高斯光束的传输与变换

合集下载

高斯光束q参数的变换规律

高斯光束q参数的变换规律
真空电子技术
Klystron,
TWT, BWO…
0.2 ~ 2.0 0.1
< 100 uW 10-9 ~ 10-12
Joule
目前应用较多的 THz 源; 用于成像系统, 功率低。
1~100 mW 随频率提高, 输出功率显著下 降;最高频率小 于 1 THz。
THz 技术在国防上的重要作用。
● THz 雷达可成为未来高精度雷达的发展方向:
其中:
Rz
z1
f z
2
z
1
w02 z
2
w2 (z)
w02
1
z f
2
w02
1
z w02
2
经整理后可得: qz i w02 z if z q(0) z
高斯光束在自由空间由z1经距离L传播到z2,q的规律为 :
qz2 qz1 z2 z1 qz1 L
2 0
w02
1
w2
w2 R
÷÷2
B 4 (A D)2 2 (1 AD)
利用ABCD矩阵很容易求出复杂光学谐振腔的基模参数
高斯光束的匹配
若使一个稳定腔所产生的高斯光束与另一个稳定腔产生 的高斯相匹配,需在合适的位置放置一个焦距适当的透镜, 使两束高斯光束互为物象共轭光束。该透镜称为模匹配透镜。
高斯光束的ABCD定律
如果复参数q1的高斯光束顺次通过传输矩阵
M1
A1 C1
B1
D
1
M2
A2 C2
B2 • • • • • •
D2
Mn
An Cn
Bn
Dn
总矩阵元M:
A M C
B D
An Cn

高斯光束的变换,模式匹配

高斯光束的变换,模式匹配

2.1212 4
1.63
∵F<l0/2,取正
lF
F 2 ff
f f
1.63
1.632 2
1 2.21 2
l F
F 2 ff
f f
1.63
1.632 2
2 2.79
用F=1.63m的透镜,放在距物腰2.21m,距像腰2.79m处
(3)l0= 2 2m
A F
l02
(A2 - 4) ff A2 4
(2)l=2 q 2 i
q Fq 0.1(2 i) 0.1(2 i)(-1.9 i) 0.104 0.00217i F q 0.1 2 i (-1.9 i)(-1.9 i)
l 0.104m
w0
f
3.14106 0.00217 0.0466mm
3.14
结论 1. F<f,总有聚焦作用 2. 若F>f,只有l F F2 f 2及 l F F2 f 2 才有聚焦作用
1.5
1.52 1 2
1 1.5 0.3535 2
1.8535m或1.1465m
l F
F 2 ff
f f
1.5
1.52 1 2
2 1.5 0.707
2.207m或0.793m
将透镜放在距物腰1.854m,距像腰2.207m处 或放在距物腰1.147m,距像腰0.793m处
2、两高斯光束的腰位置固定
解 (1)l=0
f
w02
3.14 106 3.14 106
1m
qi
q Fq 0.1i 0.1i(0.1 i) 0.099 0.0099i F q 0.1 i (0.1 i)(0.1 i)

几何光学中的光线传输矩阵高斯光束通过光学元件的变换

几何光学中的光线传输矩阵高斯光束通过光学元件的变换

g1g2
0 g1g2 1
L
L
g1,2
1 2 f1,2
1
R1,2
rs为实数 rs Ce js C*e js
or
rs rmax sins
r0 rmax sin
r1 Ar0 B0 rmax sin
cos A D
2
rmax,
rs
n次往返传播矩阵:
Tn
1
sin
Asin n sinn 1
几何光学中的光线传输矩阵 (ABCD矩阵)

