(完整版)专升本数学公式汇总
专升本高数公式大全
专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。
11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。
(完整版)专升本数学公式大全
专升本高等数学公式大全导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
专升本高等数学公式全集
专升本高等数学公式全集高等数学是专升本考试中的重要科目,掌握好相关公式对于解题和取得好成绩至关重要。
下面为大家整理了一份较为全面的专升本高等数学公式。
一、函数与极限1、函数的基本性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的定义与性质定义:对于数列{an},若当 n 无限增大时,an 无限趋近于一个常数 A,则称 A 为数列{an} 的极限,记作lim(n→∞) an = A。
性质:唯一性、有界性、保号性。
3、极限的运算四则运算:若lim(n→∞) an = A,lim(n→∞) bn = B,则lim(n→∞)(an ± bn) = A ± B,lim(n→∞)(an × bn) = A × B,lim(n→∞)(an / bn) = A / B(B ≠ 0)。
两个重要极限:lim(x→0) (sin x / x) = 1,lim(x→∞)(1 + 1 / x)^x = e。
4、无穷小与无穷大无穷小:以零为极限的变量称为无穷小。
无穷大:当变量在某个变化过程中绝对值无限增大,则称该变量为无穷大。
无穷小的性质:有限个无穷小的和、差、积仍是无穷小;无穷小与有界函数的乘积是无穷小。
二、导数与微分1、导数的定义函数 y = f(x) 在 x0 处的导数定义为:f'(x0) =lim(Δx→0) f(x0 +Δx) f(x0) /Δx。
2、导数的基本公式(C)'= 0(C 为常数)(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(tan x)'= sec^2 x(cot x)'= csc^2 x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算(u ± v)'= u' ± v'(uv)'= u'v + uv'(u / v)'=(u'v uv')/ v^2 (v ≠ 0)4、复合函数的求导法则若 y = f(u),u =φ(x),则 dy / dx = dy / du × du / dx5、隐函数的求导法则对于方程 F(x, y) = 0 确定的隐函数 y = y(x),两边对 x 求导,然后解出 y'。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。
专升本数学公式大全(完整版)
第一部分初等数学第一节初等代数----------------------------------------------1第二节三角函数----------------------------------------------5第三节初等几何----------------------------------------------7第四节平面解析几何----------------------------------------8第二部分专接本数学知识考点大全第一节基本初等函数----------------------------------------10第二节函数、极限-------------------------------------------12第三节导数---------------------------------------------------13第四节积分---------------------------------------------------16第五节向量空间(数一)-----------------------------------20第六节多元微分----------------------------------------------23第七节二重积分、曲线积分(数一)---------------------25第八节级数---------------------------------------------------26第九节微分方程---------------------------------------------29第十节行列式------------------------------------------------31第十一节矩阵------------------------------------------------32第十二节向量组---------------------------------------------35第十三节方程组---------------------------------------------36严谨为师勤奋为学严谨为师勤奋为学1第一部分初等数学一、初等代数1、一元二次方程20ax bx c ++=(0a ≠),(1)根的判别式24b ac∆=-当0∆>时,方程有两个不相同的实根;当0∆=时,方程有两个相同的实根;当0∆<时,方程有共轭复根。
(完整版)专升本数学公式大全
导数公式:专升本高等数学公式大全2(tgx) sec x (arcsin x)(ctgx) 2 csc x(secx) secx tgx (arccosx)(cscx) cscx ctgx(a x) a x I na(arctgx) (Iog a X) 1 (arcctgx)1 1a r 2 1 X2.1 X2 1 X2基本积分表:三角函数的有理式积分:tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx Ccscxdx In cscx ctgx Cdx 2 .2 sec xdx tgx C cos xdx 2・2 csc xdx ctgx C sin xsecx tgxdx secx Cdx ~2 2 a x 1 丄x arctg C a adx x2a2dx2 2a x 丄ln|x a2a |x a1 , a x In2a a xcscx ctgxdx cscx Cxa x dx CIn ashxdx chx Cchxdx shx C异—arcsin 仝C “ a2 x2 adx 2 2 ——2 2 "( x x a ) C.x a2 2nn sin xdx ncos xdx 0 0'、 2 a dx x 2 x 2 a2x2a2 dx x ..x2a22<a2 2x dx x ■ a2 2 xI n2a . / In(x2a2I ——In x2x2 a2)2a . x arcs in C2 2 a2usinx 2,cosx1 u 2一些初等函数: 双曲正弦:shx 双曲余弦:chx 双曲正切:thxtg2,dx2du V~u\两个重要极限:xxe e2 xxe e2 x x shx e e xxchx e esin x ’ lim 1 x 0x lim(1丄广 x xe 2.718281828459045…arshx ln(x x 2 1) archx In (x x 2 1)arthx 1|n1 x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sin coscos sin cos( )cos cossin sin、tg tgtg()1 tg tgctg()ctgctg 1ctgctg-和差角公式: sin sin sinsincos cos cos cos2sin cos — 2 2 2 cossin —222 cos cos —2 2 2 sin ------- s in ------2 2sin 2 2si n cos2 2cos2ctg2 ctg2 2ctgtg2 2tg 2•倍角公式:cos1 -半角公式: 1 1 2si n2 2cos ・2sin sin3 3si ncos3 4cos3tg33tg4sin33cos-3tg~2sin —21 cos21 coscos—21 cos21 cos sinsin 1 cosct g-1 cos sin1 cos sin 1 cos-正弦定理:,一sin A sin B 亠2Rsin C -余弦定理:b22abcosC-反三角函数性质: arcs inxarccosx arctgx arcctgx高阶导数公式一一莱布尼兹( Leibniz公式:(uv)(n)nCnU(nk 0k)v(k)u(n)v nu(n 1)v n(n 1)u2!(n 2)vn(n 1) (n kk!1) (n k)v(k)uv(n)中值定理与导数应用: 拉格朗日中值定理:柯西中值定理: f(b)f(b)f (a)f (a)F ()f ( )(b a))当F(x) x时,曲率:F(b) F(a)柯西中值定理就是拉格朗日中值定理。
