光伏电站光伏阵列间距计算方法
光伏矩阵通道间距计算
பைடு நூலகம்
绿色部分是需要输入的部分 参数 光伏板长度 光伏板仰角(纬度-2,估算) 光伏板高度H 当地纬度f 太阳赤纬角d 时角w 太阳高度角α 太阳方位角β 数据 1.65 36.2 0.97 38.2 -23.5 -45 0.27 -0.74 单位 米 度 米 度 度 度 弧度 弧度
。 计算公式如下:
光伏矩阵通道宽度 光伏矩阵宽度
2.65 3.98
米 米
备注
大概估算,最好用PVSYST模拟计算
屋顶光伏组件阵列间距计算的深入分析
屋顶光伏组件阵列间距计算的深入分析目前分布式光伏系统的应用主要以工业、商业或民用建筑屋顶为主,光伏阵列排布在分布式系统设计中是非常重要的环节,对于阵列前后间距的优化,我们一般以冬至日上午9时和下午15时阵列前后互不遮挡的原则作为参考,它不仅要考虑当地纬度下的太阳高度角、太阳方位角、安装倾角,也还要考虑屋面本身的坡度、坡面朝向和坡面方位角,而目前对于光伏阵列前后间距的研究文献大多是正南朝向的水平屋面,虽然也有涉及到坡角和方位角,但分析仍不够全面,存在一定的局限性。
因为实际的屋面可能同时呈现坡度和方位角,也有可能屋顶坡面东西朝向或主坡副坡同时存在,因此有必要对这些复杂屋面的阵列间距做深入分析。
通常情况下,屋面一般按其坡度的不同分为坡屋面(屋面排水坡度大于10%)和平屋面(屋面排水坡度小于5%)两大类。
对于平屋面,一种是只有横向排水坡度(或称为主坡),没有纵向排水坡度(或称为副坡、边坡),另一种则稍复杂些,同时存在主坡和副坡,副坡和主坡形成一定的角度,两种情况参考图1和图2。
主坡较常见的为2%~3%,副坡为0.5%~1%。
从光伏组件安装应用角度,目前使用最广泛的为平屋面,如工业彩钢瓦屋面、混凝土屋面,而坡屋面主要为别墅类,因坡屋面自身坡度较高,所以光伏组件一般沿着屋面平铺,参照图3。
而平屋面的坡角较小,则需要设计一定的安装倾角来获得更高的发电效率,参照图4。
平屋面可分为坡角为0°角和不为0°角两种,按照坡面朝向又可以分为东西坡和南北坡屋面,如图5为东西朝向双坡面,图6为南北朝向双坡面,这两种屋面光伏阵列朝南安装在南坡或北坡。
当然这两种屋面可能同时存在主坡和副坡,也可能存在一定的方位角,为计算方便起见,这里坡面的方位角定义为坡面法线方向在水平面的投影和正南方向的夹角,偏西为正,偏东为负。
本文主要研究对象为东西坡和南北坡这两种典型的平屋面,并推广到屋面含有方位角和主副坡共存的复杂情形。
各类光伏电站光伏阵列间距设计方法汇总
各类光伏电站阵列间距设计方法汇总1)太阳位置太阳的位置在地平坐标系中,通常有太阳高度角、方位角表示,计算方法如下:arcsin(sin sin cos cos cos )αϕδϕδω=+arcsin(cos sin /cos )βδωα=为α太阳高度角;β为太阳方位角,ϕ为当地纬度;δ为太阳赤纬角;ω为时角。
图1 北京市太阳轨迹图冬至日真太阳时09:00(或15:00)时太阳高度角和方位角是计算光伏阵列间距的基础数据。
冬至日太阳在北回归线,δ为-23.45°,09:00时的ω为-45°(下午为正),此时的太阳高度角和太阳方位角可有下式表示:arcsin(0.648cos 0.399sin )αϕϕ=-, )cos /648.0sin(arc αβ-= 。
由太阳的方位角、高度角和建筑物高度可以确定影子的长度。
假设一根细棒高度为单位高度,将影子分为南北和东西两个分量,即得出影子南北方向和东西方向的阴影系数。