高斯光束通过光学元件的变换- ABCD公式
一、几何光学中的光线传输矩阵(ABCD矩阵)
r z
正,负号规定:
2. 自由空间区的光线矩阵
B
r0 ,0
r,
A
L
1. 表示光线的参数
r - 光线离光轴的距离 - 光线与光轴的夹角
傍轴光线 dr/dz = tan sin
L
1
B
L 2
L f2
C
1 f1
1 f2
1
L f1
D
L f1
1
L f1
1
L f2
rs1 Ars Bs
or
s
1 B
rs1
Ars
s1
1 B
rs2 Ars1
Crs Ds
1 B
rs2
Ars1
Crs
D B
rs1
Ars
rs2
2(
A
2
D
)rs
1
AD
BCrs
0
AD BC 1
rs2
A处 qA = q0+ l
C处 qc= qB+ lc

激光原理-(9)-高斯光束

激光原理-(9)-高斯光束

ω ( z ) ω 0,z ⇒ R( z ) θ 0 2. 任一 坐标 z 处的光斑半径 ω ( z )及等相面曲率半径 R( z )
ω 0(或共焦参量 f )与腰位置 z
ω ( z )
ω 0 ⇒ R( z ) z
NJUPT
高斯光束的 q 参数(复曲率半径)
x2 + y2 ω0 x2 + y2 exp − 2 ) − ϕ ( z ) u00 ( x , = y, z ) c exp − i k ( z + 2 R( z ) ω(z) ω (z)
第4章 高斯光束
NJUPT
高斯光束
高斯光束:所有可能存在的激光波型的概称。 理论和实践已证明,在可能存在的激光束形式中, 最重要且最具典型意义的就是基模高斯光束。 无论是方形镜腔还是圆形镜腔,基模在横截面上的光 强分布为一圆斑,中心处光强最强,向边缘方向光强 逐渐减弱,呈高斯型分布。因此,将基模激光束称为 “高斯光束”。
1 A B TF = = 1 C D − F 0 1
F
AR1 + B R2 = CR1 + D
(遵循ABCD变换法则) NJUPT
高斯光束q参数的变换规律——ABCD公式
在自由空间的传播 束腰处:
1 自由空间变换矩阵: TL = 0
πω 0 2 = = if = i z 0,q(0) λ
πω λ
2
1
B A+ R 1 R2 = B A+ C + R1
πω1 2 B + λ 2 2 D πω1 + BD R1 λ

3.10_高斯光束的传输与透镜变换

3.10_高斯光束的传输与透镜变换

二、高斯光束通过薄透镜的变换
联系:如果ω0→0(即f→0),或(l-F)2>>f2,
则有: l ' F F 2 lF F 2 F 2 lF
lF
lF
lF
即:
1 lF 1 1 l ' lF F l
1 1 1 l l' F
这正是几何光学成像公式。
(l-F)2>>f2,意味着物高斯光束束腰与透镜后焦 面相距足够远。
1. 普通球面波
V的符号规定: 如果像点在透镜右方,v取正号; 如果像点在透镜左方,v取负号。 一个薄透镜的作用,是将距它u处的物点O聚成像
点O’,u与v满足: 1 1 1 uv F
二、高斯光束通过薄透镜的变换
1. 普通球面波 由于R1=u,R2=-v,则有:
111
R1 R2 F
一个薄透镜的作用,是将它左侧的曲率半径 为R1的球面波改造成右侧的曲率半径为R2的球面 波,R1与R2满足上式。
(z) 0
1 (
z )2 f
0
1
z
2
(02
)2
可见:
①高斯光束R(z)的变化规律与普通球面波不同;
②对高斯光束,除R(z)的变化,还有ω(z)的变化。
一、高斯光束在空间的传输规律
2. 高斯光束
R(z1)
z
f2 z
z 1 (02 )2 z
(z) 0
1 (
z f
)2
0
1 z2( )2 02
一、高斯光束在空间的传输规律
即:
q(z) q(0) z q(z1) q(0) z1 q(z2 ) q(0) z2 q(z2 ) q(z1) (z2 z1)
与普通球面波在形式上是相同的。

