湖北省黄冈市红安县九年级(上)期末数学试卷

合集下载

红安县期末数学试卷及答案

红安县期末数学试卷及答案

一、选择题(每题5分,共25分)1. 下列各数中,负数是()A. -2.5B. 0.5C. -3.5D. 52. 如果一个数的绝对值是3,那么这个数可能是()A. -3B. 3C. ±3D. 03. 下列哪个数不是有理数?()A. 1/2B. -3.14C. √4D. √94. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,6)5. 下列哪个方程的解集是实数集R?()A. x^2 - 1 = 0B. x^2 + 1 = 0C. x^2 - 4 = 0D. x^2 + 4 = 0二、填空题(每题5分,共25分)6. 3的平方根是______,9的平方根是______。

7. 如果a + b = 0,那么a和b互为______。

8. 等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是______cm。

9. 一个数的平方根是±2,那么这个数是______。

10. 若方程2x - 3 = 7的解是x = 5,那么方程5x - 3 = 2的解是______。

三、解答题(每题10分,共30分)11. (1)计算:-5 + (-3) × 2 ÷ (-1) - 4。

(2)解方程:3x - 4 = 2x + 6。

12. (1)已知a、b、c是等差数列的三项,且a + b + c = 21,求b的值。

(2)若等比数列的第一项是2,公比是3,求该数列的前5项。

13. (1)在直角坐标系中,点A(2,3)和点B(-3,-1),求线段AB的长度。

(2)在直角坐标系中,点C(0,0),点D(3,4),求线段CD的中点坐标。

四、应用题(20分)14. (10分)某商品原价是100元,打八折后售价是多少?再打九折后的售价是多少?15. (10分)某班级有学生50人,期末考试数学平均分是85分,及格人数是45人,求该班数学不及格的学生人数。

湖北省黄冈市九年级上学期期末考试数学试卷及答案解析

湖北省黄冈市九年级上学期期末考试数学试卷及答案解析

第 1 页 共 23 页
2020-2021学年湖北省黄冈市九年级上学期期末考试数学试卷
一.选择题(共8小题,满分24分,每小题3分)
1.下列诗句表述的是随机事件的是( )
A .离离原上草,一岁一枯荣
B .危楼高百尺,手可摘星辰
C .会当凌绝顶,一览众山小
D .东边日出西边雨,道是无晴却有晴
2.设函数y =kx 2+(4k +3)x +1(k <0),若当x <m 时,y 随着x 的增大而增大,则m 的值
可以是( )
A .1
B .0
C .﹣1
D .﹣2 3.如图点A 为反比例函数y =k x (k ≠0)图形上的一点,过点A 作AB ⊥y 轴于B ,点C 为x
轴上的一个动点,△ABC 的面积为3,则k 的值为( )
A .3
B .6
C .9
D .12
4.如图,AB 为⊙O 的切线,OB 交⊙O 于点D ,C 为⊙O 上一点,若∠ACD =24°,则∠
ABO 的度数为( )
A .48°
B .42°
C .36°
D .72°
5.如图,将△AOB 绕点O 按逆时针方向旋转55°后得到△A ′OB ′,若∠AOB =15°,
则∠AOB ′的度数是( )。

2019-2020学年湖北省黄冈市九年级上学期期末考试数学试卷及答案解析

2019-2020学年湖北省黄冈市九年级上学期期末考试数学试卷及答案解析

第 1 页 共 21 页
2019-2020学年湖北省黄冈市九年级上学期期末考试数学试卷
一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)
1.(3分)下列成语所描述的事件是必然事件的是( )
A .水涨船高
B .水中捞月
C .一箭双雕
D .拔苗助长
2.(3分)关于抛物线y =(x ﹣1)2﹣2,下列说法错误的是( )
A .开口方向向上
B .对称轴是直线x =1
C .顶点坐标为(﹣1,﹣2)
D .当x >1时,y 随x 的增大而增大
3.(3分)如图,已知点P 在反比例函数y =k x
上,P A ⊥x 轴,垂足为点A ,且△AOP 的面积
为4,则k 的值为( )
A .8
B .4
C .﹣8
D .﹣4
4.(3分)AB 为⊙O 的直径,延长AB 到点P ,过点P 作O 的切线,切点为C ,连接AC ,
∠P =40°,D 为圆上一点,则∠D 的度数为( )
A .25°
B .30°
C .35°
D .40°
5.(3分)如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED
的位置,使得DC ∥AB ,则∠BAE 等于( )。

湖北省2023-2024学年九年级上学期期末数学试题

湖北省2023-2024学年九年级上学期期末数学试题
湖北省 2023-2024 学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1. 2 的相反数是( )
A.2
B. 2
C. 1
2
2.下列四张扑克牌的牌面,不是中心对称图形的是( )
D. 1 2
A.
试卷第 4 页,共 6 页
统计时间 x/h
12
3
4
累计进入景区游客人数 y/人 950 1800 2550 3200
累计离开景区游客人数 z/人 0
200 400 600
探究发现, y 与 x , z 与 x 之间的数量关系可以用我们已学过的函数来描述. (1)直接写出 y 关于 x 的函数解析式和 z 关于 x 的函数解析式(不要求写出自变量的取值 范围); (2)预计几点钟时,景区内游客人数最多? (3)当景区内游客人数达到 2600 人时,将触发人流高峰黄色预警,问什么时间将触发人 流高峰黄色预警? 直接写出答案. 23.有一张半径为 2 的圆形纸片.
问题解决: (1)求该筒车半径 r 的大小; (2)当盛水筒旋转至 D 处时,求它到水面 AB 的距离. 22.“快乐游玩、安全游玩”是各景区游玩的工作宗旨.某景区上午8 : 00 时开门迎接游 客进入,下午 5 : 00 禁止游客进入.据工作人员统计,上午 9 : 00 时该景区已累计进入游 客 950 人,从此时开始陆续有游玩结束的游客离开.累计进入景区游客人数 y (单位:人) 与累计离开景区游客人数 z (单位:人)随统计时间 x (单位:h)变化的数据如下表所示:
13.著名画家达·芬奇不仅画意超群,同时还是一个数学家,发明家.他增进设计过一 种圆规.如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计)一根没有弹性的木棒 的两端 A,B 能在滑槽内自由滑动,将笔插入位于木棒中点 P 处的小孔中,随着木棒的 滑动就可以画出一个圆来,若 AB=10cm,则画出的圆半径为 cm.

湖北省黄冈市九年级上学期期末考试数学试卷及答案解析

湖北省黄冈市九年级上学期期末考试数学试卷及答案解析

第 1 页 共 21 页
2019-2020学年湖北省黄冈市九年级上学期期末考试数学试卷
一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)
1.下列成语所描述的事件是必然事件的是( )
A .水涨船高
B .水中捞月
C .一箭双雕
D .拔苗助长
2.关于抛物线y =(x ﹣1)2﹣2,下列说法错误的是( )
A .开口方向向上
B .对称轴是直线x =1
C .顶点坐标为(﹣1,﹣2)
D .当x >1时,y 随x 的增大而增大
3.如图,已知点P 在反比例函数y =k x
上,P A ⊥x 轴,垂足为点A ,且△AOP 的面积为4,
则k 的值为( )
A .8
B .4
C .﹣8
D .﹣4
4.AB 为⊙O 的直径,延长AB 到点P ,过点P 作O 的切线,切点为C ,连接AC ,∠P =40°,
D 为圆上一点,则∠D 的度数为( )
A .25°
B .30°
C .35°
D .40°
5.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,
使得DC ∥AB ,则∠BAE 等于( )。

