【人教版 数学 精品教案】6.1 平方根(第2课时)

合集下载

人教版七年级下册数学6.1平方根2

人教版七年级下册数学6.1平方根2

平方根2【教学目标】一、知识目标1.了解开平方、平方根、算术平方根的意义,了解平方根、算术平方根的表示方法.2.理解开平方与平方运算是互为逆运算.3.会用平方求已知数的平方根,会利用平方运算验证一个数的平方根。

4.了解平方根、算术平方根的性质.5.会用计算器求一个非负数的算术平方根。

.二、能力目标经历探索开方运算与乘方运算是互为逆运算的过程,学会利用转化的思想方法解决新问题;经历运用数学符号描述开方运算的过程,建立初步数学符号感,发展抽象思维能力三、情感态度目标通过创设问题情境,让学生体会到数学来源于社会生活实际,并为社会实践服务,认识到客观世界是一个对立的统一体.【重点难点】重点:求已知数的平方根难点:平方根与算术平方根的联系和区别。

疑点:利用平方运算解决简单问题。

【教学设想】教学思路:情境质疑-数学建模-解释应用-巩固提高。

【媒体平台】教具学具准备:多媒体,投影仪,计算器等。

【课时安排】2课时第1课时平方根(1)【本课目标】1、了解开平方、平方根和算术平方根的意义及其表示方法.2、理解平方运算与开平方运算是互逆运算的关系.3、会用平方运算求非负数的平方根与算术平方根,。

【教学过程】1、情境导入:问题:要剪出一块面积为25cm的正方形纸片,纸片的边长应是多少?你能用方程表示这个问题吗?试试看.2.课前热身根据上述提出的间题,请同学们作如下讨论:(1)这种运算(2x=25)是已知什么?求什么?(2)这种运算与平方运算之间存在怎样的关系?3、合作探究(1)整体感知数学来源于社会生活,并为社会生活服务,为了解决课本开始提出的问题,这节课我们开始学习一种新的运算---开平方运算。

(2)四边互动互动1:先填空,再观察两种运算的结构特点,回答问题。

平方运算是已知 ,求 ;后面的运算是已知 ,这节课我们开始学习一种新的运算是 。

先动手操作尝试,再在相互交流的基础上逐个举手回答提出的问题,不断补充完善,达成共识。

七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。

6.1.2 用计算器求算术平方根及其大小比较(第二课时)(教学设计)七年级数学下册(人教版)

6.1.2 用计算器求算术平方根及其大小比较(第二课时)(教学设计)七年级数学下册(人教版)

6.1.2 用计算器求算术平方根及其大小比较教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第六章“实数”6.1.2 用计算器求算术平方根及其大小比较,内容包括:用计算器求算术平方根、算术平方根的估算及大小比较.2.内容解析本节课的内容是义务教育课程标准(实验教科书人民教育出版社)七年级数学下册第六章第一节第课时《用计算器求算术平方根及其大小比较》.本节课主要是前面学习的算术平方根的延续.夹值法应用为后面学习实数做知识准备,为解得估算作铺垫,提供知识积累.基于以上分析,确定本节课的教学重点为:掌握算术平方根的估算及大小比较.二、目标和目标解析1.目标(1)会用计算器求算术平方根.(2)掌握算术平方根的估算及大小比较.2.目标解析会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.三、教学问题诊断分析学生对算术平方根已经有了初步的认识,但运用不够灵活;学生也经历过一些探索,但还不够系统、全面,教师在具体课堂中应把握好这些特点.基于以上学情分析,确定本节课的教学难点为:会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.四、教学过程设计自学导航求下列各数的算术平方根,并用“<”分别把被开方数和算术平方根连接起来.1,4,9,16,25.解:1=1,4=2,9=3,16=4,25=5.比较结果:1<4<9<16<25,1<4<9<16<25.被开方数越大,对应的算术平方根也越大. 若a>b>0,则a>b>0.合作探究探究:能否用两个面积为1dm2的小正方形拼成一个面积为2dm2的大正方形?你知道这个大正方形的边长是多少吗?设大正方形的边长为x,则x2=2,由算术平方根的意义可知x=2,所以大正方形的边长是2dm.小正方形的对角线的长是多少呢?2有多大呢?因为 12=1,22=4,所以 1<2<2因为 1.42=1.96,1.52=2.25,所以 1.4<2<1.5因为 1.412=1.9881,1.422=2.0164,所以 1.41<2<1.42因为 1.4142=1.999396,1.4152=2.002225,所以 1.414<2<1.415……事实上,2=1.414213562373…,它是一个无限不循环小数.(无限不循环小数是指小数位数无限,且小数部分不循环的小数.)π也是一个无限不循小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循小数.考点解析考点1:用计算器求一个正数的算术平方根大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).例1.用计算器求下列各式的值:(1) 3136 (2) 2 (精确到0.001)解:(1)依次按键3136=,显示:56,∴3136=56(2)依次按键2=,显示:1.4142135623731,∴2≈1.414注:计算器上显示的1.4142135623731是2的近似值.【迁移应用】1.用计算器求下列各式的值:(1)√260.8≈________(精确到0.01); (2)√6≈________(精确到0.001).2.依次按键225,显示的结果是( )A.±15B.15C.-15D.253.用计算器求下列各式的值:(1)√4225; (2)-√4.3265(精确到0.01).解:(1) √4226=65; (2) -√2≈-2.08.考点2:估算算术平方根例2.√24的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间 解析:因为16<24<25,所以√16<√24<√25,即4<√24<5.故√24的值在4和5之间.【迁移应用】1.估计√54-4的值在( )A.6到7之间B.5到6之间C.4到5之间D.3到4之间2.已知a ,b 是两个连续整数,且a<√20<b ,则a+b=_____.3.与√3最接近的整数是_____.4.满足√2<x<√10的整数x 有_____个.考点3:估算算术平方根例3.比较下列各组数的大小:(1)√82与9; (2)√3−12与12; (3)-√5+1与-√22. 解:(1)因为92=81,所以√81=9.因为82>81,所以√82>√81,即√82>9.(2)因为1<√3<2,所以0<√3-1<1,所以√3−12<12. (3)-√5+1≈-2.236+1=-1.236,-√22≈-1.414÷2=-0.707.因为-1.236<-0.707,所以-√5+1<-√22.【迁移应用】1.比较大小:√3+15____35.2.比较下列各组数的大小:(1)√12与√14; (2) √24−12与32. 解:(1)因为12<14,所以√12<√14.(2)因为4<√24<5,所以3<√24-1<4,所以√24−12>32. 考点4:估算算术平方根例4.用两个面积为200cm 2的小正方形拼成一个大正方形.(1)大正方形的边长是_______;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长、宽之比为5:4,且面积为360cm 2?解:(2)设长方形纸片的长为5xcm ,则宽为4xcm.根据题意,得5x·4x=360,所以x=√18.所以长方形纸片的长为5√18cm.因为18>16,所以√18>√16,即5√18>4.由上可知5√18>20,所以沿着大正方形边的方向裁出一个长方形,不能使裁出的长方形纸片的长、宽之比为5:4,且面积为360cm 2【迁移应用】1.小丽想用一张面积为36cm 2的正方形纸片(如图所示),沿着边的方向裁出一张面积为20cm 2的长方形纸片,且它的长是宽的2倍.你认为小丽能用这张纸片裁出符合要求的纸片吗?为什么?解:不能.理由如下:因为正方形的面积为36cm2,所以边长为√36=6(cm).设长方形的宽为xcm,则长为2xcm.根据题意,得2x·x=2×2=20,即x2=10,所以x=√10,所以长方形的长为2√10cm.因为10>9,所以√10>3.由上可知2√10>6,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.2.国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间.如图,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7560m2,请你判断这个足球场能否用作国际比赛,并说明理由.解:这个足球场能用作国际比赛.理由如下:设足球场的宽为xm,则足球场的长为1.5xm.由题意,得1.5x2= 7560,所以x2=5040.所以x=√5040.因为702=4900,712=5041,所以70<√5040<71,所以105<1.5×√5040<106.5.所以符合要求.所以这个足球场能用作国际比赛.合作探究探究:(1)利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?规律:_________________________________________________________________________ (2) 用计算器计算3≈______(精确到0.001),并利用你在(1)中发现的规律说03.0≈______,300≈______,30000≈______的近似值.你能根据3的值说出30是多少吗?考点解析考点5:算术平方根的规律探究例5.【从特殊到一般的思想】(1)利用计算器计算,将结果填入表中,你发现了什么规律?(2)用计算器计算√5≈_______(精确到0.001),并用上述规律直接写出:√0.05≈______;√500≈ ______;√50000≈ ______.发现规律:被开方数的小数点向左(或向右)移动2位,它的算术平方根的小数点相应地向左(或向右)移动1位.【迁移应用】1.已知√15≈3.873,则√150000≈_______;若√a≈0.3873,则a≈_____.2.(1)利用计算器计算:①√11−2=_____;②√1111−22=_____;③√111111−222=_______.。

