光学信息技术第三章习题
陈家璧版-光学信息技术原理及应用习题解答(4-7章)
第四章习题4.1若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l 证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G 式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆ ,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
信息光学智慧树知到答案章节测试2023年苏州大学
绪论单元测试1.“信息光学”又称为 ____。
答案:第一章测试1.高斯函数的傅里叶变换是()A:B:C:D:答案:B2.函数的傅里叶变换是()。
A:B:C:D:答案:A3.某平面波的复振幅分布为,那么它在不同方向的空间频率,也就是复振幅分布的空间频谱为()。
A:,B:,答案:A4.圆域函数Circ(r)的傅里叶变换是。
()A:错B:对答案:B5.尺寸a×b 的不透明矩形屏,其透过率函数为rect(x/a)rect(y/b)。
()A:错B:对答案:A6.卷积是一种 ____,它的两个效应分别是_和_,两个函数f(x, y)和h(x, y)卷积的积分表达式为____。
答案:7.什么是线性空不变系统的本征函数?答案:8.基元函数是不能再进行分解的基本函数单元,光学系统中常用的三种基元函数分别是什么?答案:第二章测试1.在衍射现象中,当衍射孔径越小,中央亮斑就____。
答案:2.点光源发出的球面波的等相位面为_,平行平面波的等相位面为_。
答案:3.平面波角谱理论中,菲涅耳近似的实质是用_来代替球面的子波;夫琅和费近似实质是用_来代替球面子波。
答案:4.你认为能否获得理想的平行光束?为什么?答案:5.菲涅尔对惠更斯的波动光学理论表述主要有哪两方面的重要贡献?答案:6.已知一单色平面波的复振幅表达式为,请问该平面波在传播方向的空间频率以及在x,y,z方向的空间频率分别是什么?答案:第三章测试1.物体放在透镜()位置上时,透镜的像方焦面上才能得到物体准确的傅里叶频谱。
A:之后B:之前C:前表面D:前焦面答案:D2.衍射受限光学系统是指(),仅考虑光瞳产生的衍射限制的系统。
A:考虑像差的影响B:不考虑像差的影响答案:B3.相干传递函数是相干光学系统中()的傅里叶变换。
A:点扩散函数B:脉冲响应函数C:余弦函数D:复振幅函数答案:A4.()是实现对空间物体进行信息处理和变换的基本光路结构。
A:光学系统B:4f光路C:准直系统D:单透镜系统答案:D5.成像的本质是衍射光斑的叠加结果。
工程光学第三章课后习题及答案郁道银
第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。
2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。
4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。
解:
此为平板平移后的像。
5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。
解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。
解:。
(整理)新概念光学各章复习答案
复习提纲第一章光和光的传播说明:灰色表示错误。
§1、光和光学判断选择练习题:1.用单色仪获得的每条光谱线只含有唯一一个波长;2.每条光谱线都具有一定的谱线宽度;3.人眼视觉的白光感觉不仅与光谱成分有关,也与视觉生理因素有关;4.汞灯的光谱成分与太阳光相同,因而呈现白光的视觉效果;§2、光的几何传播定律判断选择练习题:1.光入射到两种不同折射率的透明介质界面时一定产生反射和折射现象;2.几何光学三定律只有在空间障碍物以及反射和折射界面的尺寸远大于光的波长时才成立;3.几何光学三定律在任何情况下总成立;§3、惠更斯原理1.光是一种波动,因而无法沿直线方向传播,通过障碍物一定要绕到障碍物的几何阴影区;2.惠更斯原理也可以解释波动过程中的直线传播现象;3.波动的反射和折射无法用惠更斯原理来解释;§4、费马原理1)费马定理的含义,在三个几何光学定理证明中的应用。
判断选择练习题:1.费马原理认为光线总是沿一条光程最短的路径传播;2.费马原理认为光线总是沿一条时间最短的路径传播;3.费马原理认为光线总是沿一条时间为极值的路径传播;4.按照费马原理,光线总是沿一条光程最长的路径传播;5.费马原理要求光线总是沿一条光程为恒定值的路径传播;6.光的折射定律是光在两种不同介质中的传播现象,因而不满足费马原理。
