梁的弯曲(应力、变形)
梁的弯曲应力
校核强度: 截面设计:
max
M max WZ
[ ]
Wz
M max [ ]
确定许用荷载: Mmax Wz [ ]
23
3、梁的切应力强度校核
(1)切应力计算公式
max
F S* Qmax Z max Izb
FQmax— 梁内最大剪力
Sz*— 面积A对中性轴静矩
Iz — 截面惯性矩
6
dθ ρ
1
2
1
2
o1
o2
y
ab
1 dx 2
o'1
z
(中性轴)
a'
dx
o'2 b'
y
1
2
y
(对称轴)
纵向纤a)维线应变变化b)规律:
c)
变形前: ab o1o2 dx
变形后: ab ( y)d o1o2 dx d
ab的伸长量: S ab dx ( y)d d yd
Pa=14.4MPa
B
FQ S zB Izb
(
200103 120000109 2.29107 1012 100103
)
Pa=10.4MPa
21
(3) 求圆形截面最大的切应力
max
4 3
FQ A
(4 3
2001003 ) Pa=19.1MPa
1 π 133.52 106
1
8.4 平面弯曲杆件的应力和变形
8.4.1 基本概念 8.4.2 梁横截面上的正应力公式 8.4.3 梁的切应力 8.4.4 梁的挠度和转角
2
梁的弯曲(应力、变形)
2
回顾与比较
内力
应力
F
A
FAy
编辑ppt
T
IP
M
?
?
FS
3
§9-6 梁的弯曲时的应力及强度计算
一、弯曲正应力 Normal stress in bending beam
梁段CD上,只有弯矩,没有剪力--纯弯曲Pure bending
梁段AC和BD上,既有弯矩,又有剪力--剪力弯曲Bending by
transverse force
编辑ppt
4
研究对象:等截面直梁 研究方法:实验——观察——假定
编辑ppt5Leabharlann 实验观察——梁表面变形特征
横线仍是直线,但发生 相对转动,仍与纵线正交
纵线弯成曲线,且梁的 下侧伸长,上侧缩短
以上是外部的情况,内部如何? 想象 —— 梁变形后,其横截面仍为平面,且垂直
x
61.7106Pa61.7MPa
编辑ppt
13
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
M ql /867.5kNm 2
x
2. C 截面最大正应力
120
B
x
180
K
30 C 截面弯矩
z
MC60kN m
FBY
y
C 截面惯性矩
IZ5.83120 5m 4
x 90kN
C max
M C y max IZ
于变形后梁的轴线,只是绕梁上某一轴转过一个角度 透明的梁就好了,我们用计算机模拟 透明的梁
编辑ppt
6
编辑ppt
7
总之 ,由外部去 想象内部 —— 得到
梁的弯曲正应力实验报告
梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。
梁是一种常见的结构,在受到外力作用时会发生弯曲变形。
为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。
实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。
实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。
在梁的顶部和底部,会出现正应力和负应力。
本实验主要关注梁上的正应力分布。
根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。
实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。
具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。
实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。
通常情况下,梁上的正应力分布呈现出一定的规律性。
在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。
这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。
实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。
例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。
这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。
此外,梁的截面形状也对梁的弯曲正应力分布有影响。
例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。
梁的弯曲应力
Iz=πD4/64 Iz=π(D4-d4)/64 若设圆环的直径比d/D=α,则相
