高中数学四种命题测试题

合集下载

高一数学命题与四种命题练习题

高一数学命题与四种命题练习题

高一数学命题与四种命题练习题题型一:判断命题的真假【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由.(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交;⑵垂直于同一个平面的两个平面互相垂直;⑶每一个周期函数都有最小正周期;⑷两个无理数的乘积一定是无理数;⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根.⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+;⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例5】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个典例分析【例6】 命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( ) A .p 真q 真 B . p 真q 假 C . p 假q 真 D . p 假q 假【例7】 给出下列三个命题:①若1≥a b >-,则11≥a b a b++;②若正整数m 和n 满足≤m n 2n ; ③设11(),P x y 为圆221:9O x y +=上任一点,圆2O 以(),Q a b 为圆心且半径为1.当2211()()1a x b y -+-=时,圆1O 与圆2O 相切;其中假命题的个数为( )A .0B .1C .2D .3【例8】 已知三个不等式:000,,c d ab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( )A .0B .1C .2D .3【例9】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥B .若αγβγ⊥⊥,,则αβ∥C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例10】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3【例11】 已知三个不等式:0,0,0c d ab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是 ()A. 0B. 1C. 2D. 3【例12】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π.②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象. ⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例13】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例14】 设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是___________.【例16】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换;w .w .w .k .s .5.u .c .o .m ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例17】 设有两个命题::p 不等式|||1|x x a ++>的解集为R ,命题:q ()(73)xf x a =--在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是 .【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根;其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”:1212AB x x y y =-+-.给出下列三个命题: ①若点C 在线段AB 上,则AC CB AB +=;②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=;③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个 【例20】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).题型二:四种命题之间的关系【例21】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例22】 写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例23】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”;⑶“当0c >时,若a b >,则ac bc >”;⑷“若5x y +=,则3x =且2y =”;【例24】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”;⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”;⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”;⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例25】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ②如果两个三角形不全等,那么它们的面积不相等; ③如果两个三角形的面积不相等,那么它们不全等; ④命题②、③、④与命题①有何关系?【例26】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例27】 命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠C .若0(),a b a b =≠∈R ,则220a b +≠D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠【例28】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21≥x ,则1≥x 或1≤x -B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1≥x 或1≤x -,则21≥x【例29】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例30】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题;④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( )A .1B .2C .3D .4【例31】 下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为()A .0个B .1个C .2个D .3个【例32】 有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题. 其中真命题为 ( )A .①②B .②③C .①③D .③④【例33】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例34】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例35】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例36】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例37】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例38】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例39】 “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为 ;【例40】 有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例41】 命题“若,x y 是奇数,则x y +是偶数”的逆否命题是 ;它是 命题.【例42】 写出命题“若0m >,则方程20x x m +-=有实数根”的逆否命题,判断其真假,并加以证明.【例43】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列;⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例44】 在平面直角坐标系xOy 中,直线l 与抛物线x y 22=相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.。

高一数学下册四种命题过关检测试题及答案

高一数学下册四种命题过关检测试题及答案

高一数学下册四种命题过关检测试题及答案训练7四种命题基础巩固站起来,拿得到!1.命题“若A∩B=A,则A∪B=B”的否命题是()A.若A∪B=B,则A∩B=AB.若A∩B≠A,则A∪B≠BC.若A∪B≠B,则A∩B≠AD.若A∪B≠B,则A∩B=A答案:B解析:条件与结论要同时否定.2.关于命题“平行四边形的两组对边分别相等”,下列论述中,正确的是()A.逆命题是假命题B.否命题是假命题C.逆否命题是真命题D.以上答案都不对答案:C解析:原命题为真命题,所以逆否命题为真命题.3.命题:“若a、b都是偶数,则a+b是偶数”的逆否命题是()A.若a+b是偶数,则a、b都不是偶数B.若a+b是偶数,则a、b不都是偶数C.若a+b不是偶数,则a、b都不是偶数D.若a+b不是偶数,则a、b不都是偶数答案:D解析:注意“都是”的否定为“不都是”.4.用反证法证明“如果a>b>0,那么>”假设的内容应是()A.=B.C.≤D.答案:C解析:“>”的反面为“≤”.5.“相似三角形的周长相等”写成“若p则q”的形式为_________________. 答案:若两三角形相似,则它们的周长相等解析:条件p:若两三角形相似,结论q:它们的周长相等.6.用反证法证明:“任何三角形至少有两个锐角”时,应假设_____________________.答案:三角形至多有一个锐角解析:即假设三角形只有一个锐角或一个锐角也没有.7.给定命题:已知a、b为实数,若x2+ax+b≤0的解集是空集,则a2-4b≤0,写出它的逆命题、否命题、逆否命题,并判断四个命题的真假.解:原命题:是假命题.逆命题:已知a、b为实数,若a2-4b≤0,则x2+ax+b≤0的解集是空集.假命题.否命题:已知a、b为实数,若x2+ax+b≤0的解集不是空集,则a2-4b>0.假命题.逆否命题:已知a、b为实数,若a2-4b>0,则x2+ax+b≤0的解集不是空集.假命题.能力提升踮起脚,抓得住!8.一个命题与它的逆命题、否命题、逆否命题这四个命题中()A.真命题的个数一定是奇数B.真命题的个数一定是偶数C.真命题的个数可能是奇数也可能是偶数D.以上判断都不正确答案:B解析:原命题与逆否命题同真同假,逆命题与否命题同真同假.9.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案:C解析:由题知s是p的逆否命题,而t是p的逆命题,所以s是t的否命题.10.命题“若a>b,则ac>bc(a、b、c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为__________________.答案:0解析:注意c∈R.11.给出下列命题:(1)命题“若b2-4acb>0,则>0”的逆否命题.其中真命题的序号为__________________.答案:①②③解析:①若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根,正确.②若△ABC为等边三角形,则有AB=BC=CA,正确.③若≤≤0,则a≤b≤0,正确.12.已知m、n为实数,命题“若mn=0,则m=0或n=0”的否命题、逆否命题各是什么?命题“m2+n2=0,则m=0且n=0”的否命题、逆否命题各是什么?并判断以上各命题的真假.解:“若mn=0,则m=0或n=0”的否命题是“若mn≠0,则m≠0且n≠0”;逆否命题是“若m≠0且n≠0,则mn≠0”.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;逆否命题是“若m≠0或n≠0,则m2+n2≠0”.以上各命题都是真命题.13.用反证法证明:若x2-(m+n)x+mn≠0,则x≠m且x≠n.证明:假设x=m或x=n.(1)当x=m时,则x2-(m+n)x+mn=0;(2)当x=n时,则x2-(m+n)x+mn=0.以上两种情况均与已知矛盾.∴x≠m且x≠n.拓展应用跳一跳,够得着!14.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为()A.真B.假C.不确定D.以上都不对答案:B解析:其逆命题为“若方程x2+x-m=0有实根,则m>0”,由方程有实根,得Δ=1+4m>0,则m>-,此时不一定有m>0,故逆命题不成立.15.命题“若x≠y或x≠-y,则x2≠y2”的真假为_________________.答案:假解析:原命题真假不易判断,可转化为判断其逆否命题的真假.其逆否命题为:若x2=y2,则x=y且x=-y.易知这是一个假命题.故原命题是假命题.16.某班主任计划带领同学们开展一次参观考察活动,地点从A、B、C、D、E5个地方选定,选择时要依据下列约束条件:(1)如果去A地,那么也必须去B地;(2)D、E两地至少去一地;(3)B、C两地只去一地;(4)C、D两地都去或都不去;(5)如果去E地,那么A、D两地也必须去.请问:同学们的参观地点只可能是哪里?解:由条件(2)可知,D、E两地至少去一地,如果去E地,那么由条件(5)知,也必须去A、D两地,又由条件(1)和(4)知,必须去B、C两地,但这与条件(3)矛盾,所以不能去E地,因此必须去D地.由条件(4)知,也必须去C地,再由条件(3)可知,不能去B地.从而由条件(1)知,也不能去A地(这里借助了条件(1)的逆否命题).因此,同学们只能去C、D两地参观.。

