕϕϕ==⨯-=- 16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以22122sin 1cos 1()33αα=--=--=-∴22142sin 22sin cos 2()339ααα==⨯-⨯=- 22221227cos 2cos sin ()()339ααα=-=--=-∴72422728cos(2)cos2cos sin 2sin ()444929218πππααα-++=-=-⨯--⨯=19、(1)1sin 2α+; (2)cos 2θ; (3)1sin 44x ; (4)tan 2θ.习题3.1 B 组(P138) 1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(c o s ()1)s i n ()(c o s c o s )(s i n s i n )αβαβαβαβ+-++=-++即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos 2θ+;(7)提示:用22sin θ代替1cos 2θ-,用22cos θ代替1cos 2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯ ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin 76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得1cos72m +︒= 3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()32αβ+=, 又tantan 232αβ=-,又因为tantan 2tan()21tan tan 2αβαβαβ++=-,所以tantan tan()(1tan tan )33222αααβββ+=+-=- 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+. 在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=, 11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,66()s inf αααα=+=+ 231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2)22sin()y a b x ϕ=++,其中2222cos ,sin a b a ba bϕϕ==++所以,y 的最大值为22a b +,最小值为22a b -+;第三章 复习参考题A 组(P146)xy M 1M C AO B (第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2)3; (3)2; (4)3-. 提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4sin10cos10sin 20︒-︒︒-︒==︒︒︒;(2)原式=sin10sin103cos10sin 40(3)sin 40cos10cos10︒︒-︒︒-=︒⋅︒︒=2sin40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=3sin 203sin 20cos 20tan 70cos10(1)tan 70cos10cos 20cos 20︒︒-︒︒︒-=︒︒⋅︒︒=sin702sin10sin20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒; (4)原式=3sin10cos103sin10sin50(1)sin50cos10cos10︒︒+︒︒⋅+=︒⋅︒︒2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3)223±. 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-;(4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos 22cos 212(cos 22cos 21)34cos 22cos 212(cos 22cos 21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222sin(2)24y x x x x x π=+++=++=++递减区间为5[,],88k k k Z ππππ++∈(2)最大值为22+,最小值为22-.10、2222()(cos sin )(cos sin )2sin cos cos2sin22cos(2)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-. ()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin22sin(2)14f x x x x x x x π=+=-+=-+(1)最小正周期是π,最大值为21+;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2s i n h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=,αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-, 312sin(2)sin 2cos cos 2sin 44450πππααα-=-=.解法二:由1s i n c o s 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得2sin()410πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,22sin()4210πα->≥.所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.312sin(2)450πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由43sin()sin 35παα++=- 可得 3343sin cos 225αα+=-,4sin()65πα+=-.又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以334cos cos[()]6610ππαα-=+-=4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin2sin2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以2cos cos[()]cos()cos sin()sin 44444410x x x x ππππππ=+-=+++=-,72sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222s i n c o s (s i n c o s )2s i nθθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos 2cos 2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()3sin21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2s i n (2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即222x y x y +++=,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
新人教A版高中数学必修四全册同步课时练习(附答案)
