数学形态学及其应用共41页
Lecture 09 形态学及其应用 - LAMDA
形态学及其应用
数学形态学概述
迄今为止, 还没有一种方法能像数学形态学那样 既有坚实的理论基础,简洁、 朴素、 统一的基本 思想,又有如此广泛的实用价值。有人称数学形 态学在理论上是严谨的,在基本观念上却是简单 和优美的。 数学形态学是一门建立在严格数学理论基础上的 学科,其基本思想和方法对图像处理的理论和技 术产生了重大影响。 数学形态学已经构成一种新的图像处理方法和理 论,成为计算机数字图像处理的重要研究领域。
A A∪B B
形态学及其应用
7
数字图像处理· 2018年春季
基本符号和定义
补集
设有一幅图像������������ ,所有������������区域以外的点构成的集合称为������������ 的补集,记作������������ ������������ 。 显然,如果������������ ∩ ������������ = ∅,则������������在������������的补集内。
A
B
形态学及其应用
9
数字图像处理· 2018年春季
基本符号和定义
击不中
设有两幅图像������������ 和������������。若不存在任何一个点,它既是������������ 的元素,又是������������ 的元素,即������������ 和������������ 的交集是空,则称������������ 不击中������������,记作������������ ∩ ������������ ≠ ∅.
形态学及其应用
5
数字图像处理· 2018年春季
数学形态学及其应用
摘要论文研究了数学形态学理论,对基本形态学算子的几何意义与性质进行了归纳与总结,阐述了数学形态学用结构元素“探测”信号的本质。
论文对数学形态学的应用进行了研究,主要成果是:(1)将数学形念学应用于纺织工业纱线疵点检测中,提出了数学形态学广义结构元素的概念,并构造了形态学“梯形塔式”广义结构元素,丰富了数学形态学理论。
广义结构元素的概念和构造广义结构元素的方法是本文的创新点;(2)研究了数学形态学在红外序列图象弱小目标自动检测中的应用,提出了基于狄值形态重构丌的红外序列图象弱小目标自动检测算法,并利用形态学运算进行红外图象增强,进~步提高了算法的硷测性能,丰富了数学形态学在红外目标检测中的应用知识;(3)提出了应用数学形态学对闭环控制系统反馈信号进行滤波的方法,并成功地应用于实际系统巾.填补了数学形态学在这一应用领域中的空白。
以上应用算法无论在理论研究还址实际应用方面都具有重要价值。
论文研究了形念金字塔理论,主要成果是:(1)构造出了可以精确重构的多Jt度平形态闭会字塔,并成功地将其应用于图象的多分辨率分割。
该分割算法可以区别暗背景中的亮成分与亮背景中的暗成分,这对遥感等图象领域处理具有重要意义。
(2)构造了多尺度平形态混合金字塔,并成功地应用于扫描图象的滤波I—p。
以上研究对形态金字塔理论和应用研究都具有很高的参考价值。
论文研究了形态小波理论,主要成果是:(1)首次详细论述了非线性形念Haar小波构造方法,并将形态Haar小波成功地应用于图象分解中。
形态Haar小波具有非线性、尺度信号的取值范围同原始信号相同、信号局部最大(小)很好地保留在多个分辨率空怕J和可保证精确重构等优点,更适合应用于压缩编码、模式识别等领域;(2)提出了一种新的基于更新提升构造非冗余的、可完备重构的形态小波的方法,首次提出了广义更新算子的概念,阐述了构造了广义更新算子的方法,进一步发展了数学形态学理论。
广义更新算子的概念和广义更新算予的孛f=J造办法是本文的创新点;(3)提出了一种更新提升小波闽值去噪算法,对比实验表明该,J法比传统小波闽值去噪算法具有明显的优势,峰值信噪比提高2~5dB,信噪比约提高4~7dB,尤其在低信噪比情况下性能更加优越。
实验三 数学形态学及其应用
where when
7.Morphology小结
A.通过物体(对象)和结构元素的相互作用,得到更本质的形态(shape)
(1)图像滤波
(2)平滑区域的边界
(3)将一定形状施加于区域边界
(4)描述和定义图像的各种几何参数和特征(区域数、面积、周长、连通度、颗粒度、骨架、边界)
B.形态运算是并行运算
C.细化
区域或边界变为1个象素的宽度,但它不破坏连通性
四方向细化算法:逻辑运算(可删除条件)
形态运算是否可用于细化?