人教版数学七年级下册《6-1平方根第2课时》教学设计

人教版数学七年级下册《6-1平方根第2课时》教学设计

人教版数学七年级下册《6-1平方根第2课时》教学设计一. 教材分析人教版数学七年级下册《6-1平方根》第2课时,主要内容是平方根的概念和性质。

这部分内容是初中数学的基础,对于学生理解代数和几何中的许多概念具有重要意义。

本节课的主要内容有:平方根的定义、平方根的性质、平方根的运算等。

二. 学情分析七年级的学生已经学习了有理数的乘方,对幂的概念有一定的理解。

但是,平方根的概念和性质较为抽象,需要通过实例和活动让学生加深理解。

此外,学生的数学基础和学习习惯参差不齐,需要在教学过程中充分考虑这一点。

三. 教学目标1.理解平方根的概念,掌握平方根的性质。

2.能够进行平方根的运算。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.平方根的概念和性质。

2.平方根的运算。

五. 教学方法采用问题驱动法、实例分析法、小组合作法等多种教学方法,引导学生主动探究,合作交流,培养学生的数学思维能力。

六. 教学准备1.教材、教案、PPT等教学资料。

2.相关实例和练习题。

3.投影仪、电脑等教学设备。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如物体的高度、温度等,引导学生回顾有理数的乘方,为新课的学习做好铺垫。

2.呈现(15分钟)通过PPT呈现平方根的定义和性质,让学生初步了解平方根的概念。

同时,引导学生发现平方根与有理数乘方的联系和区别。

3.操练(20分钟)让学生分组讨论,运用平方根的性质解决一些实际问题。

如:计算某个数的平方根,判断一个数是否为另一个数的平方根等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对学生的讨论结果,进行讲解和总结,强化学生对平方根概念和性质的理解。

然后,让学生完成一些相关的练习题,巩固所学知识。

5.拓展(10分钟)引导学生思考:平方根在实际生活中的应用有哪些?让学生举例说明,进一步培养学生的数学应用能力。

6.小结(5分钟)对本节课的主要内容进行总结,强调平方根的概念和性质,提醒学生注意平方根的运算方法。

人教版七年级数学下册6.1平方根(2)教案

人教版七年级数学下册6.1平方根(2)教案

6.1平方根(2)教学目标:知识能力1.通过估算,体验“无限不循环小数”的含义,能用估算去一个数的算术平方根的近似值。

2.会用计算器去一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。

过程与方法,并通过估计它的大小认识无限不循环小数的特点。

用计算器计算平方根,是学生了解利用计算器可以去任意一个正数的算术平方根,在通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。