αβR tan cos S -N = αβR E-W tan sin = 2)混凝土平整屋面光伏阵列间距设计《光伏发电站设计规范》中给出平整场地光伏阵列不被遮挡的阵列中心间距计算公式:φφθθtan 4338.0707.04338.0tan 707.0sin cos D -++=L L式中:L 为阵列斜面长度,θ为组件倾角,φ为项目所在地纬度。
光伏阵列中心间距为阵列斜面投影1D 与间距2D 之和,221D cos D D D +=+=θL ,阵列间距示意图如图3。
间距2D 可用阴影系数表示,h αβh R D N-S ⨯=⨯=tan cos 2。
图1 光伏阵列间距示意图3)平铺屋面光伏阵列间距当彩钢瓦屋面、陶瓷瓦屋面的光伏组件采用沿屋面自然坡度平铺的安装方式,前后排组件不存在阴影遮挡,因此无需考虑阴影遮挡问题,可适当设置500-600mm宽的检修通道方便维护。
4)南北坡屋面光伏阵列间距类型一:当建筑坐北朝南,屋脊为正东西走向,建筑的方位角为0°。
光伏组件阵列间距参照表
光伏组件阵列间距参照表光伏组件阵列是太阳能发电系统中的重要组成部分,它由多个光伏组件按照一定的布局方式组成。
光伏组件的间距布局直接影响到系统的发电效率和经济效益。
本文将为您介绍光伏组件阵列间距参照表,并详细解释不同间距对发电系统的影响。
一、间距参照表的基本要素光伏组件阵列间距参照表通常包括以下基本要素:组件排列方式:包括横向排列和纵向排列两种方式。
组件间距:指组件之间的横向和纵向间距。
纬度和季节:由于太阳高度角和方位角在不同纬度和季节下有所不同,因此参照表需要考虑不同地区和时间的特点。
二、横向排列间距参照表横向排列是指光伏组件按照东西方向排列的方式。
在确定横向排列间距时,需要考虑组件之间的阴影覆盖情况以及系统的发电效率。
以下是一个横向排列间距参照表的示例:三、纵向排列间距参照表纵向排列是指光伏组件按照南北方向排列的方式。
在选择纵向排列间距时,需要考虑组件与地面的倾斜角度、地面的反射率以及阴影效应等因素。
以下是一个纵向排列间距参照表的示例:四、间距对系统发电效果的影响合理的光伏组件阵列间距可以有效提高系统的发电效率。
如果间距过小,组件之间会互相遮挡产生阴影,导致系统发电效率下降;如果间距过大,可能浪费光能资源。
因此,根据实际情况和系统要求,选择合适的间距是非常重要的。
除了发电效率,间距还会对系统的经济效益产生一定的影响。
通过合理的间距布局,可以充分利用可利用空间,提高系统发电量,降低发电成本。
总而言之,光伏组件阵列的间距布局需要结合实际情况和系统要求进行选择。
参照表提供了初步的参考,但具体的间距还需要综合考虑光照条件、纬度、季节、阴影效应等因素。
通过科学的设计和合理的布局,可以最大限度地提高光伏发电系统的效率和经济效益。
光伏阵列间距计算公式
光伏阵列间距计算公式
光伏阵列的间距是指相邻组件之间的距离,间距的大小会影响光伏发电系统的发电效率和系统的成本。
为了确定最佳的间距大小,需要考虑多种因素,包括组件的尺寸、倾角、朝向、阴影覆盖等。
根据经验公式,可得到以下光伏阵列间距的计算公式:
间距 = 组件宽度 / (1 + 间距系数)
其中,组件宽度指的是组件的边长或直径,间距系数则是一个经验值,一般取值在1.2到1.6之间。
此公式适用于单排或多排光伏阵列的间距计算。
需要注意的是,以上公式只是一种大致的计算方法,实际间距的确定还需要考虑具体的情况和实际的需求。
在实际应用中,还需要结合现场环境和特殊要求进行调整。
- 1 -。
大棚光伏电站间距计算