专升本数学公式汇总
专升本数学公式汇总在专升本的数学学习中,掌握各类公式是解题的关键。
下面为大家汇总了一些重要的数学公式,希望能对大家的学习有所帮助。
一、函数部分1、幂函数:$y = x^a$ ($a$为常数)2、指数函数:$y = a^x$ ($a > 0$且$a ≠ 1$)指数运算法则:$a^m × a^n = a^{m + n}$$(a^m)^n = a^{mn}$$a^{m} =\frac{1}{a^m}$3、对数函数:$y =\log_a x$ ($a > 0$且$a ≠ 1$)对数运算法则:$\log_a (MN) =\log_a M +\log_a N$$\log_a \frac{M}{N} =\log_a M \log_a N$$\log_a M^n = n\log_a M$换底公式:$\log_a b =\frac{\log_c b}{\log_c a}$二、三角函数部分1、基本关系$\sin^2\alpha +\cos^2\alpha = 1$$\tan\alpha =\frac{\sin\alpha}{\cos\alpha}$2、诱导公式$\sin (\alpha) =\sin\alpha$$\cos (\alpha) =\cos\alpha$$\sin (\pi \alpha) =\sin\alpha$$\cos (\pi \alpha) =\cos\alpha$$\sin (\pi +\alpha) =\sin\alpha$$\cos (\pi +\alpha) =\cos\alpha$3、和差公式$\sin (\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta$$\sin (\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta$$\cos (\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta$$\cos (\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta$4、二倍角公式$\sin 2\alpha = 2\sin\alpha\cos\alpha$$\cos 2\alpha =\cos^2\alpha \sin^2\alpha = 2\cos^2\alpha 1 = 1 2\sin^2\alpha$$\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}$5、半角公式$\sin^2\frac{\alpha}{2} =\frac{1 \cos\alpha}{2}$$\cos^2\frac{\alpha}{2} =\frac{1 +\cos\alpha}{2}$$\tan\frac{\alpha}{2} =\frac{1 \cos\alpha}{\sin\alpha} =\frac{\sin\alpha}{1 +\cos\alpha}$三、导数部分1、基本导数公式$(x^n)'= nx^{n 1}$$(\sin x)'=\cos x$$(\cos x)'=\sin x$$(\ln x)'=\frac{1}{x}$$(e^x)'= e^x$2、导数的四则运算$(u ± v)'= u' ± v'$$(uv)'= u'v + uv'$$\left(\frac{u}{v}\right)'=\frac{u'v uv'}{v^2}$($v ≠ 0$)3、复合函数求导法则设$y = f(u)$,$u = g(x)$,则复合函数$y = fg(x)$的导数为:$y' = f'g(x) \cdot g'(x)$四、积分部分1、基本积分公式$\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C$ ($n ≠ -1$)$\int \sin x dx =\cos x + C$$\int \cos x dx =\sin x + C$$\int \frac{1}{x} dx =\ln |x| + C$$\int e^x dx = e^x + C$2、定积分的性质$\int_a^b kf(x) dx = k\int_a^b f(x) dx$ ($k$为常数)$\int_a^b f(x) ± g(x) dx =\int_a^b f(x) dx ±\int_a^b g(x) dx$$\int_a^b f(x) dx =\int_a^c f(x) dx +\int_c^b f(x) dx$五、向量部分1、向量的加减法:$\overrightarrow{a} ±\overrightarrow{b} =(x_1 ± x_2, y_1 ± y_2)$($\overrightarrow{a} =(x_1, y_1)$,$\overrightarrow{b} =(x_2, y_2)$)2、向量的数量积:$\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = x_1x_2 + y_1y_2$ ($\theta$为两向量的夹角)六、立体几何部分1、长方体体积:$V = abc$ ($a$、$b$、$c$分别为长方体的长、宽、高)2、正方体体积:$V = a^3$ ($a$为正方体的棱长)3、圆柱体体积:$V =\pi r^2h$ ($r$为底面半径,$h$为高)4、圆锥体体积:$V =\frac{1}{3}\pi r^2h$ ($r$为底面半径,$h$为高)七、概率部分1、古典概型概率:$P(A) =\frac{m}{n}$($A$为事件,$m$为事件$A$包含的基本事件个数,$n$为基本事件总数)2、条件概率:$P(B|A) =\frac{P(AB)}{P(A)}$($P(AB)$为事件$A$和事件$B$同时发生的概率)以上只是专升本数学中的一部分重要公式,大家在学习过程中要理解公式的推导过程,多做练习,熟练掌握这些公式的应用。
专升本数学公式大全
专升本数学公式大全
专升本数学公式大全
一、因式分解
注:对于公式里面的a和b可以填充任何一个代数式常用等价代换
当时
二、三角函数
特殊角度函数值
三、指数函数的运算
四、对数函数运算
五、数列相关公式
常见等价无穷小量:当时
一、基本初等函数求导公式
高阶导数:
二、导数的四则运算法则
三、微分基本公式
四、微分四则运算
五、不定积分公式
六、常用凑微分的等式
七、广义积分敛散性
1)
备注:积分区间为无穷
2)
备注:积分区间有限,被积分函数无界
3)
4)
八、定积分应用
一)面积公式
一、二元函数的极值
设函数在点的某一邻域内有定义,如果在该邻域内任何异于的点,总有,则称点为的极大值点(或极小值点),称为
的极大值(或极小值).