2019-2020学年湖北省黄冈市九年级(上)期末数学试卷-教师用卷

2019-2020学年湖北省黄冈市九年级(上)期末数学试卷-教师用卷

2019-2020 学年湖北省黄冈市九年级(上)期末数学试卷一、选择题(本大题共 8 小题,共 24.0 分) 1. 下列成语所描述的事件是必然事件的是( )A.水涨船高【答案】A B. C. D. 水中捞月 一箭双雕 拔苗助长【解析】解: 、水涨船高是必然事件,故此选项正确;AB 、水中捞月,是不可能事件,故此选项错误;C 、一箭双雕是随机事件,故此选项错误;D 、拔苗助长是不可能事件,故此选项错误; 故选: .A必然事件就是一定会发生的事件,依据定义即可解决.此题主要考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的 概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定 不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事 件.2. 关于抛物线 =− 1) − 2,下列说法错误的是( )2 A. C. B. D. 开口方向向上对称轴是直线 = 1 当 > 1时, 随 的增大而增大顶点坐标为(−1, −2) y x 【答案】C【解析】解:∵抛物线 = − 1)2 − 2, ∴顶点坐标是(1, −2),对称轴是直线 = 1,根据 = 1 > 0,得出开口向上,当 > 1时, 随 的增大而增大,x y ∴ 、 、 说法正确;B D 说法错误.C 故选: .C根据抛物线的解析式得出顶点坐标是(1, −2),对称轴是直线 = 1,根据 = 1 > 0,得 出开口向上,当 > 1时, 随 的增大而增大,根据结论即可判断选项.y x 本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断 是解此题的关键.P点 ,且△ 的面积为 4,则 的值为( )kAA.B. C. D. −8 −4【答案】C【解析】解:∵点 在反比例函数 = 上, ⊥ 轴,且△ 的面积为 4,P ∴ 1= 4,2∴ = 8或 = −8, ∵ < 0,∴=−8.故选:.C1=4,再根据<0,求出k的值.根据反比例函数的几何意义,可得k2考查反比例函数图象上点的坐标特征,理解反比例函数的几何意义是解决问题的前提.k4.AB AB切线,切点为,连接AC,=为圆上一点,C25°B.30°C.35°D.40°【答案】A【解析】证明:连接O C,∵∴∵∴∵+ =,∴==1=25°,2∴==25°,故选:.A12连接O C,根据切线的性质得到周角定理得出答案.=90°,证明==,再根据圆本题考查了切线的性质、圆周角定理,掌握切线的性质定理是解题的关键.5.如图,△中,,则=65°,在同一平面内,将△等于()绕点旋转到△的位A置,使得A. B. C. D.30°40°50°60°【答案】C【解析】解:∵,∴==65°,∵△∴绕点旋转到△的位置,,A=,=∴==65°,∴=180°−=50°.−=50°,∴故选:.C先根据平行线的性质得 ,则根据等腰三角形的性质得 定理计算出 = 180° − = = 65°,再根据旋转的性质得 = 65°,然后根据三角形内角和 = 50°,于是有 = 50°. =, = = −本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点 与旋转中心的连线段的夹角等于旋转角.6. 已知关于 的方程 − − 6 = 0的一个根为 = −3,则实数 的值为( )x 2 k A. B. C. D. 1 −1 2 −2 【答案】B【解析】解:把 = −3代入方程得:9 + 解得 = −1. − 6 = 0, 故选: .B方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以 得到关于 的方程,从而求得 的值.k k本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这 个数代替未知数所得式子仍然成立.7. 如图, , 切⊙ 于 、 两点, 切⊙ 于点 ,E 交 的周长等于 3,则 的值 PAPA PB CB. 23C. 12D. 34【答案】A【解析】解:∵ ,PB 切⊙ 于 、 两点, A B切⊙ 于点 ,交 , 于 , ,PA PB C D C D E ∴ = + , = , = ∵△∴ 的周长等于 3, = 3, ∴= 3 .2故选: . A直接利用切线长定理得出 = , = , = ,进而求出 的长. PA 此题主要考查了切线长定理,熟练应用切线长定理是解题关键. 8. 如图,在平面直角坐标系中,点 在抛物线 = − + 6A 2 ⊥ 轴于点 ,以为对角线作矩形 C AB C D ,连结 B D ,则对角线的最小值为( )A.B. C. D. √2 √3【答案】B 【解析】解:∵ = 2 − + 6 = − 2)2 + 2,∴抛物线的顶点坐标为(2,2), ∵四边形 为矩形, AB C D ∴ = , 而 ⊥ 轴, 的长等于点 的纵坐标,∴ A 当点 在抛物线的顶点时,点 到 轴的距离最小,最小值为 ,A A x 2 ∴对角线 的最小值为 .2B D 故选: .B先利用配方法得到抛物线的顶点坐标为(2,2),再根据矩形的性质得 = ,由于A C的长等于点 的纵坐标,所以当点 在抛物线的顶点时,点 到 轴的距离最小,最小A A A x值为 ,从而得到 2的最小值.B D 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也 考查了矩形的性质.二、填空题(本大题共 6 小题,共 18.0 分) 9. 把一元二次方程 + 1) = − 1) + 2化为一般形式为______. 【答案】 2 − + 2 = 0【解析】解: 2 + = − 4 + 2, − + 2 = 0,2 故答案为: 2 − + 2 = 0.把方程左右两边的因式分别相乘,再把右边的项移到左边,合并同类项即可.此题主要考查了一元二次方程的一般形式,去括号的过程中要注意符号的变化,不要漏 乘,移项时要注意符号的变化.10. 如图,在△ 中, = 4, = 3, = 30°,将△绕点 逆时针旋转60°得到△ 1 1,连 接 1,则 1的长A 为______ .【答案】5 【解析】解:∵将△ 绕点 逆时针旋转60°得到△1 1,A ∴ ∴ ∴ = = 3,= 60°, 1 1= 90°, 1=+ = √16 + 9 = 5,2 2 11 故答案为: .5由旋转的性质可得 = = 3, = 60°,由勾股定理可求解. 1 1本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键.11. 在一个不透明的盒子里装有除颜色外其余均相同的 个黄色乒乓球和若干个白色2 2 乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为 ,那么盒子内3白色乒乓球的个数为______ . 【答案】4【解析】解:设盒子内白色乒乓球的个数为 ,x= 2 根据题意,得: ,3解得: = 4,经检验: = 4是原分式方程的解,∴盒子内白色乒乓球的个数为 ,4 故答案为: .42设盒子内白色乒乓球的个数为 ,根据摸到白色乒乓球的概率为 列出关于 的方程,解x x 3之可得.此题主要考查了概率公式,关键是掌握随机事件 的概率A=事件 可能出现的结A果数:所有可能出现的结果数.12. 如图,在平面直角坐标系中, 在 轴上, O B = 90°,点 的坐标为(2,4),将Ax △绕点 逆时针旋转90°,点 的对应点 恰好落在反比例函数 = 的图象上, A O C则 的值为______. k【答案】12 【解析】解:∵在 轴上, x= 90°,点 的坐标为(2,4),将△绕点 逆时AA 针旋转90°,点 的对应点 恰好落在反比例函数 = 的图象上, O C ∴点 的坐标为(6,2), C ∴ 2 = ,6解得, = 12, 故答案为: .12根据题意和旋转的性质,可以得到点 的坐标,由点 在反比例函数 = 的图象上, C C 从而可以得到 的值,本题得以解决.k本题考查反比例函数图象上点的坐标特征、坐标与图形的变化−旋转,解答本题的关键 是明确题意,利用数形结合的思想解答. 13. 已知抛物线 =【答案】1 ≤ < 9− 1)2 1,当0 < < 3时, 的取值范围是______.y 【解析】解:∵抛物线 =− 1)2 1, ∴当 > 1时, 随 的增大而增大,当 < 1时, 随 的增大而减小, y x y x ∴ = 0和 = 2的函数值相等,当 = 3时, = 9,当 = 1时, = 1, ∴当0 < < 3时, 的取值范围是1 ≤ < 9, y 故答案为:1 ≤ < 9.根据抛物线 =− 1)2 + 1和二次函数的性质,可以得到当0 < < 3时,y 的取值范 围,本题得以解决.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意, 利用二次函数的性质解答.=,母线=D A 蚂蚁走过的最短路线长为______cm .【答案】15 3√ 【解析】解:圆锥的侧面展开图为扇形, 点的对应点为 , 点的对应点为 ,扇形 B D 的圆心角为 度,n根据题意得 = ,解得 = 120°,1801 ×120° = 60°,2则 =而 = ,∴△为等边三角形, 的中点, ∵ 为 ∴= 1= 15,2∴ = √ = 15√3, ∴蚂蚁走过的最短路线长为15√.故答案为15 3.√ 圆锥的侧面展开图为扇形, 点的对应点为 , 点的对应点为 ,扇形的圆心角为 B D n 度,利用弧长公式得到=,解得 = 120°,所以 = 60°,则△ 为等180边三角形,然后利用含 度的直角三角形三边的关系计算出 即可.30本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的 周长,扇形的半径等于圆锥的母线长.也考查了最短路径问题.三、解答题(本大题共 11小题,共 78.0 分)15. 若关于 的一元二次方程 − + 9 = 0有两个实数根,求 的取值范围. x 2 k 【答案】解:∵方程有两个实数根, ∴△= = 36 − × 9 = 36 −解得: ≤ 1且 ≠ 0.【解析】一元二次方程有两个实数根,则根的判别式△=2−不等于 ,建立关于 的不等式,求出 的取值范围.− ≥ 0,2 ≥ 0,且二次项系数0 k k 总结:一元二次方程根的情况与判别式△的关系: (1) △> 0 ⇔方程有两个不相等的实数根; (2) △= 0 ⇔方程有两个相等的实数根; (3) △< 0 ⇔方程没有实数根.在解题过程中容易忽视的问题是二次项系数不等于 .0 16. 如图,圆弧形桥拱的跨度= 12米,拱高= 4米,求拱桥的半径.【答案】解:根据垂径定理的推论,知此圆的圆心在所在的直线上,设圆心是,OC D连接根据垂径定理,得=6,设圆的半径是,根据勾股定理,得2=36+−4)2,解得=6.5,r答:拱桥的半径是6.5米.【解析】根据垂径定理的推论,知此圆的圆心在根据垂径定理和勾股定理求解.所在的直线上,设圆心是连接C D此题考查了运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.17.−1)=−1)2−−2=02【答案】解:(1)∵−1)2=−1),∴∴−1)−−1)=0,2−−1−2)=0,∴=1或=3.(2)∵−2=0,−2∴=2,=−5,=−2,∴△=25−4×2×(−2)=41,5±√414∴=【解析】(1)根据一元二次方程的解法即可求出答案.(2)根据一元二次方程的解法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.18.