说明:1.黄色区域为本小程序的输入;2.绿色区域为计算结果;3.程序所指的时间,均指真太阳时;(1)计算太阳高度角、方位角n为某日在一年中的天数当地纬度赤纬角时角大棚方位角as高度角rs方位角叠加山坡方位角(2)计算平地时,方阵前后排间距1月1日,n=1 n=355冬至355phai=28.6°0.499164 delta=-23.44978272°-0.40928 wmega=45°0.7853980°sin(as)=0.379060852cos(as)=0.925371747sin(rs)=0.701021985cos(rs)=0.713139661rs=44.50905564°sin(rs')=0.701021985cos(rs')=0.713139661方阵横向尺寸W=0.992m方阵纵向尺寸L= 1.64m方阵倾角41°遮挡物高度H= 1.075938879m方阵横向投影 1.237721911m前后排净间距D n-s= 1.873136783影子东西方向dn-s= 1.841308426影子斜长Ln-s= 2.626605818影子倍率= 1.740932334,n=1夏至约170n=81春分phai=28.6°0.499164delta= 1.62E-05° 2.84E-07上午9点为-45°wmega=45°0.785398下午3点为+45°向东为正,向西为负as高度角sin(as)=0.620828cos(as)=0.783946rs方位角sin(rs)=0.901983cos(rs)=0.431772上午9点为-45°。
屋顶光伏组件阵列间距计算的深入分析
屋顶光伏组件阵列间距计算的深入分析目前分布式光伏系统的应用主要以工业、商业或民用建筑屋顶为主,光伏阵列排布在分布式系统设计中是非常重要的环节,对于阵列前后间距的优化,我们一般以冬至日上午9时和下午15时阵列前后互不遮挡的原则作为参考,它不仅要考虑当地纬度下的太阳高度角、太阳方位角、安装倾角,也还要考虑屋面本身的坡度、坡面朝向和坡面方位角,而目前对于光伏阵列前后间距的研究文献大多是正南朝向的水平屋面,虽然也有涉及到坡角和方位角,但分析仍不够全面,存在一定的局限性。
因为实际的屋面可能同时呈现坡度和方位角,也有可能屋顶坡面东西朝向或主坡副坡同时存在,因此有必要对这些复杂屋面的阵列间距做深入分析。
通常情况下,屋面一般按其坡度的不同分为坡屋面(屋面排水坡度大于10%)和平屋面(屋面排水坡度小于5%)两大类。
对于平屋面,一种是只有横向排水坡度(或称为主坡),没有纵向排水坡度(或称为副坡、边坡),另一种则稍复杂些,同时存在主坡和副坡,副坡和主坡形成一定的角度,两种情况参考图1和图2。
主坡较常见的为2%~3%,副坡为0.5%~1%。
从光伏组件安装应用角度,目前使用最广泛的为平屋面,如工业彩钢瓦屋面、混凝土屋面,而坡屋面主要为别墅类,因坡屋面自身坡度较高,所以光伏组件一般沿着屋面平铺,参照图3。
而平屋面的坡角较小,则需要设计一定的安装倾角来获得更高的发电效率,参照图4。
平屋面可分为坡角为0°角和不为0°角两种,按照坡面朝向又可以分为东西坡和南北坡屋面,如图5为东西朝向双坡面,图6为南北朝向双坡面,这两种屋面光伏阵列朝南安装在南坡或北坡。
当然这两种屋面可能同时存在主坡和副坡,也可能存在一定的方位角,为计算方便起见,这里坡面的方位角定义为坡面法线方向在水平面的投影和正南方向的夹角,偏西为正,偏东为负。
本文主要研究对象为东西坡和南北坡这两种典型的平屋面,并推广到屋面含有方位角和主副坡共存的复杂情形。
四种屋面坡度的光伏系统方阵间距计算方法
