贵阳市普通高中2017-2018学年度第一学期期末质量监测试卷高一数学
2016-2017学年贵州省贵阳市高一(上)期末数学试卷与解析word
2016-2017学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=log0.70.8∈(0,1);y2=log1.10.9<0;y3=1.10.9>1,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)
⊥底面 ABC,垂足为 H,则点 H在 ( ).
A.直线 AC上 B .直线 AB上
C.直线 BC上 D .△ ABC内部
12. 已知 ab
0
,
点
P(a,b)
是圆
2
x
2
y
2
r 内一点 , 直线 m是以
点 P 为中点的弦所在的直线 , 直线 L 的方程是 ax by r 2 , 则下列结论正确的是 ( ).
1 D .m
2
3. 如图,矩形 O′ A′B′ C′是水平放置的一个平面图形的直观图,其中
O′ A′= 6 cm, C′D′= 2 cm,则原图形是 ( ).
A.正方形 B .矩形 C .菱形 D .梯形
4. 已知 A 2, 3 , B 3, 2 ,直线 l 过定点 P 1,1 ,且与线段 AB 相交,
C. 3x 6y 5 0
D
. x 3或3x 4 y 15 0
8. 三视图如图所示的几何体的表面积是 (
).
A.2+ 2 B .1+ 2 C .2+ 3 D .1+ 3
9. 设 x0 是方程 ln x+ x= 4 的解,则 x0 属于区间 ( ).A. (0 ,1)B . (1 ,2)C
. (2 , 3)
C.若 l ∥ β ,则 α∥ β D .若 α ∥ β,则 l ∥ m
6. 一个长方体去掉一个小长方体,所得几何体的
主视图与左视图分别如右图所示,则该几何
体的俯视图为 ( ).
7. 一条直线经过点
M ( 3,
3)
,
被圆
2
x
2
y
25 截得的弦长等于 8, 这条直线的方
2
程为 ( ).
2017-2018学年贵州省黔南州高一(上)期末数学试卷
2017-2018学年贵州省黔南州高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(﹣1,3)2.(5分)函数f(x)=x2﹣2x+2在区间(0,4]的值域为()A.(2,10] B.[1,10] C.(1,10] D.[2,10]3.(5分)(log29)•(log34)=()A.B.C.2 D.44.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)5.(5分)函数f(x)=的定义域为()A.[1,10] B.[1,2)∪(2,10]C.(1,10] D.(1,2)∪(2,10]6.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度7.(5分)已知函数f(x)满足f(1﹣x)=f(1+x),当x∈(﹣∞,1]时,函数f(x)单调递减,设a=f(﹣),b=f(﹣1),c=f(2),则a、b、c的大小关系为()A.c<a<b B.a<b<c C.a<c<b D.c<b<a8.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形9.(5分)设向量=(cosx,﹣sinx),=(﹣cos(﹣x),cosx),且=t,t ≠0,则sin2x值()A.1 B.﹣1 C.±1 D.010.(5分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)11.(5分)已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为()A.+ B.+ C.+ D.﹣12.(5分)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A.(0,)B.(﹣∞,) C.(0,]D.(﹣∞,]二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是.14.(5分)若tanα=﹣,则sin2α+2sinαcosα的值为.15.(5分)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=﹣,且当x∈[0,2)时,f(x)=log2(x+1),则f(﹣2017)+f(2019)=.16.(5分)已知函数(),若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=.三、简答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若C⊆A,求a的取值范围.18.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求β.19.(12分)已知(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求函数y=f(x)的单调区间;(2)若时,f(x)的最大值为4,求a的值.20.(12分)若点M是△ABC所在平面内一点,且满足:=+.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.21.(12分)某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lgx+kx+5(k 为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2)若采用函数f(x)=作为奖励函数模型,试确定最小的正整数a的值.22.(12分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x),y=f(x)的解析式;(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.2017-2018学年贵州省黔南州高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(﹣1,3)【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<3},那么P∪Q={x|﹣1<x<3}=(﹣1,3).故选:D.2.(5分)函数f(x)=x2﹣2x+2在区间(0,4]的值域为()A.(2,10] B.[1,10] C.(1,10] D.[2,10]【解答】解:函数f(x)=x2﹣2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,故函数f(x)=x2﹣2x+2在区间(0,1]为减函数,在[1,4]上为增函数,故当x=1时,函数f(x)取最小值1;当x=4时,函数f(x)取最大值10;故函数f(x)=x2﹣2x+2在区间(0,4]的值域为[1,10],故选:B.3.(5分)(log29)•(log34)=()A.B.C.2 D.4【解答】解:(log29)•(log34)===4.故选D.4.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能.选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.5.(5分)函数f(x)=的定义域为()A.[1,10] B.[1,2)∪(2,10]C.(1,10] D.(1,2)∪(2,10]【解答】解:函数f(x)=有意义,可得,即为,则1<x≤10,且x≠2,故选:D.6.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.7.(5分)已知函数f(x)满足f(1﹣x)=f(1+x),当x∈(﹣∞,1]时,函数f(x)单调递减,设a=f(﹣),b=f(﹣1),c=f(2),则a、b、c的大小关系为()A.c<a<b B.a<b<c C.a<c<b D.c<b<a【解答】解:由f(1﹣x)=f(1+x),得函数关于x=1对称,则c=f(2)=f(1+1)=f(1﹣1)=f(0),∵当x∈(﹣∞,1]时,函数f(x)单调递减,且﹣1<﹣<0,∴f(﹣1)>f(﹣)>f(0),即c<a<b,故选:A8.(5分)若O为△ABC所在平面内任一点,且满足(﹣)•(+﹣2)=0,则△ABC的形状为()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形【解答】解:因为(﹣)•(+﹣2)=0,即•(+)=0;又因为﹣=,所以(﹣)•(+)=0,即||=||,所以△ABC是等腰三角形.故选:A.9.(5分)设向量=(cosx,﹣sinx),=(﹣cos(﹣x),cosx),且=t,t ≠0,则sin2x值()A.1 B.﹣1 C.±1 D.0【解答】解:∵=t,t≠0,∴sinx•﹣cosxcosx=0,化为:tanx=±1.则sin2x====±1.故选:C.10.