已知如图,正方形上一点,△绕A D点逆时针旋转90°后得到△.A(1)如果=65°,求的度数;与的位置关系如何?说明理由.D F【答案】解:(1)∵△绕点按逆时针方向旋转90°得到△,A∴∴=,==65°,==90°,==45°,∴= − = 65° − 45° = 20°(2)结论:⊥.理由:延长 交 于 ,BE D F H∵△∴ 绕点 按逆时针方向旋转90°得到△ ,A =++ , ∵ = 90°, = 90°, ∴ ∴= 90°, ∴ ⊥ .【解析】(1)根据旋转的性质得 = , = = 65°, = = 90°, = 90°, 求出 即可解决问题.于 ,根据旋转的性质得 (2)延长 交 BE D F= ,由于 +H 则 . + = 90°,根据三角形内角和定理可计算出 = 90°,于是可判断 ⊥ 本题考查了旋转的性质,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于 中考常考题型.19. 已知关于 的一元二次方程 + + += 0有两根 , 2x 2 (1)求 的取值范围;m(2)若 + + = 0.求 的值.m【答案】解:(1)由题意知,+ 3)2 − 4 × 1 × 2 ≥ 0, 3解得: ≥ − ;4(2)由根与系数的关系得: + = + 3), =2,∵ + + = 0,+ 3) + = 0, = −1, ∴2 解得: = 3, 1 13 由(1)知 ≥ − ,4所以 = −1应舍去, 1 的值为 3.m 【解析】(1)根据方程有两个相等的实数根可知△> 0,求出 的取值范围即可;m(2)根据根与系数的关系得出 + 与 的值,代入代数式进行计算即可.本题考查的是根与系数的关系,熟知 , 是一元二次方程 2 + + = ≠ 0)的 1 2 两根时, += − , = 是解答此题的关键.1 21220. 某水果商场经销一种高档水果,原价每千克 50 元,连续两次降价后每千克 32 元,若每次下降的百分率相同;求每次下降的百分率.【答案】解:设每次下降的百分率为,根据题意,得:a50(1−=32,2解得:=1.8(舍)或=0.2,答:每次下降的百分率为20%.【解析】设每次降价的百分率为,(1−2为两次降价的百分率,50降至32就是方程a的平衡条件,列出方程求解即可此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.21.如图,一次函数=,.(3)根据图象,直接写出不等式+<的解集.【答案】解:(1)由点在一次函数=−2:;+上,得=−2一次函数的表达式为=由点在直线=−2上,得=1把代入=<0)得=−3∴反比例函数的表达式为=−;3=−2得{=−3=1=1=−3(2)解{或{,=−3−3);∴(3)不等式+<的解集为−3<<0或>1.【解析】(1)运用待定系数法求出在一次函数的表达式,从而求出点的坐标,再运用A待定系数法即可求出反比例函数的表达式;(2)解析式联立,解方程组即可求得;(3)根据图象即可求得.本题考查了待定系数法求函数解析式及反比例函数与一次函数图象交点的问题,求得交点的坐标是解题的关键.22.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁 4 位一等奖获得者中随机抽取 2 人参加“世界读书日” 宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率. 【答案】解:(1)本次比赛获奖的总人数为4 ÷ 10% = 40(人), 所以二等奖人数为40 − (4 + 24) = 12(人), 补全图形如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360° × = 108°;12 40(3)树状图如图所示,∵从四人中随机抽取两人有 12 种可能,恰好是甲和乙的有 2 种可能, ∴抽取两人恰好是甲和乙的概率是 = .2 1 126【解析】(1)先有一等奖人数及其对应的百分比可得总人数,总人数减去一等奖、三等 奖的人数和求出二等奖的人数,从而补全图形;(2)用360°乘以“二等奖”所占比例即可得;(3)画出树状图,由概率公式即可解决问题.本题考查列表法与树状图法、频数分布直方图,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.23.如图,△中,=,以D A C的中点:D B C【答案】证明:(1)连接A D,∵∴是直径,⊥,又∵=,∴=,∴点是的中点;D B C(2)连接O D,∵∴∴==,=,,,又∵∴⊥,⊥,∴是⊙的切线.【解析】(1)连接A D,得出⊥,根据等腰三角形性质推出,推出,即可得出=即可;(2)连接O D,求出==90°,根据切线的判定推出即可.本题考查了切线的性质,等腰三角形的性质,圆周角定理,灵活运用这些性质进行推理是本题的关键.24.每年九月开学前后,是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了15天的销售数量和销售单价,其中销售单价元/个)与时间第天为整数)的x 数量关系如图所示,日销量个)与时间第天为整数)的函数关系式为:x+180(1≤≤9)={+900(9≤≤15)(1)直接写出与的函数关系式,并注明自变量的取值范围;y x x(2)设日销售额为元),求元)关于天)的函数解析式;在这15天中,哪一天销售额元)达到最大,最大销售额是多少元;(3)由于需要进货成本和人员工资等各种开支,如果每天的营业额低于1800 元,文 具盒专柜将亏损直接写出哪几天文具盒专柜处于亏损状态?【答案】解:(1)当1 ≤ ≤ 5时,设一次函数的解析式为: = + ≠ 0)+ = 14+ = 10把 和 代入得:{, = −1= 15解得:{, ∴一次函数的解析式为: =+≠ 0);+ 15(1 ≤ ≤ 5)为整数)的函数关系式为: = {10(5 < ≤ 15)综上, 与y; (2)①当1 ≤ ≤ 5时, = = + + 180) =+ + 2700 =2 − 3)+ 2880, 2 ∵ 是整数, ∴当 = 3时, 有最大值为:2880,W②当5 < ≤ 9时, = ∵ 是整数,200 > 0,= + 180) = + 1800, ∴当5 < ≤ 9时, 随 的增大而增大, W x ∴当 = 9时, 有最大值为:200 × 9 + 1800 = 3600,W③当9 ≤ ≤ 15时, = ∵ −600 < 0,+ 900) = + 9000, ∴ 随 的增大而减小,x ∴ = 9时, 有最大值为:−600 × 9 + 9000 = −5400 + 9000 = 3600,W综上,在这 15 天中,第 9 天销售额达到最大,最大销售额是 3600 元; (3)①当1 ≤ ≤ 5时, = − 3) + 2880 = 1800, 2解得: = 3 ± 3 6, √ ∵ 7 < 3√6 < 8, ∴ 10 < 3 + 3√6 < 11, ∴当1 ≤ ≤ 5时,每天的营业额高于 1800 元; ②当5 < ≤ 9时, = < 0,+ 1800 < 1800, ③当9 ≤ ≤ 15时, => 12,+ 9000 < 1800,综上,文具盒专柜处于亏损状态是:第 13 天,第 14 天,第 15 天.【解析】(1)是分段函数,利用待定系数法可得 与 的函数关系式;y x (2)是分段函数,根据日销售额为 元) =销售单价 元/个) ×日销量 个),可得 与W的函数关系式,并根据增减性确定最大值;x (3)根据(2)中分类讨论的解析式,由每天的营业额低于 1800 元列不等式或等式可解答. 本题考查了二次函数的性质在实际生活中的应用.最大利润的问题常利用函数的增减性 来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最佳解决途径.++ 与 x 轴交于点 A 和 ,与2 y 轴交于点 ,顶点为 D轴交抛物线于点 M ,交 x 轴于点 H ,设 H 点的横坐标为 m . ①求线段 ②若△M N 的最大值;是等腰三角形,直接写出 m 的值. 【答案】解:(1) ∵抛物线与 y 轴交于点∴ = 3,, 将点代入 = 2 + − + 3;+ 3,求得 = −4, ∴ = 2 (2) ∵顶点为 D ,−1), ∴直线 B D 的解析式 = − 3,∴ ∴∵ ∴∴= 45°, ,= = 45°, = 90°; (3)①直线 B C 的解析式 = + 3, + 3), ∵ 点的横坐标为 m ,∴ ∴+ 3), − 2 =+ 3 −+− 3 = + =− 3) + 92 ,2 2 2 4 39 当 = 时,M N 的最大值为 ;24=− 3)2 −+ 2), + 2 = = − 3) , =− 3) ,22 2 2 2 2 2时, 2 −m 无解; 当 当 当 = = = − 3),解得 时, 2 − + 2 = 2,解得 = 1;时,2 = 2,解得 = ± 2, √ ∵点 N 是线段 BC 上一个动点, ∴ > 0, ∴ = √2;综上所述,当 = 2或 = 1时△是等腰三角形. √ 【解析】(1)将点 C 与点 B 代入抛物线解析式即可; (2)可求 = 45°, = 45°,则 + 3), = 90°;(3)①由题可知 − + 3),所以 =+ 3 −+ 2−2 3 =+=− 3) + 9 = 3时,M N 9 的最大值为 ;=2−2 2 ,当 2 4 243)2 − + 2), = − 3) , = − 3) ,当 = 时, −+ =2 2 2 2 2 2 2 2 = − 3),解 得 m 无解;当 = 时, − + 2 = 2,解得 = 1;当 2 时,2 = 2,解得 = ±√2,由 > 0,解得 = √2.本题考查二次函数的综合;熟练掌握二次函数的图象及性质,分类讨论三角形是等腰三角形的情况是解题的关键.途径.++ 与 x 轴交于点 A 和 ,与2 y 轴交于点 ,顶点为 D轴交抛物线于点 M ,交 x 轴于点 H ,设 H 点的横坐标为 m . ①求线段 ②若△M N 的最大值;是等腰三角形,直接写出 m 的值. 【答案】解:(1) ∵抛物线与 y 轴交于点∴ = 3,, 将点代入 = 2 + − + 3;+ 3,求得 = −4, ∴ = 2 (2) ∵顶点为 D ,−1), ∴直线 B D 的解析式 = − 3,∴ ∴∵ ∴∴= 45°, ,= = 45°, = 90°; (3)①直线 B C 的解析式 = + 3, + 3), ∵ 点的横坐标为 m ,∴ ∴+ 3), − 2 =+ 3 −+− 3 = + =− 3) + 92 ,2 2 2 4 39 当 = 时,M N 的最大值为 ;24=− 3)2 −+ 2), + 2 = = − 3) , =− 3) ,22 2 2 2 2 2时, 2 −m 无解; 当 当 当 = = = − 3),解得 时, 2 − + 2 = 2,解得 = 1;时,2 = 2,解得 = ± 2, √ ∵点 N 是线段 BC 上一个动点, ∴ > 0, ∴ = √2;综上所述,当 = 2或 = 1时△是等腰三角形. √ 【解析】(1)将点 C 与点 B 代入抛物线解析式即可; (2)可求 = 45°, = 45°,则 + 3), = 90°;(3)①由题可知 − + 3),所以 =+ 3 −+ 2−2 3 =+=− 3) + 9 = 3时,M N 9 的最大值为 ;=2−2 2 ,当 2 4 243)2 − + 2), = − 3) , = − 3) ,当 = 时, −+ =2 2 2 2 2 2 2 2 = − 3),解 得 m 无解;当 = 时, − + 2 = 2,解得 = 1;当 2 时,2 = 2,解得 = ±√2,由 > 0,解得 = √2.本题考查二次函数的综合;熟练掌握二次函数的图象及性质,分类讨论三角形是等腰三角形的情况是解题的关键.。