新人教A 版高中数学必修四全册课时练习任意角(建议用时:45分钟)[基础达标练]一、选择题1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [-870°=-3×360°+210°,∴-870°是第三象限角,故选C .] 2.在-360°~0°范围内与角1 250°终边相同的角是( ) A .170° B .190° C .-190°D .-170°C [与1 250°角的终边相同的角为α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136<k <-12536,因为k ∈Z ,所以k =-4,所以α=-190°.]3.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360°D .315°-5×360°D [∵1 485°÷360°=4.125,∴-1 485°=-4×360°-45°或写成-1 485°=-5×360°+315°.∵0°≤α<360°,故-1 485°=315°-5×360°.] 4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.] 5.已知角α=45°,β=315°,则角α与β的终边( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称A [α是第一象限角,β是第四象限角且45°=0°+45°与360°+45°终边相同,315°=360°-45°.]二、填空题6.若时针走过2小时40分,则分针走过的角是________.-960° [40分=23小时,23×360°=240°,因为时针按顺时针旋转,故形成负角,-360°×2-240°=-960°.]7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是________.213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.]8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.k·360°+60°(k∈Z)[在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]三、解答题9.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出集合S中适合不等式-360°<β<720°的元素.[解](1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.[解](1)角α终边所在区域如图①所示.(2)角β终边所在区域如图②所示.图① 图②(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .[能力提升练]1.角α与角β的终边关于y 轴对称,则α与β的关系为( ) A .α+β=k ·360°,k ∈Z B .α+β=k ·360°+180°,k ∈Z C .α-β=k ·360°+180°,k ∈Z D .α-β=k ·360°,k ∈ZB [法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k ·360°+180°,k ∈Z .法二:(直接法)因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .]2.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.270° [由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k ·360°.又180°<α<360°,令k =3,得α=270°.]弧度制(建议用时:45分钟)[基础达标练]一、选择题1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关D [ 无论是角度制度量角还是弧度制度量角,都与圆的半径没有关系.] 2.29π6是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B [29π6=4π+5π6.∵56π是第二象限角,∴29π6是第二象限角.]3.在0到2π范围内,与角-4π3终边相同的角是( )A .π6B .π3C .2π3D .4π3C [与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C.]4.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈ZD .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+2k π,k ∈ZD [对于A ,终边在x 轴上角的集合是{α|}α=k π,k ∈Z ,故A 正确;对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确;对于C ,终边在x 轴上的角的集合为{α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z , 故合在一起即为{α|}α=k π,k ∈Z ∪⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确;对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确.]5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .2 C .4D .1或4C [因为扇形的弧长为4 cm ,面积为2 cm 2, 所以扇形的面积为12×4×r =2,解得r =1(cm),则扇形的圆心角的弧度数为41=4.故选C.]二、填空题6.把角-274π用角度制表示为________.-1 215° [-274π=-274×180°=-1 215°.]7.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为______________. π5,π3,7π15 [因为A +B +C =π, 又A ∶B ∶C =3∶5∶7,所以A =3π3+5+7=π5,B =5π3+5+7=π3,C =7π15.]8.圆的一段弧长等于该圆外切正三角形的外边,则这段弧所对圆心角的弧度数是________.2 3 [设圆的半径为r ,外切正三角形边长为a ,则32a ×13=r ,则r =36a ,又弧长为a ,所以圆心角为:ar=a36a =63=2 3.]三、解答题9.已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角. [解] (1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.∴在区间[-5π,0)上与α终边相同的角为-296π,-176π,-56π.10.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解] (1)由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎪⎫2π3-3.[能力提升练]1.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=π2+2k π(k ∈Z )D [∵α=2k 1π+x +π4,β=2k 2π+x -π4(k 1,k 2∈Z ),∴α-β=2(k 1-k 2)π+π2,也即α-β=π2+2k π(k ∈Z ).]2.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =________________.[-4,-π]∪[0,π] [如图所示,∴A ∩B =[-4,-π]∪[0,π].]任意角的三角函数(建议用时:60分钟)[基础达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.如果角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A .12 B .