最新人教版高中数学选修1-1《四种命题》达标训练

最新人教版高中数学选修1-1《四种命题》达标训练

更上一层楼基础·巩固1命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )A.逆命题B.否命题C.逆否命题D.无关命题思路分析:本题主要考查四种命题的定义.“矩形是两条对角线相等的四边形”的条件是:一个四边形是矩形;结论是:它的两条对角线相等.把条件和结论互换就得到命题“两条对角线相等的四边形是矩形”.答案:A2命题“对顶角相等”与它的逆命题、否命题和逆否命题中,真命题是( )A.上述四个命题B.原命题与逆命题C.原命题与逆否命题D.逆命题与否命题思路分析:本题主要考查四种命题的定义及命题真假性的判断因真命题“对顶角相等”的逆命题“相等的角是对顶角”是假命题.答案:C3命题“若A ∪B=A,则A∩B=B”的否命题是( )A.若A ∪B≠A,则A∩B≠BB.若A∩B=B,则A ∪B=AC.若A∩B≠B,则A ∪B≠AD.若A ∪B≠A,则A∩B=B思路分析:本题从集合的运算的角度考查四种命题,把条件和结论同时否定即可,“=”的否定是“≠”.答案:A4命题“若a>1,则a>0”的逆命题是__________,逆否命题是__________.思路分析:逆命题是把原命题的条件和结论互换,而逆否命题是把逆命题的条件和结论同时否定,“>”的否定是“≤”.答案:若a>0,则a>1 若a≤0,则a≤15给定下列命题:①“若k>0,则方程x 2+2x-k=0有实根”;②“若a>b,则a+c>b+c”的否命题;③“矩形的对角线相等”的逆命题;④“若xy=0,则x 、y 中至少有一个为0”的否命题.其中真命题的序号是__________.思路分析:本题主要考查四种命题的定义和真假性的判断.①Δ=4+4k>0,是真命题;②否命题为“若a≤b,则a+c≤b+c”,该否命题是真命题;③逆命题为“对角线相等的四边形是矩形”,该逆命题是假命题;④否命题为“若xy≠0,则x 、y 都不为零”,该否命题是真命题.答案:①②④综合·应用6若命题p 的否命题为r,命题r 的逆命题为s,则s 是p 的逆命题t 的( )A.逆否命题B.逆命题C.否命题D.原命题思路分析:设p 为“若A 则B”,则r 、s 、t 分别为“若A ⌝则B ⌝”;“若B ⌝则A ⌝”;“若B 则A”.故s 是t 的否命题.答案:C7当命题“若p 则q”为真时,下列命题中一定正确的是( )A.若q 则pB.若p ⌝则q ⌝C.若q ⌝则p ⌝D.p 且q思路分析:因原命题与逆否命题等价,而命题“若p 则q”的逆否命题是若q ⌝则p ⌝,故选C. 答案:C8一个命题与它的逆命题、否命题、逆否命题这四个命题中()A.真命题的个数一定是奇数B.真命题的个数一定是偶数C.真命题的个数可能是奇数也可能是偶数D.以上判断均不正确思路分析:因“原命题”与“逆否命题”同真假,“逆命题”与“否命题”同真假,故真命题是成对出现的,所以真命题的个数一定是偶数.答案:B9有下列四个命题,其中真命题是()①“若xy=1,则x和y互为倒数”的逆命题②“相似三角形的周长相等”的否命题③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题④“若A∪B=B,则A⊇B”的逆否命题A.①②B.②③C.①③D.②④思路分析:“若xy=1,则x和y互为倒数”的逆命题为“若x和y互为倒数则xy=1”为真命题;“相似三角形的周长相等”的否命题为“不相似三角形的周长不相等”为假命题;“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题为“若方程x2-2bx+b2+b=0无实根则b>-1”为真命题. 答案:C10把命题“x=2时,x2-3x+2=0”写成“若p则q”的形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.思路分析:本题主要考查四种命题的定义,以及命题真假性的判断;因为原命题是真命题,所以逆否命题也是真命题;逆命题:若x2-3x+2=0,则x=2为假命题,所以否命题为假命题. 解:原命题:若x=2,则x2-3x+2=0;逆命题:若x2-3x+2=0,则x=2,假命题;否命题:若x≠2,则x2-3x+2≠0,假命题;逆否命题:若x2-3x+2≠0,则x≠2,真命题.11写出命题“已知a、b、c、d是实数.若a=b,c=d,则a+c=b+d”的逆命题、否命题和逆否命题,并判断这些命题的真假.思路分析:本题主要考查四种命题的定义,以及命题真假性的判断.解题时要注意否命题与命题的否定的区别.原命题的逆命题为,已知a、b、c、d为实数,若a+c=b+d,则a=b,c=d,在判断它为假命题时,可以举一个反例.解:逆命题:已知a、b、c、d为实数,若a+c=b+d,则a=b,c=d;否命题:已知a、b、c、d是实数,若a与b,c与d不都相等,则a+c≠b+d;逆否命题:已知a、b、c、d是实数,若a+c≠b+d,则a≠b且c≠d.原命题为真命题;若令a=3,b=2,c=1,d=2,则a+c=1+3=4,b+d=2+2=4,即a+c=b+d,但a≠b,c≠d,所以逆命题为假命题;根据原命题与逆否命题、逆命题与否命题等价的性质,所以逆否命题为真命题,否命题为假命题.回顾·展望12(2005浙江高考,理6) 设α,β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β.那么…()A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题思路分析:命题②有反例,如下图中平面α∩平面β=直线n,l⊂α,m⊂β且l∥n,m⊥n,则m⊥l,显然平面α不垂直平面β,故②是假命题;命题①显然也是假命题.答案:D。

高中数学四种命题经典例题

高中数学四种命题经典例题

例命题“若=,则与成反比例关系”的否命题是1 y x y k x[ ]A y x yB y kx x yC x y y .若≠,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k xk xD y x y .若≠,则与不成反比例关系k x分析 条件及结论同时否定,位置不变.答 选D .例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________.分析 只要确定了“p ”和“q ”,则四种命题形式都好写了. 解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角.例3 “若P ={x |x|<1},则0∈P ”的等价命题是________. 分析 等价命题可以是多个,我们这里是确定命题的逆否命题.解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ≠{x||x|<1}”例4 分别写出命题“若x 2+y 2=0,则x 、y 全为0”的逆命题、否命题和逆否命题.分析根据命题的四种形式的结构确定.解逆命题:若x、y全为0,则x2+y2=0;否命题:若x2+y2≠0,则x,y不全为0;逆否命题:若x、y不全为0,则x2+y2≠0.说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y不全为0”,这要特别小心.例5有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“若∪=,则”的逆否命题,其中真命题是A B B A B[ ] A.①②B.②③C.①③D.③④分析应用相应知识分别验证.解写出相应命题并判定真假①“若x,y互为倒数,则xy=1”为真命题;②“不相似三角形周长不相等”为假命题;③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;选C.例6 以下列命题为原命题,分别写出它们的逆命题,否命题和逆否命题.①内接于圆的四边形的对角互补;②已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d;分析首先应当把原命题改写成“若p则q”形式,再设法构造其余的三种形式命题.解对①:原命题:“若四边形内接于圆,则它的对角互补”;逆命题:“若四边形对角互补,则它必内接于某圆”;否命题:“若四边形不内接于圆,则它的对角不互补”;逆否命题:“若四边形的对角不互补,则它不内接于圆”.对②:原命题:“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,其中“已知a、b、c、d是实数”是大前提,“a=b,c=d”是条件,“a+c=b+d”是结论.所以:逆命题:“已知a、b、c、d是实数,若a+c=b+d,则a =b,c=d”;否命题:“已知a、b、c、d是实数,若a≠b或c≠d,则a +c≠b+d”(注意“a=b,c=d”的否定是“a≠b或c≠d”只需要至少有一个不等即可);逆否命题:“已知a、b、c、d是实数,若a+c≠b+d则a ≠b或c≠d”.逆否命题还可以写成:“已知a 、b 、c 、d 是实数,若a +c ≠b +d 则a =b ,c =d 两个等式至少有一个不成立”说明:要注意大前题的处理.试一试:写出命题“当c >0时,若a >b ,则ac >bc ”的逆命题,否命题,逆否命题,并分别判定其真假.例7 已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实根,求实数a 的取值范围.分析 如果从正面分类讨论情况要复杂的多,而利用补集的思想(也含有反证法的思想)来求三个方程都没有实根的a 范围比较简单.解由--<--<+<得 16a 4(34a)0(a 1)4a 04a 8a 02222⎧⎨⎪⎩⎪说明:利用补集思想,体现了思维的逆向性.例8 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.①>时,-+=无实根;m mx x 10214②当abc =0时,a =0或b =0或c =0.分析 改造原命题成“若p 则q 形式”再分别写出其逆命题、否命题、逆否命题.在判定各种形式命题的真假时要注意利用等价命题的原理和规律.解①原命题:“若>,则-+=无实根”,是真 m mx x 10214命题;逆命题:“若-+=无实根,则>”,是真命题;否命题:“若≤,则-+=有实根”,是真命题;逆否命题:“若-+=有实根,则≤”,是真命题.mx x 10m m mx x 10mx x 10m 222141414②原命题;“若abc =0,则a =0或b =0或c =0”,是真命题;逆命题:“若a =0或b =0或c =0,则abc =0”是真命题; 否命题:“若abc ≠0,则a ≠0且b ≠0且c ≠0”,是真命题;(注意:“a =0或b =0或c =0”的否定形式是“a ≠0且b ≠0且c ≠0”逆否命题:“若a ≠0且b ≠0且c ≠0,则abc ≠0”,是真命题.说明:判定四种形式命题的真假可以借助互为逆否命题的等价性.例若、、均为实数,且=-+π,=-+π,=-+π,求证:、、中至少有一个大于.9 a b c a x 2y b y 2z c z 2x a b c 0222236分析 如果直接从条件推证,方向不明,过程不可预测,较难,可以使用反证法.解 设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则有a +b +c ≤0,而a b c (x 2y )(y 2z )(z 2x )222++=-+π+-+π+-+π236 =(x 2-2x)+(y 2-2y)+(z 2-2z)+π=(x -1)2+(y -1)2+(z -1)2+(π-3)∴ a +b +c >0这与a +b +c ≤0矛盾.因此a 、b 、c 中至少有一个大于0.说明:如下表,我们给出一些常见词语的否定.。