二、极值存在的必要条件
设在点处取得极值,且在该店的偏导数存在,则必有
.
注:二元函数可能的极值点是两个偏导数都等于零的点(驻点),或偏导数不存在的点.
三、极值存在的充分条件
设在点的某一邻域内有连续的一阶与二阶偏导数,且点为函数的驻点,即
.
记
,则
1、当,且(或)时,为
的极大值点,为的极大值;当,且(或)时,为的极小值.
2、当时,不为的极值.
3、当时,可能为的极值,也可能不为极值.。
专升本数学必考公式大全
专升本数学必考公式大全
以下是一些专升本数学考试中常用的公式:
1. 平方差公式:(a±b)² = a² ± 2ab + b²
2. 二次方程的根公式:对于 ax² + bx + c = 0,根的公式为 x = [-b ± √(b² - 4ac)] / 2a
3. 三角函数和三角恒等式:
- 正弦定理:a/sinA = b/sinB = c/sinC
- 余弦定理:c² = a² + b² - 2abcosC
- 正弦恒等式:sin(A ± B) = sinAcosB ± cosAsinB
- 余弦恒等式:cos(A ± B) = cosAcosB ∓ sinAsinB
4. 指数与对数运算:
- a^x = b,则x = log(a, b)。
其中,log(a, x)表示以a为底,x
的对数。
- 对数公式:log(a*b) = loga + logb;log(a/b) = loga - logb
5. 概率公式:
- 事件A的概率:P(A) = n(A) / n(S),其中n(A)表示事件A
的样本点个数,n(S)表示样本空间的样本点个数。
- 事件A和事件B同时发生的概率:P(A∩B) = P(A) * P(B|A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
- 事件A和事件B至少一个发生的概率:P(A∪B) = P(A) +
P(B) - P(A∩B)
这只是一些常用的数学公式,专升本数学考试还涵盖其他各个分支的知识,建议针对具体考试大纲进行深入学习和准备。
(完整版)专升本数学公式大全(可编辑修改word版)
1- x 2 1- x 2 x 2 ± a 2x 2 + a 2 x 2 - a 2 a 2 - x 2导数公式:专升本高等数学公式大全(tgx )' = sec 2x (ctgx )' = -csc 2 x (sec x )' = sec x ⋅ t gx (arcsin x )' =1(arccos x )' = - 1(csc x )' = -csc x ⋅ ctgx (a x )' = a x ln a(arctgx )' =11+ x 2(log a x )' =1x ln a(arcctgx )' = -11+ x 2基本积分表:三角函数的有理式积分:⎰ t gxdx = -ln cos x + C ⎰ c tgxdx = ln sin x + Cdxcos 2xdx= ⎰sec 2 xdx = tgx + C⎰sec xdx = ln sec x + tgx + C ⎰ sin 2 x = ⎰csc 2 xdx = -ctgx + C⎰ c sc xdx = ln csc x - ctgx + C dx = 1 arctgx+C⎰sec x ⋅ tgxdx = sec x + C ⎰csc x ⋅ ctgxdx = -csc x + C⎰ a 2 + x 2a dx =1a lnx - a + C ⎰ a xdx = a x Cln a ⎰ x 2 - a 2 dx a 2 - x 2 2a x + a= 1 ln a + x + C 2a a - x ⎰ s hxdx = chx + C⎰chxdx = shx + C dx = arcsin x+ Ca⎰ dx = ln(x + x 2 ± a 2 ) + C2 I n = ⎰sin 02xdx =⎰cos nxdx =n -1 n a 2I n -2⎰ dx = ⎰ dx = + 2- a 2 2 a 2ln(x + ln x + x) + C+ C⎰dx = + arcsin + C 2 aa 2 - x 2 0 x 2 x 2+ a 2 x 2 + a 2 x2 x 2 - a 2 x 2 - a 2 x 2a 2 - x 2 ⎰ ⎰ ⎰ + nsin x = 2u1+u2,c os x =1-u2,1+u2u =t gx,2dx =2du1+u 2一些初等函数:两个重要极限:e x -e-x双曲正弦: shx = lim sin x= 12 x→0 x 双曲余弦: chx = e x +e-x lim(1+1)x=e = 2.718281828459045...双曲正切: thx =2shx=chxe x -e-xe x +e-xx→∞xarshx = ln(x + archx =±ln(x + x2+1)x2-1)arthx =1ln1+x 2 1-x三角函数公式:·诱导公式:函数角Asin cos tg ctg-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:sin(±) = sin cos ± cos sincos(±) = cos cos s in sintg(±) =tg±tg1 tg⋅tg sin+s in =2 s in+2sin-s in =2c os+2+-2-2-ctg(±) = ctg⋅ctg 1cos+c os =2c os cos2 2ctg±ctg cos-c os =2 s in +2-2 cossinsiny ' (1+ y '2 )3(uv ) = ∑C uv. ·倍角公式:sin 2= 2 sin coscos 2= 2 c os 2-1 = 1- 2 s in2= c os 2- s in2ctg 2-1sin 3= 3sin - 4 s in 3 cos 3= 4 c os 3- 3cos ctg 2=tg 2=2ctg2tgtg 3=3tg - t g 3 1- 3tg 21- tg 2·半角公式:sin = ± 2tg= ± 1- cos2 1- c os = 1- c os =sin cos = ± 2ctg= ± 1+ c os2 1+ c os = 1+ c os =sin 2 1+ c os sin 1+ cos2 1- c os sin 1- cos·正弦定理:asin A = b sin B = c sin C= 2R ·余弦定理: c 2 = a 2 + b 2 - 2ab cos C·反三角函数性质: arcsin x =- a rccos x 2arctgx =- arcctgx 2高阶导数公式——莱布尼兹(L e i b n i z )公式:n(n ) k (n -k ) (k )n k =0= u (n ) v + nu (n -1) v ' +n (n -1) u (n -2) v ' + + n (n -1) (n - k +1) u (n -k ) v (k )+ + uv (n )2! k !中值定理与导数应用:拉格朗日中值定理:f (b ) - f (a ) = f '()(b - a ) f (b ) - f (a ) f '()柯西中值定理: F (b ) - = F (a )F '()当F(x ) = x 时,柯西中值定理就是拉格朗日中值定理。