(5分)函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)【解答】解:由已知可得函数y=Asin(ωx+ϕ)的图象经过(﹣,2)点和(﹣,2)则A=2,T=π即ω=2则函数的解析式可化为y=2sin(2x+ϕ),将(﹣,2)代入得﹣+ϕ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,当k=0时,φ=此时故选A11.(5分)已知在△ABC中,D是AB边上的一点,=λ(+),||=2,||=1,若=,=,则用,表示为()A.+ B.+ C.+ D.﹣【解答】解:∵=λ(+),∴为∠ACB角平分线方向,根据角平分线定理可知:=,∴=.∴===.故选:A.12.(5分)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A.(0,)B.(﹣∞,) C.(0,]D.(﹣∞,]【解答】解:∵函数f(x)=f(x)=log2(2x+t)为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴a,b是方程2x﹣+t=0的两个根,设m==,则m>0,此时方程为m2﹣m+t=0即方程有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,),故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2.【解答】解:因为扇形的弧长l为4,面积S为4,所以扇形的半径r为:r=4,r=2,则扇形的圆心角α的弧度数为=2.故答案为:2.14.(5分)若tanα=﹣,则sin2α+2sinαcosα的值为.【解答】解:∵tanα=﹣,∴sin2α+2sinαcosα===.故答案为:.15.(5分)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=﹣,且当x∈[0,2)时,f(x)=log2(x+1),则f(﹣2017)+f(2019)= 0.【解答】解:对于x≥0,都有f(x+2)=﹣,∴f(x+4)=﹣=﹣=f(x),即当x≥0时,函数f(x)是周期为4的周期函数,∵当x∈[0,2)时,f(x)=log2(x+1),∴f(﹣2017)=f(2017)=f(504×4+1)=f(1)=log22=1,f(2019)=f(504×4+3)=f(3)=f(2+1)=﹣=﹣1,则f(﹣2017)+f(2019)=﹣1+1=0,故答案为:0.16.(5分)已知函数(),若函数F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n=445π.【解答】解:令2x+=+kπ得x=+,k∈Z,即f(x)的对称轴方程为x=+,k∈Z.∵f(x)的最小正周期为T=π,,∴f(x)在(0,)上有30条对称轴,∴x1+x2=2×,x2+x3=2×,x3+x4=2×,…,x n﹣1+x n=2×,+x n=2×(+++…+)=2×将以上各式相加得:x1+2x2+2x3+…+2x n﹣1×30=445π.故答案为:445π.三、简答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若C⊆A,求a的取值范围.【解答】解:∵集合A={x|x2﹣6x+5<0}={x|1<x<5},C={x|3a﹣2<x<4a﹣3},C⊆A,∴当C=∅时,3a﹣2≥4a﹣3,解得a≤1;当C≠∅时,a>1,∴.解得1<a≤2.综上所述:a的取值范围是(﹣∞,2].18.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求β.【解答】解:(1)由0<β<α<,cosα=,可得sinα=,∴tan=,则tan2α==﹣;(2)由cosα=,cos(α﹣β)=,且0<β<α<,得sin(α﹣β)==,可得,cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=∴.19.(12分)已知(x∈R,a∈R,a是常数),且(其中O为坐标原点).(1)求函数y=f(x)的单调区间;(2)若时,f(x)的最大值为4,求a的值.【解答】解:(1)∵已知(x∈R,a∈R,a 是常数),且(其中O为坐标原点),∴f(x)=1+cos2x+sin2x+a=2sin(2x+)+a+1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数f(x)的增区间为[kπ﹣,kπ+],k∈Z.(2)当时,2x﹣∈[﹣,],故当2x﹣=时,f(x)取得最大值为a+3=4,∴a=1.20.(12分)若点M是△ABC所在平面内一点,且满足:=+.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设=x+y,求x,y的值.【解答】解(1)由,可知M、B、C三点共线.如图令==,∴,即面积之比为1:4.(2)由,,由O、M、A三点共线及O、N、C三点共线21.(12分)某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1)若某企业产值100万元,核定可得9万元奖金,试分析函数y=lgx+kx+5(k 为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2)若采用函数f(x)=作为奖励函数模型,试确定最小的正整数a的值.【解答】解:(1)对于函数模型y=lgx+kx+5 (k 为常数),x=100时,y=9,代入解得k=,所以y=lgx++5.当x∈[50,500]时,y=lgx++5是增函数,但x=50时,f(50)=lg50+6>7.5,即奖金不超过年产值的15%不成立,故该函数模型不符合要求;(2)对于函数模型f(x)==15﹣a为正整数,函数在[50,500]递增;f(x)min=f(50)≥7,解得a≤344;要使f(x)≤0.15x对x∈[50,500]恒成立,即a≥﹣0.15x2+13.8x对x∈[50,500]恒成立,所以a≥315.综上所述,315≤a≤344,所以满足条件的最小的正整数a的值为315.22.(12分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=g(x),y=f(x)的解析式;(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.【解答】(本小题12分)(1)设g(x)=a x(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.…(1分)∴,∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴=0,∴n=1,∴又f(﹣1)=f(1),∴=,解得m=2∴.…(3分)(2)由(1)知,易知f(x)在R上为减函数,…(4分)又h(x)=f(x)+a在(﹣1,1)上有零点,从而h(﹣1)h(1)<0,即,…(6分)∴(a+)(a﹣)<0,∴﹣<a<,∴a的取值范围为(﹣,);…(8分)(3)由(1)知,又f(x)是奇函数,∴f(6t﹣3)+f(t2﹣k)<0,∴f(6t﹣3)<﹣f(t2﹣k)=f(k﹣t2),∵f(x)在R上为减函数,由上式得6t﹣3>k﹣t2,…(10分)即对一切t∈(﹣4,4),有t2+6t﹣3>k恒成立,令m(t)=t2+6t﹣3,t∈(﹣4,4),易知m(t)>﹣12,…(11分)∴k<﹣12,即实数k的取值范围是(﹣∞,﹣12).…(12分)。
贵州省贵阳市普通高中2017-2018学年高一上学期期末质量监测数学试题 Word版含解析
贵阳市普通高中2017-2018学年度第一学期期末质量监测试卷高一数学一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,集合,则()A. B. C. D.【答案】A【解析】,选A.2. ()A. B. C. D.【答案】A【解析】,选A.3. 甲、乙两人在一次赛跑中,路程与时间的函数关系如图所示,则下列说法正确的是()A. 甲比乙先出发B. 乙比甲跑的路程多C. 甲、乙两人的速度相同D. 甲先到达终点【答案】D【解析】由路程和时间的函数图像可以得到甲和乙同时出发,甲的速度大于乙的速度,甲先于乙到达.选D.4. 若,则的值为()A. B. C. D.【答案】D【解析】,故选D.5. 若幂函数的图象经过点,则的值是()A. B. C. D.【答案】C【解析】设,则,故,,从而,故选C.6. 函数的零点个数为()A. B. C. D.【答案】B【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B.7. 在下列给出的函数中,以为周期且在区间内是减函数的是()A. B. C. D.【答案】B8. 设,,,则()A. B. C. D.【答案】C【解析】因为,故,又,故,而,故,故的大小关系为,选C.点睛:注意利用函数的单调性来比较大小.9. 在中,为边上一点,且,若,则()A. ,B. ,C. ,D. ,【答案】D【解析】由题设有,整理有,从而有,故,选D.