§5、光度学基本概念1)辐射通量与光通量的含义,从辐射通量计算光通量,视见函数的计算。
2)计算一定亮度面光源产生的光通量。
3)发光强度单位坎德拉的定义。
判断选择练习题:1.人眼存在适亮性和适暗性两种视见函数;2.明亮环境和黑暗环境的视见函数是一样的;3.昏暗环境中,视见函数的极大值朝短波(蓝色)方向移动;4.明亮环境中,视见函数的极大值朝长波(绿色)方向移动;5.1W的辐射通量在人眼产生1W的光通量;6.存在辐射通量的物体必定可以引起人眼的视觉;7.在可见光谱范围内,相同的辐射通量,眼睛对每个波长的亮度感觉都一样;8.在可见光谱范围内,相同的辐射通量,眼睛对波长为550nm光辐射的亮度感觉最强;9.理想漫射体的亮度与观察方向无关;10.不同波长、相同辐射通量的光辐射在人眼引起的亮度感觉可能一样;填空计算练习题:计算结果要给出单位和正负1、波长为400nm、500nm、600nm、700nm的复合光照射到人眼中,已知这些波长的视见函数值分别为0.004、0.323、0.631、0.004,若这些波长的辐射通量分别为1W、2W、3W、4W,则这些光在人眼中产生的光通量等于-------------。
光学信息技术原理及技术陈家壁第二版课后习题答案
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g comb = 系统的传递函数⎪⎭⎫⎝⎛bfΛ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f sinc sinc 1,,y x,f ∴,,,,y x,f ====bxa x ab bf af rect y x f bf af rect y x f Wf L f rect y x f y x yx yx F F F F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学教程全书习题及参考答案
L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
1 ,y 方 2Bx
向的格点距为
1 。 2B y
由此可见,Whittaker-Shannon 二维抽样定理并不是唯一的抽样定理,只要改变这两个 条件中的任何一个,就可以导出别的二维抽样定理。例如,用一个传递函数为
H ( ρ ) = circ( ) 的滤波器来滤波,可导出新的二维抽样定理,其公式描述为: B
2
2
⎞ ⎡ jk 2 2 ⎟ exp ⎢− 2 f x + y ⎟ ⎣ ⎠
(
x
⎛ x +y 2 P0 exp⎜ 2 ⎜ − w2 πw ⎝
2
2
⎡ jk ⎛ 1 1 ⎞ 2 ⎤ ⎞ ⎛ jk 2 ⎞ ⎜ ⎟ ⎟ ⎜ − + exp x exp ⎢ ⎥ ⎜− 2 f y ⎟ ⎟ ⎟ ⎜f f ⎟ 2 ⎝ ⎠ ⎠ x ⎠ ⎝ ⎣ ⎦
g ( x, y ) =
ρ
π
2 n = −∞ m = −∞
∑ ∑ g ( 2B , 2B ) ×
∞
∞
n
m
J 1 [2πB ( x −
n 2 m 2 ) + (y − ) ] 2B 2B n 2 m 2 2πB ( x − ) + (y − ) 2B 2B
式中 B 为空间函数 g ( x, y ) 的频谱以极半径的形式描述的频率带限宽。 公式推导中用到的博里叶变换关系为:
信息光学习题答案
信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
光学信息技术原理及应用课后答案
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛bf Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
《光学信息处理》习题解答
《光学信息技术原理及应用》习题解答
第一章
1.1 已知线性不变系统的输入为
二维线性系统分析
g ( x) = comb( x)
系统的传递函数为三角形函数 Λ ( 输出函数及其频谱的图形。
f ) 。若取(1) b=0.5; (2) b=1.5,求系统的输出 g ' ( x ) ,并画出 b
故 f ( x, y ) ∗ h( x, y ) = f ( x, y ) ,即 (2) 如果 a >
1 x y sinc( )sinc( ) * f ( x, y ) = f ( x, y ) 。 ab a b
1 1 ,因 f ( x, y ) 是限带函数,在频域内, F ( f x , f y ) 在长、宽分别为 L 、W 的矩 ,b > L W
所以, G ' ( f x ) =
n = −∞