专接本数学公式大全
专接本数学公式大全在学习数学的过程中,掌握并熟练运用各种数学公式是非常重要的。
数学公式既是数学知识的精华,也是解题的利器。
为了帮助广大专接本学生更好地掌握数学公式,本文将为大家梳理一份全面、可靠的数学公式大全,供大家参考使用。
一、初等数学公式1. 代数运算公式:- 二项式定理:$ (a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \ldots + C_n^na^0b^n $- 平方差公式:$ (a-b)^2 = a^2 - 2ab + b^2 $- 平方和公式:$ (a+b)^2 = a^2 + 2ab + b^2 $2. 特殊函数公式:- 正弦函数和余弦函数的和差化积:$ \sin(a \pm b) = \sin a \cos b \pm \cos a \sin b $- 正弦函数和余弦函数的二倍角公式:$ \sin(2a) = 2\sin a \cos a $- 正切函数的和差化积:$ \tan(a \pm b) = \frac{\tan a \pm \tan b}{1\mp \tan a \tan b} $3. 平面解析几何公式:- 点到直线的距离公式:$ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} $- 两直线夹角的余弦公式:$ \cos \theta = \frac{A_1A_2 +B_1B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}} $- 两点间距离的公式:$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $二、高等数学公式1. 导数和微分公式:- 反函数求导公式:$ (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} $- 乘积法则:$ (uv)' = u'v + uv' $- 链式法则:$ (f(g(x)))' = f'(g(x)) \cdot g'(x) $2. 积分公式:- 不定积分的线性性质:$ \int (af(x) + bg(x))dx = a\int f(x)dx + b\int g(x)dx $- 分部积分公式:$ \int u dv = uv - \int v du $- 牛顿-莱布尼茨公式:$ \int_a^b f(x)dx = F(b) - F(a) $3. 常微分方程公式:- 一阶线性齐次常微分方程的解法:$ \frac{dy}{dx} + P(x)y = 0, y = Ce^{- \int P(x)dx} $三、线性代数公式1. 矩阵公式:- 矩阵乘法的分配律:$ A(B+C) = AB + AC $- 矩阵的转置运算公式:$ (A^T)_{ij} = A_{ji} $2. 向量公式:- 向量内积的性质:$ \textbf{a} \cdot \textbf{b} = \|\textbf{a}\|\|\textbf{b}\| \cos \theta $3. 行列式公式:- 行列式交换行列性质:$ |A| = -|A^T| $- 行列式展开定理:$ |A| = \sum_{j=1}^n (-1)^{i+j}a_{ij}M_{ij} $四、概率论与数理统计公式1. 随机变量和概率公式:- 期望的线性性质:$ E(aX + bY) = aE(X) + bE(Y) $- 条件概率公式:$ P(A|B) = \frac{P(AB)}{P(B)} $- Bayes公式:$ P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)} $2. 统计估计和假设检验公式:- 正态总体均值的置信区间:$ \bar{X} -z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} +z_{\alpha/2}\frac{\sigma}{\sqrt{n}} $- 卡方分布的性质:$ X^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} $以上仅是数学公式大全的一部分,希望能帮助到广大专接本学生更好地学习和掌握数学知识。
专升本高等数学公式大全
专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:2)1(32111112nn n q q q q q nn +=++++--=++++- 等差数列:等比数列: 常见数列的前n 项和:)1(21321+=++++n n n2)12(531n n =-++++ )14(31)12(53122222-=-++++n n n)12)(1(613212222++=++++n n n n )2)(1(31)1(433221++=+++⋅+⋅+⋅n n n n n111)1(1431321211+-=+++⋅+⋅+⋅n n n'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+1.导数公式:x x 2sec )(tan ='x x 2c s c )(c o t -=' x x x c o t c s c )(c s c -=' x x x t a n s e c )(s e c =' x x a a a ∙='ln )( x x e e =')( a x x a ln 1)(log ='211)(a r c s i n x x -=' 211)(a r c c o s x x --=' 211)(arctan x x +=' 211)c o t (x x a r c +-=' x x f x x f x f x ∆'-∆+'=''→)()(l i m)(0基本积分表:三角函数的有理式积分:两个重要极限:常用三角函数公式:x x 22sec tan 1=+x x 22c s c c o t 1=+x xx 2tan 1tan 22tan -=2cos 12sin 2x x -=2c o s 12c o s 2x x +=x x x s i n c o s 12t a n -=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ...590457182818284.2)11(lim 1sin lim==+=∞→→e xx xx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。