点睛:在向量的线性运算中,注意利用加减法把未知的向量向已知的向量转化.10. 把函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),然后向左平移个单位长度,再向下平移个单位长度,得到的图象是()A. B.C. D.【答案】A【解析】把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图像对应的解析式为,然后向左平移个单位长度后得到的图像对应的解析式为,再向下平移个单位长度后,得到的图像对应的解析式,其最小正周期为,故排除C、 D,又该函数的图像过,故选A.点睛:一般地,图像变换有周期变换和平移变换,要注意如下事实:(1)把函数图像上点的纵坐标保持不变,横坐标变为原来的倍(),那么所得图像对应的解析式为;(2)把函数的图像向左平移个单位长度,则所得图像对应的解析式为.二、填空题(每题4分,满分20分,将答案填在答题纸上)11. 如图,若集合,,则图中阴影部分表示的集合为___.【答案】【解析】图像阴影部分对应的集合为,,故,故填.12. 已知函数是定义在上的奇函数,且当时,,则的值为__________.【答案】-1【解析】因为为奇函数,故,故填.13. 设向量,,则__________.【答案】............14. 设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号).①;②;③【答案】②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.15. 如图所示,矩形的三个顶点,,分别在函数,,的图象上,且矩形的边分别平行于两坐标,若点的纵坐标为,则点的坐标为__________.【答案】【解析】因为的纵坐标为,所以令,解得的横坐标为,故.令,解得,故,令,故,所以,填.点睛:由于是矩形且它的边平行于坐标轴,所以,因已知,故可求,也就求得了,最后求出即得的坐标.三、解答题(本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)16. 已知,且为第二象限角.(1)求的值;(2)求的值.【答案】(1)(2)【解析】试题分析:(1)因为为第二象限角且正弦已知,故可以利用平方关系计算其余弦,再利用二倍角公式计算.(2)由(1)可以得到,故利用两角和的正切可得.解析:(1)因为,且为第二象限角,所以,故.(2)由(1)知,故.17. 设,为两个不共线的向量,若,.(1)若与共线,求实数的值;(2)若,为互相垂直的单位向量,且,求实数的值.【答案】(1)(2).【解析】试题分析:(1)因为与共线,故存在实数,使得,再利用平面向量基本定理可以求出.(2)因为,故,再利用化简前者,可以得到,从而得到.解析:(1)设为两个不共线的向量,若,,由与共线可知,存在实数,使得,即,故.(2)由得,即,又,故化简得,则.(或由为互相垂直的单位向量,则可设.由可得,即,故)点睛:在向量数量积的计算中,注意合理利用向量垂直简化运算.18. 已知函数,其中.(1)求的定义域;(2)当时,求的最小值.【答案】(1)(2).【解析】试题分析:(1)利用对数的真数为正数求出函数的定义域为.(2)在定义域上把化为,利用二次函数求出,从而求出函数的最小值为.解析:(1)欲使函数有意义,则有,解得,则函数的定义域为. (2)因为,所以,配方得到.因为,故,所以(当时取等号),即的最小值为.点睛:求与对数有关的函数的定义域,应该考虑不变形时自变量满足的条件.19. 某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中小时以内(含小时)每张球台元,超过小时的部分每张球台每小时元.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于小时,也不超过小时,设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.(1)试分别写出与的解析式;(2)选择哪家比较合算?请说明理由.【答案】(1)(),(2)见解析【解析】试题分析:(1)由题设,,,后者是分段函数.(2)令,解得,则时,分别有,从而可以确定哪家比较合算.解析:(1)由题设有,.(2)令时,解得;令,解得,所以:当时,,选甲家比较合算;当时,,两家一样合算;当时,,选乙家比较合算.20. 阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章的小结中写到:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.【答案】(1)见解析(2)见解析【解析】试题分析:(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数. (2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,而,故即.点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具.。
20162017学年贵州省贵阳市高一(上)期末数学试卷
2016-2017学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=,1);y2=;y3=,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;百度文库- 让每个人平等地提升自我!(4)由函数y=可知f(﹣x )=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x 轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称11。
2017-2018学年高一上学期期末考试数学试题(20201014181259)
现在沿 AE 、 AF 及 EF 把这个正方形折成一个四面体,使 B 、 C 、 D 三点重合,重合后
的点记为 H ,如图②所示,那么,在四面体 A EFH 中必有 ( )
图①
图②
A . AH ⊥△ EFH 所在平面
B. AG ⊥△ EFH 所在平面
C. HF ⊥△ AEF 所在平面
D. HG ⊥△ AEF 所在平面
22 ( 2 3) 2 1 ,即 | m | 1 解得 m
2
2
0或 1 2
2
20.解: ∵ PA⊥平面 ABCD ,CD? 平面 ABCD ∴ PA⊥ CD
∵ CD ⊥AD , AD ∩PA= A∴CD ⊥平面 PAD .[来源:Z#xx#] ∵ PD ? 平面 PAC,∴ CD⊥ PD [来源:Z*xx*]
)
A. a 1或 a 2
B. a 2或 a 1
C. a 1
D. a 2
5.设 l 是直线, , 是两个不同的平面,(
)
A .若 l ∥ , l ∥ ,则 ∥
B.若 l ∥ , l ⊥ ,则 ⊥
C.若 ⊥ , l ⊥ ,则 l ⊥
D.若 ⊥ , l ∥ ,则 l ⊥
6.直线 2 x 3 y 6 0 关于点 (1, 1) 对称的直线方程是 ( )
三、解答题
3x 4y 5 0
17. 解:由
,得 M ( 1, 2)
2x 3y 8 0
22
( 1) x 1 ( 2)设直线方程为 x 2 y C 0 ,则, C 5 ,即 x 2y 5 0
18.解:圆 x2 y2 4 的圆心坐 标为 (0,0) , 半径 r 4
∵ 弦 AB 的长为 2 3 ,
故圆心到直线的距离 d 19.解:
最新-贵阳市普通中学2018学年度第一学期期末考试试卷高一物理及答案 精品
得分评卷人 贵阳市普通中学2018—2018学年度第一学期期末考试试卷2018.1考生注意:1.本试卷分为第1卷,第Ⅱ卷;第1卷为选择题.请将正确答案的标号(A 、B 、C 、D)填入答题卡中.2.考试时间为120分钟,满分100分.第工卷一、选择题 (本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一个正确选项). 题号 123456789101112答案1.下更说法中正确的是A .重心是物体上最重的一点B .重心可以在物体外C .重心一定在物体上D .除重心外,物体上的其它点不受重力的作用 2.如图所示,小球和光滑斜面接触,悬线绷紧且处于竖直方向,则小球受到的作用力是 A .重力和绳的拉力B .重力、绳的拉力和斜面的支持力C .重力和斜面的弹力D .重力、绳的拉力和下滑力3.关于由滑动摩擦力公式推出的μ=F/F N 下面说法正确的是: A .动摩擦因数μ与摩擦力F 成正比,F 越大,μ越大 B .动摩擦因数μ与正压力F N 成反比,F N 越大,μ越小 C .μ与F 成正比,与F N 成反比D .μ的大小由两物体接触面的粗糙情况及其材料决定4.两个大小相等的共点力F 1和F 2 ,当它们的夹角为900时,合力为F 。
当它们间的夹角为1200时,合力大小为;A .2FB 。
FC .FD 。
F /25.一个小孩从滑梯上滑下的运动可以看作是匀加速直线运动。
小孩第一次从滑梯上滑下时,加速度为α1。
小孩第二次从滑梯上滑下时,手中抱了一只小狗(小狗不与滑梯接触)此时加速度为α2。