∑δ ( f
+∞
x
) ,等式两边取傅立叶变换,
g ' ( x ) = F −1 [δ ( f x )] = 1 。
g ' ( x ) 的函数图形和频谱图如下:
图 1-1
图 1-2
第 1 页 共 61 页
《光学信息技术原理及应用》习题解答
(2) b = 1.5 , G ( f x ) =
fx ) ,在 f x 方向,滤波器仅使 f x < 3.5 和 f x > −3.5 的频 7
其中后两项以 4 为中心, H ( f x , f y ) = rect (
率分量通过,又 sinc[75( f x − 4)] 和 sinc[75( f x + 4)] 宽度很窄,可以认为完全不能通过滤波器。于是
光学第二三章部分答案
2-1 在杨氏实验中,用波长为632。
8nm 的氦氖激光束垂直照射到间距为1.00mm 的两个小孔上,小孔至屏幕的垂直距离为100cm. 试求在下列两种情况下屏幕上干涉条纹的间距: (1)整个装置放在空气中;(2)整个装置放在n=1。
33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()sin xn r r nd nd Dδθ=-==所以相邻干涉条纹的间距为D x d nλ∆=⋅(1) 在空气中时,n =1。
于是条纹间距为10431.0632810 6.3210(m)1.010D x d λ---∆==⨯⨯=⨯⨯ (2) 在水中时,n =1。
33.条纹间距为10431.0632810 4.7510(m)1.010 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯2-2 在杨氏干涉装置中,双缝至屏幕的垂直距离为2.00m 。
测得第10级干涉亮纹至中央亮纹之间的距离为 3.44cm ,双缝间距为0.342mm, 试求光源的单色光波长。
解:在杨氏干涉装置中,两束相干光的光程差为:sin xd d D δθ==根据出现亮条纹的条件0λδk ±=,对第10级亮条纹,k 取10,于是有:010λ=Dxd带入数据得:0231021044.310342.0λ=⨯⨯⨯--由此解出:nm 24.5880=λ2-4因为:λθj Dxd d ==sin 所以:λ∆=∆j D xd)(102.24m djD x -⨯=∆=∆λ2-5 用很薄的云母片(n =1.58)覆盖在双缝干涉实验装置的一条缝上,观察到干涉条纹移动了9个条纹的距离,光源的波长为550.0 nm ,试求该云母片的厚度。
解:设云母片厚度为h ,覆盖在双缝中的1r 光路上,此时两束相干光的光程差为:21()(1)xr r h nh dn h k Dδλ''=--+=--= 当没有覆盖云母片,两束相干光的光程差为:21xr r d k Dδλ=-==因为条纹移动了9个,则:9k k '-=由①、②两式得:(1)9n h λ-=由此可得云母片的厚度为:9699550.0108.5310(m)1 1.581h n λ--⨯⨯===⨯--2-13nm 8.6420=λ2-14 将两块平板玻璃叠合在一起,一端互相接触。
光学-第三章习题
方法2、 用人眼的分辨率极限线度来除以实际线度,也可 以得到放大率。但要注意人眼分辩极限0.006mm,是 视网膜上的像距离,应该折算成对明视距离上物体的 分辩极限线度。 这个线度大约0.1mm左右(250tg60″=0.073)。
≈ 0.5′′
7、当使用望远镜观察时,感觉目标和我们的距离缩短了, 这是为什么?
望远系统的特点:
1、望远系统的垂轴放大率、轴向放大率都与共轭面的位 置无关,入射光线可以看作是从一定高度的任意物平面上 发出,也就是与物像的远近无关。 2、视放大率与角放大率相等,感觉目标与我们的距离近 了,也就是视角被放大了 问题1、望远镜将物体放大了,大的物体感觉近。 问题2、望远镜将物体成像在物镜的焦平面上,我们看 到的是前移了的像。
Г正负对系统影响,如果是正的, 物镜为负透镜,像距为负?目镜 受物镜阻挡。
′ 4 f目l 4 × 25 × − 100 ( ) ′ = =91mm ∴ 将此式代入上式得:f 物= ′ l − 4 f目 − 100 − 4 × 25 即物镜的焦距是91mm。
讨论问题 高云峰
在显微放大时使 用
250 求目镜视放大率:Γ目= =10 ′ f目 求物镜放大率:β 物=Γ总 / Γ目= − 0.4 x′ l′ 由放大率公式β= − 或者 ′ f物 l 利用高斯物像式(或牛顿物像式) 1 1 1 代入l = −1, − = ′ l′ l f物 ′ 得f 物=29mm
这也是显微镜用 的放大率公式
9、某人带着250度的近视眼镜,此人的远点距 离等于多少?眼镜的焦距等于多少?