应的截面抗弯系数为
Wz
=
π D3 32
Wz
=
π D3 32
(1−α 4 )
y 第10章 梁的弯曲应力 C Dz
y
O
z
d D
工程力学
q=60kN/m
A
1m
C
l = 3m
FS 90kN
(+ ) (− )
M ql2 / 8 = 67.5kN⋅ m
T形截面外伸梁尺寸及受载如图,截面对形心轴z的惯性矩
Iz=86.8cm4,yl=3.8cm。求梁横截面上的最大拉应力和最大压应力。
解 1)由静力平衡
2kN
0.8kN
y1 y2 6cm
方程求出梁的支反力
FA=0.6kN,FB=2.2kN A
C
BD
zC
作弯矩图。 得最大正弯矩在截面
1m 1m 1m
FA
FB
=
−
E ρ
I
z
1 ρ
=
Mz EIz
重要公式 σ = − Mz y Iz
工程力学
σ = − My Iz
第10章 梁的弯曲应力
M AZ y
x
y 横截面上正应力分布规律: (1)中性轴是过横截面形心的一条直线。中性轴上,正应力为零。 (2)以中性轴为界,横截面上的一侧受拉,一侧受压。 (3)离中性轴越远,正应力的绝对值越大。在横截面上离中性轴 最远的边或点上有最大的拉应力和最大的压应力。
几何关系 ( 平截面假定 )
正应变与中性层曲率间的关系
物理关系 ( Hooke 定律 )
正应力与中性层曲率间的关系
梁的应力计算公式全部解释
梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。
在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。
梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。
梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。
在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。
下面将分别对这三种类型的应力计算公式进行详细解释。
1. 弯曲应力计算公式。
梁在受到外部力的作用时,会产生弯曲应力。
弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。
其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。
弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。
2. 剪切应力计算公式。
梁在受到外部力的作用时,会产生剪切应力。
剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。
其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。
剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。
3. 轴向应力计算公式。
梁在受到外部力的作用时,会产生轴向应力。
轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。
怎样推导梁的应力公式、变形公式
05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@ ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。
回信请注明班级和学号的后面三位数。
1 * 问题的提出 ........................................................................................................................... 12 下面就用统一的步骤,研究梁的应力公式和变形公式。
................................................... 23 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 24 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) ....................................................................5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................7 7 2.1 梁剪切的应力公式推导 ....................................................................................................8 8 2.2 梁弯曲的剪应力强度条件的建立 ....................................................................................9 93. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。