则:高一物理A.α1 =α2B.α1 > α2·C.α1 <α2D.无法确定6.做匀加速直线运动的物体,其加速度为2m/s2,则下列说法正确的是A.物体在任1s内的末速度是初速度的2倍B.物体速度的变化量是2nl/sC、巳物体在任1s内增加的速度是2m/sD.物体在第2s的初速度比第1s的末速度大2m/s ·7.关于速度和加速度的关系,以下说法正确的是A.物体的速度变化越快,则加速度越大B.物体的速度变化越大,则加速度越大C.物体的速度越大,则加速度也越大D.物体加速度的方向,就是物体速度的方向8.下列说法正确的是A.没有力的作用,物体就要停下来B.物体只受到一个力的作用,其运动状态一定改变C.物体受恒力的作用时,其运动状态保持不变D.力只能改变速度的大小而不能改变速度的方向9.如图所示的几个图像中描述匀变速直线运动的是10.关于物体的惯性,下述说法中正确的是A.运动速度大的物体不能很快地停下来,是因为物体速度越大,惯性也越大B.静止的火车启动时,速度变化慢,是因为静止的物体惯性大C.在宇宙飞船中的物体不存在惯性D.乒乓球可以快速抽杀,是因为乒乓球惯性小的缘故11.跳高运动员从地面跳起,这是由于A.运动员给地面的压力等于运动员受的重力B.地面给运动员的支持力大于运动员给地面的压力C .地面给运动员的支持力大于运动员受的重力D .运动员给地面的压力小于运动员受的重力 12.关于超重和失重的下列说法中正确的是 A .处于超重状态的物体受到的重力大B .在加速上升的升降机中,物体挂在弹簧秤上,则弹簧秤的示数大于物体的重力C .对地静止的悬浮在空气中的气球处于失重状态D .在减速上升的升降机中的人处于超重状态第Ⅱ卷二、填空题 (本大题共5小题,每小题4分,共20分,请将答案写在题中横线上的空白处,不要求写出演算过程.)13.某人骑自行车走了10min ,前2min 走了720m ,最后2min 走了600m ,中间一段时间走了1440m ,他在最后2min 内的平均速度是 m /s ,他在全过程内的平均速度是 m /s14.三个共点力的大小分别为5N 、8N 、10N ,则这三个力的合力的最大值是 N ,最小值是 N 。
【新】贵州省遵义航天高级中学2017-2018学年高一数学上学期期末考试试题(含解析)
2017―2018学年度第一学期期末试题高一年级数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 设集合 ,则()A. B. C. D.【答案】B2. 下列函数中,在其定义域上既是奇函数又是增函数的为()A. B. C. D.【答案】D【解析】试题分析:A.是增函数但不是奇函数;B.是奇函数但是为减函数;是奇函数,但在定义域上不是增函数;D.,首先,,故该函数是奇函数,其次,该函数是增函数,故选D考点:函数的单调性和奇偶性视频3. f (x)=-x2+4x+a,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( )A. -1B. 0C. 1D. 2【答案】C【解析】因为对称轴,所以选C.4. 手表时针走过1小时,时针转过的角度()A. 60°B. -60°C. 30°D. -30°【答案】D【解析】因为顺时针为负,所以时针转过的角度为,选D.5. ()【答案】C【解析】故选C6. 已知向量,则等于( )A. B. C. D.【答案】B【解析】,选B.7. 已知 ,则等于()A. B. C. D.【答案】A【解析】,选A.8. 函数的值域是()A. B. C. D.【答案】B【解析】因为为单调递增,所以值域是,选B.9. 要得到函数的图象,只需将函数的图象( )A. 向左平移个单位B. 向左平移个单位C. 向右平移个单位D. 向右平移个单位【答案】B【解析】因为,所以将函数的图象向左平移个单位得函数的图象,选B.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10. 已知角的终边经过点,且,则m等于( )【答案】B【解析】试题分析:,解得.考点:三角函数的定义.11. 已知函数是上的偶函数,且在区间上单调递增,A,B,C是锐角三角形的三个内角,则下列不等式中一定成立的是 ( )A. B.C. D.【答案】C【解析】时因为函数是上的偶函数,且在区间上单调递增,所以在区间上单调递减,所以,选C.12. 下面有命题:①y=|sinx-|的周期是2π;②y=sinx+sin|x|的值域是[0,2] ;③方程cosx=lgx有三解;④为正实数,在上递增,那么的取值范围是;⑤在y=3sin(2x+)中,若f(x)=f(x 2)=0,则x1-x2必为的整数倍;⑥若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在第二象限;⑦在中,若,则钝角三角形。
高一数学答案(1)
高一数学参考答案与评分建议 第 1 页(共2页)贵阳市普通高中2017—2018学年度第一学期期末质量监测考试高一数学参考答案与评分建议2018.111. {6,8,10} 12. 1- 14. ②、③ 15. (21,41) 16. (Ⅰ)∵53sin =α,且α为第二象限角.∴54sin 1cos 2-=--=αα ∴α2sin 2524cos sin 2-==αα. ………………………………4分(Ⅱ)由(Ⅰ)知43cos sin tan -==ααα,∴tan tan 14tan471tan tan 4παπαπα++==-(). ………………………………8分17. (Ⅰ)设12,e e 为两个不共线的向量,若1212=+=2λ-,a e e b e e . 由a 与b 共线可知,存在实数μ,使得μ=a b , 即1212+2λμμ=-e e e e 故11,;22μλ==-………………………………4分 (Ⅱ)由⊥a b 得0⋅=a b ,即1212(+)(2)0λ-=e e e e ,化简得22122||||λ=e e ,则2λ=. ………………………………8分(或由12,e e 为互相垂直的单位向量,则(1,),(2,1)λ==-a b ,由a 与b 垂直可得0⋅=a b ,即20,λ-= 2.λ∴=) 18. (Ⅰ)欲使函数有意义,则有⎩⎨⎧>+>-0301x x ,解得13<<-x ,则函数的定义域为(3,1)-.………………………………4分(Ⅱ)∵22111222()log (1)(3)log (23)log [(1)4]f x x x x x x =-+=--+=-++高一数学参考答案与评分建议 第 2 页(共2页)∵31x -<< ∴20(1)44x <-++≤∵1(0,1)2a =∈ ∴21122log [(1)4]log 4=2x -++-≥ (当1x =-时取等号) 即()f x 的最小值为2-. …………………………8分19. (Ⅰ)()5(1540)f x x x =≤≤,90, 1530()302, 3040x g x x x ⎧=⎨+<⎩≤≤≤………………………………4分(Ⅱ)因为令590x =时,解得18[15,30]x =∈;令x x 2305+=,解得10(30,40]x =∉,所以:当1518x <≤时,()()f x g x <,选甲家比较合算; 当18x =时,()()f x g x =, 两家一样合算;当1840x <≤时,()()f x g x >,选乙家比较合算.………………………………8分20. (Ⅰ)当,22x ππ∈-()时,正切线的值越来越大;当3,22x ππ∈()时,正切线与区间,22ππ-()上的情况完全一样;随着角x 的终边不停旋转,正切线不停重复出现,故可得出正切函数tan y x =在区间,,22k k k Z ππππ-++∈()上单调递增;由题意知正切函数tan y x =的定义域关于原点对称;在坐标系中画出角x 和x -,它们的终边关于x 轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即x x tan )tan(-=-,得出正切函数tan y x =为奇函数.………………4分(Ⅱ)如图,当α为锐角时,在单位圆中作出它的正弦线MP ,正切线AT ,又因为1=r ,所以||||AP r αα=⋅=;由图可得||||||MP AP AP AT <<<,即αααtan sin <<. ……………………………………8分。
贵阳市普通高中2016-2017贵阳市高一数学期末检测题
贵阳市普通中学2016-2017学年度第一学期期末监测考试试卷第1页,共2页绝密★启用前贵阳市普通中学2016-2017学年度第一学期期末监测考试试卷高一数学试卷试卷满分:100分 考试时长:120分钟考生须知:1.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 考生答题时,将答案写在专用答题卡上。
选择题答案请用2B 铅笔将答题卡上对应题目的答案涂黑;非选择题答案请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内规范作答,凡是答题不规范一律无效。
4. 测试范围:必修1,必修4。
5. 考试结束后,将答题卡交回,并保存好试卷。
一、选择题(本题10小题,每小题4分,共40分。