【5套打包】黄冈市初三九年级数学上期末考试检测试题(含答案)

【5套打包】黄冈市初三九年级数学上期末考试检测试题(含答案)

九年级(上)数学期末考试一试题(含答案 )一、选择题:(本大题 12 个小题,每题 4 分,共 48 分)在每个小题的下边,都给出了代号为 A、 B、 C 、 D 的四个答案,此中只有一个是正确的,请将答题卡上题号右边正确答案所对应的方框涂黑)1.( 4分)在有理数﹣6, 3,0,﹣ 7 中,最小的数是()A.﹣6 B.3C.0D.﹣72.( 4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.( 4 分)在函数 y=中,自变量x 的取值范围是()A .x> 2B .x≤ 2 且 x≠0C. x< 2 D .x> 2 且 x≠ 04.( 4 分)以下图形都是由相同大小的地砖依据必定规律所构成的,此中第① 个图形中有4块地砖,第②个图形中有 9 块地砖,第③个图形中有16 块地砖,,按此规律摆列下去,第 9 个图形中地砖的块数为()A .81B .99C. 100 D .1215.( 4 分)如图,△ ABC中,DE∥ BC且=,若△ ABC的面积等于,则四边形DBCE 的面积为()A. B. C. D.4 6.( 4 分)以下命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线相互垂直的四边形是菱形D.对角线相等的四边形是矩形7.( 4分)预计(﹣)的值应在()A.0和 1之间 B.1和 2之间C.2和 3之间D.3和4之间8.( 4分)按以下图的程序运算,假如输出y 的结果是 4,则输入 x 的值可能是()A.±2B.2或 3C.﹣2或 3 D.±2或 394Rt ABC AB O BC D AD DAC = 30°, DC = 1,则⊙ O 的半径为()A.2 B.C. 2﹣ D .110.(4 分)如图,小明站在某广场一看台 C 处,测得广场中心 F 的俯角为21°,若小明身高 CD =1.7 米, BC= 1.9 米, BC 平行于地面FA,台阶 AB 10.5 米,则看台底端 A 点距离广场中心 F 点的距离约为(的坡度为i= 3: 4,坡长 AB=)米.(参照数据:sin21°≈0.36, cos21°≈ 0.93, tan21°≈ 0.38)A .8.9B .9.7 C. 10.8 D .11.9211.( 4 分)若数 a 使对于 x 的二次函数y= x +( a﹣ 1)x+b,当 x<﹣ 1 时, y 随 x 的增大而减小;且使对于y 的分式方程+的是()A.﹣2B.1C.0D.3 12.( 4 分)如图,已知Rt△ ABC 的直角极点= 2A 落在有非负数解,则因此知足条件的整数x 轴上,点B、 C 在第一象限,点aB 的坐标为(,4),点D、E分别为边BC、AB 的中点,且tanB=,反比率函数y=的图象恰巧经过 D 、 E,则 k 的值为()A .B.8C.12 D.16二、填空题:(本大题共 6 个小题,每题 4 分,共24 分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的地点上13.( 4 分)计算: |1﹣=.|+(π﹣ 3.14) +14.( 4 分)如图,等腰Rt △ ABC 中,∠ ACB=90°, AC=BC= 2,以 BC 为直径的半圆 O 交 AB 于点 D ,则图中暗影部分的面积为(结果保存π).15.(4 分)如图,在4× 4 正方形网格中,有 4 个涂成黑色的小方格,此刻随意选用一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.( 4 分)如图,在Rt△ ABC 中,∠ ABC = 90°,把△ ABC 沿斜边 AC 折叠,使点 B 落在B D E BC ABDE 折叠,使点 B 与点 C 重合,点 A 落在 A′,连结AB= 3, BC= 4,则 GE 的长为.DEAA′交AC FB′ C 于点 H,交 DEABDE于点 G.若17.( 4 分)一天学生小明清晨从家去学校,已知小明家离学校行程为2280 米(小明每次走的行程),小明从家匀速步行了105 分钟后,爸爸发现小明的一科作业忘带,爸爸马上拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸马上将作业交给小明,小明持续以原速向学校行走(假设爸爸将作业交给小明的时间忽视不计),爸爸将作业带给小明后,原地接了 2 分钟的电话后,马上以更快的速度匀速返回家中.小明和爸爸两人相距的路程 y(米)与小明出发的时间 x(分钟)之间的关系以下图,则爸爸抵达家时,小明与学校相距的行程是米.18.( 4 分)某水果销售商在年终准备购进一批水果进行销售,经过市场检查,发现芒果、车厘子、奇怪果、火龙果比较受顾客的喜欢,于是拟订了进货方案.此中芒果、车厘子的进货量与奇怪果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇怪果的单价分别相同,已知芒果和车厘子的单价和为每千克180 元,且芒果和车厘子的进货总价比奇怪果和火龙果的进货总价多863 元.因为年终资本周转不开,因此暂时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超出300kg,则该水果商最多需要准备元进货资本.三、解答题:(本大题 2 个小题,第 19 小题 8 分,第 20 小题 8 分,共 16 分)解答时每题一定给出必需的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的地点上19.( 8 分)先化简,再求值:÷( a﹣ 2﹣) +2﹣ 2a﹣6= 0,此中 a20.( 8 分)如图,直线AB∥ CD , EF 均分∠ AEG,∠ DFH = 13°,∠ H =21°,求∠ EFG 的度数.四、解答题:(本大题 5 个小题,每题 10 分,共 50 分)解答时每题一定给出必需的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的地点上21.( 10 分)如图,在平面直角坐标系中,直线l 1与 x 轴交于点B,与 y 轴交于点 C,直线l1与直线 l 2: y=﹣x 交于点 A,将直线l2: y=﹣x 沿射线 AB 的方向平移获得直线l3,当 l 3经过点 B 时,与 y 轴交点记为 D 点,已知 A 点的纵坐标为2,sin ∠ABO=.(1)求直线 BC 的分析式;(2)求△ ABD 的面积.22.( 10 分)距离中考体考时间愈来愈近,年级想认识初三年级2200 名学生周末进行体育锻炼的状况,在初三年级随机抽查了20 名男生和20 名女生周末每日的运动时间进行了检查并采集到了以下数据(单位:min )男生: 2030404560120805010045859090 70905090507040女生: 7530120706010090407560757580 907080508010090依据统计数据制作了以下统计表:时间 x x≤ 3030< x≤ 6060< x≤ 9090< x≤ 120男生2882女生14a3两组数据的极差、均匀数、中位数、众数以下表所示:极差均匀数中位数众数男生10065.75b c女生9075.57575( 1)请将上边两个表格增补完好:a=, b=, c=;( 2)请依据抽样检查的数据预计初三年级周末每日运动时间在100 分钟以上的同学大概有多少人?( 3)李老师看了表格数据后以为初三年级的女生周末体锻坚持得比男生好,请你联合统计数据,写出支持李老师看法的原因.23.( 10 分)春节马上到临,依据风俗每家每户都会在门口挂红灯笼和贴春联.某商铺看准了商机,准备购进一批红灯笼和春联进行销售,已知春联的进价比红灯笼的进价少10 元,若用 720 元购进春联的数目比用720 元购进红灯笼的数目多50 件.( 1)春联和红灯笼的单价分别为多少?( 2)因为销售火爆,第一批售完后,该商铺以相同的进价再购进300 幅春联和 200 个红灯笼,已知春联的销售价钱为12 元一幅,红灯笼的销售价钱为24 元一个销售一段时间后发现春联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和春联以相同的折扣数打折销售,并很快所有售出,问商铺最低打几折,才能使总的收益率不低于 20% ?24.( 10过点分)已知平行四边形ABCD ,过点 A 作C 作 AB 的垂线,垂足为 F ,交 AE 于点BC 的垂线,垂足为G,连结 BG ,E,且知足AE= EC,( 1)如图 1,若 AC =,CD=4,求EG的长度;(2)如图 2,取 BE 的中点 K,在 EC 上取一点 H,使得点 K 和点 E 为 BH 的三均分点,连结AH ,过点 K 作 AH 的垂线,交 AC 于点 Q,求证: BG=2CQ.25.