高中数学-命题的四种形式练习

高中数学-命题的四种形式练习

高中数学-命题的四种形式练习课后训练1.命题“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题是( )A.在△ABC中,若∠C≠90°,则∠A,∠B都不是锐角B.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角C.在△ABC中,若∠C≠90°,则∠A,∠B必有一钝角D.在△ABC中,若∠A,∠B都是锐角,则∠C=90°2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数3.下列说法正确的是( )A.一个命题的否命题为真,则它的逆命题为假B.一个命题的逆命题为真,则它的否命题为真C.一个命题的否命题为真,则它的逆否命题为真D.一个命题的逆否命题为真,则它的逆命题为真4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数5.下列命题中,是真命题的为( )A.“若二次方程ax2+bx+c=0有实根,则b2-4ac>0”的逆否命题B.“正方形的四条边相等”的逆命题C.“若x2-4=0,则x=2”的否命题D.“对顶角相等”的逆命题6.命题“到一个角的两边距离相等的点在该角的平分线上”的否命题是__________.7.命题“若x,y是偶数,则x+y是偶数(x∈Z,y∈Z)”的逆否命题是__________,它是__________命题(填“真”或“假”).8.有下列四个命题:①如果xy=1,则lg x+lg y=0;②“如果sin α+cos α=π3,则α是第一象限角”的否命题;③“如果b≤0,则方程x2-2bx+b=0有实数根”的逆否命题;④“如果A∪B=B,则A B”的逆命题.其中是真命题的有__________.9.写出命题“正n(n≥3)边形的n个内角全相等”的否定和否命题.10.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1)末尾数字是0或5的整数,能被5整除;(2)若a=2,则函数y=a x是增函数.参考答案1.答案:B2.答案:B3.答案:B 由四种命题的关系可知,一个命题的否命题与它的逆命题是互为逆否关系,根据互为逆否的两个命题是等效的(同真同假),可得选项B正确.4.答案:B5.答案:C 对于A项,该命题是假命题,故其逆否命题也为假;对于B项的逆命题为“四条边相等的四边形是正方形”是假命题;对于C项的否命题为“若x2-4≠0,则x≠2”为真命题;对于D项的逆命题为“相等的角是对顶角”为假命题.6.答案:到一个角的两边距离不相等的点不在该角的平分线上7.答案:若x+y不是偶数,则x,y不都是偶数(x∈Z,y∈Z) 真8.答案:③④命题①显然错误,例如:x=-1,y=-1时,lg x+lg y无意义.对于②,其否命题为“如果sin α+cos α≠π3,则α不是第一象限角”,因当α=60°时,sin α+cos α=13π23,故知其否命题为假.对于命题③,因当b≤0时,Δ=4b2-4b≥0恒成立,故方程x2-2bx+b=0有实数根.由原命题与其逆否命题真假相同,可知命题③的逆否命题是真命题.对于④,其逆命题为“若A B,则A∪B=B”,显然为真.9.答案:分析:对该命题的结论加以否定得到其否定为:正n边形的n个内角不全相等.对该命题的结论和条件分别加以否定得到其否命题为:不是正n边形的n个内角不全相等.解:命题的否定:正n(n≥3)边形的n个内角不全相等.否命题:不是正n(n≥3)边形的n个内角不全相等.10.答案:分析:依据四种命题的定义分别写出逆命题、否命题、逆否命题.“0或5”的否定是“不是0且不是5”,“是”的否定词是“不是”,“等于”的否定词是“不等于”.解:(1)逆命题:能被5整除的整数,末尾数字是0或5;(真)否命题:末尾数字不是0且不是5的整数,不能被5整除;(真)逆否命题:不能被5整除的整数,末尾数字不是0且不是5;(真)(2)逆命题:若函数y=a x是增函数,则a=2;(假)否命题:若a≠2,则函数y=a x不是增函数;(假)逆否命题:若函数y=a x不是增函数,则a≠2.(真)。

高中数学命题试题及答案

高中数学命题试题及答案

高中数学命题试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 自然数集NC. 整数集ZD. 复数集C2. 若函数f(x) = 2x - 3,求f(5)的值。

A. 4B. 7C. 10D. 133. 已知a > 0,b < 0,且a + b > 0,下列哪个不等式是正确的?A. a > -bB. a < -bC. a ≤ -bD. a ≥ -b4. 若sin(θ) = 1/2,θ属于第一象限,求cos(θ)的值。

A. √3/2B. -√3/2C. 1/√2D. -1/√25. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π6. 若a^2 - b^2 = 25,a + b = 10,求a - b的值。

A. 5B. 15C. 25D. 357. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 298. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 89. 函数y = x^2 + 2x - 3的顶点坐标是?A. (-1, -4)B. (-2, -3)C. (1, -4)D. (2, -3)10. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}二、填空题(每题2分,共20分)11. 若f(x) = x^2 - 4x + 4,求f(x)的对称轴。

__________________12. 已知等比数列的首项为2,公比为3,求第5项的值。

__________________13. 一个正方体的体积为27立方米,求其边长。

__________________14. 求函数y = 3x + 2的反函数。

__________________15. 已知集合C = {x | x > 5},D = {x | x < 10},求C∩D。

高中数学 四种命题练习题及答案

高中数学 四种命题练习题及答案

[ ]分析 条件及结论同时否定,位置不变. 答 选D .解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角.≠{x||x|<1}”说明:“x 、y 全为0”的否定不要写成“x 、y 全不为0”,应当是“x ,y 不全为0”,这要特别小心.[ ]A .①②B .②③C .①③D .③④分析 应用相应知识分别验证.选C .①内接于圆的四边形的对角互补;②已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d ;例7 已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实根,求实数a 的取值范围.分析 如果从正面分类讨论情况要复杂的多,而利用补集的思想(也含有反证法的思想)来求三个方程都没有实根的a 范围比较简单.例命题“若=,则与成反比例关系”的否命题是1 y x y kxA y x yB y kx x yC x y y .若≠,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠kxkx D y x y .若≠,则与不成反比例关系kx解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ∉④“若∪=,则”的逆否命题,其中真命题是A B B A B⊇说明:利用补集思想,体现了思维的逆向性.②当abc =0时,a =0或b =0或c =0.分析 如果直接从条件推证,方向不明,过程不可预测,较难,可以使用反证法.解 设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则有a +b +c ≤0,而=(x 2-2x)+(y 2-2y)+(z 2-2z)+π =(x -1)2+(y -1)2+(z -1)2+(π-3)∴ a +b +c >0这与a +b +c ≤0矛盾.因此a 、b 、c 中至少有一个大于0.说明:如下表,我们给出一些常见词语的否定.解由--<--<+<得 16a 4(34a)0(a 1)4a 04a 8a 02222⎧⎨⎪⎩⎪①>时,-+=无实根;m mx x 10214解①原命题:“若>,则-+=无实根”,是真 m mx x 10214逆命题:“若-+=无实根,则>”,是真命题;否命题:“若≤,则-+=有实根”,是真命题;逆否命题:“若-+=有实根,则≤”,是真命题.mx x 10m m mx x 10mx x 10m 222141414例若、、均为实数,且=-+π,=-+π,=-+π,求证:、、中至少有一个大于.9 a b c a x 2y b y 2z c z 2x a b c 0222236a b c (x 2y )(y 2z )(z 2x )222++=-+π+-+π+-+π236。

高中数学 专题1.1.2-1.1.3 四种命题、四种命题间的相互关系测试(含解析)新人教A版选修2

高中数学 专题1.1.2-1.1.3 四种命题、四种命题间的相互关系测试(含解析)新人教A版选修2

高中数学专题1.1.2-1.1.3 四种命题、四种命题间的相互关系测试(含解析)新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.1.2-1.1.3 四种命题、四种命题间的相互关系测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.1.2-1.1.3 四种命题、四种命题间的相互关系测试(含解析)新人教A版选修2-1的全部内容。

四种命题、四种命题间的相互关系(时间:25分,满分55分)班级姓名得分一、选择题1.给出命题:若函数y=f(x)是幂函数,则它的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3 B.2C.1 D.0[答案] C2.“若x2=1,则x=1"的否命题为( )A.若x2≠1,则x=1B.若x2=1,则x≠1C.若x2≠1,则x≠1D.若x≠1,则x2≠1[答案] C[解析]“若p则q”的否命题形式为“若¬p则¬q”.3.命题“如果a、b都是奇数,则ab必为奇数"的逆否命题是()A.如果ab是奇数,则a、b都是奇数B.如果ab不是奇数,则a、b不都是奇数C.如果a、b都是奇数,则ab不是奇数D.如果a、b不都是奇数,则ab不是奇数[答案] B[解析] 命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是“如果ab不是奇数,则a、b不都是奇数”.4.“a2+b2≠0"的含义是()A.a、b不全为0B.a、b全不为0C.a、b至少有一个为0D.a不为0且b为0,或b不为0且a为0[答案]A[解析]若a2+b2≠0,则a≠0且b≠0,或a=0且b≠0,或a≠0且b=0,即a、b不全为0,故选A。

河南师范大学附属中学高中数学(普通班)同步练习:四种命题

河南师范大学附属中学高中数学(普通班)同步练习:四种命题

1.1.2四种命题一、选择题1.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数为( )A.1个B.2个C.3个D.4个2.命题“若x2<1,则-1〈x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2〈1C.若x>1或x<-1,则x2>1D.若x≥1或x≤1,则x2≥13.命题“若ab=0,则a=0或b=0”的否命题是( )A.若ab≠0,则a≠0或b≠0B.若a≠0或b≠0,则ab≠0C.若ab≠0,则a≠0且b≠0D.若a≠0且b≠0,则ab≠04.给出以下4个命题:①若ab≤0,则a≤0或b≤0;②若a>b,则am2>bm2;③在△ABC中,若sin A=sin B,则A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是()A.①B.②C.③D.④5.有下列四个命题:(1)“若x+y=0,则x、y互为相反数”的逆命题;(2)“若a>b,则a2〉b2"的逆否命题;(3)“若x≤-3,则x2+x-6>0”的否命题;(4)“若a b是无理数,则a、b是无理数”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.36.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的( )A.逆否命题B.逆命题C.否命题D.原命题二、填空题7.已知下列四个命题:①a是正数;②b是负数;③a+b是负数;④ab是非正数.选择其中两个作为条件,一个作为结论,写出一个逆否命题是真命题的命题是____________________________.8.命题“若x=3,y=5,则x+y=8"的逆命题是____________________;否命题是__________________,逆否命题是____________________.三、解答题9.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1)如果两圆外切,那么两圆心距等于两圆半径之和;(2)奇数不能被2整除.10.判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x +a2+2≤0的解集非空,则a≥1”的逆否命题的真假.1。