) 1.若集合{}2,1,0=A ,集合{}3.2=B ,则集合=B A ( )A .{}3,2,1B .{}3,2,1,0C .{}2D .{}3,1,02.化简()0,0412121213>>⎪⎪⎭⎫⎝⎛÷⎪⎪⎭⎫ ⎝⎛b a b a b a 的结果为( ) A .aB .bC .b aD .ab3.正弦函数()x x f sin =图象的一条对称轴是( )A .0x =B .4x π=C .2x π=D .x π=4.下列函数中既是偶函数又存在零点的是( )A .()x x f sin =B .()12+=x x fC .()x x f ln =D .()x x f cos =5.设8.0log 7.01=y ,9.0log 1.12=y ,9.031.1=y ,则( )A .213y y y >>B .312y y y >>C .321y y y >>D .231y y y >>6.若正方形ABCD 的边长为1,则=⋅( )A .1B .22C .2D .2 7.若()21cos -=+A π,则⎪⎭⎫⎝⎛+A 2sin π的值是( ) A .21-B .21 C .23-D .23 8.要得到函数⎪⎭⎫⎝⎛+=32sin πx y 的图象,只需将函数x y 2sin =的图象( ) A .向左平移3π个单位 B .向左平移6π个单位 C .向右平移3π个单位D .向右平移6π个单位9.函数()x f y =在区间⎥⎦⎤⎢⎣⎡-ππ,2上的简图如图所示,则函数()x f y =的解析式可以是( ) A .()⎪⎭⎫⎝⎛+=32sin πx x fB .()⎪⎭⎫ ⎝⎛-=322sin πx x f C .()⎪⎭⎫⎝⎛+=3sin πx x f D .()⎪⎭⎫ ⎝⎛-=32sin πx x f 10.对于函数()x f ,若存在非零常数T 使得当x 取定义域内的每一个值时都有()()x f Tx f =+,则函数()x f 叫做周期函数,已知函数()()R x x f y ∈=满足()()x f xf =+2,且[]1,1-∈x 时,()2x x f =,则()x f y =与x y 5log =的图象的交点个数为( ) A .3个B .4个C .5个D .6个二、填空题(本题5小题,每小题4分,共20分。
贵州省贵阳市2016-2017学年高一上学期期末考试数学试卷Word版含答案
2016-20仃 学年贵州省贵阳市高一(上)期末试卷数学、选择题(共10小题,每小题4分,满分40 分) 1 •已知集合 A={0, 1,2},B={2,3},则集合 A U B=()A . {1 , 2, 3} B. {0, 1, 2, 3}C. {2}11 112.化简(a 3b 2)2 -■ (a 2b")(a0,b 0)结果为()abA . aB . bC. —D.-b a3 .正弦函数f (x ) =sinx 图象的一条对称轴是()TtKA . x=0B . XC. XD . x= n424 .下列函数中,既是偶函数又存在零点的是()2A . f (x ) =sinx B. f (x ) =x +1 C. f (x ) =lnxD . f (x ) =cosx5 .设 y 1=log °.70.8, y 2=log 1.10.9, y 3=1.1°.9,则有()A . y 3>y 1>y 2B . y 2>y 1 >y 3C . y 1>y 2>y 3D . y 1>y 3>y 2 6 .已知正方形 ABCD 的边长为1,则()(2x+3)的图象,只需将函数y =sin2x 的图象()A .向左平移一个单位B .向左平移一个单位36nJiC .向右平移一个单位D .向右平移 个单位D . {0, 1, 3} A . 1B .辽 C. . 2 D .2女口果cos (n +A ) = —*,那么 sin C 11B. 2+A )的值是(2D 逅..■:要得到函数y=sin3 6函数y=f (x)在区间一•….上的简图如图所示,则函数y=f (x)的解+析式可以2 JIB . f ( x ) =sin (2x-3=sin (x+ )D . f (x ) =sin (x - _3 3=f (x ),那么函数f (x )就叫做周期函数,已知函数y=f (x ) (x € R )满足f且x € [ - 1 , 1]时,f (x ) =x 1 2,则y=f (x )与y=log 5x 的图象的交点个数为(A . 3 B. 4C. 5 D . 6二、 填空题(共 5小题,每小题4分,满分20分)11.学校先举办了一次田径运动会,某班有 8名同学参赛,又举办了一次球类运动会,该班 有12名同学参赛,两次运动会都参赛的有 3人•两次运动会中,这个班共有 _______ 名同学参赛.12 .溶液酸碱度是通过 pH 值刻画的,pH 值的计算公式为pH= - lg[ H +],其中[H +]表示溶液 中氢离子的浓度,单位是摩尔 /升,纯净水中氢离子的浓度为 [H +]=10-7摩尔/升,则纯净水 的 pH= ___ .13 •已知匚.二,那么| .) = ____________ .14. ____________________________ 计算(lg2) 2+lg2?lg50+lg25= . 15.设A , B 是非空的集合,如果按某一个确定的对应关系f ,使对于集合 A 中的任意一个 元素X ,在集合中B 都有唯一确定的元素 y 与之对应,那么就称对应 f : A ^B 为从集合A 到 集合B 的一个映射,设f : X i :是从集合A 到集合B 的一个映射.①若 A={0, 1, 2},则 A A B= ___ ;②若 B={1 , 2},贝U A A B= ___ .三、 解答题(共4小题,满分32分)III4441II叫 叫 叫m(□)若(m a + n b )〃 c ,求石的值.C . f (x )10.对于函数 f ( x ),如果存在非零常数 T ,使得当x 取定义域内的每一个值时, 都有f (x+T )(x+2) =f (x ),兀16. (8 分)已知向量a= (1, 0), b= (1, 1), c= (- 1, 1).I IT T —(I)入为何值时,a + Xb与-垂直?17. (8分)已知函数f (x) =x-丄.(I)判断f (X)的奇偶性;(n)用函数单调性的定义证明: f (力在(o, +R)上是增函数.2耳—T 耳18. (8 分)已知函数f (x) =sin q+p3sin石co咕.(I)求f (x)的最小正周期;(n)若x€ [——,n,求f(X)的最大值与最小值.4 |19. ------------------------------------------------------ (8分)已知函数f (x) =1 -一: (a>0且a丰1)是定义在R上的奇函数.2a K+a(I)求a的值;(n)若关于x的方程|f (x) ? (2x+1) | =m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)2 120. (8分)阅读下面材料,尝试类比探究函数y=x -= 的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解+析式来琢磨函数的图象的特征•我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:x(1)在函数y= 中,由X M 0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;A由0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x> 0时y> 0 ;当x v 0时y v 0,可以推测出,对应的图象只能在第x一、三象限;(3)在函数y==中,若x€( 0, +8)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x€(-g, 0),则y v 0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;可知f ( - x)=-f (x),即yd是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=,对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考•让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解+ 析一、选择题(共10小题,每小题4分,满分40分)1.已知集合A={0, 1, 2}, B={2, 3},则集合A U B=()A. {1, 2, 3}B. {0, 1, 2, 3}C. {2}D. {0, 1 , 3}【考点】并集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】根据并集的运算性质计算即可.【解答】解:•••集合A={0, 1 , 2} , B={2 , 3},则集合A U B={0 , 1, 2 , 3},故选:B.【点评】本题考查了集合的并集的运算,是一道基础题.丄丄2.化简(a3b2)2" (a2b°)(a 0,b 0)结果为()a bA. aB. bC.石D.