专升本数学公式汇总
专升本数学公式汇总数学是一门理科学科,也是工科、经管类等专业的基础学科。
对于准备参加专升本考试的考生来说,掌握数学相关的公式和定理是非常重要的。
以下是专升本数学公式的汇总:1.代数1.1一次方程与二次方程一次方程:ax+b=0(a≠0)二次方程:ax²+bx+c=0(a≠0)解一次方程:x=-b/a求二次方程的解:x=(-b±√(b²-4ac))/(2a)1.2指数与对数指数:an指数与对数的运算性质:a^m*a^n=a^(m+n)a^m/a^n=a^(m-n)(a^m)^n = a^(mn)a^1/n=√a对数的性质:loga(mn) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^n) = n*loga(m)loga(am) = m1.3排列组合排列:从n个不同的元素中,取出m(m<=n)个元素,按照一定的顺序排列。
Anm = n! / (n-m)!组合:从n个不同的元素中,取出m(m<=n)个元素,只关心元素的种类。
Cnm = n! / (m!(n-m)!)1.4概率与统计概率:事件A发生的概率为P(A)=事件A发生的次数/试验的总次数独立事件的概率乘积定理:P(A∩B)=P(A)*P(B)统计:均值、方差、标准差2.几何2.1三角函数sinθ = 对边/斜边cosθ = 临边/斜边tanθ = 对边/临边2.2三角恒等式sin²θ + cos²θ = 11 + tan²θ = sec²θ1 + cot²θ = csc²θ2.3圆与圆锥圆面积:A=πr²圆周长:C=2πr圆锥体积:V=(1/3)πr²h2.4空间几何点到直线的距离:d=,Ax0+By0+C,/√(A²+B²)直线之间的夹角:cosθ = (A₁A₂ + B₁B₂ + C₁C₂) / (√(A₁²+B₁²+C₁²) * √(A₂²+B₂²+C₂²))平面与平面的夹角:cosθ = (A₁A₂ + B₁B₂ + C₁C₂) / (√(A₁²+B₁²+C₁²) * √(A₂²+B₂²+C₂²) * √(A₃²+B₃²+C₃²))3.微积分3.1极限与连续极限的定义:lim(x→a)f(x) = L极限的性质:lim(x→a)(f(x)±g(x)) = lim(x→a)f(x) ± lim(x→a)g(x) lim(x→a)f(x)g(x) = lim(x→a)f(x) * lim(x→a)g(x)lim(x→a)f(x)/g(x) = lim(x→a)f(x) / lim(x→a)g(x)连续函数:f(x)在x=a处连续的条件是:f(a)存在lim(x→a)f(x)存在lim(x→a)f(x) = f(a)3.2导数与微分导数的定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h导数的性质:4.数学分析4.1一元函数极值极值点与最值:f'(x0)=0,x=x0为f(x)的极值点当f''(x0)<0时,x=x0为f(x)的最大值点当f''(x0)>0时,x=x0为f(x)的最小值点4.2一元函数曲线的凹凸性凹凸性:如果对于函数f(x)的任意两个点x1和x2有f''(x)>0,则称f(x)在区间(a,b)上是凹函数;如果对于函数f(x)的任意两个点x1和x2有f''(x)<0,则称f(x)在区间(a,b)上是凸函数。
专升本数学公式汇总
专升本数学公式汇总在专升本的数学考试中,掌握好各种公式是取得优异成绩的关键。
以下是为大家精心汇总的专升本数学常见公式,希望能对大家的学习有所帮助。
一、函数1、函数的定义:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个数 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,那么就称 y 是 x 的函数,记作 y = f(x),x ∈ D。
2、基本初等函数(1)幂函数:y =x^α(α 为常数)(2)指数函数:y = a^x(a > 0 且a ≠ 1)(3)对数函数:y =logₐx(a > 0 且a ≠ 1)(4)三角函数:如正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y = tan x 等(5)反三角函数:如反正弦函数 y = arcsin x,反余弦函数 y =arccos x 等二、极限1、数列极限:对于数列{an},如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 都成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数极限(1)当x → x₀时函数的极限:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 0 <|x x₀| <δ 时,不等式|f(x) A| <ε 都成立,那么就称常数 A 是函数 f(x)当x → x₀时的极限,记作lim(x→x₀) f(x) = A。
(2)当x → ∞ 时函数的极限:设函数 f(x)当|x| 大于某一正数时有定义,如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正数 X,使得当|x| > X 时,不等式|f(x) A| <ε 都成立,那么就称常数 A 是函数 f(x)当x → ∞ 时的极限,记作lim(x→∞) f(x) =A。