情感、态度与价值观并且锻炼学生客服困难的意志,建立自信心,提高了学习热情。

教学重点与难点重点:1.认识无限不循环小数的特点,会估算一些数的算术平方根。

2.会用算术平方根的知识解决实际问题。

难点:认识无限不循环小数的特点,会估算一些数的平方根。

教具准备:多媒体课件、两张完全相同的正方形纸片、计算器、剪刀。

教学过程:活动一:温故知新作铺垫(1).什么是算术平方根?怎样表示?(2) 判断下列各数有没有算术平方根?如果有,请求出它们的算术平方根。

—36; 0.09; ;0 ;(-3)2 (3) 2有没有算术平方根?如果有,请求出它的算术平方根. 活动二:合作动手来探究回答问题:(1)能否用两个面积为1dm2的小正方形(如下图)拼成一个面积为2dm2的大正方形?12125(2)大正方形的面积是多少?你知道这个大正方形的边长是多少吗?(3)你能估计在哪两个整数之间吗?(4有多大呢?大于1而小于2的? 因为12=1,22=4所以1<<2因为1.42=1.96,1.52=2.25,所以 1.4<<1.5. 因为1.412=1.9881,1.422=2.0164,所以 1.42. 因为1.4142=1.999396,1.4152=2.0022251.415....... 如此进行下去,我们发下它的小数位数无限,且小数部分不循环,像这样的小数我们称它为无限不循环小数。

在这里…,它是一个无限不循环小数。

人教版数学七年级下册6-1 平方根 第2课时 教案

人教版数学七年级下册6-1  平方根  第2课时  教案

6.1 平方根第2课时教学设计课题 6.1 平方根第2课时单元第六单元学科初中数学年级七下学习目标1.会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律;2.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义;3.能用夹逼法求一个数的算术平方根的近似值;4.体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数,培养探求精神,提高学生学习数学的兴趣.重点夹逼法及估计一个(无理)数的大小.难点会用计算器求一个数的算术平方根;理解算术平方根随着被开方数扩大(或缩小)而变化的规律.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】1.什么是算术平方根?一般地,如果一个正数x的平方等于a,即x² a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.2.求下列各式的值.(1)的算术平方根=_______(2)的算术平方根=_______追问:你2知道它有多大吗?【教学建议】让学生说出算术平方根的概念,并让学生回答,最后引出2有多大的疑问?学生思考并回答计算并思考.回顾旧知,引出本节课重点内容,如何求一个算术平方根的近似值.讲授新课【合作探究】能否用两个面积为 1 dm2 的小正方形拼成一个面积为2 dm2 的大正方形?学生分组讨通过探究活动,引出求的一种如图,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为 2 dm2的大正方形.你知道这个大正方形的边长是多少吗?解:设大正方形的边长为x dm,则x2 = 2由算术平方根的意义可知x=所以大正方形的边长是dm.小正方形的对角线的长是多少呢?x=小正方形的对角线的长即为大正方形的边长.学生分组讨论、拼图过程中,教师巡视,了解各组探究情况,最后动态展示拼图过程,由学生代表回答解题思路,教师进行板书示范.最后教师可强调大正方形的面积不能表示成一个有理数的平方,因此它的边长只能用算术平方根的符号,即表示.想一想:2有多大呢?()2=2无限不循环小数是指小数位数无限,且小数部分不循环的小数.播放动画过程中,教师可提问,对于(1)、(2)教师带领学生进行完成,(3)、(4)学生独立完成(1)在哪两个整数之间?(2)精确到0.1时在哪两个数之间?论、拼图,回答教师问题.方法,并举例说明什么是无限不循环小数,让学生理解其概念.(3)精确到0.01时在哪两个数之间?(4)精确到0.001时在哪两个数之间?最后,教师给出无限不循环小数的概念.【小试牛刀】你能估算出的近似值吗(精确到0.01)?解:∵22=4,32=9,∴2<<3.∵ 2.2²=4.84,2.3²=5.29,∴ 2.2<<2.3.∵ 2.23²=4. 9729,2.24²=5. 0176,∴ 2.23 <<2.24.∵ 2.2362 =4.999696,2.2372 =5.004169,∴ 2.236<<2.237,∴≈2.24.归纳:对算术平方根进行估算时,通常利用与被开方数比较接近的两个完全平方数的算术平方根来估计这个被开方数的算术平方根的大小.【合作探究】在估计有理数的算术平方根的过程中,为方便计算,可借助计算器求一个正有理数a 的算术平方根(或其近似值).注意:计算器的型号不同,按键顺序可能有所不同,要注意阅读使用说明书.【典型例题】例1用计算器求下列各式的值:(1) ;(2) (精确到0.001).用计算器计算下列算术平方根,你发现了什么规律?学生思考,回答教师问题.通过例题,使学生掌握使用计算器求算术平方根的方法,做一做中的(2)可以和上面所估计的的大小进行比较.解:规律:被开方数的小数点向右或向左移动2位,算术平方根的小数点相应地向右或向左移1位.想一想:用计算器计算,并利用你发现的规律,求,,的近似值.你能根据的值说出是多少吗?【典型例题】例2 小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2 的长方形纸片,使它的长宽之比为3 : 2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm ,宽为2x cm,根据边长与面积的关系得3x∙ 2x = 300,6x2 = 300 ,x2 = 50,x = ,因此长方形纸片的长为3cm .∵50 > 49,∴> 7.由上可知 3 > 21,则长方形纸片的长应该大于21 cm. 思考并积极回答.例题给出了一个实际问题背景,学生一般会认为一定能用一块面积大的纸片裁出一块面积小的纸片,通过学习可以纠正学生的认识.重点使学生掌握通过平方数比较有理数与无理数大小的一种方法.∵= 20,∴正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法. 小丽不能用这块正方形纸片裁出符合要求的长方形纸片.例2先由学生尝试,教师再进行讲解.【随堂练习】1.用计算器求下列各式的值:(1) ;(2) (精确到0.01).2.估算的值 ( B )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.学生自主练习学生通过练习,可以更好的理解如何用计算器求一个数的算术平方根,进一步提高分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.求算术平方根的方法(1)夹逼法(2)用计算器求解2.例题讲解。