梁的弯曲正应力实验
梁的弯曲正应力实验梁的弯曲正应力实验概述梁的弯曲正应力实验是一种用于测试材料在受弯曲载荷作用下的变形和应力的实验。
该实验可以帮助工程师和科学家了解材料的性能和特性,以便更好地设计和制造各种产品。
实验原理当一根梁在两端受到垂直于其长度方向的载荷时,它会发生弯曲变形。
这种变形会导致梁内部产生正应力和剪切应力。
在弯曲过程中,梁上表面会发生拉伸,下表面会发生压缩,因此产生的正应力称为弯曲正应力。
根据材料的不同特性和几何形状,弯曲正应力可以通过不同的公式计算得出。
通常使用的公式包括:σ = M*y/I其中σ是弯曲正应力,M是载荷矩,y是距离中心轴线最远点的距离(也称为截面离心距),I是截面惯性矩。
实验装置进行梁的弯曲正应力实验需要使用一些特殊设备。
以下是常见的实验装置:1. 弯曲试验机弯曲试验机是用于施加载荷并记录变形的设备。
它通常由一个移动横梁和两个支架组成。
被测试的梁被放置在支架上,然后通过移动横梁施加载荷。
试验机可以记录载荷和变形数据,并计算出弯曲正应力。
2. 梁样品梁样品是进行实验的材料样本。
它们可以采用不同的几何形状和尺寸,以适应不同类型的实验。
通常使用的梁样品包括简支梁、固定端梁、自由端梁等。
3. 测量仪器测量仪器用于测量载荷和变形数据。
常见的测量仪器包括负荷传感器、位移传感器、应变计等。
实验步骤进行梁的弯曲正应力实验需要按照以下步骤进行:1. 准备工作首先需要准备好所有所需设备和材料,包括弯曲试验机、梁样品、测量仪器等。
2. 安装样品将所选样品安装在支架上,并根据需要调整其位置和方向。
3. 施加载荷使用弯曲试验机施加载荷,直到梁样品发生弯曲变形。
记录载荷和变形数据。
4. 计算弯曲正应力根据所选的公式计算出弯曲正应力。
将载荷和变形数据输入计算器或电脑程序中,即可得到结果。
5. 分析数据对实验结果进行分析,了解材料的性能和特性。
如果需要,可以进行多次实验以获取更准确的数据。
应用领域梁的弯曲正应力实验广泛应用于各个领域,如材料科学、土木工程、机械工程、航空航天等。
建筑力学第7章梁的弯曲应力和变形
10 mm 5mm 2
该平面图形对z1轴和y1轴的静矩分别为
S z1 Ai yCi A1 yC1 A2 yC 2 1200 60 700 5mm3 7.55104 mm3
i 1 n
S y1 Ai zCi A1 zC1 A2 zC 2 1200 5 700 45mm3 3.75104 mm3
xC
yC
S z A yC S y A zC
注意: 当坐标轴通过平面图形的形心时,其静矩为
零;反之,若平面图形对某轴的静矩为零,则该轴必通
过平面图形的形心。 如果平面图形具有对称轴,对称轴必然是平面图形 的形心轴,故平面图形对其对称轴的静矩必等于零。
例7.1
矩形截面尺寸如图7-2所示。试求该矩形对z1轴的静
和y轴的惯性矩
取平行于z轴的微面积dA, dA
到z轴的距离为y,则 dA=bdy 截面对z轴的惯性矩为 截面对y轴的惯性矩为
b
h 2 h 2
I z y 2 dA
A
bh3 y bdy 12
2
2
I y z 2 dA
A
b 2 b 2
hb3 z hdz 12
4
形心主惯性轴
形心主惯性
对平面图形而言,对通过O点的任意两根正交坐标轴z、
y的惯性积Iyz,如Iyz=0,则这对坐标轴称为通过O点的主
惯性轴,简称主轴。截面对主惯性轴的惯性矩称为主惯性 矩,简称主惯矩。 如果O点在截面形心,如同样满足上述条件,这时通过
形心的主惯性轴称为形心主惯性轴,简称形心主轴;图形
对形心主轴的惯性矩称为形心主惯性矩,简称形心主惯矩 。
对于具有对称轴的平面图形,其形心主轴的位置可按 如下方法确定: 1)如果图形有一根对称轴,则该轴必是形心主轴, 而另一根形心主轴通过图形的形心且与该轴垂直。 2)如果图形有两根对称轴,则该两轴就是形心主轴 。 3)如果图形具有两个以上的对称轴,则任一根对称 y 轴都是形心主轴,且对任一形心主轴的惯性矩都相等。 y z z
梁的弯曲(应力、变形)
梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。
材料力学梁的弯曲应力
52 y
解:(1)求截面形心
z1
8 0 2 0 1 0 12 20 0 80
z
yc
5m 2 m 8 0 2 0 12 200
(2)求截面对中性轴z的惯性矩
Iz
80 20 3 12
80 20 42 2
20 120 3 20 120 28 2 12
7.64 10 6 m4
28
2.5kN.m 4kN.m
与实验结果相符。
9
(2)应力分布规律
在线弹性范围内,应用胡克定律
sE E y
(b)
对一定材料, E=C; 对一定截面,
1
C.