§2.7+高斯光束及其传输规律

§2.7+高斯光束及其传输规律
§2.7 高斯光束及其传输规律
第二章 开放式光腔与高斯光束/§2.7 高斯光束及其传输规律
r2 r2 −1 z −ik z+ −tan − 2 2R( z) f w ( z)
c 自由空间的基 Ψ x, y, z) = e 模 高 斯 光 束 00 ( w( z)
• 情况1:已知w0, w'0, 确定透镜焦距(F)及透镜的距离 l, l'
( l − F ) F2 l′ = F + 2 l − F) + f 2 (
′ w =
2 0
w0 l −F =± F2 − f02 ′ w0 ′ w0 l′ − F = ± F2 − f02 ′ w0
( F −l )
w2 F2 0
1 1 λ = −i 2 定义q 参数 q z R z 高斯光束的复曲率半径) ( ) ( ) πw ( z) (高斯光束的复曲率半径
若已知高斯光束在某一位置的q参数 若已知高斯光束在某一位置的 参数 → w(z), R(z), θ
1 1 = Re , R( z ) q ( z )
3. 光学系统(元件)
r2 A B r 1 球面波 = θ2 C Dθ1
r2 = Ar + Bθ1 1
r2 ≈ R2θ2
r ≈ Rθ1 1 1
θ2 = Cr + D 1 θ 1
R2 =
θ2
r2
=
AR + B 1 CR + D 1
参数通过光学系统的变换与球面波R的变换相同 高斯光束 q参数通过光学系统的变换与球面波 的变换相同 参数通过光学系统的变换与球面波
两式相减

激光加工中高斯光束的特性与传输变换

激光加工中高斯光束的特性与传输变换

1 高斯光束 的几个描 述参数
1 1 光束 质量 因子 .

ห้องสมุดไป่ตู้

是表征激光束空间光束质量的参数. 可以证 明, 通过近轴 A C B D光学系统时, 光束质量
理想 ’ u 理想
因子 M2 是一个传输不变量[. 以通过 A C 2所 ] B D光学系统对高斯光束进行传输与变换不影响其 M2 值.
动控 制 的程 度 .
高光由气入向性折率 均介时变矩为 1]复数(等 斯束空进各同的射为的匀质的换阵[ /, 参 q、 o其 z )
相面曲率半径 户 z 和共焦参数 Z 都扩大了 () 0 倍 ; 相反 , 若它由各向同性的均匀介质进入空气 中后 , g 、 其 () I 和 Z 都缩小了 倍. D ) ( o
/, -6 -
表 示 其等 相位 面 曲率半 径 ; 明 l z 随着 z 说 D ) ( 的增加 而增 加 , z ∞ 时 , () 。 , 时其等 相位 面为 平面 . 在 一 lz 一 。 此 D
当 — Z 时 , 0 其等相位面曲率半径达到最小值 阳 ) 2 o 叩 ) t zZ ) ( 一 Z ; ( 一 g (/ o 表示附加相移. - 上面的式 () 1 反映了高斯光束的场分布及其在传播过程中的变化规律[ . 1 ]
+ 轰 , 光 通 光 为 的B 系 后 是 斯 束其 幅 大原 的 i 高 束 过 程 L A D统 , 高光 , 放 到 来 斯 c 仍 振

}, 参变 q) 倍 复数为 一 其 ( z
. 斯束过轴学统满 AD律. 即 光通傍光系时足B定嘲 高 c
2 高斯光束 的性质 与变换
Vo . 7 No 3 12 .