四种屋面坡度的光伏系统方阵间距计算方法分布式光伏电站主要是屋顶光伏电站,建筑屋顶的结构、平面存在多样化,基本可以分为混凝土屋面和彩钢瓦屋面,陶瓷瓦屋面,很少的一部分其他类型屋面。
由于建筑环境的复杂化和屋面的多样化,在屋顶上建设光伏电站,方阵的设计考虑因素较多,本文针对部分屋面环境、方阵类型总结设计方法。
建筑物上的光伏电站由于建筑的多样性,光伏电站的设计也存在多样化设计。
与建筑结合的光伏电站不仅要考虑光伏本身的发电特性,也要考虑电站建设后建筑的美观性。
针对屋顶上的光伏电站,BAPV,前后排阵列间距设计应根据屋面的方位角、坡度情况进行针对性设计。
太阳位置太阳的位置在地平坐标系中,通常由太阳高度角、方位角表示,如图1北京市的太阳轨迹图由太阳高度角、方位角、日期确定。
计算方法如下:冬至日真太阳时9:00或15:00时(本文时间均指当地真太阳时)太阳高度角和方位角是计算光伏阵列间距的基础数据。
冬至日太阳在南回归线,δ为-23.45°,09:00时的ω为-45°(下午为正),此时的太阳高度角和太阳方位角可有下式表示:由太阳的方位角、高度角和建筑物高度可以确定影子的长度。
假设一根细棒高度为单位高度,将影子分为南北和东西两个分量,即得出影子南北方向和东西方向的阴影系数。
混凝土平整屋面光伏阵列间距设计《光伏发电站设计规范》中给出平整场地光伏阵列不被遮挡的阵列中心间距计算公式:平铺屋面光伏阵列间距当彩钢瓦屋面、陶瓷瓦屋面的光伏组件采用沿屋面自然坡度平铺的安装方式,前后排组件不存在阴影遮挡,因此无需考虑阴影遮挡问题,可适当设置500-600mm宽的检修通道方便维护。
南北坡屋面光伏阵列间距类型一:当建筑坐北朝南,屋脊为正东西走向,建筑的方位角为0°。
屋顶的坡面由屋脊向南、向北均匀降低,且东西向为同一等高线,常见于坐北朝南的民用建筑或厂房的屋面。
建筑屋面坡度系数i为屋面最低与最高点的高度差(相对于水平面)与最低点、最高点之间水平距离之比。
固定光伏方阵不遮挡间距计算
-23.5度45度33.55度1640毫米2行30度600毫米
4834.079毫米太阳能电池方阵间距:冬至日太阳赤纬角:上午9:00太阳时角:当地纬度:单片组件高度:组件安装倾角说明:
1:当光伏电站功率较大时,需要前后排布置太阳能电池方阵,一般确定原则为冬至日当天早9:00至下午3:00太阳能电池方阵不应被遮挡。
2:本小工具根据理论计算固定光伏方阵保证前后排不遮挡所需的最小间距。
3:适用地点为北半球(冬至日太阳赤纬角、上午9:00太阳时角为默认值,无需更改)。
参数输入
计算结果
组件行数:组件前缘距地面高度:。
光伏阵列之间合理的距离计算公式
光伏阵列之间合理的距离
屋顶安装固定式光伏阵列,太阳能光伏阵列的安装支架必须考虑前后排间距,以防止在日出日落的时候前排光伏组件产生的阴影遮挡住后排的光伏组件而影响光伏方阵的输出功率,根据建设光伏发电系统的地区的地理位置、太阳运动情况、安装支架的高度等因素可以由下列公式计算出固定式支架前后排之间的距离:
上式中为安装光伏发电系统所在地区的纬度,H为前排最高点与后排组件最低点的高度差。
如下图所示:
太阳能高度角和方位角的计算公式
•对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为:
•Rβ=S×[sin(α+β)/sinα]+D
式中:Rβ——倾斜光伏阵列面上的太阳能总辐射量
S ——水平面上太阳直接辐射量
D ——散射辐射量
α——中午时分的太阳高度角
β——光伏阵列倾角。
光伏阵列间距计算
填南北向前后阵列高差
南高北低,阵列间距至少加大距离 南低北高,阵列间距最多减小距离