专升本数学公式汇总
专升本高等数学公式一、求极限方法:1、当x 趋于常数0x 时的极限:02200x x lim(ax bx c)ax bx c →++=++;00000ax bcx d ax b limcx d cx d x x ++≠+−−−−−−→++→当; 00000cx d ,ax b ax b lim cx dx x +=+≠+−−−−−−−−−−−→∞+→当但; 2220020ax bx f cx dx e ,ax bx f lim x x cx dx e++++=++=−−−−−−−−−−−−−−→→++当且可以约去公因式后再求解。
2、当x 趋于常数∞时的极限:3、可以使用洛必达发则:0f (x)f (x)x f (x)g(x)lim lim g(x)g (x)x x '→∞→∞−−−−−−−−−−−−−−−→'→∞→∞当时,与都或;对0x →也同样成立。
而且,只要满足条件,洛必达发则可以多次使用。
二、求导公式:1、0c '=;2、1n n (x )nx -'=;3、x x (a )a lnx '=;4、x x (e )e '=;5、1(log x)a xlna'=6、1(ln x)x '=;7、(sin x)cos x '=;8、(cos x)sin x '=-;9、2(tan x)sec x '=10、2(cot x)csc x '=-;11、(sec x)sec xtan x '=;12、(cscx)cscxcot x '=- 13、(arcsin x)'=;14、(arccos x)'=;15、211(arctan x)x '=+;16、211(arccot x)x'=-+;17、(shx)chx '=;18、(chx)shx '=;19、2(thx)ch x -'=;20、(arshx)'=;21、(archx)'=;22、211(arthx)x'=-; 三、求导法则:(以下的5、7、8三点供高等数学本科的学员参阅) 1、(u(x)v(x))u (x)v (x)'''±=±;2、(kv(x))kv (x)''=; 3、(u(x)v(x))v(x)u (x)v (x)u(x)'''⋅=+;4、2u(x)u (x)v(x)v (x)u(x)()v(x)v (x)''-'=4、复合函数y f[]ϕ=(x )的求导:f []=f (u)u (x),u=(x)ϕϕ'''(x )其中。
专升本数学公式汇总
专升本高等数学公式一、求极限方法:1、当 x 趋于常数 x 0 时的极限:lim(ax 2bx c)2bx 0 c ; limax b 当 cx 0 d 0 ax 0bax 0cx dcx 0;xx 0x xdlim ax b 当 cx 0 d 0,但 ax 0 b 0;cx dx x2 当2 dx e 0, 且2 f 0lim ax bx fcx ax bx 能够约去公因式后再求解。
2、当 x 趋于xx0 cx 2dx e 常数 时的极限: 3、能够使用洛必达发则:lim f (x) 当 x 时, f (x) 与 g(x) 都0或lim f (x) ;对 x 也相同建立。
并且,只 x g(x)x g (x)要知足条件,洛必达发则能够多次使用。
二、求导公式:1、 c 0 ;2、 (x n)nx n 1;3、 (a x)a xlnx ;4、 (e x ) e x;5、 (log x)11;7、 (sin x)axlna6、 (lnx)cosx ; 8、 (cosx)sin x ;9、 (tan x)sec 2 xx10、 (cotx) csc 2 x ; 11、 (secx) secxtan x ;12、 (cscx)cscxcot x13 、 (arcsin x)1;14、(arccosx)1 ; 15 、 (arctan x)1 、1 x 21 x2 2 ;161 x(arccotx)1 1 ; 17 、 (shx) chx ; 18 、 (chx)shx ; 19 、 (thx)ch 2 x ; 20 、x 2(arshx)1 1 ;21、 (archx) 1 ;22、 (arthx) 12 ;x 2x 2 11 x三、求导法例: (以下的 5、7、8 三点供高等数学本科的学员参阅 )1、 (u(x)v(x)) u (x)v (x) ;2、 (kv(x)) kv (x) ;3、 (u(x) v(x))v(x)u (x)v (x)u(x) ;4、 ( u(x)) u (x)v(x) 2 v (x)u(x)v(x)v (x)4、复合函数 y f[ ( x )]的求导: f [ ( x )]=f (u)u (x),此中 u= (x) 。
专升本高等数学公式大全
专升本高等数学公式大全函数的导数公式:1.常数函数的导数为0:(k)'=0;2. 幂函数的导数公式:(x^n)' = nx^(n-1);3. 指数函数的导数公式:(a^x)' = a^x * ln(a);4. 对数函数的导数公式:(loga^x)' = 1/(x * ln(a));5.三角函数的导数公式:- (sinx)' = cosx;- (cosx)' = -sinx;- (tanx)' = sec^2(x);- (cotx)' = -csc^2(x);- (secx)' = secx * tanx;- (cscx)' = -cscx * cotx;极限公式:1. 常数的极限是它本身:lim (c) = c;2.极限的线性性质:- lim (f(x) ± g(x)) = lim (f(x)) ± lim (g(x));- lim (k * f(x)) = k * lim (f(x));3.极限的乘法法则:- lim (f(x) * g(x)) = lim (f(x)) * lim (g(x));4.极限的除法法则:- lim (f(x) / g(x)) = lim (f(x)) / lim (g(x));5.无穷的极限:- lim (x -> ±∞) (1/x) = 0;- lim (x -> ±∞) (a^x) = 0 (a > 1);- lim (x -> ±∞) (ln(x)) = ±∞;- lim (x -> ±∞) (e^x) = ±∞;一元函数的微分公式:1.常数函数的微分为0:d(c)=0;2. 幂函数的微分公式:d(x^n) = nx^(n-1)dx;3. 指数函数的微分公式:d(a^x) = a^xdx * ln(a);4. 对数函数的微分公式:d(loga^x) = (1/x)dx / ln(a);5.