概率论 第三版 龙永红第二章习题及答案

合集下载

概率论第二章习题解答

概率论第二章习题解答

a
b X t
ba
0
F
t
t b
a a
1
ta at b bt
2024年8月31日7时2分
P44 2.4.1 X ~ U 0,10,均匀分布 0, x 0
概率密度f
方程x2
x
1
=10
,
0,
Xx 1
0 x 10 分布函数F 其它
0有实根,
x
x 10 1
0 x 10 10 x
=X 2 4 0 X 2
1 P A1 A2 A3 1 P A1 A2 A3 1 P A1A2 A3
1 P A1 P A2 P A3 1 0.9730633 0.078654
设Y “3人维修的90台设备发生故障的台数”
近似
则Y ~ B 90,0.01, 2 =np 90 0.01 0.9,Y ~ 0.9
Probability
2024年8月31日7时2分
第二章 随机变量及其分布 P35练习2.2
1
P
X
k
k
A
k 1
k
1, 2,
,且
k 1
k
A
k 1
1
1
k 1
k
A
k 1
A
k 1
k
1
k 1
A 11
1 2
1 2
1 3
1 3
1 4
A
A1
2024年8月31日7时2分
P35练习2.2
2 解:设X =8次射击击中目标次数,则X ~ N 8,0.3
2024年8月31日7时2分
P49 2.5.1 Y sin X 1,0,1
X

概率论第三版第2章答案详解

概率论第三版第2章答案详解

第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。

即36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。

故1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多.解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求 )31()1(≤≤X P )5.25.0()2(<<X P解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+=2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1)()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -. (2)0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。

概率论第二章习题及答案

概率论第二章习题及答案

三、一些常用的离散型随机变量
1) Bernoulli分布 如果随机变量 X 的分布律为
PX 0 1 p q , PX 1 p

P{ X k } p q
X P
k 1 k
(k 0 , 1)
1 p
0 1-p
则称随机变量 X 服从参数为 p 的 Bernoulli分布. 记作 X ~ B1 , p . 其中0 p 1 为参数
第二章 随机变量及其分布
一、 随机变量的定义
设E是一个随机试验,S是其样本空间.若对每一个
S , 都有唯一确定的一个实 数X 与之对应 , 则称
X 为一个随机变量.

S
X
R
第二章 习题课
二、离散型随机变量的分布律
设离散型随机变量 X 的所有可能取值为 x1 , x2 , , xk , 并设
如果连续型随机变量X 的密度函数为 (I)
1 2 2 x f x e 2 其中 , 0 为参数, 则称随机变量X 服从参数为 , 2 的
正态分布.记作
f (x)
x 2
X ~ N ,

2

0
第二章 随机变量及其分布
4)几 何 分 布
若随机变量 X 的分布律为
PX k q k 1 p
k 1, 2,
其中 p 0,q 0,p q 1
则称随机变量 X 服从参数为 p的几何分布.
返回主目录
第二章 随机变量及其分布
5)超 几 何 分 布
如果随机变量 X 的分布律为

x

f ( t )dt,

概率论与数理统计(第三版)课后答案习题2

概率论与数理统计(第三版)课后答案习题2

第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。

故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。

概率论第二章练习答案

概率论第二章练习答案

《概率论》第二章练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。

2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他且EX =31,则a = _____-2___________, b = _____2___________。

3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) , 则a = ,b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。

7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=)= 0 ;)62.0(<<ξP = 。

8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。

2100xx≥100 ∴ϕ(x)=0 其它P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =,DX =,则参数n =___________,P =_________________。