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册 教学设计6.1 第2课时《平方根》

人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。

在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。

本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。

在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。

在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。

三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:平方根的定义、性质和求法。

2.难点:平方根在实际问题中的应用。

五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。

2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。

3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。

六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。

2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。

同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。

3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。

人教版七年级数学下册6.1《算术平方根》教案

人教版七年级数学下册6.1《算术平方根》教案
1.培养学生的逻辑推理能力:通过算术平方根的学习,使学生能够理解和运用数学定义、性质进行逻辑推理,提高解决问题的能力。
2.提升学生的数学运算能力:使学生掌握求算术平方根的方法,并能熟练地进行相关运算,解决实际问题。
3.培养学生的数学建模素养:引导学生将算术平方根应用于实际问题,建立数学模型,增强数学应用意识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“算术平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点c:教师可以设计一些实际问题,如计算一个边长为5米的正方形的对角线长度,引导学生运用算术平方根解决问题。
-难点d:通过数轴上的表示,说明一个数的平方根在数轴上的位置,强调算术平方根的非负性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《算术平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如求解一个正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索算术平方根的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解算术平方根的基本概念。算术平方根是指一个非负数的平方根,它是……(解释其定义和性质)。算术平方根在数学运算和实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。如求解一个边长为3米的正方形的对角线长度,这个案例展示了算术平方根在实际中的应用,以及它如何帮助我们解决问题。

人教版七年级数学下册教学设计:6.1平方根教案

人教版七年级数学下册教学设计:6.1平方根教案
3.平方根的计算方法:我会介绍两种计算平方根的方法:估算和精确计算。估算方法可以通过找到两个完全平方数之间的数,来近似计算平方根;精确计算则可以利用平方根的运算规则,进行精确求解。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们共同探讨以下问题:
1.平方根的意义和应用:让学生讨论平方根在生活中的应用,如几何图形、物理提高解决问题的能力。
(二)教学设想
1.创设情境,激发兴趣。
-通过引入与平方根相关的实际问题,如土地面积测量、建筑设计等,激发学生对平方根学习的兴趣。
-使用多媒体教具和实物模型,为学生提供直观的学习材料,增强学习体验。
2.自主探究,合作交流。
人教版七年级数学下册教学设计:6.1平方根教案
一、教学目标
(一)知识与技能
1.理解平方根的定义,掌握求一个数的平方根的方法,能够准确计算平方根的值。
-学生将通过具体实例,理解平方根的概念,并学会使用数学符号表示平方根。
-学生将掌握使用计算器或手动计算平方根的技巧,提高解题速度和准确性。
2.能够解决实际问题中与平方根相关的计算,如面积、体积等。
2.平方根的性质:让学生通过实际例子,发现平方根的性质,并尝试证明。
3.计算平方根的方法:让学生交流各自计算平方根的技巧和方法,互相学习,提高计算能力。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目,让学生巩固平方根知识:
1.基础题目:计算给定数的平方根,包括整数、分数和负数。
2.应用题目:解决实际问题,如计算土地面积、正方形边长等。
-比较两个数的平方根,如√9和√16,说明它们之间的关系。
2.实践应用题:
-一块正方形的土地,面积为64平方米,求该正方形的边长。

人教版七年级数学 下册 第六章 6.1 平方根 第2课时 教案(表格式)

人教版七年级数学 下册 第六章 6.1 平方根 第2课时 教案(表格式)

教学设计一、导入新课,明确目标1、复习检测:如果一个正方形的面积等于9,这个正方形的边长是多少?又如:x=,则x等于多少?2、导入:上节课我们知道了算术平方根的概念和性质,那么,怎样计算算术平方根呢?本节课我们就来研究这一问题。

3、出示学习目标,同学齐读,理解。

解:(1)因为5>4,所以>,即>2,所以>1.9;(2)因为6>4,所以>,所以>2,所以26+1>22+1=1.5,即26+1>1.5. 方法总结:比较两数的大小常用方法有:①作差比较法;②求值比较法;③移因式于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.目标导学二:用计算器求算术平方根例4、(教材例2):用计算器求下列各式的值: (1);(2)(精确到0.001)讲解计算器的用法、并求出以上各式的值。

引导学生完成引言中的问题。

并总结无理数的概念。

教材中的计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。

规律:当被开方数扩大(或缩小)100倍,10000倍......时,其算术平方根相应地扩大(或缩小)10倍,100倍......目标导学三:算术平方根的实际应用例5(用多媒体显示课本第163页的例3)题略.建议:1、首先要注意学生是否弄清了题意;然后分析解题思路:能否裁出符合要求的纸片,就是要比较两个图形的边长,而由题意,易知正方形的边长是20 cm ,所以只需求出长方形的边长,设长方形的长和宽分别是3xcm 和2xcm,求得长方形的长为3cm 后,接下来的问题是比较3和20的大小,这是个难点,要让学生思考,充分发表自己的意见,然后再比较.四、课堂总结用计算器求一个数的算术平方根,以及算术平方根的应用,是本节课的重点,大家要理解运算规律。

1、用计算器求下列各式的值:(1)(精确到0.001); (2).(按键时,教师要领着学生做;解题格式要与课本上的相同)2、填空:(1)面积为9的正方形,边长==;(2)面积为7的正方形,边长=≈(利用计算器求值,精确到0.001).3、用计算器求值:(1)=;(2)=;(3)≈(精确到0.01).4、比较4和,2和27大小。