7 sin(安装倾角)
0.573576436
8 南北向前后净距
5542.692868 mm
9 南北向前后桩中心距 10 高差与间距比
8747.215665 mm 0.404826872 mm
11 前后阵列高差 12 距离调整值 说明:本表只需要填红色区域的数值。
0 mm 0 mm
间距的计算
(0.648cosΦ-0.399sinΦ)] 说明
光伏阵列间距的计算
0.707H/tan[arcsin(0.648cosΦ-0.399sinΦ)]
有关参数
值
单位
1 项目当地纬度
37.18
度
2 组件安装倾角
35
度
3 单片组件长度或宽度1956mm源自4 南北向上下片数2
片
5 sin(当地纬度)
0.604321037
6 cos(当地纬度)
0.796740914
光伏安装间距及单位面积光伏安装量计算
1距.68
最多安装量 64
说明: 1、黄色填充位置手动输入。 2、其余区域请不要改动。 3、地区精确到县区,可手动输入全称。 4、纬度单独可任意输入,修改后请不要保存。 5、安装量考虑因素较多仅供参考。
安装面积理论计算
屋顶面积: 净安装量:
算
20000㎡
1280.0kW
冬至日不遮挡时 光伏阵列 安装
安装所在地 所在地纬度
不遮挡时间 20°角安装
不遮挡时间 20°角安装
北京市 39.9
9:00 3.23
9:00 64
组件功率 组件效率
冬至日不遮挡时 光伏阵列 中心
10:00
2.85
冬至日不遮挡时 单位面积光伏安
10:00
72
时 光伏阵列 安装间距及单位面积光伏安装量计算
255W 组件斜边长度 1652mm 15.53% 组件底边长度 光伏阵列 中心间距(单位:m)
11:00
12:00
13:00
14:00
2.72
2.68
2.72
2.85
日不遮挡时 单位面积光伏安装量(单位:W/㎡)
11:00
12:00
13:00
14:00
75
77
75
72
0°
15:00 3.23
15:00 64
量计算
组件中心间 组件前后间
3距.23
如何确定太阳能组件的间距
如何确定太阳能组件的间距呢?在太阳能光伏设计中,电池阵列的布置非常重要。
阵列件的距离对电站的输出功率和转换效率非常重要,错误的安装会导致后排的太阳光被前排遮挡。
一般确定原则为冬至当天的9:00至下...在太阳能光伏设计中,电池阵列的布置非常重要。
阵列件的距离对电站的输出功率和转换效率非常重要,错误的安装会导致后排的太阳光被前排遮挡。
一般确定原则为冬至当天的9:00至下午3:00,太阳能方阵不应被遮挡。
图1所示为太阳能电池方阵前后间距的计算参考。
太阳能电池方阵间距D,可以从面4个公式求得:D=LcosβL=H/tanαα=arcsin(sinΦsinδ+cosΦcosδcosω)β=arcsin(cosδsinω/cosα)首先计算冬至上午9:00太阳角度和太阳方位角。
冬至时纬度角δ是-23.45°,上午9:00的时角ω是45°,于是有:α=arcsin(0.648cosΦ+0.399sinΦ)β=arcsin(0.917×0.707/cosα)求出太阳高度角α后和太阳方位角后,即可求出太阳光在方针后面的投影长度L,再将L折算到前后两排方阵之间的垂直距离D:D=Lcosβ=Hcosβ/tanα例如:北京地区纬度Φ=39.8°,太阳能电池方阵高2m,则太阳能电池方阵的间距为(取δ=-23.45°,ω=45°)α=arcsin(0.648 