(1)腐蚀:收缩(去掉边缘的点)何时结束?能否保证连通性?
(2)开:去毛刺,能否细化(去掉尺寸小于结构元素的块)
三.实验提示
Matlab中用imdilate函数实现膨胀。用法为:
Imdilate(X,SE).其中X是待处理的图像,SE是结构元素对象。
功能:
提取二进制图像的轮廓。
语法:
BW2 = bwmorph(BW1,operation)
BW2 = bwmorph(BW1,operation,n)
举例
BW1 = imread('circles.png');
imshow(BW1);
BW2 = bwmorph(BW1,'remove');
BW3 = bwmorph(BW1,'skel',Inf);
Matlab用imopen函数实现图像开运算。用法为:
imopen(I,se);
I为图像源,se为结构元素
Matlab用imclosee函数实现图像闭运算。用法为:
imclose(I,se);
I为图像源,se为结构元素
第八章 数学形态学及应用
2.5 形态学算子
2.5.1 腐蚀(Erosion) 腐蚀(Erosion)
腐蚀目的:消除目标图像中的无用点( 腐蚀目的:消除目标图像中的无用点(或 孤立噪声点)的一个过程, 孤立噪声点)的一个过程,其结果使得剩下 的目标比处理前减少了一些像素。 的目标比处理前减少了一些像素。 腐蚀定义: 腐蚀定义: X用B来腐蚀记为 ,定义为 腐蚀过程: 平移( 后仍在集合X 腐蚀过程:B平移(x,y)后仍在集合X中 的结构元素其参考点的集合。换句话说, 的结构元素其参考点的集合。换句话说,用 来腐蚀X得到的集合是B完全包括在集合X B来腐蚀X得到的集合是B完全包括在集合X中 的参考点位置的集合。 时B的参考点位置的集合。
图像分析与处理数学形态学PPT课件
第21页/共48页
开 • 先腐蚀后膨胀称为开(open),即OPEN(X)=D(E(X))。
第22页/共48页
开 • 上面的两幅图中,左边是被处理的图象X(二值图象,针对的是黑点),右
边是结构元素B。 • 下面的两幅图中左边是腐蚀后的结果,右边是在此基础上膨胀的结果。 • 可以看到,原图经过开运算后,一些孤立的小点被去掉了。 • 一般来说,开运算能够去除孤立的小点,毛刺和小桥(即连通两块区域的
• 如果B不是对称的, X被B腐蚀的结果和 X被 Bv腐蚀的结果 不同。
第9页/共48页
腐蚀
第10页/共48页
腐蚀
• 左边是被处理的图象X(二值图象,针对的是黑点)。 • 中间是结构元素B,标有origin的点是中心点,即当前
处理元素的位置。 • 腐蚀的方法是:
• 拿B的中心点和X上的点一个一个地对比; • 如果B上的所有点都在X的范围内,则该点保留,否则将该点
第17页/共48页
膨胀
原图
膨胀后的 结果图
第18页/共48页
膨胀
• 腐蚀运算和膨胀运算互为对偶的,用公式表示 为
• 即X 被B腐蚀后的补集等于X的补集被B膨胀。
• 可以形象的理解为:
• 河岸的补集为河面,河岸的腐蚀等价于河面的膨胀。
• 对偶关系是非常有用的。
第19页/共48页
第20页/共48页
第34页/共48页
• 区域骨架问题:计算量大 算法改进思想
• 在保证产生正确的骨架的同时,改进算法的 效率。比较典型的是一类细化算法,它们不 断删去边缘,但保证删除满足:
1)不移去端点;2)不破坏连通性;(3)不 引起区域的过度腐蚀。
p
第35页/共48页
第八章(1)-数字形态学及其应用
b
A
a
a∈ A b∉ A
结构元素(Structure Element) 设有两幅图像A和B,若A是被处理的对象,B 是用来处理A的,则称B为结构元素。
7
第八章 数字形态学及其应用
交集、 并集和补集
AI B
AU B
AC
A B A
B A
B
A I B = {a a ∈ A且 a ∈ B}
A U B = {a a ∈ A或 a ∈ B} AC = {a a ∉ A}
2
第八章 数字形态学及其应用