概率论第二章课后习题答案

概率论第二章课后习题答案

概率论与数理统计第二章习题[])()()()()式,有利用(显然)()(则若))(()()(从而)()()()(的可加性,有:互不相容,因此由概率与而)(则解:AB P A P AB A P B A P A AB AB A P B A P A B B P A P B A P B A P B P B A B P A P B A B C A B A A B -=-=-⊂-=-⊄-=--+=-=--=⊂**.132)(1)()()(1)()()()|()4(2.05.01.0)()()|()3(25.04.01.0|)2(8.0)1(.2=--=--=========-+=B P AB P A P B P B A P B P B A P B A P A P AB P A B P B P AB P B A P AB P B P A P B A P )()()()()()()(解:7.0)(1)|(1)|()4(4.0)(1)|(1)|()3(72.0)()()()()()()()()2(3.0)()()()()()()|(1.3=-=-==-=-==⋅-+=-+===⋅==A PB A P B A P B P A B P A B P B P A P B P A P AB P B P A P B A P B P B P B P A P B P AB P B A P )解:()()()()()(”成立时“或当)()(”成立时“)(当)()()()()()()(解:B P A P B A P A P AB P A AB B A B AB P A P B A A AB P B A P B P A P AB P B P A P B A P +≤≤≤∴⊆=∅==≤∴⊆==≥+∴-+= 0.4)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()解:(C P B A P C P B A P C P B P A P C B A P C B A P C P AB P C P B P A P ABC P C AB P B A P C P AB P B P A P C P B P A P B P A P C P C P B P A P C P B P C P A P ABC P BC P AC P BC AC P C B A P ⋅-=⋅=⋅⋅==-⋅=⋅⋅===-+=-+=-+=-+==][][3][2][][][1.7832.04.03.06.03.04.03.06.04.06.03.04.06.0)()()()()()()()()(3.04.0200150)(4.06.0150100)(6.020*******.8=⨯⨯+⨯-⨯-⨯-++=+---++===⨯==⨯======ABC P CA P BC P AB P C P B P A P C B A P D P C P B P A P D C B A )(“击中目标”米处射击”“相距米处射击”“相距米处射击”“相距解:设2112632112|31812|6)2(3.0185|8)1(.9222222222222111111111=++++============ )()()()()()()(”“点数和大于“点数和为奇数”)()()()()(”“点数和为“点数和为偶数”解:B P B A P B A P A P B A P A B P B A A P B P A P B A P A B P B A5360160126047514131413141513151413151413151.10=+-=⨯⨯+⨯-⨯-⨯-++=+---++=======)()()()()()()()()(,)(,)(“丙破译密码”“乙破译密码”“甲破译密码”解:ABC P BC P AC P AB P C P B P A P C B A P C P B P A P C B A61|1011|.11110=====)()()()()()(解:B P AB P B A P C A P AB P A B P1025515510530520|12C C C C C A B P A P AB P B A ⋅⋅=⋅===)()()(球各半”“第二次取出的黄、白球”“第一次取出的全是黄。

概率论第三版答案详解

概率论第三版答案详解

百度文库-让每个人平等地提升自我第二章作业题解:掷一颗匀称的骰子两次,以X表示前后两次出现的点数之和,求X的概率分布,并验证其满足式•解:设离散型随机变量的概率分布为P{X k} ae k,k 1,2 ,试确定常数a .1解:根据P(X k) 1,得ae k 1,即1。

k 0 k 0 1 e\ 故a e 1甲、乙两人投篮时,命中率分别为和,今甲、乙各投篮两次,求下列事件的概率:(1) 两人投中的次数相同;(2) 甲比乙投中的次数多•解:分别用A j,B j(i 1,2)表示甲乙第一、二次投中,则P(AJ P(A2)0.7, P(A1) P(A2)0.3,P(BJ P®?) 0.4,P(Bj P($2)0.6,两人两次都未投中的概率为:P(A^A2瓦瓦)0.3 0.3 0.6 0.6 0.0324,两人各投中一次的概率为:0.2016 P(A1A2B1 B2) P(A1 A2 B2B1) P(A2AB1B2)P(A1A2 B2B1) 4 0.7 0.3 0.4 0.6两人各投中两次的概率为:P(A1A2B1B2) 0.0784。

所以:(1) 两人投中次数相同的概率为0.0324 0.2016 0.07840.3124(2) 甲比乙投中的次数多的概率为:百度文库-让每个人平等地提升自我P (A1A2 B1B2) P( A1A2 B2 Bi) P( A1A2 B1B2)2 0.49 0.4 0.6 0.49 0.36 2 0.21 设离散型随机变量X的概率分布为P{X P (A1A2 Bi B2) P (A1A2 B1B2) 0.36 0.5628kk} —,k 1,2,3,4,5,求15(1) P(1 X 3) (2) P(0.5 X 2.5)解:⑴P(1 X 3)15 15 15P(0.5 2.5) P(X 1) P(X 2)丄15215设离散型随机变量X的概率分布为P{ X k}(1) P{X 2,4,6 };⑵P{X 3}2k,k1,2,3,,,求解:(1)P{X 2,4,61 1 24 26(2) P{X 3}1 P{X 1} P{X122设事件A在每次试验中发生的概率均为,求下列事件的概率:进行4次独立试验,指示灯发出信号当A发生3次或3次以上时,指示灯发出信号(1) ;(2) 进行5次独立试验,指示灯发出信号解: (1) P(X 3) P(X 3) P(X 4)C:0.430.6 0.440.1792⑵ P(X 3) P(X 3) P(X 4) P(X 5)C〕0.430.62 Cs0.440.6 0.450.31744某城市在长度为t (单位:小时)松分布,且与时间间隔的起点无关(1) ⑵某天中午12某天中午12的时间间隔内发生火灾的次数,求下列事件的概率:时至下午15时未发生火灾;时至下午16时至少发生两次火灾.X服从参数为的泊解: (1) P(X k)ke ,由题意,k!0.5 3 1.5,kP(X 2)e 0! 1!件的概率为1 3e 2. ,由题意,1 50 ,所求事件的概率为 e .0.5 4 1.5,所求事为保证设备的正常运行,必须配备一定数量的设备维修人员 •现有同类设备180台,且各台设备工作相互独立,任一时刻发生故障的概率都是,假设一台设备的故障由一人进行 修理,问至少应配备多少名修理人员 ,才能保证设备发生故障后能得到及时修理的概率不小于?解:设应配备 m 名设备维修人员。