高中数学 1.1.2四种命题

高中数学 1.1.2四种命题

四种命题(30分钟50分)一、选择题(每题3分,共18分)1.(2021·长春高二检测)命题“假设a∉A,那么b∈B”的否命题是( )A.假设a∉A,那么b∉BB.若a∈A,那么b∉BC.假设b∈B,那么a∉AD.若b∉B,那么a∉A【解析】选B.命题“假设p,那么q”的否命题是“若p,那么q”,“∈”与“∉”互为否定形式.2.以下命题的否命题为“邻补角互补”的是( )A.邻补角不互补B.互补的两个角是邻补角C.不是邻补角的两个角不互补D.不互补的两个角不是邻补角【解题指南】解答此题只需求命题“邻补角互补”的否命题,因此把所给命题的条件与结论都否定,即为所求.【解析】选C.“邻补角互补”与“不是邻补角的两个角不互补”互为否命题.【变式训练】“△ABC中,假设∠C=90°,那么∠B,∠A满是锐角”的否命题为( )A.△ABC中,假设∠C≠90°,那么∠A,∠B全不是锐角B.△ABC中,假设∠C≠90°,那么∠A,∠B不满是锐角C.△ABC中,假设∠C≠90°,那么∠A,∠B中必有一个钝角D.以上均不对【解析】选B.否命题条件与结论别离是原命题的条件与结论的否定,应选B.【误区警示】解答此题易显现选A的错误,致使显现这种错误的缘故是混淆了“满是”的否定是“不满是”,而非“全不是”.3.(2021·烟台高二检测)以下命题中为真命题的是( )A.命题“假设x>y,那么x>|y|”的逆命题B.命题“x>1,那么x2>1”的否命题C.命题“假设x=1,那么x2+x-2=0”的否命题D.命题“假设x2>0,那么x>1”的逆否命题【解析】选A.关于A:逆命题为假设x>|y|,那么x>y,真命题.关于B:否命题为假设x≤1,那么x2≤1,显然此命题为假,比如x=-2命题不成立.关于C:否命题为“假设x≠1,那么x2+x-2≠0”,此命题是假命题,如x=-2命题不成立.关于D:逆否命题为:假设x≤1,那么x2≤0,显然此命题是假命题,应选A.4.关于命题“假设|a|≠|b|,那么a≠b”的表达正确的选项是( )A.命题的逆命题为真命题B.命题的否命题为真命题C.命题的逆否命题为真命题D.以上都正确【解析】选C.命题“假设|a|≠|b|,那么a≠b”的逆命题为“若a≠b,那么|a|≠|b|”,是假命题.命题“假设|a|≠|b|,那么a≠b”的否命题为“假设|a|=|b|,那么a=b”,是假命题.命题“假设|a|≠|b|,那么a≠b”的逆否命题为“若a=b,那么|a|=|b|”,是真命题.5.命题“假设x2+y2=0,那么x=y=0”的逆否命题是( )A.假设x=y=0,那么x2+y2≠0B.假设x,y都不为0,那么x2+y2≠0C.假设x,y中至少有一个不为0,那么x2+y2≠0D.假设x,y中至少有一个不为0,那么x2+y2=0【解析】选C.将“x=y=0”否定得“x,y中至少有一个不为0”,故原命题的逆否命题为“假设x,y 中至少有一个不为0,那么x 2+y 2≠0”,应选C【误区警示】解答此题易显现选B 的错误,致使显现这种错误的缘故是对“x,y 全为0”的否定弄不清楚所致.事实上,x,y 全为0的否定为x,y 中至少有一个不为0.6.命题“若α=π4,那么tan α=1”的逆否命题是( ) A.假设α≠π4,那么tan α≠1 B.若α=π4,那么tan α≠1 C.假设tan α≠1,那么α≠π4 D.假设tan α≠1,那么α=π4【解题指南】由逆否命题的概念知,否定原命题的条件,“α≠π4”作结论;否定原命题的结论,“tan α≠1”作条件.【解析】选C.原命题的逆否命题是“假设tan α≠1,那么α≠π4”,应选C. 二、填空题(每题4分,共12分)7.(2021·九江高二检测)原命题:“设a,b,c ∈R,假设a>b,那么ac 2>bc 2”和它的逆命题,否命题,逆否命题中,真命题的个数是 .【解析】逆命题:假设ac 2>bc 2,那么a>b,真命题.否命题:假设a ≤b,那么ac 2≤bc 2,真命题.逆否命题:假设ac 2≤bc 2,那么a ≤b,假命题.答案:28.(2021·天津高二检测)请写出命题“假设a+b=2,那么a 2+b 2≥2”的否命题: .【解析】依照否命题的形式,原命题的否命题为“假设a+b ≠2,那么a 2+b 2<2”.答案:假设a+b ≠2,那么a 2+b 2<29.“不是等差数列的数列不是常数列”的逆否命题是 命题(填真、假).【解析】命题“不是等差数列的数列不是常数列”的逆否命题为“常数列是等差数列”,是真命题.答案:真三、解答题(每题10分,共20分)10.(2021·武汉高二检测)设命题p:假设m<0,那么关于x的方程x2+x+m=0(m∈R)有实根.(1)写出命题p的逆命题、否命题、逆否命题.(2)判定命题p及其逆命题、否命题、逆否命题的真假.(直接写出结论)【解析】(1)p的逆命题:假设关于x的方程x2+x+m=0(m∈R)有实根,那么m<0.p的否命题:假设m≥0,那么关于x的方程x2+x+m=0(m∈R)无实根.p的逆否命题:假设关于x的方程x2+x+m=0(m∈R)无实根,那么m≥0.(2)命题p及其逆否命题是真命题,命题p的逆命题和否命题是假命题.11.判定以下命题的真假:(1)“假设x∈A∪B,那么x∈B”的逆命题与逆否命题.(2)“假设自然数能被6整除,那么自然数能被2整除”的逆命题.【解析】(1)逆命题:假设x∈B,那么x∈A∪B.依照集合“并”的概念,逆命题为真.逆否命题:假设x∉B,那么x∉A∪B.逆否命题为假.如2∉{1,5}=B,A={2,3},但2∈A∪B.(2)逆命题:假设自然数能被2整除,那么自然数能被6整除.逆命题为假.反例:2,4,14,22等都不能被6整除. (30分钟50分)一、选择题(每题4分,共16分)1.(2021·重庆高二检测)已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,那么命题“假设a=1或a=-1,那么直线l1与l2平行”的否命题为( )A.假设a≠1且a≠-1,那么直线l1与l2不平行B.假设a≠1或a≠-1,那么直线l1与l2不平行C.假设a=1或a=-1,那么直线l1与l2不平行D.假设a≠1或a≠-1,那么直线l1与l2平行【解析】选A.命题“假设A,那么B”的否命题为“若A,那么B”,显然“a=1或a=-1”的否定为“a≠1且a≠-1”,“直线l1与l2平行”的否定为“直线l1与l2不平行”,因此选A.【触类旁通】假设此题中条件不变,那么原命题的逆命题是.【解析】将原命题中,条件与结论互换即可.即逆命题为“假设直线l1与l2平行,那么a=1或a=-1”.答案:假设直线l1与l2平行,那么a=1或a=-12.以下四个命题:①“假设x+y=0,那么x,y互为相反数”的否命题;②“假设a>b,那么a2>b2”的逆否命题;③“假设x≤-3,那么x2-x-6>0”的否命题;④“同位角相等”的逆命题.其中真命题的个数是( )B.1【解析】选B.①否命题:假设x+y≠0,那么x,y不互为相反数,真命题.②逆否命题:假设a2≤b2,那么a≤b,假命题.③否命题:假设x>-3,那么x2-x-6≤0,假命题.④逆命题:相等的两个角是同位角,假命题.3.给出命题:假设函数y=f(x)是幂函数,那么函数y=f(x)的图象只是第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )B.2【解析】选C.逆命题与否命题错误,逆否命题正确,应选C.4.命题“假设-1<x<1,那么x2<1”的逆否命题是( )A.假设x≥1或x≤-1,那么x2≥1B.假设x2<1,那么-1<x<1C.假设x2>1,那么x>1或x<-1D.假设x2≥1,那么x≥1或x≤-1【解析】选D.假设原命题是“假设p,那么q”,那么逆否命题为“若q,那么p”,故此命题的逆否命题是“假设x2≥1,那么x≥1或x≤-1”.二、填空题(每题5分,共10分)5.(2021·广州高二检测)以下四个命题中:①“等边三角形的三个内角均为60°”的逆命题;②“假设k>0,那么方程x2+2x-k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“假设ab≠0,那么a≠0”的否命题.其中真命题的序号是.【解析】①逆命题为“假设一个三角形的三内角均为60°,那么那个三角形为等边三角形”,是真命题;②Δ=4+4k,当k>0时,Δ>0,因此原命题为真命题,其逆否命题是真命题;③不全等的两个三角形面积也有可能相等,因此③是假命题;④否命题为“假设ab=0,那么a=0”,是假命题.综上可知,真命题是①②.答案:①②【变式训练】有以下四个命题,其中真命题是__________.①“假设xy=1,那么x,y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“假设b≤0,那么方程x2-2bx+b2+b=0有实根”的逆否命题;④“假设A∪B=B,那么A⊇B”的逆否命题.【解析】①逆命题是:“假设x,y互为倒数,那么xy=1”,是真命题;②逆命题是:“假设两三角形的周长相等,那么它们相似”,是假命题,因此原命题的否命题也是假命题;③由b≤0得Δ=4b2-4(b2+b)≥0,因此③是真命题,其逆否命题也是真命题;④假设A∪B=B,那么A⊆B,因此原命题是假命题,其逆否命题也是假命题,因此④是假命题.综上可知①③为真命题.答案:①③6.(2021·成都高二检测)给出以下三个命题:①假设x2-3x+2=0,那么x=1或x=2;②假设-2≤x<3,那么(x+2)(x-3)≤0;③假设x,y∈N+,x+y是奇数,那么x,y中一个是奇数,一个是偶数,其中逆命题为真命题是.【解析】①③逆命题为真,②逆命题为假.答案:①③三、解答题(每题12分,共24分)7.写出命题:假设x+y=5,那么x=3且y=2的逆命题、否命题与逆否命题,并判定它们的真假.【解析】逆命题:假设x=3且y=2,那么x+y=5,是真命题.否命题:假设x+y≠5,那么x≠3或y≠2,是真命题.逆否命题:假设x≠3或y≠2,那么x+y≠5,是假命题.【变式训练】写出以下命题的逆命题、否命题、逆否命题,并判定其真假.(1)实数的平方是非负数.(2)等底等高的两个三角形是全等三角形.(3)弦的垂直平分线通过圆心,并平分弦所对的弧.【解析】(1)逆命题:假设一个数的平方是非负数,那么那个数是实数,真命题.否命题:假设一个数不是实数,那么它的平方不是非负数,真命题.逆否命题:假设一个数的平方不是非负数,那么那个数不是实数,真命题.(2)逆命题:假设两个三角形全等,那么这两个三角形等底等高,真命题.否命题:假设两个三角形不等底或不等高,那么这两个三角形不全等,真命题.逆否命题:假设两个三角形不全等,那么这两个三角形不等底或不等高,假命题.(3)逆命题:假设一条直线通过圆心,且平分弦所对的弧,那么这条直线是弦的垂直平分线,真命题.否命题:假设一条直线不是弦的垂直平分线,那么这条直线只是圆心或不平分弦所对的弧,真命题.逆否命题:假设一条直线不通过圆心或不平分弦所对的弧,那么这条直线不是弦的垂直平分线.真命题.8.(2021·苏州高二检测)在公比为q的等比数列{a n}中,前n项的和为S n,假设S m,S m+2,S m+1成等差数列,那么a m,a m+2,a m+1成等差数列.(1)写出那个命题的逆命题.(2)判定公比q 为何值时,逆命题为真?公比q 为何值时,逆命题为假?【解题指南】解答此题第一需依照逆命题的概念正确写出逆命题,然后依照等差数列的性质判定何时为真命题,何时为假命题.【解析】(1)逆命题:在公比为q 的等比数列{a n }中,前n 项和为S n ,假设a m ,a m+2,a m+1成等差数列,那么S m ,S m+2,S m+1成等差数列.(2)由{a n }为等比数列,因此a n ≠0,q ≠0.由a m ,a m+2,a m+1成等差数列,得2a m+2=a m +a m+1,因此2a m ·q 2=a m +a m ·q,因此2q 2-q-1=0.解得q=-12或q=1. 当q=1时,a n =a 1(n=1,2,…),因此S m+2=(m+2)a 1,S m =ma 1,S m+1=(m+1)a 1,因为2(m+2)a 1≠ma 1+(m+1)a 1,即2S m+2≠S m +S m+1,因此S m ,S m+2,S m+1不成等差数列.即q=1时,原命题的逆命题为假命题.当q=-12时,2S m+2=2·a 1(1−q m +2)1−q ,S m+1=a 1(1−q m +1)1−q ,S m =a 1(1−q m )1−q ,因此2S m+2=S m+1+S m ,因此S m ,S m+2,S m+1成等差数列.即q=-12时,原命题的逆命题为真命题.。