利用数学形态学进行图像分析的基本步骤如下: 1、提出所要描述的物体几何结构模式,即提取物 体的几何结构持征; 2、根据该模式选择相应的结构元素,结构元素应该 2 简单而对模式具有最强的表现力; 3、用选定的结构元对图像进行击中与否(HMT)变 换,便可得到比原始图像显著突出物体特征信息的 图像。如果赋予相应的变量.则可得到该结构模式 的定量描述; 4、经过形态变换后的图像突出需要的信息,此时 就可以方便地提取信息。
8
第八章 数字形态学及其应用
差集
A − B = {x x ∈ A, x ∉ B} = A I B c
A B
9
第八章 数字形态学及其应用
平移转换:设A是两个二维集合,A中的元素是 定义 x = ( x1 , x2 )
a = (a1 , a2 )
则: ( A) x = c c = a + x, for a ∈ A
4 3 2 1 0 1 2 3 4 5 6
b∈B
0 1 2 3 4 5 6
(a) 图像X与结构元素B 4 3 2 1 0 1 2 3 4 5 6 (c)
(b) ( X 膨胀的等价定义形式: X ⊕ B = U ( X)b2b ) 4 3 2 1
数学形态学及应用
4 3 2 1 0 1 2 3 4 x y 3 2 1 0 b 1 2 3 4 x 5 4 3 2 1 0 1 2 3 4 x
y
(a )数字图像
(b )点
(c)
A被b平移:A+b={a+b| a∈A} ————a与b对应坐标相加
5 4 3 2 1 0
y
x 4 3 2 1 0 1 2 3 4 y
C ⊙ X S {x | S1 x X且S2 x X }
C ⊙ X S ( XS1 ) ( X S2 )
( XS1 ) ( X S ) ( XS1 ) ( X S )
V 2
V C 2
X被S击中的结果相当于X被S1腐蚀的结果与X 被S2的反射集S2V膨胀的结果之差。
区域填充
骨架提取
骨架提取是由细化而来。骨架形成的是单像素的细化结果
粗化
连通分量提取
(a)X光图 像
(b)二值图 像 (c)用5×5 结构元 素腐蚀 结果
灰度级图像扩展
(a)原图 (b)膨胀图,更亮了减弱了暗细节 (c)腐蚀图,更暗了,明亮成分减 少
注意不同图中亮和暗细节的变化
一、膨胀 使图像扩大
A和B是两个集合,A被B膨胀定义为:
上式表示:B的反射进行平移与A的交集不为空 B的反射:相对于自身原点的映象 B的平移:对B的反射进行位移
膨胀的另一个定义
上式表示:B的反射进行平移与A的交集是A的子集
膨胀操作过程
将结构元素B的原点移至集合A的某一点,
将结构元素B中点的坐标与集合A中该点坐标相加, 得到对集合A中一点膨胀的运算结果.
击中/击不中变换的应用
• 严格的模版匹配。指出被匹配点所应满足的 性质(模板形状)的同时也指出这些点所不 应满足的性质,即对周围环境背景的要求。 • 保持拓扑结构的形状细化,以及形状识别和
数学形态学及其应用
三、 灰度数学形态学
(一) 灰度图像的排序
对灰度图像讨论数学形态学的方法时不仅
要考虑空间位置还要考虑灰度的大小。
一个信号f (x)的定义域为
D[ f ] x : f ( x )
如果对所有的 x 都有g(x) ≤ f (x),就说 g(x)
在f (x)的下方,并记为g(x) ≤ f (x)
(一)灰度图像的排序
• 二值信号:交集和并集操作
•
•
灰度信号:最小和最大操作
两个信号 f (x)和g(x)的最小值( f g)(x)
( f g )( x ) min f ( x ), g ( x )
如果 x D[f ] ∩ D[g],那么( f g)(x)是 f (x)和g(x) 的最小值,否则( f g)(x) = –
b ( A) A ( A B)
(a)
(b)
(c)
(d)
结构元素是8-连通的,而所得到的边界是4-连通的
(三)二值形态学实用算法
3. 区域填充 X k X k 1 B Ac
k 1, 2, 3,
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
结构元素是4-连通的,而原填充的边界是8-连通的
腐蚀运算:A B A,或 A B A
膨胀和腐蚀
原点不包含在结构元素中时的膨胀运算 AAB
?