光学谐振腔理论-第8节-高斯光束的传输

光学谐振腔理论-第8节-高斯光束的传输

05 高斯光束的未来发展与应 用
高斯光束在光学通信中的应用
高速光通信
高斯光束在光学通信中具有较高的传输速度和较低的信号衰减,有助于实现高 速、大容量的光通信系统。
远程通信
高斯光束具有较好的光束质量和传输稳定性,适用于长距离的光纤通信,有助 于实现远程、稳定的通信连接。
高斯光束在光学传感中的应用
03 高斯光束的调制与控制
高斯光束的相位调制
01
相位调制是指通过改变高斯光束的相位分布来改变其波前的状 态。
02
常见的相位调制方法包括利用液晶空间光调制器、光栅或其他
光学元件对高斯光束进行相位调制。
相位调制在光学通信、光学传感和光学计算等领域有广泛应用,
03
可以实现光束的聚焦、散焦、波形转换等功能。
高斯光束的波前测量
波前测量概述
波前是描述光束相位变化的物理量,高斯光束的波前测量有助于 了解光束的传播特性和干涉、衍射等光学现象。
波前测量方法
常用的波前测量方法有干涉法、散斑法、剪切干涉法等,可以根据 高斯光束的特点和测量精度要求选择合适的方法。
测量误差来源
波前测量误差主要来源于光束的聚焦、光束截面分布、光学元件的 误差等因素。
高斯光束的聚焦特性
聚焦原理
高斯光束经过透镜聚焦后,其横截面 上的强度分布会发生变化,形成明暗 相间的干涉条纹。
干涉条纹
干涉条纹的形状取决于透镜的焦距和 光束的束腰半径。当透镜焦距一定时 ,束腰半径越小,干涉条纹越密集; 反之,则越稀疏。
02 高斯光束在光学谐振腔中 的应用
光学谐振腔对高斯光束的影响
偏振态调制是指通过改变高斯光 束的偏振状态来改变其电磁场分
布。
常见的偏振态调制方法包括利用 偏振片、电光晶体或液晶等对高

第16讲 高斯光束的传输和变换

第16讲 高斯光束的传输和变换

O
L
z1
z2
z
q2 q(z2 ) z2 if
q2 q1 L
16.2 高斯光束传输的基本规律
M1
w0
w1 w2
M2 w0
R1
R2
l
l
16.2 高斯光束传输的基本规律
1 11 R2 R1 F 由于透镜很薄,紧贴透镜的两侧等相位面上的光斑大小和
光强分布相同;
w2 w1
第16讲 高斯光束的传输和变换
16.1 单色球面波傍轴传输的基本规律
单色球面波通过长度为L的自由空间
R1 R(z1) z1 R2 R(z2 ) z2 R1 L
R( z1 )
O
z1
z2
z
R(z2 )
L
16.1 单色球面波傍轴传输的基本规律
单色球面波通过焦距为F的薄透镜
R
O
f1

w02
3.14 3104 632.8109
2
0.45 m
q0 if1
q1 q0 l1 0.1 0.45i m
q2

Fq1 F q 0.1 0.45i

0.18 0.085i
0
1

1.5 0.35
M
M3M2M1
5
0.5

输出光束的q参数为:
q4

1.5q1 0.35 5q1 0.5

(0.32

0.085i)
m
因此:
R1
1
r2
2



A C
B r1
D

高斯光束的传播讲义

高斯光束的传播讲义

高斯光束的传播一、 高斯光束的传播规律为了比较起见,我们仍从一般均匀球面波的传播讨论开始。

如图1所示,一个静止点光源发出的球面波,垂直于等相面方向的距离为z 的任意两个等相面的z图1曲率半径,应满足21R R z =+(1)的方程,曲率半径的符号是这样规定的:从正无穷远处看到凸的波阵面R 为正;看到凹的波阵面R 为负。

若球面波通过焦距为f 的薄透镜,由物象关系得知,透镜前后曲率半径R 1,R 2满足21111R R f=- (2)这里规定凸透镜的0f >,凹透镜的0f <。

我们曾讨论过近轴光线通过光学元件的传播满足的矩阵关系2121x x AB CD θθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭近轴球面波通过光学元件前后的曲率半径分别为121212,x x R R θθ==因此1211112121111x A Bx Ax B AR B R x C x D C R DCDθθθθθ+++====+++ (3)所以对于一般均匀球面波,只用一个参数——曲率半径R 就可完全描述其传播和变换的特性。

与普通球面波不同,高斯光束必须由两个量即R (z )和w (z)来描写。

但下面将看到,对于高斯光束——非均匀的、曲率中心不断变化的球面波——也具有一个与一般球面波曲率半径R 的作用类似的复曲率半径q (z ),它可被用来描述高斯光束的传播行为。