(完整版)概率论第二章答案

(完整版)概率论第二章答案

习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p .或者X 0 1 P 1-pp2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为. 试确定常数c , 并计算条件概率.cc c c 167,85,43,21}0|1{≠<X X P 解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++=所以.3716c=所求概率为P {X <1| X }=.0≠258167852121}0{}1{=++=≠-=cc c c X P X P 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若≥, 求≥.{P X 51}9={P Y 1}解 注意p{x=k}=,由题设≥kk n k n C p q -5{9P X =21}1{0}1,P X q =-==-故. 从而213qp =-=≥{P Y 32191}1{0}1(.327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为, 求每次试验成功的概率.1927解设每次试验成功的概率为p , 由题意知至少成功一次的概率是,那么一次都2719没有成功的概率是. 即, 故 =.278278)1(3=-p p 315. 若X 服从参数为的泊松分布, 且, 求参数.λ{1}{3}P X P X ===λ解 由泊松分布的分布律可知.6=λ6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有种取法.1035=C {X =3}表示取出的3个数以3为最大值,P{X =3}==;2235C C 101{X =4}表示取出的3个数以4为最大值,P{X =4}=;1033523=C C {X =5}表示取出的3个数以5为最大值,P{X =5}=.533524=C C X 的分布律是X 345P11031035习题2-31. 设X 的分布律为X -11P0.150.200.65求分布函数F (x ), 并计算概率P {X <0}, P {X <2}, P {-2≤X <1}.解 (1)F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥ (2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35.2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知(0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩于是11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤ 1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X ,1}(1)0F -=-=≤P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.5. 假设随机变量X 的绝对值不大于1;; 在事件11{1},{1}84P X P X =-===出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成{11}X -<<正比. (1) 求的分布函数≤x }; (2) 求X 取负值的概率p .X (){F x P X =解 (1) 由条件可知,当时, ;1x <-()0F x =当时, ;1x=-1(1)8F -=当时, F (1)=P {X ≤1}=P (S )=1.1x =所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于的条件下, 事件的条件概率为(1,1)-{1}X x -<<≤,{1P X -<|11}[(1)]x X k x -<<=--取x =1得到 1=k (1+1), 所以k =. 12因此≤.{1P X -<|11}12x X x -<<=+于是, 对于, 有11x -<<≤≤{1P X -<}{1x P X =-<,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯=对于≥1, 有 从而x () 1.F x =0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥(2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题(1) 设 如果c =( ), 则是某一随机变量的概率密2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩()f x 度函数.(A). (B). (C) 1.(D).131232解 由概率密度函数的性质可得, 于是, 故本题()d 1f x x +∞-∞=⎰2d 1cx x =⎰1=c 应选(C ).(2) 设又常数c 满足, 则c 等于( ).~(0,1),XN {}{}P X c P X c =<≥(A) 1.(B) 0.(C). (D) -1.12解 因为, 所以,即{}{}P X c P X c =<≥1{}{}P X c P X c -<=<, 从而,即, 得c =0. 因此本题应选(B).2{}1P X c <={}0.5P X c <=()0.5c Φ=(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A)(B)cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它.12,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) (D)22()2,0,()0,0.≥x x f x x μσ--=<⎩e ,0,()0,0.≥x x f x x -=<⎧⎨⎩解 由概率密度函数的性质可知本题应选(D).()1f x dx +∞-∞=⎰(4) 设随机变量, , ≤},2~(,4)XN μ2~(,5)Y N μ1{X P P =4μ-≥}, 则( ).{2P P Y =5μ+(A) 对任意的实数. (B) 对任意的实数.12,P P μ=12,P P μ<(C) 只对实数的个别值, 有. (D) 对任意的实数.μ12P P =12,P P μ>解 由正态分布函数的性质可知对任意的实数, 有μ.12(1)1(1)P P ΦΦ=-=-=因此本题应选(A).(5) 设随机变量X 的概率密度为, 且, 又F (x )为分布函数, 则对()f x ()()f x f x =-任意实数, 有().a (A) . (B) .()1d ()∫aF a x f x -=-1()d 2()∫aF a x f x -=-(C) .(D) .()()F a F a -=()2()1F a F a -=-解 由分布函数的几何意义及概率密度的性质知答案为(B).(6)设随机变量服从正态分布,服从正态分布,且X211(,)N μσY 222(,)N μσ 则下式中成立的是().12{1}{1},P X P Y μμ-<>-<(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2.(D) μ1 >μ2.解 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数,数满足)10(<<αααu , 若, 则等于().{}P X u αα>={}P X x α<=x (A) .(B) .(C) .(D) .2u α21α-u 1-2u αα-1u 解 答案是(C).2. 设连续型随机变量X 服从参数为的指数分布, 要使成立, λ1{2}4P kX k <<=应当怎样选择数k ?解 因为随机变量X 服从参数为的指数分布, 其分布函数为λ1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知.221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-于是.ln 2k λ=3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使(其中a >0)成立, 应当怎样选择数?{}{}≥P X a P X a =<a 解由条件变形,得到,可知, 于是1{}{}P X a P X a -<=<{}0.5P X a <=, 因此.304d 0.5a x x =⎰a =4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2).