—【考点】有理数指数幕的化简求值.【专题】计算题;转化思想;定义法;函数的性质及应用.【分析】根据指数幕的运算性质计算即可.3 一1 I _ 1 【解答】解:原式=豆㊁—_7=a,a b故选:A【点评】本题考查了指数幕的运算性质,属于基础题.3 .正弦函数f (x) =sinx图象的一条对称轴是( )71 兀A. x=0B..二——C..二——D. x= n4 2【考点】正弦函数的图象.【专题】方程思想;定义法;三角函数的图像与性质.【分析】根据三角函数的对称性进行求解即可.【解答】解:f (x) =sinx图象的一条对称轴为+k n, k€ Z,2•••当k=0时,函数的对称轴为:,-——故选:C.【点评】本题主要考查三角函数的对称性,根据三角函数的对称轴是解决本题的关键.4 .下列函数中,既是偶函数又存在零点的是( )2A. f (x) =sinxB. f (x) =x +1C. f (x) =lnxD. f (x) =cosx【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】判断函数的奇偶性与零点,即可得出结论.【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.【点评】本题考查函数的奇偶性与零点,考查学生的计算能力,比较基础.5.设 y i =log o.70.8, y 2=log i.i 0.9, y 3=1.1°.9,则有( )A . y 3>y i >y 2B . y 2>y i >y 3C. y i >y 2>y 3D . y i >y 3>y 2 【考点】对数值大小的比较. 【专题】计算题;函数的性质及应用. 【分析】 求出三个数的范围,即可判断大小.【解答】 解:y i =log o.70.8€( 0, 1) ; y 2=log i.i 0.9v 0; y 3=1.10.9> 1, 可得 y 3> y 1 > y 2. 故选:A .【点评】 本题考查对数值的大小比较,是基础题.A . 1 B. C.二 D . 2【考点】平面向量数量积的运算. 【专题】平面向量及应用.【分析】根据数量积的计算公式,爲■正二|运| | AC|cos 0便可求出.故选A .【点评】 本题考查数量积的运算公式.1n7 .如果cos ( n +A )=-寿,那么sin (三+A )的值是()B .£ C.「爭 D.爭【考点】三角函数的化简求值.【专题】 计算题;函数思想;数学模型法;三角函数的求值. 【分析】已知等式利用诱导公式化简求出 cosA 的值,所求式子利用诱导公式化简后将的值代入计算即可求出.【解答】 解:T cos ( n +A ) = - cosA=—丄,即卩 cosA271 1sin (—7 +A ) =cosA= .【解答】 解:AB-AC=1XcosA6 .已知正方形 ABCD 的边长为故选:B .【点评】本题考查了运用诱导公式化简求值, 熟练掌握诱导公式是解本题的关键, 是基础题.8. (2016?崇明县模拟)要得到函数y=sin(2x+可)的图象,只需将函数y=sin2x 的图象(【考点】函数y=Asin的图象变换.【专题】 三角函数的图像与性质.【分析】由条件根据函数y=Asin (3XQ)的图象变换规律,可得结论.7T7T 【解答】 解:由于函数y=sin ( 2x+) =sin2 (x+ ),36将函数y=sin2x 的图象向左平移 ——个单位长度,可得函数 y=sin (2x+ _ )的图象,3故选:B【点评】 本题主要考查函数 y=Asin ( w )+Q)的图象变换规律,属于基础题.9.函数y=f (x )在区间 ■:上的简图如图所示,则函数 y=f (x )的解+析式可以【专题】计算题.【分析】根据图象的最高点和最低点,得到 A 的值,根据半个周期的长度得到w 的值,写【解答】解:由图象知A=1,A .向左平移二二个单位C.向右平移7T个单位B .向左平移——个单位6 71 D .向右平移个单位 6是(1V r£ -Ao A2 fi 、-rA . f (x ) =sin (x ) =sin (x -【考点】2兀兀B . f (x ) =sin (2x - :3)C . f (x ) =sin (x+ ..x Q) 的部分图象确定其解 +析式.D.f出解+析式,根据函数的图象过(—)点,代入点的坐标,求出Q 的值,写出解+析式.)(2x + : 竺))由 y=Asin ( w••• T=n,•••函数的解+析式是y=sin (2x+0) •••函数的图象过(3.C • /C 兀• • 0=sin (2 X — 3 • —2兀 3 •木2兀 .• 0 —3•••函数的解+析式是y=sin (2x - — 故选B .【点评】 本题考查由函数的图象求函数的解 +析式,本题解题的难点是求出解 这里可以利用代入特殊点或五点对应法,本题是一个基础题.10. 对于函数f( x ),如果存在非零常数 T ,使得当x 取定义域内的每一个值时, 都有f (x+T ) =f (x ),那么函数f (x )就叫做周期函数,已知函数 y=f (x ) (x € R )满足f (x+2) =f (x ), 且x € [ - 1 , 1]时,f (x ) =x 2,则y=f (x )与y=log 5x 的图象的交点个数为( )A . 3B. 4C. 5D . 6【考点】函数的值;对数函数的图象与性质.【专题】计算题;数形结合;定义法;函数的性质及应用.【分析】f ( x )是周期为2的周期性函数,根据函数的周期性画出图形,利用数形结合思想 能求出y=f (x )与y=log 5x 的图象的交点个数.【解答】 解:••函数y=f (x ) (x € R )满足f (x+2) =f (x ), • f (x )是周期为2的周期性函数, 又 x € [ - 1 , 1]时,f (x ) =x 2. 根据函数的周期性画出图形,如图,由图可得y=f (x )与y=log 5x 的图象有4个交点 故选:B .• •一 一7U -一)+ 0)+析式的初相,【点评】本题考查两个函数的图象的交点个数的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.二、填空题(共5小题,每小题4分,满分20分)11. 学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人•两次运动会中,这个班共有17名同学参赛.【考点】Venn图表达集合的关系及运算.【专题】计算题;集合思想;定义法;集合.【分析】设A为田径运动会参赛的学生的集合,B为球类运动会参赛的学生的集合,那么A n B就是两次运动会都参赛的学生的集合,card (A), card ( B), card (A n B)是已知的,于是可以根据上面的公式求出card (A U B).【解答】解:设A={x|x是参加田径运动会比赛的学生}, B={x|x是参加球类运动会比赛的学生},A n B={ x| x是两次运动会都参加比赛的学生},A U B={ x| x是参加所有比赛的学生}.因此card (A U B) =card (A) +card ( B)- card (A n B) =8+12 —3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.【点评】本题考查集合中元素个数的求法,是中档题,解题时要认真审题,注意公式card (A U B) =card (A) +card ( B)- card (A n B)的合理运用.12 .溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH= - lg[ H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10-7摩尔/升,则纯净水的pH= 7 .【考点】对数的运算性质.【专题】计算题;转化思想;定义法;函数的性质及应用.【分析】利用对数的运算性质即可得出.【解答】解:由题意可得:该溶液的PH值为-lg10-7=7故答案为:7【点评】本题考查了对数的运算性质,属于基础题.13. 已知门-匚.1 :,那么「|;=—一―.【考点】平面向量数量积的坐标表示、模、夹角.【专题】计算题.【分析】若血二(弘b),则二需不了,结合向量模的计算公式可得答案.【解答】解:因为h 1:所以丨切I =. 1 I「,_.故答案为匚.【点评】解决此类问题的关键是熟练掌握向量的坐标表示,以及掌握向量模的计算公式.14. (2010?江苏模拟)计算(lg2) 2+lg2?lg50 +lg25= 2 .【考点】对数的运算性质.【专题】计算题.【分析】将式子利用对数的运算性质变形,提取公因式,化简求值.【解答】解:原式=2 lg5+lg2? (1 +lg5) + (lg2) 2=2 lg5+lg2 (1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2 .【点评】本题考查对数的运算性质.15. 设A, B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素X,在集合中B都有唯一确定的元素y与之对应,那么就称对应f: A^B为从集合A到集合B的一个映射,设f: 0:是从集合A到集合B的一个映射.