七年级数学下册(人教版)6.1.2用计算器求算术平方根及其大小比较优秀教学案例

七年级数学下册(人教版)6.1.2用计算器求算术平方根及其大小比较优秀教学案例
2.鼓励学生在课后进行自主学习,深入理解算术平方根的概念和求法。
3.提醒学生注意计算器操作的正确性和规范性,养成良好的学习习惯。
4.教师对学生的作业情况进行总结和评价,为学生的后续学习提供指导。
五、案例亮点
1.生活情境的创设:通过引入实际问题,如土地面积和边长的关系,激发学生的学习兴趣,使他们能够更好地理解算术平方根的概念和求法。这种生活情境的创设,不仅能够提高学生的学习积极性,还能够帮助他们将所学知识应用到实际生活中。
2.引导学生通过计算器的操作来验证答案,培养学生的动手能力和问题解决能力。
3.鼓励学生提出自己的问题,并引导他们通过讨论和思考来解决问题,培养学生的自主学习能力和批判性思维。
(三)小组合作
1.将学生分成小组,鼓励他们进行合作学习和交流。可以设计一些小组讨论的问题或任务,如“你们能用计算器找出两个数的算术平方根并进行比较吗?”。
2.问题导向的教学策略:通过提出引导性问题,引导学生思考和探索算术平方根的知识,培养学生的思维能力和问题解决能力。问题导向的教学策略能够激发学生的学习兴趣,使他们能够更加主动地参与到课堂活动中来。
3.小组合作的学习方式:通过设计小组讨论的问题或任务,鼓励学生进行合作学习和交流。这种学习方式能够培养学生的团队合作能力和沟通能力,使他们能够在合作中共同进步。
(四)总结归纳
1.让学生总结本节课所学的内容,包括算术平方根的求法、计算器的使用方法以及大小比较的方法。
2.强调本节课的重要知识点,提醒学生注意计算器操作的细节。
3.引导学生思考如何将所学知识运用到实际问题中,提高学生的解决问题能力。
(五)作业小结
1.布置一些有关算术平方根和大小比较的练习题,让学生课后巩固所学知识。
2.利用多媒体教学资源,如图片、视频等,为学生提供丰富的学习材料,帮助学生更好地理解算术平方根的概念和求法。

人教初中数学七下 6.1《平方根》教案 【经典数学教学PPT课件】

人教初中数学七下 6.1《平方根》教案 【经典数学教学PPT课件】

《平方根》一、教学目标1.经历平方根概念的形成过程,了解平方根的概念,会求某些正数(完全平方数)的平方根.2.经历有关平方根结论的归纳过程,知道正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.二、重点和难点1.重点:平方根的概念.2.难点:归纳有关平方根的结论.三、合作探究(一)基本训练,巩固旧知1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即 2.89=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即3≈ .(二)什么是平方根呢?大家先来思考这么一个问题.(三)如果一个正数的平方等于9,这个正数是多少?如果一个数的平方等于9,这个数是多少?和算术平方根的概念类似,(指准32=9)我们把3叫做9的平方根,(指准(-3)2=9)把-3也叫做9的平方根,也就是3和-3是9的平方根(板书:3和-3是9的平方根). 我们再来看几个例子.(师出示下表)x2 16 36 49 1 4 25x同学们大概已经明白了平方根的意思.平方根的概念与算术平方根的概念是类似的,谁会用一句话概括什么是平方根?平方根:如果一个数的平方等于a,那么这个数叫做a的平方根.大家把平方根概念默读两遍.(生默读)平方根概念与算术平方根概念只有一点点区别,哪一点点区别?四、精讲精练精讲例1、求下面各数的平方根:(1)100; (2)0.25; (3)0; (4)-4;(1)因为(±10)2=100),所以100的平方根是+10和-100的平方是0,正数的平方是正数,负数的平方还是正数,所以任何数的平方都不会等于-这说明什么?从这个例题你能得出什么结论?(稍停片刻)正数有几个平方根?0有几个平方根?负数有几个平方根?小组讨论:正数有平方根(板书:正数有两个平方根).平方根有什么关系?0的平方根有个,平方根是 .负数平方根.大家把平方根的这三条结论读两遍.精练1.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;2.填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35,的算术平方根是35.3.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;( )(6)25的算术平方根是5; ( )(7)52的平方根是±5; ( )(8)(-5)2的算术平方根是-5. ( )五、课堂小结:1、如果一个数的平方等于a ,那么这个数叫做a 的平方根.2、平方根的性质一个正数有两个平方根,它们互为相反数;0有一个平方根,就是0本身.负数没有平方根.3、平方根的表示一个正数a 的正的平方根用符号2a 来表示,a 叫做被开方数,2叫做根指数,正数a 的负的平方根,用符号“2a -”表示.这两个平方根合起来可以记作“2a ±”.这里,符号“2”读作“二次根号”,2a 读作“二次根号a ”,根指数是2时,通过常将这个2省略不写,如2a 记作a ,读作“根号a ”;2a ±记作a ±,读作“正负根号a ”.平方根第三课时【教学目标】知识与技能了解平方根的概念,会用根号表示正数的平方根; 了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根过程与方法通过学习平方根,进一步建立数感和符号感,发展抽象思维。