在推导高斯光束表达式时,我们已经得出复曲率半径在均匀空间传播的表达式,具体过程可以参考伍长征编写的《激光原理》书中的(3.3-14)式,即21q q z=+ (4)这里21,q q 分别为传播方向上任意两点21,z z 处的复曲率半径,z 为两点间距离,21z z z =-,参见图2(a)。

再看高斯光束通过薄透镜的变换,如图2(b)。

令薄透镜焦距为f ,由于是近轴光线,波阵面是一球面,透镜前后曲率半径应满足21111R R f=-,000(,)q w R 111(,)q w R 222(,)qwR z 1z 2图2(a)f 20w 10w q 1q 2图2(b)又透镜足够薄,两侧光斑尺寸相等,即12w w =,与上式合并,可以变形为22222112121()i iR kwR kw f-=-- (5)由复曲率半径定义式2112()()()i q z R z kw z =-,可得21111q q f=-(6)比较(4)式和(6)式与(1)式和(2)式知道,利用复曲率半径q ,形式上完全可等价于球面波的曲率半径R 。

3.10 高斯光束的传输与透镜变换解读

3.10 高斯光束的传输与透镜变换解读

若ω0→0或z →∞,则R(z) →z、 ω(z) →∞。 当光斑尺寸趋于无穷大时,波阵面上的光强分布 趋于均匀,这正是普通球面波波阵面上的均匀分布 情况,此时,高斯光束可看成是普通球面波。
一、高斯光束在空间的传输规律
定义:
1 1 i 2 q( z ) R( z ) ( z )
称q(z)为q参数,或称为高斯光束的复曲率半径。 定义q参数的好处是: ① z处R(z)与ω(z)两个参数可用一个参数q(z)表示,
即:
1 1 1 q1 q2 F
这与几何光学成像公式在形式上是相同的。
例题
例题1: 某高斯光束波长为3.14微米,束腰半径 为1mm。 求:距离束腰右方50cm处的 (1)q参数; (2)光斑半径和等相位面曲率半径。
例题
例题2: 某高斯光束波长为3.14微米,在某处光 斑半径为1mm,等相位面曲率半径0.5m。 求:此高斯光束 (1)在该处的q参数; (2)束腰半径及位置。
3.10 高斯光束的传输与透镜变换
一、高斯光束在空间的传输规律
1. 普通球面波
R( z1 ) z1 R ( z2 ) z2
即球面波的波前曲率半径R等于传输距离Z。

R( z2 ) R( z1 ) ( z2 z1 )
一、高斯光束在空间的传输规律
2. 高斯光束
2 f2 1 0 R( z1 ) z z ( )2 z z z 2 2 2 ( z ) 0 1 ( ) 0 1 z ( 2 ) f 0
区别:如果将入射光束的腰看作物点。 按照几何光学成像规律,如l=u=F,则l’=v=∞; 按照高斯光束成像规律,如l=F,则l’=F。
二、高斯光束通过薄透镜的变换

高斯光束的传播

高斯光束的传播

如何借助透镜改善高斯光束的方向性?
4.3.3 高斯光束的准直
实际应用中,为了减小光束发散角,从而能量不会随距离很快散开,需 要对高斯光束准直。
一、核心问题:改善光束的方向性,即压缩光束的发散角
二、方法:①用单透镜;② 用望远镜。
①用单透镜
高斯光束发散角:
2
2 0
通过透镜后,像高斯光束发散角:2 ' 2
(02
)2
]
)2
s
02
1
1
R
(
R 2
)2
2
(2 )2 R
经透镜变换后的束腰位置、腰斑大小由以上两式决定.
已知高斯光束的腰斑大小和位置,整条高斯光束传输规律就确定了。
4.3.2 高斯光束的聚焦 0' 0
实际应用中,为了提高激光的光功率密度, 需要对高斯光束进行聚焦。
图4-16 高斯光束通过薄透镜的变换
0
1
s
(
2 0
)
2
2 2 0
用凹透镜直接加大发散角
用两个凸透镜聚焦
束腰半径越小,发散角越大,从而加大,达到缩小聚焦光斑的目的.
高斯光束聚焦的腰斑放大率:
0
f
0
1 (
s
)2
2 0
0 0
f 1 (s02 )2
如果 s 足够大,满足条件:
s
(
2 0
)2
则 1:
又 s f
0 f s' 0 s s
通过第一个短焦距(f 1)透镜聚焦,获得极小的腰斑:
核心问题:由
02
1
2 2 (
)2
R
、和
s
1