(a)
A在膨胀中自身完全消失了
(b)
(c)
(d)
? ? ?
(a)
(b)
(c)
(d)
膨胀和腐蚀
原点不包含在结构元素中时的腐蚀运算 A B A
数学形态学及其应用
第八章 数学形态学及其应用 如果S包含了原点,即O∈S, 那么XS将是X的一个收缩, ⊆ ⊆ 即XSX(当O∈S时);如果S不包含原点,那么XSX未 ⊆ 必成立。如果结构元素S关于原点O是对称的, 那么S=SV,因此 X S=XSV, 但是,如果S关于原点O不是对称的,那么X被S腐蚀的 结果与X被SV腐蚀的结果是不同的。 利用腐蚀运算的定义式可以直接设计腐蚀变换的算法。但有 时为了更方便,常使用腐蚀的另一种表达式,即
第八章 数学形态学及其应用
8.2 二值形态学
二值形态学中的运算对象是集合。设A为图像集合,S为结 构元素,数学形态学运算是用S对A进行操作。需要指出,实际 上结构元素本身也是一个图像集合。对每个结构元素可以指定 一个原点,它是结构元素参与形态学运算的参考点。应注意, 原点可以包含在结构元素中,也可以不包含在结构元素中,但 运算的结果常不相同。以下用阴影代表值为1的区域,白色代表 值为0的区域,运算是对值为1的区域进行的。二值形态学中两 个最基本的运算——腐蚀与膨胀,如图8-5所示。
击不中A, 如图8-3所示。
A
B
A
B
(a)
(b)
图8-3 击中与击不中 (a) B击中A; (b) B击不中A
第八章 数学形态学及其应用 4.平移和反射 平移和反射 平移和反射 设A是一幅数字图像(见图8-4(a)),b是一个点(见图84(b)),那么定义A被b平移后的结果为A+b={a+b| a∈A},即 A a b 取出A中的每个点a的坐标值,将其与点b的坐标值相加,得到一 个新的点的坐标值a+b,所有这些新点所构成的图像就是A被b平 移的结果,记为A+b,如图8-4(c)所示。
第八章 数学形态学及其应用
二二图二 腐腐 膨膨
第十章数学形态学
3. 发展过程
第十章:数学形态学
发展历史 二值操作 灰度操作 应用研究
发展历史(1)
60年代:孕育和形成
– 1964诞生,Matheron指导下的Serra做岩相学分析,击中击不中变换开闭运 算、纹理分析器。1966年命名Mathematical Morphology。1968年成立枫丹 白露数学形态学研究中心。
A B Ac(B)c
第十章:数学形态学
发展历史 二值操作 灰度操作 应用研究
1. 腐蚀、膨胀运算及其性质(2)
腐蚀运算:
f=
01010
0
1
1
0
1
0。 1
1
1
0
ero(f,b) =
0
0
1
0
0。 0
1
1
b=
10 1 1。
第十章:数学形态学
发展历史 二值操作 灰度操作 应用研究
70年代:
– 纹理分析器商业应用,理论方面Mathron《随机集和积分几何》,数学形态 学的核心内容,灰度。
– 未引起信号图像处理方面重视,多为自然科学家,独立思维开拓图像分析一 个新的领域。
第十章:数学形态学
发展历史 二值操作 灰度操作 应用研究
发展历史(2)
80年代:
– Serra 1982完成《图像分析于数学形态学》,形态学走向美国及世界。 – 在格论框架上建立的数学形态学基础。 – 算法开发。
第十章:数学形态学
发展历史 二值操作 灰度操作 应用研究
4. 其他(2)
腐蚀膨胀(条件膨胀) -> 开闭 -> 形态学梯度 -> 颗粒分 析 -> Top-Hat变换
实验二 数学形态学及其应用
实验二、数学形态学及其应用一、实验目的理解和掌握数学形态学的基本理论和算法,练习使用形态学、区域、边界和阀值的方法结合图像增强复原的相关知识点对图像进行边缘提取和分割;二、实验原理1 膨胀和腐蚀是二值形态学的基本操作,其中膨胀是是将与目标区域的背景点合并到该目标物中,使目标物边界向外部扩张的处理;而腐蚀则是一种消除连通域的边界点,使边界向内收缩的处理。
贴标签是对不同连通域区分和标记的基本算法。
两者数学表达如下:膨胀:B A C ⊕=腐蚀:B A C Θ=2图象分割是按照某些特性(如灰度级,频谱,颜色,纹理等)将图象划分成一些区域,在这些区域内其特性是相同的或者说是均匀的,两个相邻区域彼此特性则是不同的,其间存在着边缘或边界。
按照使用图像的特点可以分为两类:利用区域间灰度不连续性――基于边界检测利用区域内灰度的相似性――基于区域分割3 骨架提取Blum 1967年给出了骨架的最初定义:骨架(中轴)是模型内部各个最大内切球中心的集合。
它还有一个grassfire 的模拟定义,从模型表面开始点火,各个方向上的火的相遇点所构成的集合。
因为模型的骨架很好的保留了模型的拓扑连接性及其形态,所以经常被用于碰撞检测、三维动画、模型渲染、模型表面重建、模型检索等应用中,也有研究人员采用骨架为模型的分解做矫正。