sy
——横截面上某点处的应力与此点距中性轴的距离y成比例。
当 y0时,s0;
应力为零的点的连线。
s s yyma 时 x, ma.x
M
与实验结果相符。
10
(3)由静力平衡方程确定中性轴的位置及应力计算公式
Iz
即使最大拉、压应力同时达到许用应力值。 y
c
y2
z
y1
压边
39
(二)、合理安排载荷和支承的位置,以降低
M
值。
max
1、载荷尽量靠近支座:
F
F
A
A
B
B
0.8L
0.5L
L
L
0.25FL (+)
M 图
0.16FL (+)
M 图
40
F
F
A
BA
B
0.9L
L
L
0.09FL
(+)
M 图
M 图
41
2、将集中力分解为分力或均布力。
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
梁的弯曲正应力实验报告总结
梁的弯曲正应力实验报告总结梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。
本文将对梁的弯曲正应力实验进行总结。
一、实验原理梁的弯曲正应力实验是通过在梁上施加一定的弯曲力,使梁发生弯曲变形,然后通过测量梁的变形量和力的大小,计算出梁的弯曲正应力。
梁的弯曲正应力可以用公式σ=M*y/I来计算,其中M为弯矩,y为梁上某一点到中性轴的距离,I为梁的截面惯性矩。
二、实验步骤1. 准备工作:将实验室内的环境调整到稳定状态,准备好实验所需的仪器和材料。
2. 实验装置:将梁放置在实验台上,将弯曲力施加在梁的一端,另一端固定在实验台上。
3. 测量变形量:通过测量梁的变形量,确定梁上某一点到中性轴的距离y。
4. 测量力的大小:通过测量施加在梁上的力的大小,确定弯矩M。
5. 计算弯曲正应力:根据公式σ=M*y/I,计算出梁的弯曲正应力。
三、实验结果通过实验,我们得到了梁的弯曲正应力的计算结果。
在实验中,我们可以通过改变施加在梁上的力的大小和位置,来观察梁的弯曲变形规律和弯曲正应力的变化情况。
实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。
四、实验分析通过梁的弯曲正应力实验,我们可以了解到梁的弯曲变形规律和弯曲正应力的计算方法。
在实际工程中,梁的弯曲正应力是一个非常重要的参数,它可以用来评估梁的强度和稳定性。
因此,对于工程师和设计师来说,了解梁的弯曲正应力的计算方法是非常必要的。
五、实验结论通过本次梁的弯曲正应力实验,我们得到了梁的弯曲正应力的计算结果。
实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。
因此,在实际工程中,我们需要根据梁的实际情况来选择合适的材料和截面形状,以保证梁的强度和稳定性。
梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。
在实际工程中,了解梁的弯曲正应力的计算方法是非常必要的,可以帮助我们评估梁的强度和稳定性,从而保证工程的安全和可靠性。
第九章梁的弯曲应力
一、梁横截面上的正应力
横力 F 弯曲 A a F (+)
V图
纯弯曲 C l D
F
横力 弯曲 B
纯弯曲——梁弯曲变形
时,横截面上只有弯矩
F
a
F 而无剪力(M 0,V 0)。
F
(-)
横力弯曲——梁弯曲变形 时,横截面上既有弯矩又 有剪力(M 0,V 0)。
Fa
M图
(+) Fa
一、梁横截面上的正应力
* z
max
* Vmax Sz Vmax max * Izd ( I z Sz max )d
* 对于工字钢, I z Sz
max
可由型钢表中查得。
3.工字形截面梁的剪应力
V
三、梁的强度条件
1、弯曲正应力强度条件:
max
Mmax [ ] Wz
可解决工程中有关强度方面的三类问题:
3.在进行梁的强度计算时,需注意以下问题:
(1)对于细长梁的弯曲变形,正应力的强度条件是
主要的,剪应力的强度条件是次要的。但对于较粗的
短梁,当集中力较大时,截面上的剪力较大而弯矩较
小,或是薄壁截面梁时,也需要校核剪应力强度。 (2)正应力的最大值发生在横截面的上下边缘,该
正应力最大。
注意:
(3)梁在中性轴的两侧分别受拉或受压,正应力
的正负号(拉或压)可根据弯矩的正负及梁的变形状
态来确定。 (4)必须熟记矩形截面、圆形截面对中性轴的惯 性矩的计算式。
二、梁横截面上的剪(切)应力
1.剪(切)应力分布规律假设
V
A*
(1)各点处的剪(切)应力 都与剪力V方向一致; (2)横截面上距中性轴等距离各点处剪(切)应力大小 相等,即沿截面宽度为均匀分布。 (3)剪(切)应力大小沿截面高度按抛物线规律变化。
梁的弯曲应力和变形
正应力分布规律:
1. 中性轴上的点应力为零;
M
2. 上下边缘的点应力最大,其余各 点的应力大小与到中性轴的距离成
正比。
M
中性轴
F
二、计算公式 F
mn
1. 变形几何关系
解:( 1 )求支座反力
12.75
kN m
( 2 )作弯矩图
max
M
max
Iz
y1
M max W1
max
M
max
Iz
y2
M max W2
(8 - 8) (8 校核哪个截面?