-12C .-32D .-33C [sin 30°=12,cos 30°=32,∴P 点坐标为(1,-3),r =12+(-3)2=2,∴sin α=-32.] 3.已知角α的终边在函数y =-|x |的图象上,则cos α的值为( ) A .22B .-22C .22或-22D .12C [由y =-|x |的图象知,α的终边落在第三、四象限的角平分线上,当α终边落在第三象限时,cos α=-22;当α终边落在第四象限时,cos α=22.] 4.θ是第二象限角,则下列选项中一定为正值的是( ) A .sin θ2B .cos θ2C .tan θ2D .cos 2θC [∵θ是第二象限角,则θ2一定是第一或第三象限角,这时tan θ2一定为正值,故选C.]5.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .⎝ ⎛⎭⎪⎫-12,32 B .⎝ ⎛⎭⎪⎫-32,-12 C .⎝ ⎛⎭⎪⎫-12,-32D .⎝⎛⎭⎪⎫-32,12 A [点(1,0)在x 轴正半轴,由题意可知,θ一定在α=2π3的终边上,∵OQ =1,∴Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3即⎝ ⎛⎭⎪⎫-12,32.] 二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β= .-1613[由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,所以sin α·tan β=1213×⎝ ⎛⎭⎪⎫-43=-1613.]7.点P (tan 2 018°,cos 2 018°)位于第 象限. 四 [因为2 018°=5×360°+218°, 所以2 018°与218°终边相同,是第三象限角, 所以tan 2 018°>0,cos 2 018°<0, 所以点P 位于第四象限.]8.已知角α的终边经过点P (x ,-6)且cos α=-45,则x = .-8 [因为|OP |=x 2+(-6)2=x 2+36, 所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[能力提升练]1.函数y =sin x +-cos x 的定义域是( ) A .(2k π,2k π+π),k ∈Z B .⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π,k ∈Z C .⎣⎢⎡⎦⎥⎤k π+π2,k π+π,k ∈Z D .[]2k π,2k π+π,k ∈ZB [由sin x ≥0,-cos x ≥0,得x 为第二象限角或y 轴正半轴上的角或x 轴负半轴上的角,所以2k π+π2≤x ≤2k π+π,k ∈Z .]2.若角α满足sin α·cos α<0,cos α-sin α<0,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限B [由sin α·cos α<0知α是第二或第四象限角,由cos α-sin α<0,得cos α<sin α,所以α是第二象限角.]3.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α= .35 [因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,r =(-3cos θ)2+(4cos θ)2=5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35.]4.函数y =|cos x |cos x +tan x|tan x |的值域为 .{-2,0,2} [已知函数的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z ,即角x 的终边不能落在坐标轴上,当x 是第一象限角时,cos x >0,tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合; (2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z .(2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.三角函数及其应用(建议用时:45分钟)[基础达标练]一、选择题1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在D [终边在y 轴上的角的正切线不存在,故A ,C 错,对任意角都能作正弦线、余弦线,故B 错,因此选D .]2.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( )A .1B .2C .3D .0C [π6和5π6的正弦线关于y 轴对称,长度相等;π3和4π3两角的正切线相同;π4和5π4的余弦线长度相等.故①②③都正确,故选C.]3.角α(0<α<2π)的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么α的值为( )A .π4B .3π4C .7π4D .3π4或7π4D [由已知得角α的终边应落在直线y =-x 上, 又0<α<2π,所以α=3π4或7π4.]4.cos 1,cos 2,cos 3的大小关系是( ) A .cos 1>cos 2>cos 3 B .cos 1>cos 3>cos 2 C .cos 3>cos 2>cos 1D .cos 2>cos 1>cos 3A [作出已知三个角的余弦线(如图),观察图形可知cos 1>0>cos 2>cos 3.] 5.使sin x ≤cos x 成立的x 的一个区间是( )A .⎣⎢⎡⎦⎥⎤-3π4,π4B .⎣⎢⎡⎦⎥⎤-π2,π2C .⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]A [如图,画出三角函数线sin x =MP ,cos x =OM ,由于sin ⎝ ⎛⎭⎪⎫-3π4=cos ⎝ ⎛⎭⎪⎫-3π4, sin π4=cos π4,为使sin x ≤cos x 成立,由图可得在[-π,π]范围内,-3π4≤x ≤π4.]二、填空题6.已知θ∈⎝ ⎛⎭⎪⎫π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为 .AT>MP>OM [如图:因为θ∈⎝ ⎛⎭⎪⎫π4,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .]7.利用三角函数线写出满足tan x <3且x ∈(0,2π)的x 的取值范围为 . ⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3 [由tanx <3得k π-π2<x <k π+π3(k ∈Z ),又∵x ∈(0,2π), ∴x 的取值范围为⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3.]8.函数y =2cos x -1的定义域为 .⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ) [因为2cos x -1≥0,所以cos x ≥12.如图:作出余弦值等于12的角:-π3和π3,在图中所示的阴影区域内的每一个角x ,其余弦值均大于或等于12,因而满足cos x ≥12的角的集合为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).所以函数定义域为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).]三、解答题9.已知-12≤sin θ<32,利用单位圆中的三角函数线,确定角θ的范围.[解] 画出三角函数线如图.由图可知角θ的范围是⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6≤θ<2k π+π3或2k π+2π3<α≤2k π+7π6,k ∈Z . 