( 10 分)阅读资料,解决问题:某数学学习小组在阅读数学史时,发现了一个风趣的故事;古希腊神话中的米诺斯王嫌他人为他建筑的墓地太小,命令将其扩大一倍,并说只需将每边扩大一倍就行,这自然是错误的,但这种问题却引出了有名的几何问题:倍立方问题.此时他们恰巧学习了平面几何,因此甲同学提出:“随意给定一个正方形,能否存在此外一个正方形,它的周长和面积分别是已知正方形周长和面积的 2 倍呢?”,对于这个问题小构成员很快给出认识答:设原正方形的边长为 a,则周长为 4a,面积为 a2∵另一个正方形的周长为 2× 4a=8a∴此时边长为 2a,面积为( 2a)2= 4a2≠ 2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的 2 倍.固然甲同学的问题获得了很快的解决,但这一问题的提出触发了其余小构成员的踊跃思考,进一步乙同学提出:“随意给定一个矩形,能否存在此外一个矩形,它的周长和面积分别是已知矩形周长和面积的 2 倍呢?”经过议论,他们决定先研究:“ 已知矩形的长和宽分别为m 和 1,能否存在此外一个矩形,它的周长和面积分别是已知矩形周长和面积的 2 倍呢?”,并给出了以下解答过程:设所求矩形的长为x,则依据题意可表示出所求矩形的宽为2(m+1)﹣ x那么可成立方程:x?[2( m+1)﹣ x]=2m∵鉴别式△= 4m 2+4> 0∴原方程有解,即结论成立.依据资料解决以下问题( 1)若已知一个矩形的长和宽分别为 3 和 1,则能否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,恳求出此矩形的长和宽;若不存在,请 说明原因;( 2)若已知一个矩形的长和宽分别为 m 和 1,且必定存在另一个矩形的周长和面积分别是已知矩形周长和面积的 k 倍,求 k 的取值范围(写明解答过程) .五、解谷题: (本大题 1 个小题,共 12 分)解答时每题一定给出必需的演算过程或推理步骤,请将解答过程书写在答题卡中对应的地点上.26.( 12 分)如图 1,抛物线 y =﹣ 2x+6 与 x 轴交于 A 、B (B 在 A 的左边)两点, x + 与 y 轴交于点 C ,将直线 AC 沿 y 轴正方向平移 2 个单位获得直线 A ′ C ′,将抛物线的对称轴沿 x 轴正方向平移最新人教版九年级第一学期期末模拟数学试卷及答案一、选择题(本大题共10 小题,共30.0 分)1.若反比率函数的图象经过点,则 m 的值是A.B.2C.D.【答案】 C【分析】 解: 反比率函数的图象经过点 ,,,应选: C .把点代入反比率函数 ,即可得出 m 的值.本题考察了反比率函数图象上点的坐标特点, 注意:反比率函数分析式中横纵坐标的乘积为定值 k .2.下边四个图形分别是绿色食品、 节水、节能和回收标记, 在这四个标记中, 是中心对称图形的是A. B. C. D.【答案】 D【分析】解: A、B、 C 都不是中心对称图形, D 是中心对称图形,应选: D.依据中心对称图形的看法对各个选项中的图形进行判断即可.本题考察的是中心对称图形的看法,假如一个图形绕某一点旋转后能够与自己重合,那么这个图形就叫做中心对称图形.3.亚洲陆地面积约为 4400 万平方千米,将 44000000 科学记数法表示为A. B. C. D.【答案】B【分析】解:将44000000 科学记数法表示为,应选: B.科学记数法的表示形式为的形式,此中,n为整数确立n的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同当原数绝对值时, n 是正数;当原数的绝对值时,n是负数.本题考察科学记数法的表示方法科学记数法的表示形式为的形式,此中, n 为整数,表示时重点要正确确立 a 的值以及n 的值.4. 三角形两边长分别为 3 和 6,第三边的长是方程的两根,则该三角形的周长为A. 13B. 15C. 18D.13或18【答案】 A【分析】解:解方程得,或 4,即第三边长为 9 或 4.边长为 9,3, 6 不可以构成三角形;而 4, 3,6 能构成三角形,因此三角形的周长为,应选: A.先求出方程的两根,再依据三角形的三边关系定理,获得合题意的边,从而求得三角形周长即可.本题主要考察了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不可以盲目地将三边长相加起来,而应养成查验三边长可否成三角形的好习惯.5. 2017 年某县GDP总量为1000 亿元,计划到2019 年全县GDP总量实现1210 亿元的目标假如每年的均匀增添率相同,那么该县这两年GDP总量的均匀增添率为A. B. C. D.【答案】 CGDP总量的均匀增添率为x,依据题意,【分析】解:设该县这两年得:,解得:舍,,即该县这两年GDP 总量的均匀增添率为,应选: C.设该县这两年GDP 总量的均匀增添率为x,依据: 2017 年某县 GDP 总量增添百分率年全县 GDP 总量,列一元二次方程求解可得.本题主要考察一元二次方程的应用,对于增添率问题:若原数是 a,每次增添的百分率为a,则第一次增添后为;第二次增添后为,即:原数增添百分率后来数.6.在一个有 10 万人的小镇,随机检查了 1000 人,此中有 120 人周六清晨观看中央电视台的“朝闻天下”节目,那么在该镇随意问一个人,他在周六清晨观看中央电视台的“朝闻天下”节目的概率大概是A. B. C. D.【答案】 C【分析】解:由题意知:1000 人中有 120 人看中央电视台的早间新闻,在该镇随意问一人,他看早间新闻的概率大概是.应选: C.依据随机事件概率大小的求法,找准两点:① 切合条件的状况数目;② 所有状况的总数二者的比值就是其发生的概率的大小.本题考察概率公式和用样本预计整体,概率计算一般方法:假如一个事件有n 种可能,并且这些事件的可能性相同,此中事件 A 出现 m 种结果,那么事件 A 的概率.7.如图,在⊙中,弦 AB、CD 订交于点M,连结BC、AD ,,,则A.B.C.D.【答案】 C【分析】解:,,由圆周角定理得,,,应选: C.依据三角形内角和定理求出,依据圆周角定理解答即可.本题考察的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的重点.8.如图,⊙的直径,AB 是⊙的弦,,垂足为E,OE:: 3,则AB 的长为A.B.C.D.【答案】 D【分析】解:如图,连结⊙OA,的直径,,:: 3,在,,,中,,,.应选: D.先求出 OE 再利用勾股定理即可的得出AE,最后用垂径定理即可得出AB.本题考察了垂径定理、勾股定理解此类题一般要把半径、弦心距、弦的一半建立在一个直角三角形里,运用勾股定理求解.9.如图为二次函数的图象,则以下说法中错误的选项是A.B.C. 对于随意x均有D.【答案】 D【分析】【剖析】由抛物线张口向上获得,由抛物线与y 轴的交点在 x 轴下方得,则;因为抛物线与x 轴两交点坐标为、,依据抛物线的对称性获得抛物线的对称轴为直线,因此;因为抛物线的对称轴为直线,依据二次函数的性质适当时,y 的最小值为,因此,即;因为时,,则.本题考察了二次函数的图象与系数的关系:二次函数的图象为抛物线,当,抛物线张口向上;对称轴为直线;抛物线与 y 轴的交点坐标为;当,抛物线与 x 轴有两个交点;当,抛物线与x 轴有一个交点;当,抛物线与 x 轴没有交点.【解答】解:A、抛物线张口向上,;抛物线与 y 轴的交点在 x 轴下方,,因此,所以 A 选项的说法正确;B、抛物线与 x 轴两交点坐标为、,抛物线的对称轴为直线,所以,因此 B 选项的说法正确;C、抛物线的对称轴为直线,当时, y 的最小值为,对于随意 x 均有,即,因此 C 选项的说法正确;D、时,,,因此 D 选项的说法错误.应选:D.10. 如图,是等腰直角三角形,,,点P 是边上一动点,沿的路径挪动,过点 P作于点 D,设,的面积为 y,则以下能大概反应y 与 x 函数关系的图象是A. B.C. D.【答案】 B【分析】【剖析】本题考察了动点问题的函数图象:函数图象是典型的数形联合,图象应用信息宽泛,图获守信息,不单能够解决生活中的实质问题,还能够提升剖析问题、解决问题的能力决本题的重点是利用分类议论的思想求出y 与 x 的函数关系式.经过看解过 A点作于 H,利用等腰直角三角形的性质获得,,分类议论:当时,如图1,易得,依据三角形面积公式得到;当时,如图 2 ,易得,依据三角形面积公式获得,于是可判断当时, y 与x 的函数关系的图象为张口向上的抛物线的一部分,当时, y 与用此特点可对四个选项进行判断.【解答】解:过 A点作于H,x 的函数关系的图象为张口向下的抛物线的一部分,而后利是等腰直角三角形,,,当时,如图1,,,;当时,如图2,,,,应选:B.二、填空题(本大题共11.二次函数6 小题,共18.0 分)的图象的极点坐标是______.【答案】【分析】解:,极点坐标为,故答案为:.由抛物线分析式可求得答案.本题主要考察二次函数的性质,掌握二次函数的极点式是解题的重点,即在中,对称轴为,极点坐标为.12.