三角函数的微分公式:- d(sinx) = cosxdx;- d(cosx) = -sinxdx;- d(tanx) = sec^2(x)dx;- d(cotx) = -csc^2(x)dx;- d(secx) = secxtanxdx;- d(cscx) = -cscxcotxdx;不定积分的公式:1. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C;2. 指数函数的不定积分:∫a^x dx = (a^x)/ln(a) + C;3. 对数函数的不定积分:∫(1/x) dx = ln,x, + C;4.三角函数的不定积分:- ∫sinx dx = -cosx + C;- ∫cosx dx = sinx + C;- ∫tanx dx = -ln,cosx, + C;- ∫cotx dx = ln,sinx, + C;- ∫secx dx = ln,secx + tanx, + C;- ∫cscx dx = ln,cscx - cotx, + C;以上仅是高等数学中的一部分公式,通过掌握和运用这些公式,可以更好地应对专升本考试中的数学相关题目。
专升本高等数学公式全集
专升本高等数学公式全集1.极限与连续- 极限的定义:对于函数f(x),当x趋于无穷大时,如果存在常数L,使得对于任意给定的正数ε,总存在正数δ,当,x-a,<δ时,有,f(x)-L,<ε,则称函数f(x)在点a处极限为L,记为lim(x→a)f(x)=L。
- 极限运算法则:设lim(x→a)f(x)=A,lim(x→a)g(x)=B,则lim(x→a)(f(x)±g(x))=A±B,lim(x→a)f(x)g(x)=A·B,lim(x→a)f(x)/g(x)=A/B(其中B≠0)。
- 无穷小量:若lim(x→∞)f(x)=0,则称函数f(x)为当x趋于无穷大时的无穷小量。
- 利用洛必达法则可以求解极限:“若lim(x→a)f(x)=0,lim(x→a)g(x)=0,且lim(x→a)f'(x)/g'(x)存在(或为∞),则lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)”。
2.微分学- 导数定义:函数f(x)在点x=a处的导数定义为:lim(h→0)(f(a+h)-f(a))/h,记为f'(a),也可表示为dy/dx或y'。
- 基本导数法则:(1)(c)'=0,其中c为常数;(2)(x^n)'=nx^(n-1),其中n为任意实数;(3)(e^x)'=e^x,(a^x)'=a^xlna,其中a>0且a≠1;(4)(lnx)'=1/x,(log_a(x))'=1/(xlna),其中a>0且a≠1-高阶导数:函数f(x)的n阶导数记作f^(n)(x),其中n为正整数,可从一阶导数f'(x)重复求导得到。
- 隐函数求导:对于方程F(x,y)=0,若能求出y',则有dy/dx=-F_x/F_y(其中F_x和F_y分别表示F关于x、y的偏导数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专升本高等数学公式一、求极限方法:1、当x 趋于常数0x 时的极限:02200x x lim(ax bx c)ax bx c →++=++;00000ax bcx d ax b limcx d cx d x x ++≠+−−−−−−→++→当; 00000cx d ,ax b ax b lim cx d x x +=+≠+−−−−−−−−−−−→∞+→当但;2220020ax bx f cx dx e ,ax bx f lim x x cx dx e++++=++=−−−−−−−−−−−−−−→→++当且可以约去公因式后再求解。
2、当x 趋于常数∞时的极限:3、可以使用洛必达发则:0f (x)f (x)x f (x)g(x)lim lim g(x)g (x)x x '→∞→∞−−−−−−−−−−−−−−−→'→∞→∞当时,与都或;对0x →也同样成立。
而且,只要满足条件,洛必达发则可以多次使用。
二、求导公式:1、0c '=;2、1n n (x )nx -'=;3、x x (a )a lnx '=;4、x x (e )e '=;5、1(log x)a xlna'=6、1(ln x)x '=;7、(sin x)cos x '=;8、(cos x)sin x '=-;9、2(tan x)sec x '=10、2(cot x)csc x '=-;11、(sec x)sec xtan x '=;12、(cscx)cscxcot x '=- 13、(arcsin x)'=;14、(arccos x)'=-;15、211(arctan x)x'=+;16、211(arccot x)x'=-+;17、(shx)chx '=;18、(chx)shx '=;19、2(thx)ch x -'=;20、(arshx)'=21、(archx)'=22、211(arthx)x'=-; 三、求导法则:(以下的5、7、8三点供高等数学本科的学员参阅) 1、(u(x)v(x))u (x)v (x)'''±=±;2、(kv(x))kv (x)''=; 3、(u(x)v(x))v(x)u (x)v (x)u(x)'''⋅=+;4、2u(x)u (x)v(x)v (x)u(x)()v(x)v (x)''-'= 4、复合函数y f[]ϕ=(x )的求导:f []=f (u)u (x),u=(x)ϕϕ'''(x )其中。
5、莱布尼茨公式:0(n )k (n k )(k )n n (uv)=u v k c -∑=。
6、隐函数求导规则:等式两边同时对x 求导,遇到含有y 的项,先对y 求导,再乘以y 对x 的导数,得到一个关于y '的方程,求出y '即可。
7、参数方程x g(t){y f(t)==的求导:dy f (t)dx g (t)'=';22f (t)f (t)d ()d y g (t)g (t)dx dx dxdt'''''==,高阶导数依次类推,分母总是多一个dxdt,这一点和显函数的求导不一样,要注意! 四、导数应用:1、单调性的判定:导数大于零,递增;导数小于零,递减。
2、求极值的步骤:方法一:求导、求驻点及使导数不存在的点、划分区间画图表判断、代入求值。
方法二:求导、求驻点及使导数不存在的点、判断二阶导在上述点的值的符号,二阶导小于零,有极大值,二阶导大于零,有极小值。
4、求最值的步骤: 求导、求驻点及使导数不存在的点、求出上述点处的函数值并进行比较、最大的即是最大值,最小的是最小值。