例 2 铸铁梁受荷载情况如图示。已知截面对形心轴的惯性矩 Iz=40 3×10 - 7m4 ,铸铁抗拉强度[ σ +] =5m0MPa ,抗压强度
的情况,公式仍然适用。
( 2 )公式是从矩形截面梁导出的,但对截面为其它对称形状(如工
字形、 T 字形、圆形等)的梁,也都适用。
M max WZ
梁弯曲时,其横截面上既有拉应力也有压应力。对于中性轴为对称 轴的横截面,例如矩形、圆形和工字形等截面,其上、下边缘点到 中性轴的距离相等,故最大拉应力和最大压应力在数值上相等,可 按左式求得。
一般情况下,梁的强度计算由正应力强度条件控制。
在选择梁的截面时,一般按正应力强度条件选择,选好 截面后,再按剪应力强度条件进行校核。
对于细长梁,按正应力强度条件选择截面或确定许用荷载 后,一般不再需要进行剪应力强度校核。
在下列几种特殊情况下,需要校核梁的剪应力:
( 1 )梁的跨度较短,或在支座附近有较大的荷载作用。 在此情况下,梁的弯矩较小,而剪力却很大。 ( 2 )在组合工字形截面的钢梁中,当腹板的厚度较小 而工字形截面的高度较大时,腹板上的剪应力值将很大 ,而正应力值相对较小。 ( 3 )木材在顺纹方向抗剪强度较差,木梁可能因剪应 力过大而使梁沿中性层发生剪切破坏。
梁的弯曲计算—弯曲切应力及强度计算(工程力学课件)
(3)几种特殊情况下必须进行梁的切应力强度计算。
短粗梁 自行焊接 木梁
梁的合理截面
max
M max Wz
(1) 将材料配置于离中性轴较远处
(2) 采用不对称于中性轴的截面
脆性材料
(3) 采用变截面梁
弯曲切应力及强度计算
弯曲
(内力图)
外力 —— 内力 —— 应力
弯曲变形 的条件
求约束反力
弯矩M 剪力Fs
My
Iz
Fs
S
* z
bI z
梁横截面上的切应力 矩形截面梁
S
* z
bI z
x
σ 分布规律 τ 分布规律
Fs
S
* z
不同形状截面梁的最大剪应力
bI z
矩形截面梁
B
A
C
A
C
B
max l max h
梁内的主要应力是正应力!
危险截面、危险点
E右到B左
z
y
危险点
危险截面 24
D右 28
24
My
Iz
Fs
S
* z
bI z
危险截面上的危险点
max ≤[ ]
max ≤[ ]
正应力强度条件 切应力强度条件
三类计算:①强度校核、②截面设计、③确定许用荷载
(1)在进行梁的强度计算时,必须同时满足正应力 和切应力两种强度条件。
“等强度梁”
Wz (x)
M ( x)
[ ]
工字形截面梁
max
3 2
Fs A
max
第六章:梁弯曲时的内力和应力
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。
3.3梁的弯曲变形分析
单位为M Pa
MM-和y截面上的弯矩 均以绝对值代入,至于弯曲 (N.mm) 正应力是拉应力还是压应力,则 y--计算点到中性轴距离(mm) 由欲求应力的点处于受拉侧还是 4 受压侧来判断。受拉侧的弯曲正 Iz--横截面对中性轴惯性矩 mm 应力为正,受压侧的为负。
推导过程
1)沿y轴线性分布,同 一坐标y处,正应力相 等。中性轴上正应力为 零。
梁发生平面弯曲时,横截面上一般产生两种 内力,即剪力和弯矩。
d A dA
dA
dA FS dA M M FS
dA M dA FS
在横截面上,只有法向内力元素dN=σdA才能合成
弯矩M,只有切向内力元素d FS =τdA才能合成剪力 FS
• 在横截面上,只有弯矩M,没有剪 力Fs,这种弯曲称为纯弯曲; • 横截面上同时有弯矩M和剪力Fs, 这种弯曲称为横力弯曲。
0.2L
M
qL2 8
x
M
qL2 40 qL2 50
+
x
+
qL2 50
合理布置载荷
F=qL q
L
L
M
qL2 4
x +
M
qL2 8
x +
合理布置载荷
F=qL F=qL
对称
L/5 4L/5
M
qL2 4
M x +
qL2/10
x
合理布置载荷
2. 合理选择梁的截面,用最小的截面面积得 到大的抗弯截面模量。
推论:
梁在弯曲变形时,上面部分纵向纤维缩短, 下面部分纵向纤维伸长,必有一层纵向纤维 既不伸长也不缩短,保持原来的长度,这一纵 向纤维层称为中性层。 中性层与横截面的交线称为中性轴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* z
翼板
t
H
h
b
z
y
腹板
A*