cosΦ+0.399sinΦ)=arcsin(0.498-0.255)=14.04°β=arcsin(0.917×0.707/cosα)=42.0°D=Hcosβ/tanα=2×0.743/0.25=5.94m/geometric/2081.html天津红桥区经纬度经度117.15 纬度39.175度H=sin5°L=0.087 2=0.174 cos5 L=0.985 2=1.99α=arcsin(0.648cos39.17=0.775+0.399sin39.17=0.632)=arcsin(0.5022-0.252=0.25)=14.478°β=arcsin(0.917×0.707/cosα=0.968)=0.67=42.067°D=Hcosβ/tanα=0.174×0.743/0.26=0.497m10度H=sin10°L=0.174 2=0.347 cos10 L=0.985 2=1.97α=14.478β=42.067D=Hcosβ/tanα=0.347×0.743/0.26=0.992m15度H=sin15°L=0.259 2=0.518 cos15 L=0.966 2=1.93α=14.478β=42.067D=Hcosβ/tanα=0.518×0.743/0.26=1.48m20度H=sin20°L=0.342 2=0.684 cos20 L=0.940 2=1.89α=14.478β=42.067D=Hcosβ/tanα=0.684×0.743/0.26=1.95m25度H=sin25°L=0.423 2=0.845 cos25 L=0.906 2=1.81D=Hcosβ/tanα=0.845×0.743/0.26=2.41m。
光伏板间距计算表
光伏板间距计算表概述:太阳能光伏板间距的计算对于光伏发电系统的设计和安装至关重要。
合理的光伏板间距可以最大程度地利用太阳能资源,提高发电效率。
本文将介绍如何计算光伏板间距,并提供一张光伏板间距计算表,帮助读者更好地进行光伏发电系统的设计。
一、光伏板间距的重要性光伏板间距指的是太阳能光伏板之间的距离。
合理的光伏板间距可以确保光照均匀分布在光伏板上,避免阴影对发电效率的影响。
同时,适当的光伏板间距还能提供足够的空间用于维护和清洁光伏板,延长光伏系统的使用寿命。
二、光伏板间距的计算方法光伏板间距的计算方法有很多种,最常用的方法是根据太阳高度角和太阳方位角来确定。
以下是一个简单的计算方法,供参考:1. 根据光伏板的尺寸确定光伏板的宽度(W)和长度(L)。
2. 确定所在地的纬度(lat)和经度(lon)。
3. 确定太阳高度角(h)和太阳方位角(az)。
4. 根据以下公式计算光伏板间距(d):d = L / tan(h) + W / sin(az)三、光伏板间距计算表为了方便读者进行光伏板间距的计算,我们提供了一张光伏板间距计算表,如下所示:```太阳高度角(度)太阳方位角(度)光伏板间距(米)---------------------------------------10 0 0.5710 30 1.0410 60 1.91...```请注意,上述计算表中的数值仅供参考,实际计算应根据具体情况进行。
结论:光伏板间距的合理计算是光伏发电系统设计的重要环节,对于提高发电效率和延长系统寿命具有重要意义。
本文介绍了光伏板间距的计算方法,并提供了一张光伏板间距计算表,希望能对读者在光伏系统设计中起到一定的指导作用。
同时,我们也鼓励读者根据实际情况进行进一步的研究和计算,以确保光伏发电系统的最佳性能。
各类光伏电站光伏阵列间距设计方法汇总