{0.30.7}P X <<解 (1) 根据分布函数与概率密度的关系,()()F x f x '=可得2,01,()0,其它.x x f x <<⎧=⎨⎩(2).22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤}与P {≤2}.1214X <解≤;{P X 12201112d 224}x x x ===⎰≤.1{4P X <12141152}2d 1164x x x ===⎰6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得,12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰于是;2A =(2) 由公式可得()()d x F x f x x -∞=⎰当x ≤0时, ;()0F x =当≤1时, ;0x <201()d 2x F x x x x ==⎰当≤2时, ;1x <2101()d (2)d 212xx F x x x x x x =+-=--⎰⎰当x >2时, .()1F x =所以220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 根据概率密度与分布函数的关系式≤,{P a X <}()()()d bab F b F a f x x =-=⎰可得.2115{1}(1)d48P X x x>=+=⎰所以, 3次观察中至少有2次的结果大于1的概率为.223333535175()()(888256C C+=8. 设, 求关于x的方程有实根的概率.~(0,5)X U24420x Xx++=解随机变量X的概率密度为105,()50,,xf x<=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则≥0, 于是≥2. 故方程有实根的概率为21632X-2XP{≥2}=2X21{2}P X-<1{P X=-<<1x=-.1=9. 设随机变量.)2,3(~2NX(1) 计算, , , ;{25}P X<≤{410}P X-<≤{||2}P X>}3{>XP(2) 确定c使得{}{};P X c P X c>=≤(3) 设d满足, 问d至多为多少?{}0.9P X d>≥解(1) 由P{a<x≤b}=P{公式,33333}()()22222a Xb b aΦΦ-----<=-≤得到P{2<X≤5}=,(1)(0.5)0.5328ΦΦ--=P{-4<X≤10}=,(3.5)( 3.5)0.9996ΦΦ--==+{||2}P X>{2}P X>{2}P X<-=1+=0.6977,23(2Φ--23()2Φ--=1=0.5 .}3{>XP33{3}1()1(0)2P XΦΦ-=-=-≤(2) 若,得1,所以{}{}≤P X c P X c>={}{}P X c P x c-=≤≤{}0.5P X c=≤由=0推得于是c =3.(0)Φ30,2c -=(3) 即1, 也就是{}0.9≥P Xd >3()0.92d Φ--≥,3()0.9(1.282)2d ΦΦ--=≥因分布函数是一个不减函数, 故(3)1.282,2d --≥解得.32( 1.282)0.436d +⨯-=≤10. 设随机变量, 若, 求.2~(2,)XN σ{04}0.3P X <<={0}P X <解 因为所以. 由条件可知()~2,X N σ2,~(0,1)XZ N μσ-={04}0.3P X <<=,02242220.3{04}{}((X P X P ΦΦσσσσσ---=<<=<<=--于是, 从而.22(10.3Φσ-=2(0.65Φσ=所以.{{}2020}P P X X σσ==--<<22()1(0.35ΦΦσσ-=-=习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则的分布函数为( ).31Y X =+()G y (A) . (B) . 11(33F y -(31)F y +(C) .(D).3()1F y +1133()F y -解 由随机变量函数的分布可得, 本题应选(A).(2) 设令, 则( ).()~01,XN ,2Y X =--~Y (A). (B). (C). (D).(2,1)N --(0,1)N (2,1)N -(2,1)N 解 由正态分布函数的性质可知本题应选(C).2. 设, 求Z 所服从的分布及概率密度.~(1,2),23X N Z X =+解 若随机变量, 则X 的线性函数也服从正态分布, 即2~(,)XN μσY aX b =+ 这里所以Z .2~(,()).Y aX b N a b a μσ=++1,μσ==~(5,8)N 概率密度为.()f z =2(5)16,x x ---∞<<+∞3. 已知随机变量X 的分布律为X -10137P0.370.050.20.130.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X -5-1123P0.250.130.20.050.37(2)3+X 2341252P0.050.570.130.254. 已知随机变量X 的概率密度为=()X f x 1142ln 20x x <<⎧⎪⎨⎪⎩ , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数:)(y F Y =≤≤≥)(y F Y {P Y }{2y P X =-}{y P X=2}y -=1-.1{2}P Xy =-<-2()d yX f x x --∞⎰于是可得Y 的概率密度为=()(2)(2)Y X f y f y y '=---12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩即121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量的概率密度.2Y X =解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y <4,≤≤≤X .(){Y F y P Y =2}{y PX=}{yP =(X X F F =-于是随机变量的概率密度函数为2YX =()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知.~(5,0.2)X B (1) 恰好有3件次品的概率是P {X =3}=.23358.02.0C (2) 至多有3件次品的概率是.k k k kC-=∑5358.02.02. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为0.1. 问在同一时刻(1) 恰有两个设备被使用的概率是多少?(2) 至少有1个设备被使用的概率是多少?(3) 至多有3个设备被使用的概率是多少?(4) 至少有3个设备被使用的概率是多少?解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,0.1),P {X =k }=,k =0,1, (5)k kk C -559.01.0(1)所求的概率是P {X =2}=;0729.09.01.03225=C (2)所求的概率是P {X ≥1}=1;40951.0)1.01(5=--(3)所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4)所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856.3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知, 求常数k , θ.1{1}2P X >=解 由概率密度的性质可知得到k =1.e d 1xkx θθ-+∞=⎰由已知条件, 得.111e d 2xx θθ-+∞=⎰1ln 2θ=4. 某产品的某一质量指标, 若要求≤X ≤≥0.8, 问允2~(160,)X N σ{120P 200}许最大是多少?σ解 由≤X ≤{120P }200120160160200160{}X P σσσ---=≤≤=≥0.8,404040((1(2(1ΦΦΦσσσ--=-得到≥0.9, 查表得≥1.29, 由此可得允许最大值为31.20.40()Φσ40σσ5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于即故2A = 1,得||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰2e d 1x A x +∞-=⎰到A =.12所以φ(x ) =e -|x |.12(2) P {0<X <1} =111111e e d (e )0.316.222xxx ----=-=≈⎰(3) 因为 得到||1()e d ,2xx F x x --∞=⎰当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X 的分布函数为1,0,2()11,0.2xx x F x x -⎧<⎪⎪=⎨⎪-⎪⎩e e ≥。