高中数学命题试题及答案

高中数学命题试题及答案

高中数学命题试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x + 1D. f(x) = x^2 + 1答案:B2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 若直线l的方程为y=2x+3,则直线l的斜率k等于:A. 2B. 3C. -2D. -3答案:A4. 函数y=ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B5. 已知向量a=(3, -2),b=(2, 1),则向量a·b等于:A. 4C. 1D. -1答案:A6. 已知等比数列{an}的首项a1=2,公比q=3,则a5等于:A. 486B. 162C. 243D. 81答案:A7. 函数f(x)=x^2-4x+3的最小值是:A. 0B. -1C. 3答案:B8. 已知三角形ABC中,a=5,b=7,c=8,则三角形ABC的面积S等于:A. 12B. 10C. 15D. 20答案:B9. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a=2,b=3,则双曲线的离心率e等于:A. √5B. √13/2C. 2D. 5/2答案:B10. 已知函数f(x)=sin(x)+cos(x),则f(π/4)等于:A. √2B. 1C. 0D. -1答案:A二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1=1,公差d=2,则a10等于_________。

答案:1912. 函数y=x^3-3x^2+2的导数y'等于_________。

答案:3x^2-6x13. 已知抛物线y=x^2-4x+3的顶点坐标为_________。

高一数学命题与四种命题练习题

高一数学命题与四种命题练习题

高一数学命题与四种命题练习题典例剖析题型一:判断命题的真假【例 1】判断以下语句是不是命题:⑴张三是四川人;⑵ 1010是个很大的数;⑶ x22x 0 ;⑷ x2 6 0 ;⑸11 2 ;【例 2】判断以下语句是不是命题,假如,判断出其真假,若不是,说明原因.(1)矩形莫非不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?( 3)求证:x R ,方程x2x 10 无实根.(4)x 5(5)人类在 2020 年登上火星 .【例 3】设语句 p(x) : cos(x πsin x,写出 p(π,并判断它是不是真命题;))23【例 4】判断以下命题的真假.⑴ 空间中两条不平行的直线必定订交;⑵ 垂直于同一个平面的两个平面相互垂直;⑶ 每一个周期函数都有最小正周期;⑷ 两个无理数的乘积必定是无理数;⑸若 A ú B ,则 A I B B ;⑹若 m 1,则方程x22x m0 无实数根.⑺已知 a ,b ,c ,d R ,若 a c 或b d,则a b c d ;⑻已知 a ,b ,c ,d R ,a b c d ,则a c 或b d.【例 5】下边有四个命题:①若 a 不属于N,则 a 属于N;② 若 a N ,b N ,则a b 的最小值为 2 ;③ x2 1 2 x 的解可表示为 1 ,1 .此中真命题的个数为()A. 0个B.1个C.2个D.3个- 1 -【例 6】 命题 p :奇函数必定有f (0) 0 ;命题 q :函数 yx1的单一递减区间是[ 1,0) U (0 ,1].x则以下四个判断中正确的选项是( ) A . p 真 q 真B . p 真 q 假C . p 假 q 真D . p 假 q 假【例 7】 给出以下三个命题:① 若 a ≥ b 1,则a ≥b ;1 a1 b② 若正整数 m 和 n 知足 m ≤ n ,则 m(nm) ≤ n;2③ 设 P( x 1 ,y 1 ) 为 圆 O 1 : x 2y 2 9 上 任 一 点 , 圆 O 2 以 Q( a ,b) 为圆 心 且 半 径为 1 . 当(a x ) 2 (by )2 1时,圆 O 与圆 O 相切;1112此中假命题的个数为()A . 0B . 1C . 2D . 3【例 8】 已知三个不等式:ab0 ,ad0 ,cd 0(此中a ,b ,c ,d 均为实数).用此中两个不等bc ab式作为条件,余下的一个不等式作为结论构成一个命题,可构成真命题的个数是()A . 0B . 1C . 2D . 3【例 9】 已知 m ,n 是两条不一样直线,, , 是三个不一样平面,以下命题中正确的选项是()A .若m ∥ , ∥ ,则m ∥ n B .若,,则∥nC .若m ∥ , ∥,则∥D .若m,,则m ∥ nmn【例 10】 已知直线 m 、 n 与平面 、 ,给出以下三个命题:① 若 m ∥ ,n ∥ ,则 m ∥ n ;②若 m ∥ ,n ,则 nm ;③ 若 m,m ∥,则.此中真命题的个数是()A . 0B . 1C . 2D . 3【例 11】 已知三个不等式: ab 0, bc ad 0,cd0 (此中 a,b,c, d 均为实数) .用此中两个不等a b式作为条件,余下的一个不等式作为结论构成一个命题,可构成真命题的个数是 () A. 0B.1C.2D. 3【例 12】 下边有五个命题:① 函数 y sin 4 x cos 4 x 的最小正周期是 π.- 2 -②终边在 y 轴上的角的会合是 a | a kπ,k Z.2③在同一坐标系中,函数y sin x 的图象和函数y x 的图象有三个公共点.④把函数 y 3sin 2xπ的图象向右平移π获得y 3sin 2x的图象.36⑤函数 y sin xπ 在0,π上是减函数.2此中真命题的序号是.【例 13】对于四周体ABCD,以下命题正确的选项是(写出全部正确命题的编号).①相对棱 AB 与 CD 所在的直线是异面直线;②由极点 A 作四周体的高,其垂足是BCD 的三条高线的交点;③若分别作ABC 和ABD 的边 AB 上的高,则这两条高所在的直线异面;④ 分别作三组相对棱中点的连线,所得的三条线段订交于一点;⑤ 最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例 14】设和为不重合的两个平面,给出以下命题:①若内的两条订交直线分别平行于内的两条直线,则平行于;②若外一条直线 l 与内的一条直线平行,则 l 和平行;③设和订交于直线 l ,若内有一条直线垂直于l ,则和垂直;④直线 l 与垂直的充足必需条件是 l与内的两条直线垂直.上边命题中,真命题的序号是____.(写出全部真命题的序号)【例 15】若x2,5 和 x x | x 1或x 4 都是假命题,则x 的范围是___________.【例 16】设V是已知平面M上全部向量的会合,对于映照r r rf : V V ,a V ,记a的象为 f (a ) .若映照f :Vr r r r r rV 知足:对全部 a ,b V 及随意实数,都有 f ( a b) f (a) f (b) ,则 f 称为平面 M 上的线性变换.现有以下命题:r r①设 f是平面 M 上的线性变换,则f(0)0 ;r r r②对 a V ,设 f (a )2a ,则 f 是平面M上的线性变换;w.w.w.k.s.5.u.c.o.mr rV r r r是平面 M 上的线性变换;③若 e 是平面M上的单位向量,对a设 f (a )a e ,则 f④设 fr r r r r r是平面 M 上的线性变换,a,b V ,若 a ,b 共线,则 f ( a) ,f (b) 也共线.此中真命题是(写出全部真命题的序号)【例 17】设有两个命题:p : 不等式| x || x 1| a 的解集为R ,命题 q : f ( x)(73a) x在R上为减函数 . 如果两个命题中有且只有一个是真命题,那么实数a的取值范围- 3 -是.【例 18】对于 x 的方程 x2 121 k 0 ,给出以下四个命题:x2①存在实数 k ,使得方程恰有 2 个不一样的实根;②存在实数 k ,使得方程恰有 4 个不一样的实根;③存在实数 k ,使得方程恰有 5 个不一样的实根;④存在实数 k ,使得方程恰有8 个不一样的实根;此中假命题的个数是().A.0B.1C.2D.3【例 19】对于直角坐标平面内的随意两点A( x1,y1) 、 B(x2,y2 ) ,定义它们之间的一种“距离”:AB x1 x2y1y2.给出以下三个命题:①若点 C在线段 AB上,则 AC CB AB ;②在 ABC 中,若 C 90,则 AC2CB2AB 2;③在 ABC中,AC CB AB .此中真命题的个数为()A.1个B. 2个C. 3个D. 4个【例 20】设直线系 M : x cos( y 2)sin1(0 ≤≤ 2 π) ,对于以下四个命题:A . M 中全部直线均经过一个定点B.存在定点 P 不在 M 中的任一条直线上C.对于随意整数n(n ≥ 3) ,存在正 n 边形,其全部边均在M 中的直线上D. M 中的直线所能围成的正三角形面积都相等此中真命题的代号是(写出全部真命题的代号).