高斯光束的传输变换学习笔记

高斯光束的传输变换学习笔记

0
1
R1( z ) o
当球面波通过焦距为F的薄透镜时,其波前
z1
R2(z)
z2 z
曲率半径满足:
L
1 1 1 R2(z) R1(z) F
R2(z)
R1 R1 / F
1
1
1/
F
0
1
F
将上面两式与光线矩阵相比较可以得到球面
波的传播规律:
R2(
z)
AR1( z ) CR1( z )
B D
R1(z)
R2
i
2 1
R2为等相位面曲率半径,由球面 波球率半径的变换公式可得:
1 R1
1 F
i
2 1
1 q1( z )
1 F
高斯光束通过薄透镜的传输
通过将上面推出的公式同球面波的传播特性公式相比较,
可以看到无论是在对自由空间的传播或对通过光学系统的 变换,高斯光束的q参数都起着和普通球面波的曲率半径R 相同的作用,因此有时将q参数称作高斯光束的复曲率半 径;
高斯光束通过光学元件时q参数的变换规律可以类似的用
光线矩阵表示出来:
q2(
z)
Aq1( z ) Cq1( z )
B D
由前面的讨论我们知道可以用q参数描述一个高斯光束的
具体特征,而且可以通过q参数和ABCD法则很方便的描述
一个高斯光束在通过光学元件时的传输规律,因此我们将
主要采用q参数来分析薄透镜高斯光束传输问题。
2
1
高斯光束的ABCD法则
3、用q参数表示
1 由q参数的定义: q(z)
1 R(z)
i
2(可z ) 知q参数将R(z)和ω(z)联系在一起了,

高斯光束垂直入射到不同折射率介质中的传播规律

高斯光束垂直入射到不同折射率介质中的传播规律

高斯光束垂直入射到不同折射率介质中的传播规律
高斯光束垂直入射到不同折射率介质中时,其传播规律遵循几何光学和波动光学的基本原理。

当光束从真空(折射率为1)垂直入射到其他介质时:
传播方向:由于是垂直入射,光束的传播方向在界面处不会发生改变,即光束将沿着原方向直线传播进入介质。

光束宽度和强度分布:高斯光束在进入高折射率介质后,横向尺寸会发生变化,根据光束waist(最细处直径)的位置以及数值孔径(NA)等因素确定。

高斯光束在任何位置的强度分布仍保持高斯分布形式,但光束腰的位置会随传播距离而移动,并且在新介质中的束宽会不同于在真空或低折射率介质中的情况。

光速与波长:光在不同介质中的速度会变慢,具体由折射率n决定,v = c/n(c为真空中的光速)。

因此,光的波长λ' 在介质中也会相应缩短,即λ' = λ/n,其中λ为真空中波长。

聚焦特性:高斯光束的聚焦特性和焦距也会受到介质折射率的影响,在高折射率介质中,相同的透镜参数下,焦距会变短。

总结来说,尽管入射方向不变,但高斯光束在垂直入射进入不同折射率介质后,其横向传播特征、光强分布及光速、波长等都会发生变化。

第三章 高斯光束的传输与变换

第三章 高斯光束的传输与变换

2.9.4 高阶高斯光束 (1)厄米特—高斯光束 高阶高斯光束横截面内的场分布可由高斯函数与厄米多项式的 乘积来描述。 沿z方向传输的厄米卢高斯光束
mn(x ,y ,z ) C mn
C mn 1
1