4 细化处理细化算法依据是否使用迭代运算可以分为两类:第一类是非迭代算法,一次即产生骨架,如基于距离变换的方法,如游程长度编码细化等。
第二类是迭代算法,即重复删除图像边缘满足一定条件的像素,最终得到单像素宽带骨架。
迭代方法依据其检查像素的方法又可以再分成串行算法和并行算法,在串行算法中,是否删除像素在每次迭代的执行中是固定顺序的,它不仅取决于前次迭代的结果,也取决于本次迭代中已处理过像素点分布情况,而在并行算法中,像素点删除与否与像素值图像中的顺序无关,仅取决于前次迭代的结果。
部分源代码:(1)clc;clear all;;BW1 = imread('circles.png');SE = eye(5);BW2 = imerode(BW1,SE);BW3 = dilate(BW1,SE);subplot(2,2,1),imshow(BW1),title('原始图像');subplot(2,2,2),imshow(BW2),title('腐蚀后图像');subplot(2,2,3),imshow(BW3),title('膨胀后图像');(2)clc;clear all;SE=ones(10,5); %构建结构要素矩阵BW1=imread('circles.png');subplot(2,2,1),imshow(BW1),title('原始图像');BW2=erode(BW1,SE);subplot(2,2,2),imshow(BW2),title('开启操作中腐蚀操作图像');BW3=dilate(BW2,SE);subplot(2,2,3),imshow(BW3),title('开启操作中膨胀操作图像'); (3)clc;clear all;;BW1 = imread('circles.png');BW2=bwmorph(BW1,'skel',inf); %提取图像骨架subplot(2,2,1),imshow(BW1),title('原始图像');subplot(2,2,2),imshow(BW2),title('骨骼后图像');(4)clc;clear all;;BW1 = imread('circles.png');BW2=bwperim(BW1); %提取图像边界subplot(2,2,1),imshow(BW1),title('原始图像');subplot(2,2,2),imshow(BW2),title('边界图像');(5)骨架提取clc;clear all;;BW1 = imread('guge1.bmp');[row,col]=size(BW1);BW3=zeros(row,col);for i=1:rowfor j=1:colif BW1(i,j)==1BW3(i,j)=0;elseBW3(i,j)=255;endendendSE0= [0,1,0;1,1,1;0,1,0];SE1=[0,0,1,0,0;0,1,1,1,0;1,1,1,1,1;0,1,1,1,0;0,0,1,0,0];SE2=[0,0,0,1,0,0,0;0,0,1,1,1,0,0;0,1,1,1,1,1,0;1,1,1,1,1,1,1;0,1,1,1,1,1,0;0,0,1,1,1,0,0;0,0,0,1,0,0,0];t1=BW3;BW2=zeros(row,col);for t=1:60t1=imerode(t1,SE0);t2=imdilate(imerode(t1,SE0),SE0);BW2=BW2+(t1-t2);figure(t);subplot(2,2,1),imshow(BW3),title('原始图像');subplot(2,2,2),imshow(t1),title('腐蚀后图像1');subplot(2,2,3),imshow(t2),title('开运算后图像2');subplot(2,2,4),imshow(BW2),title('骨架后图像2');end(6)细化处理clear allclose allclc%清除所有的工作变量和命令窗口%显示原始图象y=~imread('guge2.bmp');%根据需要更改路径Y=y;figure(1);imshow(~y);title('二值图像');[X_size,Y_size]=size(y);for j=1:X_sizefor k=1:Y_sizef(j,k)=0;endendi=2;bModified=1;while(bModified==1)bModified=0;for j=2:X_size-1for k=2:Y_size-1if