题型二:四种命题之间的关系【例 21】命题“若x y ,则| x | | y |”,写出它的抗命题、否命题、逆否命题,并判断它们的真假【例 22】写出命题“若a,b都是偶数,则a b 是偶数”的抗命题,否命题,逆否命题,并判断它们的真假 .【例 23】写出以下命题的抗命题,否命题,逆否命题,并判断它们的真假.⑴ “负数的平方是正数”;⑵ “若 a 和b都是偶数,则a b 是偶数”;⑶ “当 c 0时,若 a b ,则 ac bc”;⑷ “若 x y 5 ,则x 3 且y 2 ”;【例 24】写出以下命题的否命题,并判断否命题的真假.- 4 -⑴命题 p :“若ac0, 则二次方程 ax2bx c0 没有实根”;⑵命题 q :“若x a 且x b ,则x2(a b) x ab 0 ”;⑶命题 r :“若 (x1)(x 2)0 ,则x 1 或 x 2 ”.⑷命题 l :“ ABC中,若 C 90,则A、 B 都是锐角”;⑸命题 s :“若abc0 ,则a,b,c中起码有一个为零”.【例 25】假如两个三角形全等,那么它们的面积相等;①假如两个三角形的面积相等,那么它们全等;②假如两个三角形不全等,那么它们的面积不相等;③假如两个三角形的面积不相等,那么它们不全等;④命题②、③、④ 与命题① 有何关系?【例 26】以下命题中正确的选项是()① “若 x2y20 ,则x,y不全为零”的否命题② “正多边形都相像”的抗命题③ “若 m0 ,则x2x m 0 有实根”的逆否命题④ “若 x3是有理数,则 x 是无理数”的逆否命题A .①②③④B.①③④C.②③④D.①④【例 27】命题:“若220(a ,b R ),则“b0”的逆否命题是()a b a A .若a b 0( a,b R ) ,则 a 2b20B.若a0且b0(a,R ),则22b a bC.若a b0(a ,b220 R ) ,则 a bD.若a 0或,,则a22b 0( a b R)b【例 28】命题:“若 x21,则 1 x 1 ”的逆否命题是(2,则 x≥ 1 或 x≤ 1B.若A .若x≥1 C.若 x 1 或 x2D.若1,则x 1)1 x 1 ,则x21x ≥ 1 或 x ≤1 ,则x2≥1【例 29】已知命题“假如 a ≤ 1 ,那么对于 x 的不等式 (a 24) x2( a 2) x 1 ≥ 0 的解集为”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有()A.0 个B.2 个C.3 个D.4 个【例 30】有以下四个命题:① “若 x y 0 ,则x, y互为相反数”的抗命题;② “全等三角形的面积相等”的否命题;③ “若 q ≤ 1 ,则 x22x q0有实根”的逆否命题;④ “等边三角形的三个内角相等”抗命题;此中真命题的个数为()- 5 -A .1B. 2C. 3D. 4【例 31】下边有四个命题:①会合 N 中最小的数是1;② 若 a 不属于N,则 a 属于N;③若a N ,b N , 则a b 的最小值为2;④ x212x 的解可表示为1,1 .此中真命题的个数为()A.0个B.1个C.2个D.3个【例 32】有以下四个命题:①“若x y0,则 x, y互为相反数”的抗命题;② “全等三角形的面积相等”的否命题;③“若 q1,则x22x q0 有实根”的逆否命题;④“不等边三角形的三个内角相等”抗命题 . 此中真命题为()A.①②B.②③C.①③D.③④【例 33】原命题:“设 a ,b,c R ,若a b ,则ac2bc2”以及它的抗命题、否命题、逆否命题中,真命题共有()个.A . 0B.1C. 2D. 4【例 34】给出以下四个命题:① “若 x y0 ,则x,y互为相反数”的抗命题;② “全等三角形的面积相等”的否命题;③ “若 q ≤ 1 ,则 x2x q0 有实根”的逆否命题;④ “不等边三角形的三内角相等”的逆否命题.此中真命题是()A.①②B.②③C.①③D.③④【例 35】命题:“若 x21,则 1 x 1 ”的逆否命题是()A .若x2≥1,则 x≥ 1 或 x≤ 1B.若 1 x 1 ,则x21C.若 x 1 或 x1,则x21D.若 x ≥ 1 或 x ≤ 1 ,则x2≥1【例 36】有以下四个命题:①“若 x y 0 ,则x,y互为相反数”的抗命题;②“全等三角形的面积相等”的否命题;③“若 q ≤ 1 ,则 x2 2 x q0 有实根”的逆否命题;④“不等边三角形的三个内角相等”抗命题.此中真命题为()A.①②B.②③C.①③D.③④【例 37】命题“若ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是.【例 38】以下命题中_________为真命题.① “A I B A ”建立的必需条件是“AüB”;- 6 -② “若 x2 y20 ,则 x ,y全为0”的否命题;③ “全等三角形是相像三角形”的抗命题;④ “圆内接四边形对角互补”的逆否命题.【例 39】“在ABC 中,若 C 90 ,则 A 、 B 都是锐角”的否命题为;【例 40】有以下四个命题:①命题“若xy1 ,则 x ,y互为倒数”的抗命题;②命题“面积相等的三角形全等”的否命题;③命题“若 m≤ 1 ,则x 2有实根”的逆否命题;④命题“若2 x m 0AIB B,则A B ”的逆否命题.此中是真命题的是(填上你以为正确的命题的序号).【例 41】命题“若x, y是奇数,则x y 是偶数”的逆否命题是;它是命题.【例 42】写出命题“若m0 ,则方程x2x m 0 有实数根”的逆否命题,判断其真假,并加以证明.【例 43】已知等比数列 { a n } 的前 n 项和为 S n.⑴若 S m, S m 2, S m 1成等差数列,证明a m, a m 2, a m 1成等差数列;⑵ 写出⑴的抗命题,判断它的真伪,并给出证明.【例 44】在平面直角坐标系xOy 中,直线l与抛物线 y 22x 订交于A、B两点.(1)求证:“假如直线l过点 T( 3, 0),那么OA OB=3”是真命题;(2)写出( 1)中命题的抗命题,判断它是真命题仍是假命题,并说明原因.- 7 -。

高中数学命题练习题

高中数学命题练习题

高中数学命题练习题课前预备1、“凡直角均相等“的否命题是()(A)凡不是直角均不相等。

(B)凡相等的两角均为直角。

(C)不差不多上直角的角不相等。

(D)不相等的角不是直角。

2、已知P:|2x-3|1;q: ;则﹁p是﹁q的()条件(A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既非充分条件又非必要条件3、“”是“或”的()(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件4、命题甲:x+y3,命题乙:x1且y2.则甲是乙的条件.5、有下列四个命题:①命题“若,则,互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1,则有实根”的逆否命题;④命题“若= ,则”的逆否命题。

其中是真命题的是(填上你认为正确的命题的序号).6、写出命题“若xy= 0 则x = 0或y = 0”的逆命题、否命题、逆否命题课后作业一、选择:1、()A充分而不必要条件B必要而不充分条件C充分必要条件D即不充分也不必要条件2、给出如下的命题:①对角线互相垂直且相等的四边形是正方形;②00=1;③假如x+y是整数,那么x,y差不多上整数;④3或3.其中真命题的个数是……( )(A)3 (B)2 (C)1 (D)0 .3、已知是的充分不必要条件,是的必要条件,是的必要条件.那么是成立的:()条件(A)充分不必要(B)必要不充分(C)充要(D)既不充分也不必要4、设集合,,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件二、填空:5、写出“a,b均不为零”的(1)充分非必要条件是(2)必要非充分条件是:__(3)充要条件是(4)非充分非必要条件是6、在以下空格内填入“充分非必要”,“必要非充分”,“充要”,“非充分非必要”(1)“a>0且b>0”是“a+b>0且ab>0”的条件(2)“a>2且b>2”是“a+b>4且ab>4”的条件(3) 的______________条件7、的一个充分不必要条件是_______________8、指出下列各题中甲是乙的什么条件?(1)甲:a、b、c成等比数列;乙:b2=ac________________.(2)甲:______________________(3)甲:直线l1∥l2,乙:直线l1与l2的斜率相等_______________ ________三、解答9、已知命题P:方程x2+mx+1=0有两个不相等的负根;Q:方程4x 2+4(m-2)x+1=0无实根.若P或Q为真,P且Q为假,求m的取值范畴.10、试写出一元二次方程,①有两个正根②两个小于的根③一个正根一个负根的一个充要条件。