10.求下列函数的定义域: (1)f (x )=sin x ·tan x ; (2)f (x )=lg sin x +9-x 2. [解] (1)∵要使函数f (x )有意义,∴sin x ·tan x ≥0,∴sin x 与tan x 同号或sin x ·tan x =0, 故x 是第一、四象限的角或终边在x 轴上的角. ∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π-π2<x <2k π+π2或x =(2k +1)π,k ∈Z .(2)由题意,要使f (x )有意义,则⎩⎪⎨⎪⎧sin x >0,9-x 2≥0. 由sin x >0得2k π<x <2k π+π(k ∈Z ), ① 由9-x 2≥0得-3≤x ≤3,②由①②得:f (x )的定义域为{x |0<x ≤3}.[能力提升练]1.在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4B .⎝ ⎛⎭⎪⎫π4,πC .⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫5π4,3π2C [|sin x |>|cos x |可转化为x 的正弦线的长度大于余弦线的长度,观察图形可知:在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4.]2.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0. 因为|MP |<|OM |,即|a |<|b |, 所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.]同角三角函数的基本关系(建议用时:45分钟)[基础达标练]一、选择题1.已知α是第三象限角,且sin α=-13,则3cos α+4tan α=( )A .- 2B . 2C .- 3D . 3A [因为α是第三象限角,且sin α=-13,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223, 所以tan α=sin αcos α=122=24,所以3cos α+4tan α=-22+2=- 2.] 2.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A .14 B .12 C .1 D .32C [原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.]3.若α是三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形D [sin α+cos α=23得1+2sin αcos α=49,所以sin αcos α=-518<0,又因α∈(0,π),所以α为钝角,故三角形为钝角三角形.]4.⎝ ⎛⎭⎪⎫tan x +1tan x cos 2x 等于( ) A .tan x B .sin x C .cos x D .1tan xD [原式=⎝⎛⎭⎪⎫sin x cos x +cos x sin x ·cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x.]5.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( )A .23B .-23C .13D .-13B [因为sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,所以两边平方可得:1+2sin θcos θ=169,即sin θ·cos θ=718,所以(sin θ-cos θ)2=1-2sin θcos θ=1-79=29,又因为0<θ<π4,所以sin θ<cos θ,所以sin θ-cos θ<0,所以sin θ-cos θ=-23,故应选B .]二、填空题 6.化简11+tan 220°的结果是 .cos 20° [11+tan 220°=11+sin 220°cos 220°=1cos 220°+sin 220°cos 220°=11cos 220°=|cos 20°|=cos 20°.] 7.已知sin αcos α=12,则sin α-cos α= .0 [(sin α-cos α)2=1-2sin αcos α=1-2×12=0,∴sin α-cos α=0.]8.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α= . 1 [4sin 2α-3sin αcos α-5cos 2α =4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α =4tan 2α-3tan α-5tan 2α+1 =4×4-3×2-54+1=55=1.]三、解答题 9.化简下列各式: (1)sin α1+sin α-sin α1-sin α; (2)⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α).[解] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α.(2)原式=⎝⎛⎭⎪⎫1sin α+cos αsin α(1-cos α) =1+cos αsin α(1-cos α)=sin 2αsin α=sin α.10.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α. [解] (1)2cos 2α+3cos αsin α-3sin 2α =2cos 2α+3cos αsin α-3sin 2αsin 2α+cos 2α=2+3tan α-3tan 2αtan 2α+1=1, 即4tan 2α-3tan α-1=0, 解得tan α=-14或tan α=1.∵α∈⎝ ⎛⎭⎪⎫-3π2,-π,∴α为第二象限角, ∴tan α<0,∴tan α=-14.(2)原式=2tan α-34tan α-9=720.[能力提升练]1.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°B [1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.]2.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ= .±2 [sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=12,则(sin θ+cos θ)2=1+2sinθcos θ=2,所以sin θ+cos θ=± 2.]三角函数的诱导公式(1)(建议用时:45分钟)[基础达标练]一、选择题1.已知sin(π+θ)=45,则角θ的终边在( )A .第一或第二象限B .第二或第三象限C .第一或第四象限D .第三或第四象限D [sin(π+θ)=-sin θ=45,∴sin θ=-45<0,所以θ为第三或第四象限角.]2.sin 2(2π-α)+cos(π+α)cos(π-α)+1的值是( ) A .1 B .2 C .0 D .-1 B [原式=sin 2α+(-cos α)·(-cos α)+1 =sin 2α+cos 2α+1=1+1=2.]3.已知600°角的终边上有一点P (a ,-3),则a 的值为( ) A . 3 B .- 3 C.33 D .-33B [由题意得tan 600°=-3a,又因为tan 600°=tan(360°+240°) =tan 240°=tan(180°+60°) =tan 60°=3,所以-3a=3,所以a =- 3.]4.已知点(-4,3)是角α终边上的一点,则sin(π-α)=( ) A .35 B .-35 C .-45 D .45A [x =-4,y =3,∴r =(-4)2+32=5,∴sin(π-α)=sin α=y r =35.故选A.]5.已知sin ⎝ ⎛⎭⎪⎫α-π4=32,则sin ⎝ ⎛⎭⎪⎫5π4-α的值为( ) A .12 B .-12 C .32 D .