「精品」《6.1 平方根》教案2七年级下册数学人教版

「精品」《6.1 平方根》教案2七年级下册数学人教版

《平方根》教案一、教学目标1.通过由正方形面积求边长,让学生经历的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根.二、重点和难点1.重点:感受无理数.2.难点:感受无理数.(本节课使用计算器,最好每个同学都要有计算器)三、合作探究1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是_______,即=_____;(2)因为(____)2=,所以的算术平方根是_______,即=_____;(3)因为_____2=0.81,所以0.81的算术平方根是_______,即=_____;(4)因为_____2=0.572,所以0.572的算术平方根是_______,即=_____.3.师抽卡片生口答.(课前制作若干张卡片,一面是的形式,一面是算术平方根的值,卡片中要包括到,还要包括被开方数是分数、小数、a2等形式)(二)(看下图)这个正方形的面积等于4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?这个正方形的面积等于1,它的边长等于多少?用算术平方根来说这个正方形边长和面积的关系?(指准图)这个正方形的边长等于面积1的算术平方根,也就是边长=(边讲边板书:边长=).等于多少?生:等于1.(师板书:=1)(看下图)这个正方形的面积等于2,它的边长等于什么?(稍停)因为边长等于面积的算术平方根,所以边长等于(板书:边长=).(上面三个图的位置如下所示)=2,=1,那么等于多少呢?(在后板书:=?)求等于多少,怎么求?在1和2之间的数有很多,到底哪个数等于呢?我们怎么才能找到这个数呢?我们可以这样来考虑问题,等于的那个数,它的平方等于多少?第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线索,我们来找等于的那个数.我们在1和2之间找一个数,譬如找1.3,(板书:1.32=)1.3的平方等于多少?(师生共同用计算器计算)1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?(师生共同用计算器计算)2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数(板书:无限).是无限小数,又是不循环小数,所以是一个无限不循环小数.除了,还有别的无限不循环小数吗?无限不循环小数还有很多很多,、、、都是无限不循环小数(板书:、、、都是无限不循环小数).那怎么求、、、这些无限不循环小数的值呢?我们可以利用计算器来求.四、精讲精练例:用计算器求下列各式的值:(1)(精确到0.001);(2).(按键时,教师要领着学生做;解题格式要与课本上的相同)练习1.填空:(1)面积为9的正方形,边长==;(2)面积为7的正方形,边长=≈(利用计算器求值,精确到0.001).2.用计算器求值:(1)=;(2)=;(3)≈(精确到0.01).3.选做题:(1)用计算器计算,并将计算结果填入下表:………25 …(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,=.五、课堂小结无理数。

6.1平方根第二课时教案

6.1平方根第二课时教案

6.1平方根第二课时教案教学目标:1.学生能够在没有计算器的情况下求解完全平方数的根。

2.学生能够应用平方根的概念解决实际问题。

教学重点:教学准备:黑板、多媒体教学设备。

教学内容:一、导入通过两张图片来引出今天课程的主题。

第一张图片是摩西分裂红海的场景,要求学生思考摩西如何将红海分裂为两半;第二张图片是一颗被剖开的木瓜,要求学生思考如何求出木瓜的半径。

二、讲解1.什么是完全平方数?教师通过一些例子来介绍什么是完全平方数,例如:1、4、9、16、25、36…等等。

并让学生从中找出规律:“它们的平方根是整数。

”2.如何求解完全平方数的平方根?教师给出无计算器求解完全平方数的根的方法:1)将这个数分解成多个质因数的积;2)用指数表示每个质因数的出现次数;4)所有化为偶数的指数相加,结果就是完全平方数的平方根。

例如:解2816的平方根:1)2816=2×2×2×2×2×2×2×11=(2^7)×11;2)化为质因数的指数:2816=(2^4)×(2^3)×11;3.应用实例给出以下实际问题:1)再生纸盒子的长度为4.19米,宽度为2.1米,高度为1.2米,求盒子内最大的废纸堆的对角线长度。

2)某公司有一个正方形的草坪,每条边长100米。

将草坪分成面积相等的两个部分,再分别用栅栏围起来。

求所用栅栏的长度。

让学生尝试解决这些问题。

三、练习1.求以下数的平方根:1) 17642) 60843) 10,0001)圆形花坛直径为1.5米,周围用砖围起来,砖的长度为20厘米,求需要多少块砖。

2)某个街区的面积为6,427,200平方米,绿化面积为1,636,800平方米,求街区绿化面积所占比例的百分数。

四、总结教师要求学生回答以下问题:五、作业1.完成课堂练习。

2.选取一个有趣的实际问题,用到平方根的概念,解决问题并写成报告。

七年级数学下册6.1平方根(第2课时)教学设计

七年级数学下册6.1平方根(第2课时)教学设计
2.学生分享自己在学习过程中的收获和感悟,教师给予肯定和鼓励。
3.教师强调平方根在实际生活中的应用,提醒学生要善于观察、思考,将所学知识运用到实际中。
4.布置课后作业,要求学生巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的平方根知识,培养学生的数学思维能力,特布置以下作业:
(二)讲授新知
1.教师给出平方根的定义:平方根是一个数a,使得a的平方等于给定的数b。即:如果a²=b,那么a叫做b的平方根,记作a=√b。
2.教师引导学生探讨平方根的性质,如:一个正数有两个平方根,互为相反数;0的平方根是0;负数没有平方根。
3.教师通过具体例子,讲解平方根的运算规律,如:√9×√16=√(9×16)=√144=12等。
1.完成课本第92页的练习题1、2、3,其中第3题要求学生通过自主探究,发现平方根的运算规律,并总结出来。
2.选取一道实际问题,运用平方根知识进行求解,如计算家庭成员的手机屏幕面积、家中客厅的面积等。要求学生将解题过程和答案写在作业本上,以培养学生在实际情境中运用数学知识的能力。
3.尝试估算以下数的平方根:√15、√20、√30。要求学生用文字描述估算过程,并在小组内交流分享,以促进学生之间的合作与交流。
4.预习下一节课的内容,了解立方根的概念和性质,为课堂学习做好准备。
5.结合本节课所学,撰写一篇数学日记,分享自己在学习平方根过程中的心得体会,以及如何将所学知识应用于解决实际问题。
注意事项:
1.学生在完成作业时,要注重解题过程的书写,保持字迹清晰、步骤完整。
2.家长要关注孩子的作业完成情况,适时给予指导和鼓励,培养孩子独立解决问题的能力。
此外,学生在解决实际问题时,可能缺乏将问题转化为数学模型的能力。针对这一点,教师应设计贴近生活的实例,让学生在实际情境中感受平方根的作用,提高学生将数学知识应用于解决实际问题的能力。

【人教版】七年级数学下册:6.1第2课时用计算器求算术平方根及其大小比较2教案

【人教版】七年级数学下册:6.1第2课时用计算器求算术平方根及其大小比较2教案

第 2 课时 用计算器求算术平方根及其大小比较1、会用计算器求一个数的算术平方根;理解被开方数扩大(或减小) 与它的算术平方根扩大(或减小)的规律;教课目的2、能用夹值法求一个数的算术平方根的近似值;3、体验“无穷不循环小数” 的含义, 感觉存在着不一样于有理数的一类新数。