H m(
2
2

x )H n(
2

y) e
r2 2
e
r2 z i k(z )( m n 1)arctg 2R f
激光物理
第三章
高斯光束的传输与变换
回顾
方形镜共焦腔的行波场
(厄米-高斯光束) 当镜面上的场分布能够用厄米-高斯函数来描述时,共焦 腔中的行波场可以表示为:
2 2 0 Emn( x, y, z ) AmnE 0 Hm x Hn y e ( z) ( z) ( z)
1 1 令q0=q(0),则: Nhomakorabeai 2 q 0 R(0) (0)
20 R(0) , (0) 0 q 0 i if
通过这些公式,我们可以用高斯光束的q参数来描述高斯光束。
以上三组参数都可以用来确定高斯光束的具体结构,需要根据 实际问题来灵活选择使用哪种参数。
2 2 2 2
可见,光斑半径随坐标z按双曲线的规律而扩展,在z=0处,以 ω(z)=ω0,达到极小值(束腰)。
(2)基模高斯光束的相移特性由相位因子决定
r2 z 00(x ,y ,z ) k(z ) arctg 2R f
表明高斯光束的等相位面是以R为半径的球面
2 2 0 R(z ) z 1 z
式中ω0和ω(z)分别为基模光腰半径和z处光斑半径。在z方向和y 方向的远场发散角 2 ( z ) 2 m lim m 2m 1 2m 1 0 z z 0 2n ( z ) 2 n lim 2n 1 2n 1 0 z z 0

第6讲-高斯光束的传输变换

第6讲-高斯光束的传输变换

)
H
n
2
y
(z)
H0(x) 1 H1(x) 2x H2(x) 4x2 2 H3 (x) 8x3 12x
exp
x2 y2
2 (z)
i
k(x2 y2)
2R(z)
kz
(m
n
1)
(z)
• 其中的m、n为x、y方向上的零点数,此时高阶高斯光束分布为厄米高斯光束,表示为TEMmn模式。
• 要使得上式中qs+1为有限值,即光束约束在透镜波导内传播,就要求
θ为实数,即 cos 1,由此可得到光束稳定性条件:
d d d2
0 1
1

F1 F2 2F1F2
如果θ为虚数,不妨设θ=ia,则 sin(i s)
增加而增加,qs+1没有确定值,不稳定。
1 2i
e s e s
会随着S的
z0 z
2
z2
z02 z
2
Z
02
1
z z0
2
z2
z02 z0
6.2 高斯光束的传输与q参数
高斯光束在自由空间的传输
– 通过整理q的表达式可以得到:
R
1
Z
i
2
Z
q(z)
2
2
1
R
Z
2
Z
z2
z z02
iz0 z2 z02
z2 z2 z02
2
z02 z2 z02
Re
1 q(z)
1 2( z )
Im
1
q(z)

令q0=q(0),则:
1 q0
1 i R(0) 2(0)
R(0) ,(0)

激光原理:7-2高斯光束的传输规律

激光原理:7-2高斯光束的传输规律
7.2 高斯光束的传输规律
第7章 高斯光束
一、球面波的R参数 R(z)=z
R(z):等相位面曲率半径
R(z) z
0
z
二、ABCD定律
若某元件的光学变换矩阵为 CA
B D
,则通过此元件
前、后的球面波R参数和高斯光束q参数满足关系。
R AR B CR D
q Aq B Cq D
R、q:通过元件前的参数 R、q:通过元件后的参数
q2 q1 L
近轴情况 R2 l2 发散(+) 会聚(-)
1 11 R2 R1 F
1 q2
1 R2
i
w22
1 11
R2 R1 F
w2 w1
(薄透镜)
1 11 q2 q1 F
7.2 高斯光束的传输规律
第7章 高斯光束
例1:某高斯光束共焦参数为f=1m,将焦距F=1m的凸 透镜置於其腰右方l=2m处,求经透镜变换后的像光束 的焦参数f及其腰距透镜的距离l。
7.2 高斯光束的传输规律
三、球面波R参数的传输规律
1、传播L距离
R=R+L
传播L距离的光学变换矩阵
R 1 R L R L 0 R1
或 R=R(z)=z
R=R(z)=z
R-R=z-z=L ∴R=R+L
第7章 高斯光束
T
1 0
L 1
R=R(z) R=R(z)
z
0 z z
L
7.2 高斯光束的传输规律
2、通过透镜
q Fq Fq
1 0
透镜的光学变换矩阵
T
1
1
q
1 q 0 1 q 1
q 1 q
Fq F q