如图,转盘中 6 个扇形的面积都相等,随意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是______.【答案】【分析】【剖析】让奇数的个数除以数的总数即可得出答案本题主要考察了概率公式,假如一个事件有n 种可能,并且这些事件的可能性相同,此中事件 A 出现 m 种结果,那么事件 A 的概率.【解答】解:图中共有 6 个相等的地区,含奇数的有1, 1, 3, 3 共 4 个,转盘停止时指针指向奇数的概率是.故答案为.13. 已知对于 x 的一元二次方程有两个不相等的实数根,则实数 m 的值为 ______.【答案】【分析】解:由题意知,,即,,解得:,代入到方程中,得:,解得:,故答案为:.由韦达定理知,将其代入到,即回方程中即可求得m 的值.本题考察了根与系数的关系:若,是一元二次方程,也考察了方程的解的看法.14.如图,是⊙的内接正三角形,⊙的半径为3,则图中阴影部分的面积是______.、若求得,代的两根时,【答案】【分析】解:是等边三角形,,依据圆周角定理可得,暗影部分的面积是,故答案为:.依据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再依据扇形面积公式计算可得.本题主要考察扇形面积的计算和圆周角定理,依据等边三角形性质和圆周角定理求得圆心角度数是解题的重点.15. 如图,已知中,,,,将绕直角极点 C 顺时针旋转获得若点 F是DE 的中点,连结AF,则______.【答案】 5【分析】解:作,依据旋转的性质,,,,点 F 是DE的中点,,,.,,,.依据勾股定理,.故答案为5.依据旋转的性质,点,可求出EG、 GF ,因为本题主要考察了旋转的性质、角形是解决问题的重点.,,,由点 F是DE的中,可求出 AG,而后运用勾股定理求出AF .三角形中位线性质、勾股定理的综合运用,作垂线结构直角三16. 如图,已知点、、、、在 x 轴上,且,分别过点、、、作 x 轴的垂线,交反比率函数的图象于点、、、、,过点作于点,过点作于点,,若记的面积为,的面积为,,的面积为,则______ .【答案】【分析】解:依据题意可知:点、、、、,,,,,,,.故答案为:.依据反比率函数图象上点的坐标特点即可得出点、、、、的坐标,从而可得出、、、、的长度,依据三角形的面积公式即可得出,将其代入中即可得出结论.本题考察了反比率函数图象上点的坐标特点以及三角形的面积,依据反比率函数图象上点的坐标特点联合三角形的面积找出是解题的重点.三、解答题(本大题共8 小题,共65.0 分)17.计算:【答案】解:原式最新人教版九年级第一学期期末模拟数学试卷及答案一、选择题(本大题共10 小题,共30.0 分)18.若反比率函数的图象经过点,则m 的值是A. B. 2 C. D.【答案】C【分析】解:反比率函数的图象经过点,,,应选:C.把点代入反比率函数,即可得出m 的值.本题考察了反比率函数图象上点的坐标特点,注意:反比率函数分析式中横纵坐标的乘积为定值 k.19.下边四个图形分别是绿色食品、节水、节能和回收标记,在这四个标记中,是中心对称图形的是A. B. C. D.【答案】 D【分析】解: A、B、 C 都不是中心对称图形, D 是中心对称图形,应选: D.依据中心对称图形的看法对各个选项中的图形进行判断即可.本题考察的是中心对称图形的看法,假如一个图形绕某一点旋转后能够与自己重合,那么这个图形就叫做中心对称图形.20.亚洲陆地面积约为 4400 万平方千米,将 44000000 科学记数法表示为A. B. C. D.【答案】B【分析】解:将44000000 科学记数法表示为,应选: B.科学记数法的表示形式为的形式,此中,n为整数确立n的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同当原数绝对值时, n 是正数;当原数的绝对值时,n是负数.本题考察科学记数法的表示方法科学记数法的表示形式为的形式,此中, n 为整数,表示时重点要正确确立 a 的值以及n 的值.21.三角形两边长分别为 3 和 6,第三边的长是方程的两根,则该三角形的周长为A. 13B. 15C. 18D.13或18【答案】 A【分析】解:解方程得,或 4,即第三边长为 9 或 4.边长为 9,3, 6 不可以构成三角形;而 4, 3,6 能构成三角形,因此三角形的周长为,应选: A.先求出方程的两根,再依据三角形的三边关系定理,获得合题意的边,从而求得三角形周长即可.本题主要考察了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不可以盲目地将三边长相加起来,而应养成查验三边长可否成三角形的好习惯.22.2017 年某县GDP总量为1000 亿元,计划到2019 年全县GDP总量实现1210 亿元的目标假如每年的均匀增添率相同,那么该县这两年GDP总量的均匀增添率为A. B. C. D.【答案】 C【分析】解:设该县这两年GDP 总量的均匀增添率为x,依据题意,得:,解得:舍,,即该县这两年GDP 总量的均匀增添率为,应选: C.设该县这两年GDP 总量的均匀增添率为x,依据: 2017 年某县 GDP 总量增添百分率年全县 GDP 总量,列一元二次方程求解可得.本题主要考察一元二次方程的应用,对于增添率问题:若原数是 a,每次增添的百分率为a,则第一次增添后为;第二次增添后为,即:原数增添百分率后来数.23.在一个有 10 万人的小镇,随机检查了 1000 人,此中有 120 人周六清晨观看中央电视台的“朝闻天下”节目,那么在该镇随意问一个人,他在周六清晨观看中央电视台的“朝闻天下”节目的概率大概是A. B. C. D.【答案】 C【分析】解:由题意知:1000 人中有120 人看中央电视台的早间新闻,在该镇随意问一人,他看早间新闻的概率大概是.应选: C.依据随机事件概率大小的求法,找准两点:者的比值就是其发生的概率的大小.本题考察概率公式和用样本预计整体,① 切合条件的状况数目;② 所有状况的总数二概率计算一般方法:假如一个事件有n 种可能,并且这些事件的可能性相同,此中事件 A 出现m 种结果,那么事件 A 的概率.24.如图,在⊙中,弦AB、CD订交于点,则M,连结BC、AD ,,A.B.C.D.【答案】 C【分析】解:,,由圆周角定理得,,,应选: C.依据三角形内角和定理求出,依据圆周角定理解答即可.本题考察的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的重点.25.如图,⊙的直径,AB 是⊙的弦,,垂足为E,OE:: 3,则AB 的长为A.B.C.D.【答案】 D【分析】解:如图,连结 OA,⊙ 的直径,,:: 3,,,,,在中,,.应选: D.先求出 OE 再利用勾股定理即可的得出AE,最后用垂径定理即可得出AB.本题考察了垂径定理、勾股定理解此类题一般要把半径、弦心距、弦的一半建立在一个直角三角形里,运用勾股定理求解.26.如图为二次函数的图象,则以下说法中错误的选项是A.B.C. 对于随意x均有D.【答案】 D【分析】【剖析】由抛物线张口向上获得,由抛物线与y 轴的交点在 x 轴下方得,则;因为抛物线与x 轴两交点坐标为、,依据抛物线的对称性获得抛物线的对称轴为直线,因此;因为抛物线的对称轴为直线,依据二次函数的性质适当时,y 的最小值为,因此,即;因为时,,则.本题考察了二次函数的图象与系数的关系:二次函数的图象为抛物线,当,抛物线张口向上;对称轴为直线;抛物线与 y 轴的交点坐标为;当,抛物线与 x 轴有两个交点;当,抛物线与x 轴有一个交点;当,抛物线与 x 轴没有交点.【解答】解:A、抛物线张口向上,;抛物线与 y 轴的交点在 x 轴下方,,因此,所以 A 选项的说法正确;B、抛物线与 x 轴两交点坐标为、,抛物线的对称轴为直线,所以,因此 B 选项的说法正确;C、抛物线的对称轴为直线,当时, y 的最小值为,对于随意 x 均有,即,因此 C 选项的说法正确;D、时,,,因此 D 选项的说法错误.应选: D.27. 如图,是等腰直角三角形,,,点P 是边上一动点,沿的路径挪动,过点 P作于点 D,设,的面积为 y,则以下能大概反应y 与 x 函数关系的图象是A. B.C. D.【答案】 B【分析】【剖析】本题考察了动点问题的函数图象:函数图象是典型的数形联合,图象应用信息宽泛,经过看图获守信息,不单能够解决生活中的实质问题,还能够提升剖析问题、解决问题的能力解决本题的重点是利用分类议论的思想求出y 与 x 的函数关系式.过 A 点作于H,利用等腰直角三角形的性质获得,,分类议论:当时,如图1,易得,依据三角形面积公式得到;当时,如图 2 ,易得,依据三角形面积公式获得,于是可判断当时, y 与x 的函数关系的图象为张口向上的抛物线的一部分,当时, y 与x 的函数关系的图象为张口向下的抛物线的一部分,而后利用此特点可对四个选项进行判断.【解答】解:过 A点作于H,是等腰直角三角形,,,当时,如图1,,,;当时,如图2,。