教课难点 夹 值法及预计一个(无理 )数的大小的思想。

知识要点夹值法及预计一个(无理)数的大小。

[ 根源:Z+xx+]教课过程(师生活动)设计理念我们已经知道:正数 x 知足 x 2=a,则称 x 是 a 的算术平方根.当 a 正是一个数的平方数时,我们已经能求出它的算术平方根了,比如,16=4 ;但当 a 不是一个数的平方数时,它的算术平方根又该怎祥 求呢?比如课本的大正方形的边长 2 等于多少呢?问题:2终究有多大?根源 学 科网建议: 1、先让学生思虑议论并预计大体有多大,在此基础上按书籍解说并板书.能够这样提出问题并解说:由直观可知招大于 1 而小于 2,那么了 2是 1 点几呢? (接下出处试验可获得平方数最靠近情境导入2 的 1 位小数是 1.4,而平方数大于 2 且最靠近的 1位小数是 1.5, 2大于 1.4 而小于 1.5......这里默认了非负数 a 和 b 当 a < b 时,ab 这里能够从49获得。

2、用夹值法去迫近一个(无理)数,是一个重要 的求近似数的方法,也是一种无穷迫近的数学思想,教师应加以重视,让学生体验它的妙处.3、对于 2 是一个“无穷不循环小数”要向学生详细说明.为无理数的观点的提出打下基础.概括(提出问题):你对正数 a 的 算术平方根 a 的结果犹如何的认识呢?a的结果有两种情: 当 a 是完整平方数时,a 是在2出现从前,学生已经知道利用乘方运算,经过察看的方法求一些完整平方数的算术平方 根,可是对于像 2 这样的非完整平方数,如何求它的算术平方根,对学生来讲是一个新问题.教科书给出两种求2的方法:一种是估量,一种是使用计算器.对于第一方 法,教科书利用夹值的方法,夹值法是重要的有效的求近似值的方法,所以应详尽解说.对于无穷不循环小数这个观点,教课时能够适合回想从前学生学过的数,经过比较,认识无穷不循环小数的特点,为后边学习实数做铺垫。

人教版数学七年级下册6.1平方根(第2课时)教学设计

人教版数学七年级下册6.1平方根(第2课时)教学设计
-讲解平方根的表示方法,如±√a,强调一个非负数有两个平方根,且互为相反数。
-通过例题,演示如何求一个非负数的平方根,并解释计算过程。
2.教学内容:讲解平方根的性质,如唯一性、正负性等。
教学过程:
-引导学生观察平方根的性质,如一个非负数的平方根只有一个正数解和一个负数解。
-通过例题,说明在求解平方根时,如何判断其正负性。
四、教学内容与过程
(一)导入新课
1.教学内容:通过实际情境引入平方根的概念,激发学生的学习兴趣。
教学过程:
-以一个正方形图形为例,展示边长为a的正方形,其面积为a²。提问:如果已知正方形的面积为a²,如何求出其边长a?
-学生思考并回答,引导学生意识到求边长a的过程就是求一个数的平方根。
-引入平方根的定义,让学生明白平方根在数学中的重要性。
3.拓展思维训练:
-针对学有余力的学生,布置一道探究性问题,如探究平方根与算术平方根的关系,激发学生的探究兴趣,培养学生的自主学习能力。
-探讨平方根在数学其他领域的应用,如勾股定理、二次方程等,提高学生的知识整合能力。
4.课后反思:
-要求学生撰写课后反思,总结自己在学习平方根过程中的收获和困惑,以及解决困惑的方法。
2.教学内容:回顾已学的平方运算,为学习平方根打下基础。
教学过程:
-让学生计算几个简单的平方运算,如2²、3²等,巩固平方运算的知识。
-提问:平方运算与平方根有什么关系?引导学生发现平方与平方根的互为逆运算关系。
(二)讲授新知
1.教学内容:讲解平方根的定义,掌握平方根的表示方法。
教学过程:
-给出平方根的定义:如果一个数的平方等于另一个数,那么这个数叫做另一个数的平方根。
3.精讲精练,巩固知识:

七年级数学下册 6.1 平方根教案2 (新版)新人教版

七年级数学下册 6.1 平方根教案2 (新版)新人教版

第六章 实数 6.1 平方根(2) 【教学目标】知识与技能1.理解一个非负数的算术平方根。

2.会求一个非负数的的算术平方根的大小。

3.能用夹值法求一个非负数的算术平方根的近似值。

过程与方法通过折纸认识第一个无理数2,并通过估计它的大小认识无限不循环小数的特点。

用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。

情感、态度与价值观 通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。

【教学重难点】重点:1.会求一个非负数的的算术平方根的大小。

2.能用有理数估计一个带算术平方根符号的无理数的大致范围.难点:能用夹值法估算一个非负数的算术平方根【导学过程】【知识回顾】1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的_____,记作___.2.填空:(1)因为____2=36,所以36的算术平方根是_______,即36=_____;(2)因为_____2=0.81,所以0.81的算术平方根是_______,即0.81=_____;【新知探究】探究一、课本P41“探究” (看图)问题:1.能否用面积为1dm2的小正方形拼成一个面积为2dm2d 的大正方形,你知道这个大正方形的边长是多少吗?2.正方形的边长等于面积1的算术平方根,也就是边长=1. 1等于多少?3.正方形的面积等于2,它的边长等于什么?4=21=1面积=1面积=1面积=24.面积是2的正方形边长为2,那么2到底是多少呢? 我们怎么才能找到这个数呢? 通过P42, 2发现等于1.41421356。

,所以2是一个无限不循环小数. 除了2,还有别的无限不循环小数吗?无限不循环小数还有很多很多,5、7都是无限不循环小数。

我们还学过哪些无限不循环小数? 自己尝试5=?探究二、1.课本例22.利用计算器计算下列各值1= ; 2= ; 3= ; 4= ; 5= ;6= ; 7= ; 8= ; 9= ; 10= ;探究三、课本P43探究。

【优课件】6.1 平方根(第2课时)-2021-2022学年七年级数学下册同步备课系列(人教版)

【优课件】6.1 平方根(第2课时)-2021-2022学年七年级数学下册同步备课系列(人教版)

解:(1)

(2) 与6.
= ,



= ,
∴ > .
(2)∵
= ,
∴ > ,
∴2 > .