(推荐)高中数学命题练习题

(推荐)高中数学命题练习题

1.四种命题的形式:用P和q分别表示原命题的条件和结论,用「P和「q分別表示P和q的否泄,则四种命题的形式为:原命题:若P则q:逆命题:若q则P:否命题:若「P则「q;逆否命题:若「q则「P.2.四种命题的关系逆命题若諏P[否逆否命题若-I 狈ii -ip3.逻辑联结词:“或”、“且”、"非”这些词叫做逻辑联结词.(1)不含逻借联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题. (2)复合命题的构成形式:©p或q: ®p且q:③非p (即命题p的否立).(3)复合命题的真假判断(利用真值表):P q非》F或g P且勺真真假真真真假假真假假真真真假假假真假假4.充分条件与必要条件贬」①若P = q,则P是q的充分条件,q是P的必要条件:②若phq,但q^P,则P是q的充分不必要条件,q是P的必要不充分条件:③若q = p且p q,则卩是Q成立的必要不充分条件:④若既有P = q,又有q^P,记作pOq,则p是q的充分必要条件(充要条件).⑤若卩q且q p,则卩是q成立的既不充分也不必要条件.5.对含有一个量词的命题进行否定(I)对含有一个量词的全称命题的否泄全称命题P: ExeM卫⑴,他的否泄卡:全称命题的否泄是特称命题。

(II)对含有一个屋词的特称命题的否泄特称命题P:女丘必巩x),他的否泄卡:VxeM,-,p(x)特称命题的否左是全称命题。

1写岀下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)已知b, c为实数,若GCV O,则ax2+bx + c = 0有两个不相等的实数根:(2)两条平行线不相交:⑶若x2 + y2 =0,贝吆,y全为零.(4)已知仔上是实数,若ab二0,则a=0或b=02说明下列命题形式,指出构成它们的简单命题:⑴矩形的对角线垂直平分:⑵不等式疋7-2>0的解集是{步>2或x<-l}:(3)4>3;⑷方程戏- 2兀十3二0没有实数根.3(2008广东)已知命题卩:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A・q B・p/\q C・(->”)人(「°)D・(-7”v(-ig)4(2009年北京)“a = ? + 2R;r(kwZ)” 是“cos2a = 1” 的()6 2A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5(2008 福建)设集合A = {x|—<0 B = {x|O<x<3},那么“mwA” 是“ m w B ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6 (2007 宁夏)已知命题“:V.v e 7?,siiix< 1 > 则((注:文档可能无法思考全面,请浏览后下载,供参考。

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)

高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1 2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.48.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是.10.命题“如果a2=b2,那么a=b”的逆命题是命题.(填写“真”或“假”)11.命题:“两直线平行,则同旁内角互补”的逆命题为.12.命题“若a=b,则a2=b2”的逆命题是.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是命题.(填“真”或“假”)14.命题“如a=b,那么|a|=|b|”的逆命题是命题.(填“真”或“假”)15.命题:“如果a=b,那么3a=3b”的逆命题是,该逆命题是(填“真”或“假”)命题.16.“若a=b,则a2=b2”的逆命题是命题.(填“真”或“假”)17.命题“若a=b,则|a|=|b|”的逆命题是.18.命题“如果a2=b2,那么a=b”的逆命题是命题(填“真”或“假”).19.命题“若a2=b2,则a=b.”的逆命题是.20.命题:“如果a=b,那么a2=b2”的逆命题是,该命题是命题(填真或假).21.命题:“若a=b,则a4=b4”,该命题的逆命题是;该命题的逆命题是命题.(填“真”或“假”)22.命题“如果a2=b2,那么a=b”的逆命题是,该命题的逆命题是命题(填真或假)23.命题“如果,那么a=b”的逆命题是:.24.命题“如果a=b,那么a2=b2”的逆命题是.高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)参考答案与试题解析一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1【解答】解:命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可以取a=﹣1,b=1说明.故选:D.【点评】本题考查命题与定理,解题的关键是理解题意,灵活运用所学知识解决问题.2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补是真命题;②若a2=b2,则a=b的逆命题是若a=b,则a2=b2是真命题;③锐角与钝角互为补角的逆命题是互补的角是锐角与钝角,是假命题;④相等的角是对顶角的逆命题是对顶角相等,是真命题;故选:B.【点评】此题主要考查了命题与定理,正确把握相关性质是解题关键.3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个【解答】解:①正确.,,,0,cos60︒五个数中,其中,是无理数.②错误.mx2﹣2x﹣10是代数式,表示方程.③错误.平行四边形是中心对称图形,不是轴对称图形.④正确.“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤错误.在同圆或等圆中,相等的圆心角所对的弧相等.⑥错误.单项式的次数是2次.故选:B.【点评】本题考查无理数、一元二次方程、代数式、中心对称图形、轴对称图形、圆心角与弧之间的关系、单项式的次数的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④对顶角相等的逆命题是相等的角是对项角,是假命题;它们的逆命题是真命题的个数是2个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【解答】解:在,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.4【解答】解:把原命题的题设与结论交换得到它的逆命题,所以①正确;真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;假命题:若am>bm,则a>b,其逆命题:若a>b,则am>bm,它是假命题,所以③错误;真命题的逆命题不一定是真命题,所以④错误;每个定理一定有逆命题,所以⑤正确;命题“若a=b,那么a3=b3”的逆命题为“若a3=b3,则a=b”,它是真命题,所以⑥错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理;两个命题的题设与结论互换的命题互为逆命题.8.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b【解答】解:已知本题中命题的题设是a=b,结论是|a|=|b|,所以它的逆命题中的题设是|a|=|b|,结论是a=b,所以本题中的逆命题是如果|a|=|b|,那么a=b.故选:B.【点评】本题考查了互逆命题的知识.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.10.命题“如果a2=b2,那么a=b”的逆命题是真命题.(填写“真”或“假”)【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,故答案为:真.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如果a=b,那么ac=bc.”,它的逆命题是“如果ac=bc,那么a=b.”,是假命题,故答案为:假.【点评】本题考查的是命题的概念、命题的真假判断,掌握逆命题的概念是解题的关键.14.命题“如a=b,那么|a|=|b|”的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如a=b,那么|a|=|b|”的逆命题是如果|a|=|b|,那么a=b,是假命题,【点评】本题考查的是命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.命题:“如果a=b,那么3a=3b”的逆命题是如果3a=3b,那么a=b,该逆命题是真(填“真”或“假”)命题.【解答】解:根据题意得:命题“如果a=b,那么3a=3b”的条件是如果a=b,结论是3a=3b,故逆命题是如果3a=3b,那么a=b,该命题是真命题.故答案为:如果3a=3b,那么a=b,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.也考查了命题的真假判断.16.“若a=b,则a2=b2”的逆命题是假命题.(填“真”或“假”)【解答】解:若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.此逆命题为假命题.故答案为假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.17.命题“若a=b,则|a|=|b|”的逆命题是若|a|=|b|,则a=b.【解答】解:命题“若a=b,则|a|=|b|”的逆命题是:“若|a|=|b|,则a=b”.故答案为若|a|=|b|,则a=b【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.命题“如果a2=b2,那么a=b”的逆命题是真命题(填“真”或“假”).【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.命题“若a2=b2,则a=b.”的逆命题是若a=b,则a2=b2.【解答】解:命题“若a2=b2,则a=b”的条件是a2=b2,结论是a=b,故逆命题是:若a=b,则a2=b2.故答案为如果a=b,那么a2=b2.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.20.命题:“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b,该命题是假命题(填真或假).【解答】解:根据题意得:命题“如果a=b,那么a2=b2”的条件是如果a=b,结论是a2=b2”,故逆命题是如果a2=b2,那么a=b,该命题是假命题.故答案为:如果a2=b2,那么a=b;假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.21.命题:“若a=b,则a4=b4”,该命题的逆命题是若a4=b4,则a=b;该命题的逆命题是假命题.(填“真”或“假”)【解答】解:“若a=b,则a4=b4”的条件是:a=b,结论是:a4=b4,∴逆命题是:若a4=b4,则a=b,若a4=b4,则a=±b,故为假命题,故答案为若a4=b4,则a=b,假.【点评】本题考查了互逆命题的知识以及真假命题的判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,难度适中.22.命题“如果a2=b2,那么a=b”的逆命题是如果a=b,那么a2=b2,该命题的逆命题是真命题(填真或假)【解答】解:命题“如果a2=b2,那么a=b”的条件是如果a2=b2,结论是a=b,故逆命题是:如果a=b,那么a2=b2,为真命题.故答案为如果a=b,那么a2=b2,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.命题“如果,那么a=b”的逆命题是:如果a=b,那么.【解答】解:命题“如果a=b”的逆命题是:如果a=b,那么故答案为:如果a=b,那么【点评】本题考查了逆命题的概念.关键是明确交换原命题的题设和结论,得到逆命题.24.命题“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b.【解答】解:“如果a=b,那么a2=b2”的逆命题是:如果a2=b2,那么a=b.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考点卡片1.四种命题及其关系四种命题及其关系.1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题.3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.。