湖北省黄冈市红安二中学2024届数学九上期末教学质量检测试题含解析

湖北省黄冈市红安二中学2024届数学九上期末教学质量检测试题含解析

湖北省黄冈市红安二中学2024届数学九上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°2.不透明袋子中装有若干个红球和6个蓝球,这些球除了颜色外,没有其他差别,从袋子中随机摸出一个球,摸出蓝球的概率是0.6,则袋子中有红球()A.4个B.6个C.8个D.10个3.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为()A.13πB.23πC.76πD.43π4.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的()A.B.C.D .5.已知关于x 的方程(m +4)x 2+2x ﹣3m =0是一元二次方程,则m 的取值范围是( )A .m <﹣4B .m ≠0C .m ≠﹣4D .m >﹣46.如图,平行四边形ABCD 中,E 是BC 延长线上一点,连结AE 交CD 于F ,则图中相似的三角形共有( )A .1对B .2对C .3对D .4对7.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°8.已知反比例函数k y x =的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限 9.如图,在Rt ABC ∆中,90C ∠=︒,4BC =,3AC =,则sin (B = )A .35B .45C .37D .3410.如图,在△ABC 中E 、F 分别是AB 、AC 上的点,EF ∥BC ,且1AE =,若△AEF 的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.1811.已知3是方程x2﹣23x+c=0的一个根,则c的值是()A.﹣3 B.3 C.3D.2312.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm二、填空题(每题4分,共24分)13.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.14.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.15.“蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)16.已知关于x的一元二次方程(k-1)x2+x+k2-1=0有一个根为0,则k的值为________.17.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.18.一个正多边形的每个外角都等于60 ,那么这个正多边形的中心角为______.三、解答题(共78分)19.(8分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?20.(8分)如图,一次函数y1=mx+n与反比例函数y2=kx(x>0)的图象分别交于点A(a,4)和点B(8,1),与坐标轴分别交于点C和点D.(1)求一次函数与反比例函数的解析式;(2)观察图象,当x >0时,直接写出y 1>y 2的解集;(3)若点P 是x 轴上一动点,当△COD 与△ADP 相似时,求点P 的坐标.21.(8分)如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动;(2)设△BPQ 的面积面积为S (平方单位)①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?22.(10分)如图,直线l 与⊙O 相离,OA l ⊥于点A ,与⊙O 相交于点P ,5OA =.C 是直线l 上一点,连结CP 并延长交⊙O 于另一点B ,且AB AC =.(1)求证:AB 是⊙O 的切线;(2)若⊙O 的半径为3,求线段BP 的长.23.(10分)如图,在Rt △ABC 中,∠C =90°,过AC 上一点D 作DE ⊥AB 于E ,已知AB =10cm ,AC =8cm ,BE =6cm ,求DE .24.(10分)如图,四边形ABCD 中,90,ABD BCD DB ∠=∠=平分,//ADC BM CD ∠.(1)求证:2BD AD CD =⋅;(2)求证:点M 是AD 的中点;(3)若6,8CD AD ==,求MN 的长.25.(12分)如图,一次函数3y x =-+的图象与反比例函数(0)k y k x=≠在第一象限的图象交于(1,)A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且APC ∆的面积为5,求点P 的坐标.26.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x ,小张在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标;(2)求点Q (x ,y )在函数y=﹣x+5图象上的概率.参考答案一、选择题(每题4分,共48分)1、B【解题分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【题目详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【题目点拨】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.2、A【分析】设红球的个数为x,通过蓝球的概率建立一个关于x的方程,解方程即可.【题目详解】设袋子中有红球x个,根据题意得60.66x=+,解得x=1.答:袋子中有红球有1个.故选:A.【题目点拨】本题主要考查随机事件的概率,掌握随机事件概率的求法是解题的关键.3、A【分析】连接OE,由菱形的性质得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【题目详解】连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴DE的长=40 1.51 1803ππ⨯=.故选:A.【题目点拨】此题考查菱形的性质、弧长计算,根据菱形得到需要的边长及角度即可代入公式计算弧长.4、A【解题分析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【题目详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = ,以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.考查了现实中的二次函数问题,考查了学生的分析、解决实际问题的能力.5、C【分析】根据一元二次方程的定义即可求出答案.【题目详解】由题意可知:m+4≠0,∴m≠﹣4,故选:C.【题目点拨】本题考查一元二次方程,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.6、C【分析】根据平行四边形的对边平行,利用“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”找出相似三角形,然后即可选择答案.【题目详解】在平行四边形ABCD中,AB∥CD,BC∥AD,所以,△ABE∽△FCE,△FCE∽△FDA,△ADF∽△EBA,共3对.故选C.【题目点拨】本题考查了相似三角形的判定,利用平行四边形的对边互相平行的性质,再结合“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”即可解题7、C【解题分析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质. 8、B【题目详解】解:将点(m ,3m )代入反比例函数k y x =得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B .9、A【解题分析】先利用勾股定理求出斜边AB ,再求出sinB 即可.【题目详解】∵在Rt ΔABC 中,C 90∠=︒,BC 4=,AC 3=,∴5AB ==, ∴3sin 5AC B AB ==. 故答案为A.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.10、C 【解题分析】解:∵12AE EB =, ∴13AE AB =, ∵EF ∥BC ,∴△AEF ∽△ABC , ∴2211()()39S AEF AE S ABC AB ===, ∵△AEF 的面积为2,∴S △ABC =18,则S 四边形EBCF =S △ABC -S △AEF =18-2=1.故选C .【题目点拨】本题考查相似三角形的判定与性质,难度不大.【分析】把x c的方程,然后解方程即可.【题目详解】解:把x x2﹣=0,得2﹣=0,所以c=6﹣1=1.故选:B.【题目点拨】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.12、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【题目详解】∵AB∥DE,∴△CAB∽△CDE,∴AB CB DE CE=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【题目点拨】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.二、填空题(每题4分,共24分)13、20m【解题分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【题目详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160:80x=:10,解得x20=.故答案是:20m.【题目点拨】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.14、(0,﹣1)【解题分析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【题目详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【题目点拨】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.15、确定【分析】根据“确定定义”或“随机定义”即可解答.【题目详解】“蜀南竹海是国家AAAA级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【题目点拨】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,确定事件包括必然事件、不可能事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,.16、-1【解题分析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案为:-1.17、1.【解题分析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长=1.52.5∴旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.18、60°【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=360n︒,即可得出结果.【题目详解】解:正多边形的边数为360606÷=,故这个正多边形的中心角为360660.故答案为:60°.【题目点拨】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质,并根据题意求出正多边形的边数是解决问题的关键.三、解答题(共78分) 19、(1)20;(2)65,1.【分析】(1)每件涨价x 元,则每件的利润是(60-40+x )元,所售件数是(300-10x )件,根据利润=每件的利润×所售的件数列方程,即可得到结论;(2)设每件商品涨价m 元,每星期该商品的利润为W ,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【题目详解】解:(1)设每件商品涨价x 元, 根据题意得,(60-40+x )(300-10x )=4000, 解得:x 1=20,x 2=-10,(不合题意,舍去),答:每件商品涨价20元时,每星期该商品的利润是4000元; (2)设每件商品涨价m 元,每星期该商品的利润为W , ∴W=(60-40+m )(300-10m )=-10m 2+100m+6000=-10(m-5)2+1 ∴当m=5时,W 最大值. ∴60+5=65(元),答:每件定价为65元时利润最大,最大利润为1元. 【题目点拨】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解. 20、(1)y 1=﹣12x+5, y 2=8x;(2)2<x <1;(3)点P 的坐标为(2,0)或(0,0)时,△COD 与△ADP 相似. 【分析】(1)先将点B 代入反比例函数解析式中求出反比例函数的解析式,然后进一步求出A 的坐标,再将A,B 代入一次函数中求一次函数解析式即可;(2)根据图象和两函数的交点即可写出y 1>y 2的解集;(3)先求出C,D 的坐标,从而求出CD,AD,OD 的长度,然后分两种情况:当COD APD ∠=∠时,△COD ∽△APD ;当COD PAD ∠=∠时,△COD ∽△PAD ,分别利用相似三角形的性质进行讨论即可. 【题目详解】解:(1)把B (1,1)代入反比例函数2ky x=中, 则18k=,解得8k ∴反 比 例 函 数 的 关 系 式 为 28y x=, ∵点 A (a ,4)在28y x=图象上,∴ a =84=2,即A (2,4) 把A (2,4),B (1,1)两点代入y 1=mx+n 中得42m 18n m n +⎧⎨=+⎩=解得:125m n ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为:y 1=﹣12x+5;反比例函数的关系式为y 2=8x, (2)由图象可得,当x >0时,y 1>y 2的解集为2<x <1. (3)由(1)得直线AB 的解析式为y 1=﹣12x+5, 当x =0时,y =5, ∴ C (0,5), ∴ OC =5, 当y =0时,x =10, ∴D 点坐标为(10,0) ∴ OD =10,∴ CD =22OC OD +=55 ∵A (2,4),∴ AD =22(102)4-+=45设P 点坐标为(a ,0),由题可知,点P 在点D 左侧,则PD =10﹣a 由∠CDO =∠ADP 可得①当COD APD ∠=∠时,CODAPD ,如图1此时AD PD CD OD=,∴45101055a-=,解得a=2,故点P坐标为(2,0)②当COD PAD∠=∠时,COD PAD,如图2当时,AD PD OD CD=,∴451055=a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【题目点拨】本题主要考查反比例函数与一次函数的综合,相似三角形的判定与性质,掌握待定系数法和相似三角形的判定及性质是解题的关键.21、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【题目详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t <4时,S =12•(6﹣t )×2t =﹣t 2+6t . 当4≤t <6时,S =12•(6﹣t )×8=﹣4t+2. 当6<t≤1时,S =12(t ﹣6)•(2t ﹣8)=t 2﹣10t+2.②当0<t <4时,S =12•(6﹣t )×2t =﹣t 2+6t =﹣(t ﹣3)2+3, ∵﹣1<0,∴t =3时,△PBQ 的面积最大,最小值为3. 当4≤t <6时,S =12•(6﹣t )×8=﹣4t+2, ∵﹣4<0,∴t =4时,△PBQ 的面积最大,最大值为8, 当6<t≤1时,S =12(t ﹣6)•(2t ﹣8)=t 2﹣10t+2=(t ﹣5)2﹣1, t =1时,△PBQ 的面积最大,最大值为3,综上所述,t =3时,△PBQ 的面积最大,最大值为3. 【题目点拨】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键. 22、(1)详见解析;(2)655【解题分析】(1)连结OB ,则OP OB =,OBP OPB CPA ∠=∠=∠,已知AB=AC ,故∠=∠ACB ABC ,由OA l ⊥可得90∠+∠=︒ACB CPA ,则90ABP OBP ∠+∠=︒,证得90∠=︒ABO ,即AB 是⊙O 的切线. (2)在直角三角形AOB 中,OA=5,OB=3,可求得AB=AC=4.在直角三角形ACP 中,由勾股定理可求得2225=+=PC AC AP ,过点O 做OD ⊥BC 于点D ,可得△ODP ∽△CAP ,则有=PD OPPA CP,代入线段长度即可求得PD ,进而利用垂径定理求得BP.【题目详解】(1)证明:如图,连结OB ,则OP OB =,∴OBP OPB CPA ∠=∠=∠,AB AC =ACB ABC ∴∠=∠∵OA l ⊥,即90OAC ∠=︒,90ACB CPA ∴∠+∠=︒即90ABP OBP ∠+∠=︒90ABO ∴∠=︒ OB AB ∴⊥故AB 是⊙O 的切线; (2)由(1)知:90∠=︒ABO 而5OA =,3OB OP == 由勾股定理,得:4AB =4AC AB ==,2AP OA OP =-=PC ∴=过O 作OD PB ⊥于D ,则PD DB = 在ODP ∆和CAP ∆中OPD CPA ∠=∠,90ODP CAP ∠=∠=︒ ODP ∴∆∽CAP ∆PD OPPA CP∴=OP PA PD CP ⋅∴==2BP PD ∴==【题目点拨】本题考查了勾股定理,相似三角形的性质及判断,垂径定理,圆与直线的位置关系,解本题的关键是掌握常见求线段的方法,将知识点结合起来解题. 23、3cm【分析】先根据勾股定理求出BC 的长,再根据题意证明△ABC ∽△ADE ,得到DE AEBC AC=,代入即可求解. 【题目详解】解:∵∠C=90°,AB=10,AC=8∴∵BE=6 ∴AE=4 ∵DE ⊥AB∴∠C=90°=∠AED 又∠A=∠A ∴△ABC ∽△ADE ∴DE AEBC AC= ∴4638AE DE BC AC ==⨯=cm . 【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定方法.24、(1)见解析;(2)见解析;(3)MN =【分析】(1)通过证明△ABD ∽△BCD ,可得=AD BDBD CD,可得结论; (2)通过//BM CD 和相似得出∠MBD=∠MDB ,在利用同角的余角相等得出∠A=∠ABM ,由等腰三角形的性质可得结论;(3)由平行线的性质可证∠MBD=∠BDC ,即可证AM=MD=MB=4,由BD 2=AD•CD 和勾股定理可求MC 的长,通过证明△MNB ∽△CND ,可得2=3BM MN CD CN =. 【题目详解】解:(1)证明:∵DB 平分∠ADC , ∴∠ADB=∠CDB ,且∠ABD=∠BCD=90°, ∴△ABD ∽△BCD , ∴=AD BDBD CD, ∴BD 2=AD•CD(2)证明:∵//BM CD , ∴∠MBD=∠BDC ,∠MBC=90°, ∵∠MDB=∠CDB , ∴∠MBD=∠MDB , ∴MB=MD ,∵∠MBD+∠ABM=90°, ∴∠ABM=∠CBD , ∵∠CBD=∠A , ∴∠A=∠ABM , ∴MA=MB ,∴MA=MD , 即M 为AD 中点; (3)∵BM ∥CD ∴∠MBD=∠BDC∴∠ADB=∠MBD ,且∠ABD=90° ∴BM=MD ,∠MAB=∠MBA ∴BM=MD=AM=4∵BD 2=AD•CD ,且CD=6,AD=8, ∴BD 2=48, ∴BC 2=BD 2-CD 2=12 ∴MC 2=MB 2+BC 2=28∴MC= ∵BM ∥CD ∴△MNB ∽△CND∴2=3BM MN CD CN =,且MC=,∴MN =. 【题目点拨】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键. 25、(1)2y x=(2)P 的坐标为(2,0)-或(8,0) 【分析】(1)利用点A 在3y x =-+上求a ,进而代入反比例函数()0ky k x=≠求k 即可; (2)设(),0P x ,求得C 点的坐标,则3PC x =-,然后根据三角形面积公式列出方程,解方程即可. 【题目详解】(1)把点()1,A a 代入3y x =-+,得2a =, ∴()1,2A把()1,2A 代入反比例函数ky x=, ∴122k =⨯=;∴反比例函数的表达式为2y x=;(2)∵一次函数3y x =-+的图象与x 轴交于点C , ∴()3,0C , 设(),0P x , ∴3PC x =-, ∴13252APC S x ∆=-⨯=, ∴2x =-或8x =,∴P 的坐标为()2,0-或()8,0. 【题目点拨】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键. 26、(1)画树状图或列表见解析;(2)13. 【解题分析】试题分析:根据题意列出表格,找出所有的点Q 坐标,根据函数上的点的特征得出符合条件的点,根据概率的计算方法进行计算. 试题解析:(1)列表得:点Q 所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4), (3, 1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+6图象上的有2种,即:(2,4),(4,2),∴点P(x,y)在函数y=﹣x+6图象上的概率为:P=21 126.考点:概率的计算.。