各类光伏电站阵列间距设计方法汇总1)太阳位置太阳的位置在地平坐标系中,通常有太阳高度角、方位角表示,计算方法如下:arcsin(sin sin cos cos cos )αϕδϕδω=+arcsin(cos sin /cos )βδωα=为α太阳高度角;β为太阳方位角,ϕ为当地纬度;δ为太阳赤纬角;ω为时角。
图1 北京市太阳轨迹图冬至日真太阳时09:00(或15:00)时太阳高度角和方位角是计算光伏阵列间距的基础数据。
冬至日太阳在北回归线,δ为-23.45°,09:00时的ω为-45°(下午为正),此时的太阳高度角和太阳方位角可有下式表示:arcsin(0.648cos 0.399sin )αϕϕ=-, )cos /648.0sin(arc αβ-= 。
由太阳的方位角、高度角和建筑物高度可以确定影子的长度。
假设一根细棒高度为单位高度,将影子分为南北和东西两个分量,即得出影子南北方向和东西方向的阴影系数。
αβR tan cos S -N = αβR E-W tan sin = 2)混凝土平整屋面光伏阵列间距设计《光伏发电站设计规范》中给出平整场地光伏阵列不被遮挡的阵列中心间距计算公式:φφθθtan 4338.0707.04338.0tan 707.0sin cos D -++=L L式中:L 为阵列斜面长度,θ为组件倾角,φ为项目所在地纬度。
光伏阵列中心间距为阵列斜面投影1D 与间距2D 之和,221D cos D D D +=+=θL ,阵列间距示意图如图3。
间距2D 可用阴影系数表示,h αβh R D N-S ⨯=⨯=tan cos 2。
图1 光伏阵列间距示意图3)平铺屋面光伏阵列间距当彩钢瓦屋面、陶瓷瓦屋面的光伏组件采用沿屋面自然坡度平铺的安装方式,前后排组件不存在阴影遮挡,因此无需考虑阴影遮挡问题,可适当设置500-600mm宽的检修通道方便维护。
4)南北坡屋面光伏阵列间距类型一:当建筑坐北朝南,屋脊为正东西走向,建筑的方位角为0°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计 算 光 伏 阵 列 『H】距 一 般 选 择 以 冬 至 日光 伏 阵 列 有
效 发 电 时 间 (9时 一 15时 )内 不 发 生 遮 挡 为 准 。 原 因 是 冬 至 日太 阳 高 度 角 最 小 ,光 伏 阵 列 阴 影 最 大 ,在 冬 至 日 光 伏 阵 列 不 发 生 前 后 排 遮 挡 ,则 全 年 其 他 日期 都 小 会 发 生 遮 挡 。 冬 至 日赤 纬 角 为 一23。26 。时 角 选 择 45。或 一 45。,即 9时 或 15时 时 不 发 生 遮 挡 。
式 中 — — 太 阳 高 度 角 ; — — 地 纬 度 ;
6— — 赤 乡 角 ; f— — 州。角 (4)太 阳 方 位 角 阳 方 位 角 是 指 太 阳 光 线 在 地 平 面 的 投 影 与 地 午 线 的 夹 角 ,可 近 似 看 作 是 竖 立 在 地 面 上 的 直 线 太 阳 光 的 影 与 正 南 方 的 夹 角 。 太 阳 方 化 角 的 计 算 公 式 为
E重 蜀 L I1I ( () 主 …持 : …杨…留名
N O NG C U N
A N NG
光伏电站
计算 方法
(26430{1)国网 山 东荣 成 市供 电公 司 李炳娴 王 忠 阳 连 爱红