高考高中数学四种命题

高考高中数学四种命题

问题2:判断下列命题的真假,你能发现各命题之间 有什么关系? ①如果两个三角形全等,那么它们的面积相等
②如果两个三角形的面积相等,那么它们全等
③如果两个三角形不全等,那么它们的面积不相等
④如果两个三角形的面积不相等,那么它们不全等
如果第一个命题的条件和结论是第二个命题 的条件和结论的否定,那么这两个命题叫互否 命题.如果把其中一个命题叫做原命题,那么另 一个叫做原命题的否命题
问题1:下列语句的表述形式有什么特点?
你能判断它们的真假吗?
(1)若xy=1,则x,y互为倒数 (2)相似三角形的周长相等 (3)2+4=5 (4)如果b≤-1,那么方程x2-2bx+b2+b=0 有实根 (5)若A∪B=B,则BA (6)3不能被2整除
问题2:判断下列命题的真假,你能发现各命题之间 有什么关系? ①如果两个三角形全等,那么它们的面积相等
问题2:判断下列命题的真假,你能发现各命题之间 有什么关系? ①如果两个三角形全等,那么它们的面积相等
②如果两个三角形的面积相等,那么它们全等
③如果两个三角形不全等,那么它们的面积不相等
④如果两个三角形的面积不相等,那么它们不全等
原命题:若p,则q 逆命题: 若q,则p 否命题: 若非p,则非q 逆否命题:若非q,则非p
原命题 若 p则 qห้องสมุดไป่ตู้
真互 假否 无命 关题 否命题 若非p则非q 逆命题 若q则p 真 假 无 关
互 否 命 题
逆否命题 若非q则非p
练习: 1.把下列命题写成“若p则q”的形式,并判断其真假 ①实数的平方是非负数; ②等底等高的两个三角形是全等三角形; ③能被6整除的数既能被3整除也能被2整除; ④弦的垂直平分线经过圆心,并平分弦所对的弧. 2.写出命题“若a和b都是偶数,则a+b是偶数”的 否命题和逆否命题. 3.判断命题“若x+y≤5,则x≤2或y≤3”的真假

2021年高一数学1.7.2四种命题(二)基础练习

2021年高一数学1.7.2四种命题(二)基础练习

1.7.2 四种命题班级 学号 姓名一、 基础练习:1.对于命题“若R a ∈,且a 2是有理数,则a 为无理数”用反证法证明时,假设a 是有理数后,有下面导出矛盾的方法.(1) a 是有理数,2是无理数,∴ a2是无理数,与a 2是有理数矛盾(与已知条件矛盾);(2) a 2是有理数,2是无理数, ∴a 是无理数,与假设a 是有理数矛盾(与假设矛盾);(3) a 是有理数,a 2是有理数,2)2(=--∴a a 是有理数与2是无理数矛盾(与公理矛盾).其中正确的推理有( )A .0个 B. 1个 C. 2个 D. 3个2.用反证法证明命题“如果33,b a b a >>那么”时,假设的内容应是( ) A.33b a = B.33b a < C. 33b a =,且33b a < D. 33b a =,或33b a <3.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D. 至少有两个解4.用反证法证明“ABC ∆中,若B ∠∠为直角,则C 一定是锐角”,其反设正确的是( )A. ∠B 是直角B. ∠B 是直角或钝角C. ∠B 是钝角D. ∠B 不是钝角5.命题“1,0|1||1|,===-+-b a b a b a 则是实数,若”,用反证法证明时的反设为________________________二、 能力培养:6.有下列叙述,其中正确的有( )(1);b a b a <>的反面是(2);或的反面是y x y x y x <>=(3)三角形的外心在三角形外的反面是三角形的外心在三角形内;(4)三角形最多有一个钝角的反面是三角形没有钝角7. 用反证法证明“若ab N b a ,,∈可以被7整除,则b a ,中至少有一个能被7整除”, 其反设正确的是( )A. b a ,都能被7整除B. b a ,都不能被7整除C.a 不能被7整除D.b a ,有一个不能被7整除8.“若62,32,22,222πππ+-=+-=+-=m k c k n b n m a b a 为实数,且,则c b a ,,中至少有一个大于0”, 用反证法证明时,下列假设正确的是( )A. c b a ,,中至多有一个大于0B. c b a ,,中至多有一个不大于0C. c b a ,,中至多有两个不大于0D. c b a ,,中三个都不大于09.用反证法证明“若ab 不是偶数,则b a ,都不是偶数”时,应假设_______________________________________10.用反证法证明命题“若整数n 的立方是偶数,则n 也是偶数”如下:假设n 为奇数,则=+=∈+=33)12(),(12k n z k k n __________与已知3n 是偶数矛盾,所以n 是偶数.三、 综合拓展:11.已知函数)(x f 对其定义域的任意两个实数,,b a 当b a <时,都有)()(b f a f <,证明:0)(=x f 至多有一实根.12.已知下列三个方程:022,0)1(,03442222=-+=+-+=+-+a ax x a x a x a ax x 至少有一个方程有实根,求实数a 的取值范围1.C2.D3.C4.B5.1,1,≠≠≠b a b a 假设b a ,中至少有一个是偶数 10.1612823+++k k k 是奇数0)(=x f 至少有两个实根,,21x x 设0)(,0)(2121==<x f x f x x 则与)()(21x f x f <0)(=x f 至多有一个实根.12.假设三个方程都无实根,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种命题·典型例题
能力素质
例命题“若=,则与成反比例关系”的否命题是1 y x y k x
[ ]
A y x y
B y kx x y
C x y y .若≠,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k x
k x
D y x y .若≠,则与不成反比例关系k x
分析 条件及结论同时否定,位置不变.
答 选D .
例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________.
分析 只要确定了“p ”和“q ”,则四种命题形式都好写了. 解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角.
例3 “若P ={x |x|<1},则0∈P ”的等价命题是________. 分析 等价命题可以是多个,我们这里是确定命题的逆否命题.
解原命题的等价命题可以是其逆否命题,所以填“若,则

0P p ≠{x||x|<1}”
例4 分别写出命题“若x2+y2=0,则x、y全为0”的逆命题、否命题和逆否命题.
分析根据命题的四种形式的结构确定.
解逆命题:若x、y全为0,则x2+y2=0;
否命题:若x2+y2≠0,则x,y不全为0;
逆否命题:若x、y不全为0,则x2+y2≠0.
说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y不全为0”,这要特别小心.
例5 有下列四个命题:
①“若xy=1,则x、y互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
A B B A B

④“若∪=,则”的逆否命题,其中真命题是
[ ] A.①②B.②③
C.①③D.③④
分析应用相应知识分别验证.
解写出相应命题并判定真假
①“若x,y互为倒数,则xy=1”为真命题;
②“不相似三角形周长不相等”为假命题;
③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;
选C.
点击思维
例6 以下列命题为原命题,分别写出它们的逆命题,否命题和逆否命题.
①内接于圆的四边形的对角互补;
②已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d;
分析首先应当把原命题改写成“若p则q”形式,再设法构造其余的三种形式命题.
解对①:原命题:“若四边形内接于圆,则它的对角互补”;
逆命题:“若四边形对角互补,则它必内接于某圆”;
否命题:“若四边形不内接于圆,则它的对角不互补”;
逆否命题:“若四边形的对角不互补,则它不内接于圆”.对②:原命题:“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,其中“已知a、b、c、d是实数”是大前提,“a=b,c=d”是条件,“a+c=b+d”是结论.所以:
逆命题:“已知a、b、c、d是实数,若a+c=b+d,则a =b,c=d”;
否命题:“已知a、b、c、d是实数,若a≠b或c≠d,则a +c≠b+d”(注意“a=b,c=d”的否定是“a≠b或c≠d”只需要至少有一个不等即可);
逆否命题:“已知a、b、c、d是实数,若a+c≠b+d则a ≠b或c≠d”.
逆否命题还可以写成:“已知a、b、c、d是实数,若a+c ≠b+d则a=b,c=d两个等式至少有一个不成立”
说明:要注意大前题的处理.试一试:写出命题“当c>0时,若a>b,则ac>bc”的逆命题,否命题,逆否命题,并分别判定其真假.
例7 已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x +a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.
分析如果从正面分类讨论情况要复杂的多,而利用补集的思想(也含有反证法的思想)来求三个方程都没有实根的a范围比较简单.
解由
--<
--<
+<
得16a4(34a)0 (a1)4a0
4a8a0
2
22
2





说明:利用补集思想,体现了思维的逆向性.
学科渗透
例8 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.
①>时,-+=无实根;m mx x 10214
②当abc =0时,a =0或b =0或c =0.
分析 改造原命题成“若p 则q 形式”再分别写出其逆命题、否命题、逆否命题.在判定各种形式命题的真假时要注意利用等价命题的原理和规律.
解①原命题:“若>,则-+=无实根”,是真 m mx x 10214
命题;
逆命题:“若-+=无实根,则>”,是真命题;否命题:“若≤,则-+=有实根”,是真命题;逆否命题:“若-+=有实根,则≤”,是真命题.mx x 10m m mx x 10mx x 10m 22214
14
14
②原命题;“若abc =0,则a =0或b =0或c =0”,是真命题;
逆命题:“若a =0或b =0或c =0,则abc =0”是真命题; 否命题:“若abc ≠0,则a ≠0且b ≠0且c ≠0”,是真命题;(注意:“a =0或b =0或c =0”的否定形式是“a ≠0且b ≠0且c ≠0”
逆否命题:“若a ≠0且b ≠0且c ≠0,则abc ≠0”,是真命
题.
说明:判定四种形式命题的真假可以借助互为逆否命题的等价性.
例若、、均为实数,且=-+π,=-+π,=-+π,求证:、、中至少有一个大于.9 a b c a x 2y b y 2z c z 2x a b c 022223
6
分析 如果直接从条件推证,方向不明,过程不可预测,较难,可以使用反证法.
解 设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则有a +b +c ≤0,而
a b c (x 2y )(y 2z )(z 2x )222++=-+π+-+π+-+π236
=(x 2-2x)+(y 2-2y)+(z 2-2z)+π
=(x -1)2+(y -1)2+(z -1)2+(π-3)
∴ a +b +c >0这与a +b +c ≤0矛盾.
因此a 、b 、c 中至少有一个大于0.
说明:如下表,我们给出一些常见词语的否定.。

相关文档
最新文档