2019-2020学年湖北省黄冈市九年级(上)期末数学试卷-普通用卷

2019-2020学年湖北省黄冈市九年级(上)期末数学试卷-普通用卷

2019-2020学年湖北省黄冈市九年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列成语所描述的事件是必然事件的是()A. 水涨船高B. 水中捞月C. 一箭双雕D. 拔苗助长2.关于抛物线y=(x−1)2−2,下列说法错误的是()A. 开口方向向上B. 对称轴是直线x=1C. 顶点坐标为(−1,−2)D. 当x>1时,y随x的增大而增大3.如图,已知点P在反比例函数y=kx上,PA⊥x轴,垂足为点A,且△AOP的面积为4,则k的值为()A. 8B. 4C. −8D. −44.AB为⊙O的直径,延长AB到点P,过点P作O的切线,切点为C,连接AC,∠P=40°D为圆上一点,则∠D的度数为()A. 25°B. 30°C. 35°D. 40°5.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC//AB,则∠BAE等于()A. 30°B. 40°C. 50°D. 60°6.已知关于x的方程x2−kx−6=0的一个根为x=−3,则实数k的值为()A. 1B. −1C. 2D. −27.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD的周长等于3,则PA的值是()A. 32B. 23第1页,共16页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈市红安县九年级(上)期末数学试卷
一、填空题(共8道题,每小题3分,共24分)
1.(3分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.
2.(3分)函数y=(m+2)x2+2x﹣1是二次函数,则m.
3.(3分)已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=.4.(3分)如图,AB是⊙O的弦,OC⊥AB于C.若AB=,OC=1,则半径OB 的长为.
5.(3分)在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是.
6.(3分)将图(1)中的大正方形绕着其中心顺时针至少旋转度时,可变成图(2).
7.(3分)如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为6πcm,则该圆锥的侧面积为.
8.(3分)有一条抛物线,三位学生分别说出了它的一些性质:
甲说:对称轴是直线x=2;
乙说:与x轴的两个交点距离为6;
丙说:顶点与x轴的交点围成的三角形面积等于9,请你写出满足
上述全部条件的一条抛物线的解析式:.
二、选择题(每小题3分,共21分)
9.(3分)下列说法正确的是()
A.为了审核书稿中的错别字,选择抽样调查
B.为了了解春节联欢晚会的收视率,选择全面调查
C.“射击运动员射击一次,命中靶心”是随机事件
D.“经过有交通信号灯的路口,遇到红灯”是必然事件
10.(3分)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()
A.0B.1C.﹣1D.2
11.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;
②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()
A.1B.2C.3D.4
12.(3分)下列标志既是轴对称图形又是中心对称图形的是()
A.B.C.D.
13.(3分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.80°或100°C.100°D.160°或20°14.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()
A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>5
15.(3分)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t (s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为()
A.B.1C.或1D.或1或
三、解答题(共9大题,共75分)
16.(6分)解方程:
(1)
(2)x2+4x=2.
17.(6分)如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处).
(1)请在图中画出羊活动的区域.
(2)求出羊活动区域的面积.
18.(7分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
19.(7分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?
20.(7分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
21.(8分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
22.(8分)已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
23.(12分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB 为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.
(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.
(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)
24.(14分)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P 到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.
湖北省黄冈市红安县九年级(上)期末数学试卷
参考答案
一、填空题(共8道题,每小题3分,共24分)
1.﹣3;2.≠﹣2;3.﹣;4.2;5.24;6.270;7.27πcm2;8.y=﹣(x ﹣2)2+3或y=(x﹣2)2﹣3;
二、选择题(每小题3分,共21分)
9.C;10.B;11.C;12.A;13.B;14.B;15.D;
三、解答题(共9大题,共75分)
16.;17.;18.;19.;20.;21.;22.;23.;24.;。

相关文档
最新文档