第三版详细《概率论与数理统计》课后习题答案._【精品文档】

第三版详细《概率论与数理统计》课后习题答案._【精品文档】

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论 第三版 龙永红概率辅导2

概率论 第三版 龙永红概率辅导2

2随机变量及其分布2.1基本要求随机变量的引入在概率论发展史中意义十分重大,这一概念的引入使得试验结果数量化了。

因此,随机变量与它的分布是概率统计讨论的核心内容。

1.理解随机变量及其概率分布的概念。

2.理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

3.理解离散型随机变量及其概率分布的概念,侧重把握它的分布律(列)及其性质,其中,从实际问题出发建立分布律是学习中的难点。

在众多的离散型分布中,重点是掌握两点分布、二项分布、超几何分布和泊松分布及其应用。

4.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

5.理解连续型随机变量的概念,重点是把握它的概率密度及其性质,并能深入掌握均匀分布、指数分布、正态分布与它们的特征,会用这些分布解决一些简单的问题。

6.熟练掌握分布函数与分布律、概率密度的互求,这既是难点也是应用中的重点。

7.会根据自变量的概率分布求其简单函数的概率分布。

2.2内容提要2.2.1.随机变量与它的分布函数1.随机变量的概念随机变量ξ是定义在样本空间Ω上的实值集函数,它具有取值的不确定性(随机性)和取值范围及相应概率的确定性(统计规律性)两大特征。