-32 C [sin ⎝⎛⎭⎪⎫5π4-α=sin ⎝ ⎛⎭⎪⎫π+π4-α=-sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎝ ⎛⎭⎪⎫α-π4=32.]二、填空题6.若P (-4,3)是角α终边上一点,则cos (α-3π)·tan (α-2π)sin 2(π-α)的值为________. -53 [由条件可知sin α=35,cos α=-45,tan α=-34, ∴cos (α-3π)·tan (α-2π)sin 2(π-α)=-cos α·tan αsin 2α=-sin αsin 2α=-1sin α=-53.] 7.已知cos(508°-α)=1213,则cos(212°+α)=________.1213[由于cos(508°-α)=cos(360°+148°-α) =cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°) =cos(α-148°)=cos(148°-α)=1213.]8.已知sin(α+π)=45,且sin αcos α<0,则2sin (α-π)+3tan (3π-α)4cos (α-3π)=________.-73 [因为sin(α+π)=-sin α=45, 且sin αcos α<0,所以sin α=-45,cos α=35,tan α=-43,所以2sin (α-π)+3tan (3π-α)4cos (α-3π)=-2sin α-3tan α-4cos α=85+4-4×35=-73.] 三、解答题 9.化简下列各式:(1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π;(2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).[解] (1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π=-sin ⎝⎛⎭⎪⎫6π+π3cos ⎝ ⎛⎭⎪⎫π+π6=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°)+ cos(180°+60°)sin(180°+30°) =sin 60°cos 30°+cos 60°sin 30°=1.10.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[解] (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α.(2)∵sin(α-π)=-sin α=15,∴sin α=-15.又α是第三象限角,∴cos α=-265,∴f (α)=265.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫-6×2π+5π3=-cos 5π3=-cos π3=-12.[能力提升练]1.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .b >c >aD .c >a >bB [a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =-sin33π4=-sin π4=-22, ∴b >a >c .]2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.-2 [f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-11π6=sin ⎝⎛⎭⎪⎫-2π+π6=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝⎛⎭⎪⎫116-1-1=f ⎝ ⎛⎭⎪⎫56-1=f ⎝⎛⎭⎪⎫56-1-2 =f ⎝ ⎛⎭⎪⎫-16-2 =sin ⎝ ⎛⎭⎪⎫-π6-2=-sin π6-2=-12-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2.]三角函数的诱导公式(2)(建议用时:45分钟)[基础达标练]一、选择题1.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0, ∴θ为第二象限角.]2.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12B .12C .32D .-32A [∵sin(3π+α)=-sin α=-12,∴sin α=12.∴cos ⎝⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫3π2-α=-cos ⎝ ⎛⎭⎪⎫π2-α =-sin α=-12.]3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α等于( ) A .-13 B .13 C .223 D .-223A [cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫α-π4+π2=-sin ⎝⎛⎭⎪⎫α-π4=-13.故选A.]4.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( )A .-2a 3B .-3a 2C .2a 3D .3a2B [由sin(180°+α)+cos(90°+α)=-a , 得-sin α-sin α=-a ,即sin α=a2,cos(270°-α)+2sin(360°-α) =-sin α-2sin α=-3sin α=-32a .]5.化简:sin (θ-5π)cos ⎝ ⎛⎭⎪⎫-π2-θcos (8π-θ)sin ⎝⎛⎭⎪⎫θ-3π2sin (-θ-4π)=( )A .-sin θB .sin θC .cos θD .-cos θA [原式=sin (θ-π)cos ⎝ ⎛⎭⎪⎫π2+θcos (-θ)cos θsin (-θ)=(-sin θ)(-sin θ)cos θcos θ(-sin θ)=-sin θ.]二、填空题6.(2019·天一大联考)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝ ⎛⎭⎪⎫α-2 019π2=________. 35 [∵角α的终边经过点P (3,4),∴sin α=45,cos α=35,∴sin ⎝ ⎛⎭⎪⎫α-2 019π2=sin ⎝ ⎛⎭⎪⎫π2-α=cos α=35.]7.化简sin(π+α)cos ⎝⎛⎭⎪⎫3π2+α+sin ⎝ ⎛⎭⎪⎫π2+αcos(π+α)=________.-1 [原式=(-sin α)·sin α+cos α·(-cos α) =-sin 2α-cos 2α=-1.]8.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,则f ⎝ ⎛⎭⎪⎫θ-5π12=________.-425 [由f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12得f ⎝⎛⎭⎪⎫θ-5π12=2cos ⎝ ⎛⎭⎪⎫θ-5π12-π12=2cos ⎝⎛⎭⎪⎫θ-π2=2sin θ.又∵cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,∴sin θ=-45,故f ⎝ ⎛⎭⎪⎫θ-5π12=-425.]三、解答题9.已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求sin ⎝ ⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α)的值.[解] (1)因为点P ⎝ ⎛⎭⎪⎫45,-35,所以|OP |=1,sin α=-35.(2)sin ⎝⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α) =cos αtan α-sin α(-cos α)=1cos α,由三角函数定义知cos α=45,故所求式子的值为54.10.