①若A={0, 1, 2},则A n B= {0, 1};②若B={1,2},贝U A n B= {1} 或?.【考点】交集及其运算.【专题】对应思想;定义法;集合.【分析】①根据题意写出对应的集合B,计算A n B即可;②根据题意写出对应的集合A,计算A n B即可.【解答】解:①根据题意,A={0, 1, 2},通过对应关系f: Xi,:, B={0, 1,匚},所以A n B={0, 1};②根据题意,B={1 , 2}时,过对应关系f: X T . 丁,得A={1}或{4}或{1, 4};所以A n B={1}或?.故答案为:{0, 1}, {1}或?.【点评】本题考查了映射的定义与集合的运算问题,是基础题目三、解答题(共4小题,满分32分)I I I16. (8 分)已已知向量a= (1, 0), b= (1, 1), c= (- 1, 1).・・_I I(I)入为何值时,a + Xb与垂直?I I I叫叫叫m(□)若(m a+ n b )〃c,求石的值.【考点】平面向量的坐标运算.【专题】计算题;方程思想;定义法;平面向量及应用.【分析】(I)先求出-+ X ,再由-+ X与「垂直,利用向量垂直的性质能求出结果.(H)先求出—-/ :-,再由(m - + n{ )// -,利用向量平行的性质能求出结果. 【解答】解: (I)V 向量3= ( 1, 0),匸=(1, 1 ),:= (- 1, 1 ).a+ 入b= (1 +入X,口+ 入与匸垂直,•(•丨‘:)?匸=1 + ?+0=0,解得入=1, •••入=1 寸,「+疋与;i垂直.(□)•••—:(m, 0) + (n, n) = (m+n, n),又(m + n ')// ',• ( m+n) x 1 -( - 1 x n) =0,.••二=-2.ID•若(m」+ n「)// :,则二=-2.n【点评】本题考查实数值及两数比值的求法,是基础题,解题时要认真审题,注意向量垂直、向量平行的性质的合理运用.17. (8分)已知函数f (x) =x-丄.(I)判断f (X)的奇偶性;(n)用函数单调性的定义证明: f (力在(0,+R)上是增函数.【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;定义法;函数的性质及应用.【分析】(I)求出函数f (x)的定义域,利用奇偶性的定义即可判断 f (x)是奇函数; (n)禾U用单调性的定义即可证明 f (幻在(0,+R)上是增函数.【解答】解:(I)函数f (X) =x- 的定义域是D= (-8,0) U( 0,+8),任取x€ D,则-x€ D,且 f (- x) = - x- =-( x-丄)=-f (x),-K K• f ( X)是定义域上的奇函数;(n)证明:设X1,X2 €( 0,+8),且X1V X2,1 1则 f ( X1)- f ( X2) = ( X1 - —)-( X2 -—)X1 x2] ]=(X1- X2) +(丁-〒)6 ,-■ 0 V x 1< X 2,二 X 1X 2> 0 , X 1 — X 2< 0, X 1X 2+1 > 0 ,即 f ( X 1)V f ( X 2), ••• f (乂)在(0, +8)上是增函数.【点评】 本题考查了函数的奇偶性与单调性的判断与应用问题,是基础题目.18. (8分)已知函数f (x ) =sln 2专+V^sin 专co 号.JI(n)由 f (X ) =sin (x — _ )兀且 x € [「n仝x —n([)求f ( x )的最小正周期;(□)若 x € [—-, n ,求f ( X )的最大值与最小值. 【考点】 三角函数中的恒等变换应用;正弦函数的图象. 【专题】 函数思想;转化法;三角函数的图像与性质.2 JI(I)化函数f (x )为正弦型函数,由 T= (J O (n)根据正弦函数的图象与性质,求出f (X )在x € [二Mi【分析】求出f (X )的最小正周期;,n 上的最大值与最小值.【解答】解:(I)函数f (X ) =sin 24 2+ : sin '' X cos 2 1 - COSX:~2~ 嵋.sinx -乓兀1 COSX+肓■ / 、1 =sin ( X — 一)=2 n,知f ( X )的最小正周期是2 n;1 +二,n i 3--1 w sin (x —----- ) +—w —,6 2 2•••当x^-时,f ( X)取得最大值工,0 £x= n时,f (x)取得最小值1.【点评】本题考查了三角恒等变换与三角函数的图象与性质的应用问题,是基础题目.419. (8分)已知函数f (x) =1- , (a>0且a工1)是定义在R上的奇函数.2 a +a(I)求a的值;(H)若关于x的方程|f (x) ? (2x+1)|=m有1个实根,求实数m的取值范围.【考点】函数奇偶性的性质.【专题】综合题;数形结合;数形结合法;函数的性质及应用.【分析】(I)利用f (0) =0,求a的值;(H)设h (x) =| f (x) ? (2x+1) | , g (x) =m,则m=0 或m > 1,两函数图象有一个交点,即可求实数m的取值范围.4 |【解答】解:(I):f (x) =1 ------------ :一(a > 0且a丰1)是定义在R上的奇函数,2a K+a• f (0) =0,即1―—=0,.°. a=2;z+a(H)设h (x) =| f (x) ? ( 2x+1) | , g (x) =m,如图所示,m=0或m > 1,两函数图象有一个交点,•关于x的方程| f (x) ? (2x+1) | =m有1个实根时,实数m的取值范围是m=0或m》1.rSr ■厶、/ E O JT【点评】本题考查奇函数的性质,考查函数的图象,正确作出函数的图象是关键.四、阅读与探究(共1小题,满分8 分)2120. (8分)阅读下面材料,尝试类比探究函数y=x - 的图象,写出图象特征,并根据你x得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解+析式来琢磨函数的图象的特征•我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=,中,由X M 0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;x由y z 0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=,中,当x> 0时y> 0 ;当x v 0时y v 0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=—中,若x€( 0, +R)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x€(-m, 0),则y< 0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;可知f ( - x) =-f (x),即是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=「对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考•让我们享受数学研究的过程,传播研究数学的成果.【考点】函数的图象.【专题】综合题;函数思想;数形结合法;函数的性质及应用;推理和证明.【分析】通过函数的定义域,函数与x的交点情况,y值的变化趋势,函数的奇偶性和函数的单调性,归纳函数的性质即可.2 1【解答】 解:(1)在 y=X -中,X M 0,可以推测出:对应的图象不经过 y 轴,即与y 轴x不相交,2 1、、一(2)令y=0,即X - ―T =0,解得X =± 1,可以推测出,对应的图象与 X 相交,交点坐标为(1, 0)和(-1, 0),2 1 1 2 1 2(3) 在 y=x 2 — 中,当 0v x v 1 时,一> 1 >x 2,贝U y v 0,当 x > 1 时,一v 1 v x 2,则y >0,可以推测出:对应的图象在区间( 0, 1 )上图象在X 轴的下方,在区间(1, +R )上 图象在X 轴的上方,2 1(4) 在 y=x - ~^ 中,若 x €( 0, +s),贝U当X 逐渐增大时 亡逐渐减小,X 2-亡,逐渐增大,即y 逐渐增大,所以原函数在(0, +g)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势, 可知f (- X ) =f( X ),即函数为偶函数,可以推测出:对应的图象关以及题目所告诉的例子,属于中档题. 2 1(5)由函数y=x -—。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵阳市普通高中2017-2018学年度第一学期期末质量监测试
卷 高一数学
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A
B =( )
A .{|13}x x -<<
B .{|1x 1}x -<<
C .{|12}x x <<
D .{|23}x x << 2.cos660︒=( )
A .