光 伏 阵 列 ,是 指 将 太 阳 能 电 池 组 件 以 一 定 的 排 列 方 式 组 合 起 来 ,以 便 于 更 好 地 采 集 光 能 发 电 。 安 装 光 伏 阵 列 必 须 号 虑 防 止 前排 遮 住 后 排 ,引 发 光 伏 组 件 的 热 斑 效 应 ,减 少 光 伏 组 件 的 使 用 寿 命 及 输 出 功 率 。 笔 者 现 对 光 伏 阵 列 I'HJ 【 l所 示 ,两 方 阵 前 沿 之 间 距 离 D)的 计 算 方法 做 简 要 介 绍 ,供 参 考 。 1 与 光 伏 阵 列 间 距 计 算 相 关 的 几 个 基 本 知 识
计 算光 伏 阵列 间距需 根 据 实际安 装 位置 对前 后排 阵 列 进 行 几何 建 模 ,最 简 单 的 有 水 平 面 和 坡 面 2种 。
(1)水 平 面 。 光 伏 阵 列 正 南 朝 向 ,南 北 排 列 ,建 模 如 图 1,角 为 倾 斜 角 ,£为 光 伏 组 件 K 度 ,d为 两 方 阵 之 间 距 离 .D为 阵 列 间 距 。
图 1 水 平 面 建 模 则 方 阵 高 度 H=sin ̄xL 两 方 阵 之 间 距 离 d=cosAsxH/tantts 阵 列 间 距 D=cosaxL+cosAsxsim ̄xL/tanHs (2)坡 面 。 光 伏 阵 列 正 南 朝 向 ,南 北 排 列 ,建 模 如 图 2,斜 坡 与 水 平 面 夹 角 为 。
cosAs ̄(sinHsxsi ̄1‘D—sin6)/(( ̄ostfsxeos(p)
式 中 . — — 太 阳 方 位 角 2 计 算光伏 阵 列 间距 的主要 参数
计 算 光 伏 阵 列 『HJ距 的 主 要 参 数 有 纬 度 、时 角 、赤 纬 角 、太 阳 高 度 角 、太 阳 方 位 角 、光 伏 阵 列 方 位 角 、光 伏 阵 列 倾 斜 角 、光 伏 组 件 长 度 :
(3)太 『jH高 度 角 久 高 瞍 角 是 指 太 阳 光 的 入 射 方 rUJ和 地 平 面 之 的 夹 角 高 度 角 越 大 ,太 阳 辐 射 强 度 为
sin, =sin ×sin +(·t)s ×(·()s6× osl
(1)时 角 时 角 即 单 位 时 『HJ地 球 白转 的 角 度 ,地 球 24 h自 转 360。,时 角 每 /卜时 增 k 15。。
(2)赤 纬 角 办 纬 角 又 称 太 阳 赤 纬 ,是 地 球 赤 道 平 面 与 太 阳 币¨地 球 ltI IJ 的 连 线 之 fHJ的 夹 角 . 赤 纬 角 以 年 为 周 期 , 23。26 至 一23。26 的 范 内 移 动 .影 响 不 同 季 节 的 太 阳 高 度 角
图 2 坡 面 建模 阵 列 间 距 D=Lxcoset+Lxsintxx(cosAs—tatg3xtanHs)/ (tanHs+cosAsxtar ̄ ̄) 其 他 复 杂 地 形 条 件 如 北 坡 面 和 东 西 坡 【卣『,更 复 杂 些 的 存 在 一 定 方 位 角 或 同 时 存 在 主 副 坡 面 等 ,都 可 以 通 过 方 位 角 变 换 进 行 建 模 计 算 .由 于 公 式 推 导 比 较 复 杂 ,在 此 不 再 赘 述 。 实 际 使 用 13寸,可 以 把 相关 公 式 编 辑 到 Excel当 中 ,由 计 算 机 辅 助 计 算 4 计 算 范 例 某 光 伏 阵 列 位 于 北 纬 34。,正 南 朝 向 水 平 安 装 ,倾 斜 角 37。,光 伏 组 件 长 度 3 300 lnm,时 角 取 45。,赤 纬 角 为 一23.40。。 代 入 公 式 计 算 :太 阳 高 度 角 为 l8.42。,太 阳 方 位 角 为 43.16。,阵 列 间 距 为 6 351.37Ⅲm