特别是后一特征表明,对于任意实数x,事件{ξ≤x }都有确定的概率。

常用的随机变量按取值方式可分为离散型和连续型两类。

2.分布函数与它的基本性质对于随机变量ξ 以及任意实数x ,称一元函数F (x )=P {ξ≤x }为ξ的分布函数。

由此可见,分布函数是定义域为),(∞-∞、值域为[0,1]的实函数。

其基本性质是:(1) 1)(0≤≤x F ,对一切∞<<∞-x 成立;(2)F (x )是一个单调不减函数,即当21x x <时,有)()(21x F x F ≤;(3)F (x )是右连续的,即F (x +0)=F (x );(4)1)(lim )(,0)(lim )(==∞==-∞∞→-∞→x F F x F F x x 。

概率论第三版第2章答案解析详解

概率论第三版第2章答案解析详解

第二章 作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。

故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。

概率论与数理统计(龙永红)习题答案

概率论与数理统计(龙永红)习题答案

习题二(A )1.解:X: 甲投掷一次后的赌本。

Y :乙……… 21214020p x 21213010Y p ⎪⎩⎪⎨⎧≥<≤<=40,14020,2120,0)(F ~x x x x x X ⎪⎩⎪⎨⎧≥<≤<=30,13010,2110,0)(F ~Y x x x y Y2.解(1)∑∑∑∑=====⇒=⇒=⇒==10011001100110012112121)(i ii i i i ia a a i x p(2)31211112112121)(1110011=⇒=--⇒=⇒=⇒=⇒==∑∑∑∑∞=∞==∞=a a a a a i x p i i i i i i i3.解 21 51 101512 0 25X --p4.解(1)X:有放回情形下的抽取次数。

P (取到正品)=107C C 11017=P (取到次品)=103 107)103( 107)103( 107103,107i 3 2 1X 1-i 2 ⋅p(2)Y:无放回情形下。

778192103 87 92103 97 103 1074 3 2 1 Y ⋅⋅⋅⋅⋅⋅p5.解54511)5(1)3(1)3P(=-=-=-=-≤-=->X p X p X 542)P(X 0)P(X )2()33()3X P(==+=+-==<<-=<X p X p107)5()2()3()1()21P(2)1()21X P(=-=+==-<+>=-<++>+=>+X p X p X p X p X X p6.解(1)根据分布函数的性质11)1()(2lim 1lim 1=⇒=⇒=++→→A Ax F x F x x (2))5.0()8.0()8.05.0(F F X P -=≤<225.08.0-==0.39 7.解:依据分布满足的性质进行判断: (1)+∞<<∞-x单调性:+∞<<<⇒<x x F x F x x 0).()(2121在时不满足。

《概率论和数理统计》第三版-课后习题及答案解析.

《概率论和数理统计》第三版-课后习题及答案解析.

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

理学 概率论与数理统计_第三版龙永红完整答案

理学 概率论与数理统计_第三版龙永红完整答案

概率论与数理统计龙永红,第三版,高等教育出版社课后习题详细答案厦门大学 经济学院08经济 周玉龙08金融 王骁 李政宵09金融 孙士慧 许彩灵 唐艺烨联合编写2011年2月16日 第一版注意:若要打印,请不要打印34页之后的内容!只有34页之前的内容才是校对过的!2010年的时候半期考试考到3.1,即34页之前的内容。

目录前言 (3)编写任务记录 (4)练习1‐1 (5)练习1‐2 (6)练习1‐3 (7)练习1‐4 (9)练习1‐5 (12)习题一 (13)练习2‐1 (15)练习2‐2 (17)练习2‐3 (18)练习2‐4 (20)练习2‐5 (23)习题二 (26)练习3‐1 (29)练习3‐2 (35)练习3‐3 (40)练习3‐4 (43)练习3‐5 (48)练习4‐1 (49)练习4‐2 (50)练习4‐3 (51)练习4‐4 (53)练习5‐2 (54)练习5‐3 (55)练习5‐4 (56)练习5‐5 (56)练习5‐6 (58)前言各位学弟学妹们,大家好。

这份答案是我在2010年学习概率统计的时候,和几个好朋友一起编写的。

我在大二上学线性代数的时候,当时找不到习题答案,于是很多不会做的题目,我就直接放弃了,期末线性代数成绩很不理想。

大二下在学概率统计的时候,我决定要把书上的题目都做会,但当时找不到一本参考答案,于是便想到了自己来编写一本答案书。

这样我不仅可以强迫自己把书上的题目都做了,更重要的是,我还可以帮助今后很多的学弟学妹学习概率统计。

于是找到08经济系的周玉龙同学,由他撰写手写初稿答案;我又找了几个愿意加入的朋友,我们一起将手写初稿录入进电脑,他们是09金融的孙士慧、许彩灵、唐艺烨和08金融的李政宵;我再将电子版初稿打印下来,并在上面进行打印错误的校正,再由我将这些错误在电脑中改过来。