已知非负数a、b
= ,

Байду номын сангаас
若a >b ,则a>b
例3:小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块
面积为300cm2的长方形纸片,使它的长宽之比为3∶2. 她不知能否裁得出
∴. < <1.415.
……
如此下去,可以得到 的更精确的近似值.
新知讲解
无限不循环小数:
继续重复上述的过程,可以得到
2 1.414 213 562 373......
小数位数无限,且小数部分不循环的小数称为无限不循环小数.
是一个无限不循环的小数.
典例分析
例1:估算 − 的值 ( B )
1. 若 . ≈ . , . ≈ . ,那么 ≈ . ,
. ≈ . .
2.若已知 . ≈ . , = . ,那么 = .
当堂巩固
1. 在计算器上按键
A. 3
B. -3
,下列计算结果正确的是 ( B )
A. 在1和2之间
B. 在2和3之间
C. 在3和4之间
D. 在4和5之间
解析:因为 < < ,
所以 <
< ,所以 < − < . 故选B.
估计一个有理数的算术平方根的近似值,要先判断这个
有理数位于哪两个数的平方之间.
例2:试比较下列各组数的大小
(1)与 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 平方根(第2课时)
一、内容和内容解析
1.内容
用有理数估计带根号的无理数的大小,初步认识一些无限不循环小数,用计算器求算术平方根.
2.内容解析
通过用有理数估计2的大小,得到2的越来越精确的近似值,进而给出2是无限不循环小数的结论.这个估算过程既体现了估算平方根大小的一般方法,又为后面学习无理数作铺垫.使用计算器进行复杂的运算,可以使学习的重点更好地集中到理解数学的本质上来.本节课对初步培养学生的估算意识,发展估算能力,起到重要的作用.基于以上分析,可以确定本课的教学重点:能用有理数估计一个带算术平方根符号的无理数的大致范围.
二、教材解析
对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,因此学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根2到底有多大,对学生来讲是一个新问题.本课利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论.另外,本课还使学生了解利用计算器可以求出任意一个正数的算术平方根.通过一个实际问题,给出了一种常见的用有理数估计无理数的方法,它利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,也使学生感受到估算能力是生活中需要的一种能力.
三、教学目标和目标解析
1.教学目标
(1)用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
1
(2)用计算器求一个非负数的算术平方根.
2.目标解析
达成目标(1)的标志:学生了解用夹逼法求2的近似值的过程和方法,并初步认识无限不循环小数的特点;学生能够利用与被开方数最接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小.
达成目标(2)的标志:给出一个非负数,学生能够利用计算器算出它的算术平方根.
四、教学问题诊断分析
在2出现之前,学生已经知道利用乘方运算,通过观察的方法求一些完全平方数的算术平方根,但是对于象2这样的非完全平方数,它的算术平方根2到底有多大,对学生来说是一个新问题.另外,通过分析2的一系列不足近似值和过剩近似值来估计它的大小,给出2是无限不循环小数的结论,对学生来说也比较困难.
基于以上分析,本课的教学难点:用夹逼法估计2的大小.
五、教学过程设计
1.解决上节课的问题
问题12有多大呢?
师生活动:学生思考,讨论并估计2大概有多大.由直观可知,2大于1而小于2.追问1 你是怎样判断出2大于1而小于2的?
学生回答:
因为12=1,22=4,而1<2<4,所以1<2<2.
追问2 你能不能得到2的更精确的范围呢?
因为1.42=1.96,1.52=2.25,而1.96<2<2.25,
所以1.4<2<1.5;
因为1.412=1.988 1,1.422=2.061 4,而1.988 1<2<2.016 4,所以1.41<2<
1
1.42;
因为1.4142=1.999 396,1.4152=2.002 225,而1.999 396<2<2.002 225,
所以1.414<2<1.415;
……
师生活动:让学生继续用这种思路计算出更加精确的近似值.
教师展示:
2
教师讲解:事实上,2=1.414 213 562 373…,它的小数位数无限,且小数部分不循环,这样的小数称为无限不循环小数,2是一个无限不循环小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循环小数.
追问3 你以前见过这种数吗?
学生回答:=3.141 592 635 897…
【设计意图】通过用有理数估计2的大小,使学生初步体会2是无限不循环小数;同时这个过程也给出了用有理数估计带算术平方根符号的无理数的大小的一般方法.
1
2.用计算器求算术平方根
大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).例1 用计算器求下列各式的值:
(1)136
3;
依次按键 3 136
显示:56.
∴136
3=56.
(2)2(精确到0.001).
依次按键 2
显示:1.414 213 562.
1.414

教师讲解:计算器上显示2的值是1.414 213 562,它是有限位小数,这容易给我们一个错觉“2是有理数”,而当我们用平方运算来验证时,发现(1.414 213 562)2≠2,因此用计算器计算得到的1.414 213 562仅是2的近似值.
【设计意图】使学生学会使用计算器可以很方便的计算出任意一个正数的算术平方根(或算术平方根的近似值).
问题2 你能解决章引言中提出的问题吗?
同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度在什么范围吗?这时它的速度要大于第一宇宙速度v1(单位:m/s)而小于第二宇宙速度v2(单位:m/s).v1,v2的
大小满足2
1
v=gR,22v=2gR,其中g≈9.8m/s2,R是地球半径,R≈6.4×106m.怎样求v1,v2呢?
追问1你能把v1,v2表示出来吗?
学生回答:根据算术平方根的定义及符号表示,可知v1=gR,v2=gR
2.追问2你能算出v1,v2吗?


1。

相关文档
最新文档