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2θ=tan (9π+θ)+1tan (π+θ)-1. [证明] 左边=-2cos θ·sin θ-1sin 2θ+cos 2θ-2sin 2θ =-(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ) =sin θ+cos θsin θ-cos θ,右边=tan ·(8π+π+θ)+1tan (π+θ)-1=tan (π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θcos θ+1sin θcos θ-1=sin θ+cos θsin θ-cos θ, 所以左边=右边, 所以等式成立.[能力提升练]1.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89 B .90 C .892D .45C [原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892.]2.已知f (α)=cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-αcos (-π-α)tan (π-α),则f ⎝ ⎛⎭⎪⎫-26π3的值为________.-12 [f (α)=(-sin α)·(-cos α)(-cos α)·(-tan α)=sin αcos αsin α=cos α,所以f ⎝ ⎛⎭⎪⎫-26π3=cos ⎝ ⎛⎭⎪⎫-263π=cos 263π=cos ⎝ ⎛⎭⎪⎫9π-π3=-cos π3=-12.]正弦函数余弦函数的图像(建议用时:60分钟)[基础达标练]一、选择题1.用“五点法”作y =sin 2x 的图象时,首先描出的五个点的横坐标是( ) A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π3B [令2x =0,π2,π,3π2,2π可得x =0,π4,π2,3π4,π,故选B.]2.若点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 C [当x =π2时,y =sin π2=1,故-m =1,m =-1.]3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则f (x )的图象( )A .与g (x )的图象相同B .与g (x )的图象关于y 轴对称C .向左平移π2个单位,得g (x )的图象D .向右平移π2个单位,得g (x )的图象D [f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sin x , f (x )图象向右平移π2个单位得到g (x )图象.]4.如图是下列哪个函数的图象( )A .y =1+sin x ,x ∈[0,2π]B .y =1+2sin x ,x ∈[0,2π]C .y =1-sin x ,x ∈[0,2π]D .y =1-2sin x ,x ∈[0,2π]C [根据图象上特殊点进行验证,可知C 正确.]5.将余弦函数y =cos x 的图象向右至少平移m 个单位,可以得到函数y =-sin x 的图象,则m =( )A .π2B .πC .3π2D .3π4C [根据诱导公式得,y =-sin x =cos ⎝⎛⎭⎪⎫3π2-x =cos ⎝ ⎛⎭⎪⎫x -3π2,故欲得到y =-sin x的图象,需将y =cos x 的图象向右至少平移3π2个单位长度.]二、填空题6.用“五点法”作函数y =1-cos x ,x ∈[0,2π]的图象时,应取的五个关键点分别是______________.(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0) [x 依次取0,π2,π,3π2,2π得五个关键点(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0).]7.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32的交点个数是________.2 [在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.]8.函数y =lg(2-2cos x )的定义域是________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z [由2-2cos x >0得cos x <22,作出y =cos x 的图象和直线y =22,由图象可知cos x <22的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z .] 三、解答题9.用“五点法”画出y =-2cos x +3(0≤x ≤2π)的简图. [解] 列表:10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形(如图),求这个封闭图形的面积.[解] 观察图形可知:图形S 1与S 2,S 3与S 4都是两个对称图形,有S 1=S 2,S 3=S 4. 因此函数y =2cos x 的图象与直线y =2所围成的图形面积,可以等价转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π, ∴S 矩形OABC =2×2π=4π, ∴所求封闭图形的面积为4π.[能力提升练]1.若sin θ=1-log 2x ,则实数x 的取值范围是( )A .[1,4]B .⎣⎢⎡⎦⎥⎤14,1C .[2,4]D .⎣⎢⎡⎦⎥⎤14,4A [由sin θ∈[-1,1]得-1≤1-log 2x ≤1,解得0≤log 2x ≤2,即1≤x ≤4.]2.方程sin x =x10的根的个数是( )A .7B .8C .9D .10A [在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.]3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.⎝⎛⎭⎪⎫π4,5π4 [在同一坐标系中画出y =sin x ,x ∈(0,2π)与y =cos x ,x ∈(0,2π)的图象如图所示,由图象可观察出当x ∈⎝ ⎛⎭⎪⎫π4,5π4时,sin x >cos x .]4.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4 [由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0, 当x ∈[0,2π]时,x =π2或3π2,∴交点为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4.]5.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.[解] f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).正弦余弦函数的周期性与奇偶性(建议用时:60分钟)[基础达标练]一、选择题1.函数f (x )=x +sin x ,x ∈R ( ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数,又是偶函数 D .既不是奇函数,又不是偶函数A [函数y =x 为奇函数且y =sin x 也是奇函数,故f (x )=x +sin x ,x ∈R 是奇函数.] 2.下列函数中最小正周期为π的偶函数是( ) A .y =sin x2B .y =cos x2C .y =cos xD .y =cos 2xD [A 中函数是奇函数,B 、C 中函数的周期不是π,只有D 符合题目要求.] 3.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20 B [由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.]4.