y(j,k)==1bCondition1=0;bCondition2=0;bCondition3=0;bCondition4=0;for m=-1:1for n=-1:1neighbour(m+2,n+2)=y(j+m,k+n);endendnCount=neighbour(1,1)+neighbour(1,2)+neighbour(1,3)+neighbour(2,1)+neighbour(2,3)+neighbour(3,1)+neig hbour(3,2)+neighbour(3,3);if(nCount>=2&&nCount<=6)bCondition1=1;endnCount=0;if(neighbour(1,2)==0&&neighbour(1,1)==1)nCount=nCount+1;endif(neighbour(1,1)==0&&neighbour(2,1)==1)nCount=nCount+1;endif(neighbour(2,1)==0&&neighbour(3,1)==1)nCount=nCount+1;endif(neighbour(3,1)==0&&neighbour(3,2)==1)nCount=nCount+1;endif(neighbour(3,2)==0&&neighbour(3,3)==1)nCount=nCount+1;endif(neighbour(3,3)==0&&neighbour(2,3)==1)nCount=nCount+1;endif(neighbour(2,3)==0&&neighbour(1,3)==1)nCount=nCount+1;endif(neighbour(1,3)==0&&neighbour(1,2)==1)nCount=nCount+1;endif(nCount==1)bCondition2=1;endif((neighbour(1,2)*neighbour(2,1)*neighbour(3,2)==0)||nCount~=1)bCondition3=1;endif((neighbour(2,1)*neighbour(3,2)*neighbour(2,3)==0)||nCount~=1)bCondition4=1;endif(bCondition1==1&&bCondition2==1&&bCondition3==1&&bCondition4==1) f(j,k)=y(j,k);endendendendfor j=1:X_sizefor k=1:Y_sizeif(f(j,k)==1)y(j,k)=0;endendendfor j=2:X_size-1for k=2:Y_size-1if y(j,k)==1bCondition1=0;bCondition2=0;bCondition3=0;bCondition4=0;for m=-1:1for n=-1:1neighbour(m+2,n+2)=y(j+m,k+n);endendnCount=neighbour(1,1)+neighbour(1,2)+neighbour(1,3)+neighbour(2,1)+neighbour(2,3)+neighbour(3,1)+neig hbour(3,2)+neighbour(3,3);if(nCount>=2&&nCount<=6)bCondition1=1;endnCount=0;if(neighbour(1,2)==0&&neighbour(1,1)==1)nCount=nCount+1;endif(neighbour(1,1)==0&&neighbour(2,1)==1)nCount=nCount+1;endif(neighbour(2,1)==0&&neighbour(3,1)==1)nCount=nCount+1;endif(neighbour(3,1)==0&&neighbour(3,2)==1)nCount=nCount+1;endif(neighbour(3,2)==0&&neighbour(3,3)==1)nCount=nCount+1;endif(neighbour(3,3)==0&&neighbour(2,3)==1)nCount=nCount+1;endif(neighbour(2,3)==0&&neighbour(1,3)==1)nCount=nCount+1;endif(neighbour(1,3)==0&&neighbour(1,2)==1)nCount=nCount+1;endif(nCount==1)bCondition2=1;if((neighbour(1,2)*neighbour(2,1)*neighbour(2,3)==0)||nCount~=1)bCondition3=1;endif((neighbour(1,2)*neighbour(3,2)*neighbour(2,3)==0)||nCount~=1)bCondition4=1;endif(bCondition1==1&&bCondition2==1&&bCondition3==1&&bCondition4==1) f(j,k)=y(j,k);bModified=1;endendendendfor