H h h 1 H h B B( ) ( ) y 2 2 2 2 2 2 2 h 1 h b h B 2 2 b( y ) y ( y ) ( H h ) ( y 2 ) 2 2 2 2 4 8
y
目录
24
(3)作弯矩图
(4)B截面校核
2 .5kN.m
4kN.m
4 103 52103 t ,max 7.64106 27.2 106 Pa 27.2MPa t
4 103 88103 c,max 7.64106 46 .1106 Pa 46 .1MPa c
研究对象:等截面直梁
研究方法:实验——观察——假定
5
实验观察——梁表面变形特征
横线仍是直线,但发生 相对转动,仍与纵线正交 纵线弯成曲线,且梁的 下侧伸长,上侧缩短
以上是外部的情况,内部如何? 想象 —— 梁变形后,其横截面仍为平面,且垂直 于变形后梁的轴线,只是绕梁上某一轴转过一个角度 透明的梁就好了,我们用计算机模拟 透明的梁
2
5.梁的许可载荷为 F Fi min3.75kN 10kN 3.825kNmin 3.75kN
28
提高梁强度的主要措施
max
M max [ ] WZ
合理安排支座 合理布置载荷
1. 降低 Mmax
29
F
合理布置支座
F
F
30
合理布置载荷
F
31
max
M max [ ] WZ
2. 增大 WZ
合理设计截面 合理放置截面
32
合理设计截面
33
合理放置截面
WZ 左
bh 2 6 hb 2 6
WZ 右
34
3、等强度梁
h x
b
35
36
§9-7 梁的变形 Beam deformation 一.基本概念 挠曲线方程:
转角
挠度
挠曲线
y
y y( x )
挠度y:截面形心 在y方向的位移
4.已知E=200GPa, C 截面的曲率半径ρ
x
M
ql 2 / 8 67.5kN m
bh3 0.12 0.183 IZ 5.832 105 m 4 12 12 90kN 180 60 103 ( 30) 10 3 M y 2 K C K IZ 5.832 10 5
20
三、梁的强度条件 1、弯曲正应力强度条件
σmax
M
max
y max
Iz
σ
1.弯矩最大的截面上 2.离中性轴最远处 3.变截面梁要综合考虑 M 与 I z 4.脆性材料抗拉和抗压性能不同,二方面都要考虑
t ,max t
c,max c
目录
21
2、弯曲剪应力强度条件
目录
23
52
z1 z
解:(1)求截面形心
yc 80 20 10 120 20 80 52 mm 80 20 120 20
(2)求截面对中性轴z的惯性矩
80 203 Iz 80 20 422 12 201203 20120 282 12 7.64106 m 4
2
3
讨 论
1、沿高度方向抛物线分布 2、y=0时,切应力值最大 3、梁上下表面处切应力为零
V h 2 ( y) ( y ) 2I Z 4 2 3V 4y (1 2 ) 2bh h
18
工字形梁腹板上的切应力分布
S ( y) V I zb
腹板为矩形截面时
* * S* A y z c
h 1 h S A y ( y )b y ( y ) 2 2 2 2 b h Sz*为面积A*对 ( y2 ) 2 4 中性轴的静矩
V
A*
最大剪应力
max
Fsmax S Z ,max IZb
V
3F V S 2 A
17
bh Iz 12
第九章
梁的弯曲
1
第九章 梁的弯曲
§9-1、平面弯曲
§9-2、梁的弯曲内力---剪力和弯矩
§9-3、用内力方程法绘制剪力图和弯矩图 §9-4、用微分关系法绘制剪力图和弯矩图 §9-5、用叠加法画弯矩图
§9-6、梁弯曲时的应力和强度计算
§9-7、梁的变形
§9-8、梁的应力状态
2
回顾与比较 内力 应力
a2 (3P4qa) 12 EI
+
A q B
5qa Pa fC 24 EI 6 EI
4
3
三、刚度条件
y max [ y ],
M max 67.5kN m
截面惯性矩
I z 5.832 105 m 4
FBY
FS 90kN
max
x 90kN
M max ymax IZ 67.5 103 180 10 3 2 5.832 10 5
2
x
M ql / 8 67.5kN m
得到变形
Pa PA 4 EI
q B
2
Pa f PC 6 EI
3
+
A
qa qA 3EI
3
5qL f qC 24 EI
4B
Pa PA 4 EI
qa 3 qA 3EI
2
Pa 3 f PC 6 EI
5qL4 f qC 24 EI
=
P
A
B
叠加
A PA qA
F A
T IP
M FS
FAy
? ?