最后整理排版,这就是你眼前的这本电子书。

撰写初版答案是辛苦的,将初版手写答案录入电脑更是非常辛苦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 练习题(解答)一、填空题:1.设随机变量X 的密度函数为:f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。

解:⎰==≤412021)21(xdx X p649)43()41()2(1223===C Y p2. 设连续型随机变量的概率密度函数为:f (x) =且EX =31,则a = _____-2___________, b = _____2___________。

1()1011()03ax b dx x ax b dx ⎧+=⎪⎪⎨⎪+=⎪⎩⎰⎰解:解之3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 ,DX= 12 4.设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE=+)104(ξD []32161622=-=)(ξξξE E D 5. 已知X 的密度为=)(x ϕb ax +,10其他<<x 且P (1X 3<)=P(1X>3) , 则a = ,b =13131011133x dx P X P X ax b dx ax b dx ϕ+∞-∞==⇒+=+⎰⎰⎰()(<)(>)()() 联立解得:4723=-=b a , ax+b 0<x<1 0 其他6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。

7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。

8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。

∴ ϕ(x)=2100x x≥100 0 其它 P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =1.6,DX =1.28,则参数n =___________,P =_________________。

EX = np = 1.6DX = npq = 1.28 ,解之得:n = 8 ,p = 0.210. 设随机变量ξ服从参数为(2,P )的二项分布,η服从参数为(4,P )的二项分布,若P (ξ≥1)95,则P (η≥1)==_65/81__。

解:%2.808165811614014==-=-=q p C o )(1)1(o p p =-=≤ηη31,3294)0(94)1(95)1(2==⇒=∴===〈⇒=≥p q q p p p ξξξ11. 随机变量X ~N (2,σ2),且P (2<X <4)=0.3,则P (X <0)=__0.2___),查表可得()〈(再代入,由此解出)()()〈()〈()〈〈(σσσσ2003.022242442000-Φ==-Φ--Φ=-=X P X P X P X P12. 设随机变量X 服从参数为1的指数分布,则数学期望E (x +e -2x)= ___4/3________3431110222=+=⋅+=+=+⎰+∞----dx e e EeEX e X E x x XX )(13. 已知离散型随机变量x 服从参数为2的泊松分布,则随机变量z = 3x -2的期望E (z)=3EX-2=3x2-2=4 。

14.设随机变量x 服从参数为λ的泊松分布,且P ( x = 1) = P ( x=2 ) 则E (x) = __2__. D (x) = __2__22201!2!ee λλλλλλ--=⇒-=∴)0(2舍==λλ15. 若随机变量ξ服从参数λ=0.05的指数分布,则其概率密度函数为:=)(x φ⎩⎨⎧≤>-0,00,05.005.0x x e x;E ξ= 20 ;D ξ= 400 。

16. 设某动物从出生活到10岁以上的概率为0.7,活到15岁以上的概率为0.2,则现龄为10岁的这种动物活到15岁以上的概率为286.0727.02.0)10()15()10/15(===>>=>>ξξξξP P P17. 某一电话站为300个用户服务,在一小时内每一用户使用电话的概率为0.01,则在一小时内有4个用户使用电话的概率为 P 3(4)=0.168031 解:一小时内使用电话的用户数服从301.0300=⨯==np λ的泊松分布18 通常在n 比较大,p 很小时,用 泊松分布 近似代替二项分布的公式,其期望为np =λ ,方差为 np =λ19.x ~N (μ,2σ),P(x <-5) =0.045,p(x ≤3) =0.618,则μ=_1.8____,σ=__4____。