5、凸凹的判定:二阶导大于零则为凹;二阶导小于零则是凸。
6、图形描绘步骤:确定定义域、与x 轴的交点及图形的对称性;求出一阶导、二阶导及各自的根;划分区间列表判断以确定单调性、极值、凸凹及拐点;确定水平及铅直渐近线;根据上述资料描画图形。
五、积分公式: 1、kdx kx c =+⎰;2、111x dx x c ()μμμ+=+⎰+;3、1dx ln x c x=+⎰;4、x x e dx e c =+⎰;5、1x x a dx a c lna=+⎰;6、cos xdx sin x c =+⎰7、sin xdx cos x c =-+⎰; 8、tan xdx ln|cos x|c =-+⎰;9、cot xdx ln|sin x|c =+⎰;10、csc xcot xdx csc x c =-+⎰ 11、sec xtan xdx sec x c =+⎰;12、2sec xdx tan x c =+⎰;13、2csc xdx cot x c =-+⎰;14、shxdx chx c =+⎰;15、chxdx shx c =+⎰;16、secxdx ln |secx tan x |c =++⎰; 17、cscxdx ln |cscx cot x |c =-+⎰;18、211dx arctan x c x =+⎰+; 19、arcsin x c =+;20、22110xdx arctan c,(a )a x a a=+>+⎰; 21、221102a x dx ln ||c,(a )a x a a x +=+>--⎰;22、xarcsin c a =+⎰; 23、arcsinxdx xarcsinx c =⎰;24、arccosxdx xarccosx c =⎰; 25、arctanxdx xarctanx c =-⎰;26、arccot xdx xarccot x c =+⎰; 27、udv uv vdu =-⎰⎰;六、定积分性质:1、b b a a kf(x)dx k f(x)dx =⎰⎰;2、b b ba a a [f(x)g(x)]dx f(x)dx g(x)dx ±=+⎰⎰⎰3、bcba a c f(x)dx f(x)dx f(x)dx =+⎰⎰⎰;4、ba dxb a =-⎰;5、b a f(x)dx f(x)dx a b=-⎰⎰; 6、ba f(x)dx f()(b a),(a,b)ξξ=-∈⎰; 7、udv uv vdu =-⎰⎰;8、xa (f(t)dt)f(x)'=⎰;9、020x a f(x)dx {a x a f(x)dx −−−−−−→=⎰-−−−−−−→⎰是偶函数是奇函数; 10、b b b udv (uv)|vdu aaa =-⎰⎰;11、b f(x)dx lim f(x)dx a ab +∞=⎰⎰→+∞; 12、c b f(x)dx lim f(x)dx lim f(x)dx a ca b +∞=+⎰⎰⎰-∞→-∞→+∞; 七、多元函数1、N 维空间中两点之间的距离公式:1212,,,n ,,,n p(x x ...x ),Q(y y ...y )的距离2、多元函数z f(x,y)=求偏导时,对谁求偏导,就意味着其它的变量都暂时看作常量。
比如,zx∂∂表示对x 求偏导,计算时把y 当作常量,只对x 求导就可以了。
3、高阶混合偏导数在偏导数连续的条件下与求导次序无关,即22z zx y y x∂∂=∂∂∂∂。
4、多元函数z f(x,y)=的全微分公式: z z dz dx dy x y∂∂=+∂∂。
5、复合函数z f(u,v),u (t),v (t)φϕ===,其导数公式:dz z du z dvdt u dt v dt∂∂=+∂∂。
6、隐函数F(x,y)=0的求导公式: X yF dydX F '=-',其中x y F ,F ''分别表示对x,y 求偏导数。
7、求多元函数z=f(x , y)极值步骤:第一步:求出函数对x , y 的偏导数,并求出各个偏导数为零时的对应的x,y 的值 第二步:求出000000xx xy yy f (x ,y )A,f (x ,y )B,f (x ,y )C ===第三步:判断AC-B 2的符号,若AC-B 2大于零,则存在极值,且当A 小于零是极大值,当A 大于零是极小值;若AC-B 2小于零则无极值;若AC-B 2等于零则无法判断8、双重积分的性质:(1)(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰(2)[(,)(,)](,)(,)DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰(3) 12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰(4)若(,)(,)f x y g x y <,则(,)(,)DDf x y dg x y d σσ<⎰⎰⎰⎰(5)Dd s σ=⎰⎰,其中s 为积分区域D 的面积(6)(,)m f x y M <<,则(,)Dms f x y d Ms σ<<⎰⎰(7)积分中值定理:(,)(,)Df x y d sf σεη=⎰⎰,其中(,)εη是区域D 中的点11、双重积分总可以化简为二次积分(先对y ,后对x 的积分或先对x ,后对y 的积分形式)2211()()()()(,)(,)(,)P x P y bdDaP x cP y f x y d dxf x y dy dyf x y dx σ==⎰⎰⎰⎰⎰⎰,有的积分可以随意选择积分次序,但是做题的复杂性会出现不同,这时选择积分次序就比较重要,主要依据通过积分区域和被积函数来确定12、双重积分转化为二次积分进行运算时,对谁积分,就把另外的变量都看成常量,可以按照求一元函数定积分的方法进行求解,包括凑微分、换元、分步等方法八、排列组合及概率公示1、排列数公式: (1)(2)(1)m n P n n n n m =--⋅⋅⋅-+。
当m =n 时称作全排列,且其排列总数的计算公式是(1)(2)1n n n --⋅⋅⋅,简记作n!。
2、组合公式:(1)(2)(1)!m mn nm m P n n n n m C P m --⋅⋅⋅-+==。
特殊的,记1n n C =。
另有m n m n n C C -=,故记01n C =。
3、互斥事件:不能同时发生的事件。
互斥事件A 、B 中有一个发生的事件记作A+B ,其概率等于事件A 、B 概率之和,即P (A+B )=P (A )+P (B )。