3
§9-6 梁的弯曲时的应力及强度计算
一、弯曲正应力 Normal stress in bending beam
梁段CD上,只有弯矩,没有剪力--纯弯曲Pure bending 梁段AC和BD上,既有弯矩,又有剪力--剪力弯曲Bending by transverse force 4
x
61.7 106 Pa 61.7MPa
13
q=60kN/m
180
120
2. C 截面最大正应力
30
A
FAY
B
1m
C
l = 3m
x
K
C 截面弯矩
M C 60kN m
z y
FBY
C 截面惯性矩
FS 90kN
I Z 5.832 105 m4
x 90kN
Cmax
6
7
总之 ,由外部去 想象内部 —— 得到
梁弯曲假设:
横截面保持为平面 —— 变形后,仍为平面,且垂直 于变形后梁的轴线,只是绕 梁上某一轴转过一个角度 纵向各水平面间无挤压 —— 均为单向拉、压状态
8
弯曲中
梁的中性层neutral surface —— 既不伸长又不缩短的纵面
截面的中性轴neutral axis —— 中性层与横截面的交线
104.17 106 Pa 104.17 MPa
15
q=60kN/m x
180
120
4. C 截面曲率半径ρ
30
A
FAY
B
1m
C
l = 3m
K
z y
C 截面弯矩
M C 60kN m
FBY
C 截面惯性矩
FS 90kN
M
x 90kN
I Z 5.832 105 m4 1 M EI
19
2 V B b h 2 2 2 ( y) ( H h ) ( y ) I zb 8 2 4
讨
论
B
1、沿腹板高度方向抛物线分布
2、y=0时,切应力值最大
h H
3、腹板上下边处切应力最小
max
V BH 2 h2 V B 2 2 ( B b ) H h min I zb 8 8 I zb 8
目录
26
例题9-2
F
l
悬臂梁由三块木板粘接 50 而成。跨度为1m。胶合面 z50 的许可切应力为0.34MPa, 50 木材的〔σ〕= 10 MPa, 100 [τ]=1MPa,求许可载荷。
V
Fl
F
解: 1.画梁的剪力图和弯矩图 2.按正应力强度条件计算许可载荷 M max 6F1l max 2
M ymax t max 11 Iz
正应力计算公式适用范围
M y Iz
剪力弯曲时,截面上有切应力,平面假设不严格成立但当梁跨度
l 与高度 h 之比大于5(即为细长梁)时,弹性力学指出:上述公式 近似成立 截面惯性积 Iyz = 0 推导时用到郑玄-胡克定律,但可用于已屈服的梁截面
27
F
l
100 50 z50 50
4.按胶合面强度条件 计算许可载荷
V Fl
M
h F b 3 * F 4 F3 VS Z 3 g g 3 IZb 3bh bh b 12 3bh g 3 100 150 10 6 0.34 106 F3 4 4 3825N 3.825kN
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 5 C MC 60 103 194.4m