二、单项选择:1、设随机变量X 的密度函数为:34x ,0<x<10,(){f x =其他则使P(x>a)=P(x<a)成立的常数a = ( A ) A .421B .42C .21 D .1-421 ⎰⎰=∞+=〉dx x a dx x f a a x p 341)()(⎰⎰⎰⎰=⨯=⨯⨯=∞-=〈4313321:4,4,,4)()(a dx dx o a d x o a dx x f a a x p a 解之得联立2.设F 1(X )与F 2(X )分别为随机变量X 1与X 2的分布函数,为使F (X )=aF 1(x)-bF 2(x)是某一随机变量的分布函数,在下列给它的各组值中应取( A ) A .a=53, b =-52B .a=32, b=32C .a=-21, b=23D .a=21, b=-23F(+∞)=a F 1 (+∞)-BF 2 (+∞)=11=-⇒b a适合52,53-==∴b a3. 已知随机变量的分布函数为F (x )= A + B arctgx ,则:( B )A 、A=21B=πB 、A=21B=π1C 、 A=πB=21D 、A=π1B=21 本题为课堂例题4. 设离散型随机变量X 仅取两个可能值X 1和X 2,而且X 1< X 2,X 取值X 1的概率为0.6,又已知E (X )=1.4,D (X )=0.24,则X 的分布律为 ( )A.B.C.D.① 1.4=EX=0.6X 1+0.4X 2② DX=EX 2-(EX)20.24=0.6X12 +0.4X22 -1.42 联系①、②解得X 1=1,X 2=25.现有10张奖券,其中8张为2元,2张为5元,今某人从中随机地无放回取3张,则此人得奖金额的数学期望为 ( ) A .6元 B .12元 C .7.8元 D .9元 设ξ表示得奖金额,则其分布律为:ξ 6 9 12P31038c c3101228cc c 3102218c c c故期望值为: 7.86. 随机变量X 的概率分布是:X 1 2 3 4P61 a 41b 则:( D ) A 、a=61, b=41 B 、a=121, b=122C 、a=121, b=125D 、a=41, b=31D b a 故选)(⇒=+-=+127416117. 下列可作为密度函数的是:( B ) A 、=)(x ϕ 0112x +0≤>x xB 、=)(x ϕ)(a x e -- 其它a x >C 、=)(x ϕs i n x其它],0[π∈xD 、=)(x ϕ3x 其它11<<-x依据密度函数的性质:⎪⎩⎪⎨⎧=≥⎰∞+∞-10dx x x )()(ϕϕ进行判断得出:B 为正确答案8. 设X 的概率密度为)(x ϕ,其分布函数F (x ),则( D )成立。

A 、P ()()x F X =∞= B 、1)(0≤≤x ϕC 、P )()(x X ϕ=∞=D 、P )()(x F x =≤ξ9. 如果)(~x x ϕ,而=)(x ϕ 02x x - 其它2110≤<≤≤x x ,则P (X 5.1≤)=( C ) A 、⎰-5.10)2(dx x B 、⎰-5.10)2(dx x xC 、0.875D 、⎰∞--5.1)2(dx x解:875.08725.111==-+⎰⎰dx x xdx )(10. 若随机变量X 的可能取值充满区间______,那么Sinx 可以作为一个随机变量的概率密度函数。

( B ) A .[0,π] B .[0.5π, π] C .[0, 1.5π] D .[π, 1.5π]解: 依据密度函数的性质:⎪⎩⎪⎨⎧=≥⎰∞+∞-10dx x x )()(ϕϕ进行判断得出:B 为正确答案11. 某厂生产的产品次品率为5%,每天从生产的产品中抽5个检验,记X 为出现次品的个数,则EX ( D ) A .0.75 B .0.2375 C .0.487 D .0.25 此题X 服从二项分布12. 设X 服从二项分布,若(n +1)P 不是整数,则K 取何值时,P (X =K )最大? ( D )A .K =(n +1)PB .K =(n +1)P -iC .K =nPD .K =[(n +1)P ]13.设X 服从泊松分布,若λ不是整数,则K 取何值时,P (X =K )最大?(B )A .λB .[λ]C .λ-1D .λ+1 14. )1,0(~N X ,Y=2X -1,则Y~( C )A 、N (0,1)B 、N (1,4)C 、N (-1,4)D 、N (-1,3)112124412-=-=-===-=EX X E EY DX X D DY )(,)(15. 已知随机变量X 服从参数为2的指数分布,则其标准差为: ( C ) A .2B .1/4C .1/2D .22随机变量的参数为2,即方差为1/4,标准差则为1/216.当满足下列( D )条件时,二项分布以正态分布为极限分布更准确。

A .n λ→∞→np , B .0,→∞→p nC .λ→→np p ,0D .∞→n17. 设X ~(10,25)N ,已知8413.0)1(0≈Φ,97725.0)2(0≈Φ,则}{5p X <和}{20p X >的概率分别为 [ C ]A. 0.0228 , 0.1587B. 0.3413 , 0.4772C. 0.1587 , 0.0228D. 0.8413 , 0.977250228.021510201201201587.08413.011115105500000=Φ-=-Φ-=≤-==-=Φ-=-Φ=-Φ=)()()()〉()()()()〈(X P X P X P三、计算题:1. 设随机变量X 的密度函数为:A+B=3 AX 0<X ≤1 B -X 1<X ≤20 其它试求:(1)常数A 、B 。

相关文档
最新文档