j=1:X_sizefor k=1:Y_sizeif(f(j,k)==1)y(j,k)=0;endendendfigure(i);imshow(~y);title('二值图像');i=i+1;end[X_size,Y_size]=size(y);for j=1:X_sizefor k=1:Y_sizef(j,k)=0;endendbModified=1;while(bModified==1)bModified=0;for j=2:X_size-1for k=2:Y_size-1if y(j,k)==1bCondition1=0;bCondition2=0;bCondition3=0;bCondition4=0;for m=-1:1for n=-1:1neighbour(m+2,n+2)=y(j+m,k+n);endif((neighbour(1,2)==0&&neighbour(1,3)==1)||(neighbour(3,2)==0&&neighbour(3,3)==1))bCondition1=1;endif((neighbour(2,1)==0&&neighbour(1,1)==1)||(neighbour(2,3)==0&&neighbour(1,3)==1))bCondition2=1end;if((neighbour(1,2)==0&&neighbour(1,1)==1)||(neighbour(3,2)==0&&neighbour(3,1)==1))bCondition3=1;endif((neighbour(2,1)==0&&neighbour(3,1)==1)||(neighbour(2,3)==0&&neighbour(3,3)==1))bCondition4=1;endif(bCondition1==0&&bCondition2==0&&bCondition3==0&&bCondition4==0)if((neighbour(1,1)+neighbour(1,2)+neighbour(1,3)+neighbour(2,1)+neighbour(2,3)+neighbour(3,1)+neighbour (3,2)+neighbour(3,3))<=2)f(j,k)=0;elsef(j,k)=1;bModified=1;endendendendendfor j=1:X_sizefor k=1:Y_sizeif(f(j,k)==1)y(j,k)=0;endendendendfigure(i+1);imshow(~y);title('二次细化图像');figure(i+2);imshow(Y-y);title('最终图像');三、实验仪器1计算机;2 MA TLAB程序;四、实验报告内容1叙述实验过程;2提交实验的原始图像、结果图像和统计信息。
数学形态学方法及其应用
数学形态学方法及其应用
1、[GeneralInformation]书名=数学形态学方法及其应用=页数=178SS号
=10068263出版日期=封面页书名页版权页前言页名目页前言第一章绪论第一节
数字图象处理第二节数学形态学的基本特点第二章数学形态学的基本运算第一
节膨胀和腐蚀第二节开和闭第三节击中和薄化、厚化运算第四节基本变换的主要
性质第三章图象数字化与测地距离第一节图象的数字化第二节距离第三节道路
与连通性第四节测地距离第四章图象的几何与拓扑特征第一节图象的面积与周
长第二节图象的拟圆度第三节颗粒分布特征第四节连能性质与欧拉数第五节图
象的骨架和细化
2、算法第五章灰值图象代数第一节膨胀和腐蚀第二节开运算和闭运算第三
节灰值图象的基本几何特征第四节灰值图象代数运算的另一种定义方法第六章
数学形态学应用于图象处理第一节概述第二节测地距离第三节结构矩阵在各种
运算中的效用第七章数学形态学应用于聚类第一节推广定义第二节基本运算第
三节高维聚类第八章对连续图象的基本形态变换第一节关于定量化四原则第二
节连续图象的腐蚀与膨胀第三节对连续图象的其他形态变换第九章连续图象的
几何与拓扑性质第一节预备学问第二节凸集第三节明可夫斯基函数第十章数学
形态学中的随机性方法第一节基本概念与工具第二节图象的颗粒
3、分布第三节图象的线条分布第四节图象的图变性第五节数字化的纹理特
征附录页
第1页。