12 B C ..1
2
-
3.甲、乙两人在一次赛跑中,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )
A .甲比乙先出发
B .乙比甲跑的路程多
C .甲、乙两人的速度相同
D .甲先到达终点 4.若tan 3α=-,则cos sin cos sin αα
αα
-+的值为( )
A .
12 B .1
2
- C.2 D .2- 5.若幂函数()f x 的图象经过点1(4)2,,则1
()4
f 的值是( )
A .4
B .3 C.2 D .1 6.函数1ln 0
()340x x f x x x -+>⎧=⎨+<⎩
,,的零点个数为( )
A .3
B .2 C.1 D .0
7.在下列给出的函数中,以π为周期且在区间(0)2
π
,内是减函数的是( )
A .sin 2x y =
B .cos2y x = C.tan()4y x π=- D .sin(2)4y x π
=+
8.设21
log 3
a =, 1.12
b =, 2.30.8
c =,则( )
A .a b c <<
B .c a b << C.a c b << D .c b a << 9.在OAB △中,P 为AB 边上一点,且3BP PA =,若OP xOA yOB =+,则( ) A .23x =,13y = B .13x =,23y = C.14x =,34y = D .34
x =,14
y =
10.把函数1cos2y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )
A .
B .
C. D .
二、填空题(每题4分,满分20分,将答案填在答题纸上)
11.如图,若集合{12345}A =,,,,,{246810}B =,,,,,则图中阴影部分表示的集合为 .
12.已知函数()y f x =是定义在R 上的奇函数,且当0x >时,()23f x x =-,则(2)f -的值为 .
13.设向量(13)a =-,
,(12)b =-,,则2a b += . 14.设A 、B 、C 为ABC △的三个内角,则下列关系式中恒成立的是 (填写序号).
①cos()cos A B C +=;②cos
sin 22
B C A
+=;③sin(2)sin A B C A ++=-
15.如图所示,矩形ABCD 的三个顶点A ,B ,C 分别在函数
y x =,1
2
y x =,(
2
x y =的图象上,且矩形的边分别平行于两坐标,若点A 的纵坐标为2,则点D 的坐标为 .
三、解答题 (本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)
16. 已知3
sin 5
α=
,且α为第二象限角. (1)求sin 2α的值; (2)求tan()4
π
α+的值.
17. 设1e ,2e 为两个不共线的向量,若12a e e λ=+,122b e e =-. (1)若a 与b 共线,求实数λ的值;
(2)若1e ,2e 为互相垂直的单位向量,且a b ⊥,求实数λ的值. 18. 已知函数()log (1)log (3)a a f x x x =-++,其中01a <<. (1)求()f x 的定义域; (2)当1
2
a =
时,求()f x 的最小值. 19. 某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于15小时,也不超过40小时,设在甲家租一张球台开展活动x 小时的收费为()f x 元,在乙家租一张球台开展活动x 小时的收费为()g x 元. (1)试分别写出()f x 与()g x 的解析式; (2)选择哪家比较合算?请说明理由. 20.阅读与探究
人教A 版《普通高中课程标准实验教科书 数学4(必修)》在第一章的小结中写到: 4.将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性
质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为2π与正弦函数、余弦函数的周期为2π是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.
依据上述材料,利用正切线可以讨论研究得出正切函数tan y x =的性质.
比如:由图1.2-7可知,角α的终边落在四个象限时均存在正切线;角α的终边落在x 轴上时,其正切线缩为一个点,值为0;角α的终边落在y 轴上时,其正切线不存在;所以正切函数tan y x =的定义域是{|}2
x R x k k Z π
π∈≠
+∈,.
(1)请利用单位圆中的正切线研究得出正切函数tan y x =的单调性和奇偶性; (2)根据阅读材料中途1.2-7,若角α为锐角,求证:sin tan ααα<<.
贵阳市普通高中2017-2018学年度第一学期期末质量监测试卷
高一数学参考答案与评分建议
一、选择题
1-5:AADDC 6-10:BBCDA
二、填空题
11.{6810},, 12.1-
②、③ 15.11()24
, 三、解答题
16.(1)∵3sin 5α=
,且α
为第二象限角,∴4cos 5
α=- ∴24
sin 22sin cos 25
ααα==-
(2)由(1)知sin 3tan cos 4
ααα=
=-,∴tan tan
14tan()471tan tan 4
π
απαπα++=
=- 17.(1)设1e ,2e 为两个不共线的向量,若12a e e λ=+,122b e e =-. 由a 与b 共线可知,存在实数μ,使得a b μ= 即12122e e e e λμμ+=-,故12μ=
,12
λ=-; (2)由a b ⊥得0a b ⋅=,即1212()(2)0e e e e λ+-=,化简得2
2
122e e λ=,则2λ=. (或由1e ,2e 为互相垂直的单位向量,则(1)a λ=,
,(21)b =-,.由a 与b 垂直可得0a b ⋅=,即20λ-=,∴2λ=)
18.(1)欲使函数有意义,则有10
30x x ->⎧⎨+>⎩
,解得31x -<<,则函数的定义域为(31)-,.
(2)∵221112
2
2
()log (1)(3)log (23)log [(1)4]f x x x x x x =-+=--+=-++
∵31x -<<∴20(1)44x <-++≤
∵1(01)2a =∈,∴2
1122
log [(1)4]log 42x -++=-≥(当1x =-时取等号)
即()f x 的最小值为2-.
19.(1)()5f x x =(1540x ≤≤),901530()3023040x g x x x ⎧=⎨+<⎩
,,≤≤≤
(2)因为令5090x =时,解得18[1530]x =∈,;令5302x x =+,解得10(3040]x =∉,,所以:
当1518x <≤时,()()f x g x <,选甲家比较合算; 当18x =时,()()f x g x =,两家一样合算; 当1840x <≤时,()()f x g x >,选乙家比较合算. 20.(1)当()22x π
π∈-,时,正切线的值越来越大;当3()22
x ππ
∈,时,正切线与区间()22
x π
π
∈-
,上的情况完全一样;随着角x 的终边不停旋转,正切线不停重复出现,故可得
出正切函数tan y x =在区间()22
k k π
π
ππ-
++,,k Z ∈上单调递增; 由题意知正切函数tan y x =的定义域关于原点对称,在坐标系中画出角x 和x -,它们的终边关于x 轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即tan()tan x x -=-,得出正切函数tan y x =为奇函数.
(2)如图,当α为锐角时,在单位圆中作出它的正弦线MP ,正切线AT ,又因为1r =,所以AP r αα=⋅=;由图可得MP AP AP AT <<<,即sin tan ααα<<.。