第二章 高斯光束

第二章 高斯光束

– 在实验上和理论上都证实了工作物质的折射率随温度发生变化:
(x,
y)
0(T 0)
n T
D 4K
(x2
y2)
– 可见工作状态下的Nd:YAG工作物质是一种二次折射率介质。
21
2.1光线的传播
• 3. 光线在均匀和非均匀各向同性介质中的传播

程函(eikonal)方程:
x
2
y
2
x y
0 0
d 2r dz 2
k k
2 0
r
0
23
2.1光线的传播

(1)k2>0
微分方程的解为 r(z) c1cos
k k
2 0
z
c
2
sin
k k
2 0
z
若考虑光线入射初始条件

r0
r
0
'
,则可以求出
c1
r 0; c2
k,因此微分方程的解可以写成:
r
z
r
0
cos
– 1. 薄透镜的聚焦机理
– 一单色平面波,经过薄透镜后,产生一个与离轴距离r2成正比的相位超 前量,补偿了到达焦点几何路径的不同所引起的相位不同滞后量。到达
焦点时间、相位相同,实现聚焦,此时的薄透镜相当于一个平面的相位
变换器。
AB AO BO
f 2 x2 y2 f f 1 x2 y2 f
k k
2 0
z
k k
0 2
r
'
0
sin
k k
2 0
z
r ' z
k k
2 0
r

高斯光束的传输变换

高斯光束的传输变换
另外,还可引用高斯光束的复曲率半径-q 参数来描述高斯光束。将(2.7.11)式中与 r 有关的因子放在一起
U 00 (x, y, z)
=
c
−ik r 2 [ 1 −i λ ]
e e 2 R( z) πw2 ( z) −i(kz+Φ)
w( z )
(2.7.15)
定义一个新的复参数 q(z)
1 = 1 −i λ q(z) R(z) πw2 (z)
任一旁轴光线在某一给定参考面内都可以由两个坐标参数来表征,光线离轴线的距离 r 及光线与轴线的夹角θ。将这两个参数构成一个列阵,各种光学元件或光学系统对光线的变 换作用可用一个二行二列的方阵来表示,变换后的光线参数可写成方阵与列阵乘积的形式。 1. 近轴光线通过距离 L 均匀空间的变换
我们分析近轴光线在均匀空间通过距离L的传输,如图 2-22 所示,假定光线从入射参考 面P1出发,其初始坐标参数为r1和θ1,传输到参考面P2时,光束参数变为r2和θ2,由几何光 学的直进原理可知
图 2-26 高斯光束的聚焦 由前面介绍,光线从入射光束束腰处传输到出射光束束腰处的传输矩阵
⎜⎜⎝⎛ CA
DB ⎟⎟⎠⎞ = ⎜⎜⎝⎛10
1l'⎟⎟⎠⎞⎜⎜⎝⎛

1 1/
F
10⎟⎟⎠⎞⎜⎜⎝⎛
1 0
1l ⎟⎟⎠⎞ = ⎜⎜⎝⎛1−−1l/' /FF
l
+ 1
l'−ll' / −l/F
F
⎟⎟⎠⎞
(2.7.26)
w0 ' ≈ w0π
λF
= λF , l'≈ F
1 + (λl / πw02 )2 πw(l)
(2.7.32)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档