函数y =-x cos x 的部分图象是下图中的( )A B C DD [y =cos x 为偶函数,y =x 为奇函数,∴y =-x cos x 为奇函数,排除A 、C ,又x ∈⎝⎛⎭⎪⎫0,π2时cos x >0,x >0,∴y <0,故排除B ,选D.]5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .2B [由已知得f (x +π)=f (x ),f (-x )=-f (x ), 所以f ⎝⎛⎭⎪⎫3π4=f ⎝ ⎛⎭⎪⎫3π4-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1.]二、填空题6.关于x 的函数f (x )=sin(x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数; ③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数. 其中错误的是________(填序号).①④ [φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数.]7.若函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________.6 [T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.]8.函数y =sin x 的图象关于原点对称,观察正弦曲线的形状,结合正弦函数的周期性可知,正弦曲线的对称中心为________.(k π,0)(k ∈Z ) [∵y =sin x 是奇函数,∴(0,0)是其对称中心,又正弦函数的周期为2k π,结合正弦曲线可知,对称中心为(k π,0)(k ∈Z ).]三、解答题9.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期. [解] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π.[能力提升练]1.函数f (x )=sin x1+cos x 的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数A [首先1+cos x ≠0,即x ≠2k π+π(k ∈Z ),定义域关于原点对称,又y =sin x 是奇函数,y =1+cos x 是偶函数,所以f (x )=sin x1+cos x是奇函数.]2.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 018)=( )A .32 B .-32C .0D . 3 D [∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 018)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018) =336⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)=336×0+f (1)+f (2)=sin π3+sin 23π= 3.]3.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是________.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 [∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cosx 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.]4.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x≤π,则f ⎝⎛⎭⎪⎫-15π4的值等于________.22 [因为函数f (x )的周期为3π2,∴f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-154π+3π2×3=f ⎝ ⎛⎭⎪⎫3π4,又∵3π4∈(0,π],∴f ⎝ ⎛⎭⎪⎫-154π=sin 3π4=22.]5.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.[解] 当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时, g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3. 因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6. 又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π-π2或x =k π-π6,k ∈Z .正弦余弦函数的单调性与最值(建议用时:60分钟)[基础达标练]一、选择题1.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2A [对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修 4 课后习题答案 [ 人教版 ]
第 19页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 20页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 21页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 22页 共 23 页
第 9页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 10页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 11页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 12页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 13页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 14页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 15页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 16页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 17页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
高中数学必修 4 课后习题答案 [ 人教版 ]
第 23页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 5页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 6页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 7页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 8页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
高中数学必修 4 课后习题答案 [ 人教版 ]
高中数学必修 4 课后习题答案
第 1页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 2页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 3页 共 23 页
高中数学必修 4 课后习题答案 [ 人教版 ]
第 4页 共 23 页