解:由题意知 250 度的近视眼视度 SD = − 2 .5 1 由 SD = 得: l ′ = − 0 .4 m l′ 即远点距离为眼前 0 .4 m 处。 注意视度 为负值 1 1 1 由透镜的成像公式 − = l′ l f′ Q l ′ = − 0 .4 , l = ∞ ∴ f ′ = − 0 .4 m 眼镜焦距等于远点距离 即眼镜的焦距为 − 400 mm
信息光学智慧树知到课后章节答案2023年下北京工业大学
信息光学智慧树知到课后章节答案2023年下北京工业大学北京工业大学绪论单元测试1.傅里叶光学是专门研究二维光信息的科学,是光学与通信理论的结合,是当代信息科学的一部分。
这一说法是否正确?A:错误 B:正确答案:正确第一章测试1.可用来描述点光源复振幅分布的基元函数是()。
A:脉冲函数(δ函数) B:三角形函数 C:矩形函数 D:圆柱函数答案:脉冲函数(δ函数)2.用来描述激光器出射光斑光场复振幅分布的基元函数是()。
A:三角形函数 B:矩形函数 C:高斯函数答案:高斯函数3.下列关于互相关与卷积运算关系的表达式正确的是()。
A:★B:★C:★D:★答案:★4.互相关是衡量两个信号之间相似度。
两个完全不同的、毫无关系的信号,对所有的位置,它们互相关的结果应该为()。
A:1 B:无穷大 C:0答案:05.函数的傅里叶变换为()。
A:0 B:1 C: D:答案:1第二章测试1.线性空间不变系统的输入与输出之间的关系可以通过()运算可以表示。
A:输入与脉冲响应相关 B:输入与脉冲响应乘积 C:输入与脉冲响应卷积答案:输入与脉冲响应卷积2.在傅里叶光学中,把光的传播、成像、信息处理等都以系统是()去分析各种光学问题的。
A:非线性系统 B:线性系统 C:其他系统答案:线性系统3.一个空间脉冲在输入平面位移,线性系统的响应函数形式不变,只产生相应的位移,这样的系统称为()。
A:空间不变系统或位移不变系统 B:其它系统 C:时不变系统答案:空间不变系统或位移不变系统4.对于线性不变系统,系统的输出频谱是输入函数频谱与系统()的乘积。
A:本征函数 B:脉冲响应 C:传递函数答案:传递函数5.根据抽样定理,对连续函数进行抽样时,在x、y方向抽样点最大允许间隔、分别表示该函数在频域中的最小矩形在和方向上的宽度。
)A: B:C:第三章测试1. 基尔霍夫衍射积分公式从理论上证明了光的传播现象能看作( )系统。
A:非线性系统 B:线性系统 C:线性空间不变系统 答案:线性空间不变系统2.圆对称函数的傅里叶变换式本身也是圆对称的,它可通过把空间坐标转换到极坐标系中计算求出,我们称这种变换的特殊形式为()。
信息光学课后习题答案
信息光学课后习题答案信息光学是一门研究光在信息处理和传输中的应用的学科,课后习题是帮助学生巩固课堂知识的重要手段。
以下是一些信息光学课后习题的参考答案。
习题一:光的干涉现象1. 描述杨氏双缝干涉实验的基本原理。
答:杨氏双缝干涉实验是利用两个相干光源产生的光波在空间中相遇时,由于相位差不同而相互叠加,形成明暗相间的干涉条纹。
当两束光波的相位差为整数倍的波长时,它们相互加强,形成亮条纹;当相位差为半整数倍波长时,它们相互抵消,形成暗条纹。
2. 计算双缝干涉的条纹间距。
答:设双缝间距为d,观察屏与双缝的距离为L,光波长为λ。
根据干涉条纹的间距公式:\[ \Delta x = \frac{\lambda L}{d} \],可以计算出条纹间距。
习题二:光的衍射现象1. 解释夫琅禾费衍射和菲涅尔衍射的区别。
答:夫琅禾费衍射适用于远场条件,即观察点距离衍射屏很远,可以忽略衍射波的弯曲。
而菲涅尔衍射适用于近场条件,考虑了衍射波的弯曲效应。
2. 描述单缝衍射的光强分布特点。
答:单缝衍射的光强分布呈现中央亮条纹最宽最亮,两侧条纹逐渐变窄变暗,且条纹间距随着角度的增大而增大。
习题三:光的偏振现象1. 什么是偏振光,它有哪些应用?答:偏振光是指光波振动方向被限制在特定平面内的光。
偏振光的应用包括偏振太阳镜减少眩光,液晶显示技术,以及光学测量和成像技术等。
2. 解释马吕斯定律。
答:马吕斯定律描述了偏振光通过偏振器时,透射光强与入射光强的关系。
根据马吕斯定律,透射光强I与入射光强I0的关系为:\[ I = I_0 \cos^2(\theta) \],其中θ是偏振器的偏振方向与光波振动方向之间的夹角。
习题四:光纤通信1. 解释全内反射原理。
答:全内反射是指当光从折射率高的介质进入折射率低的介质时,如果入射角大于临界角,光将不会穿透界面,而是完全反射回高折射率介质内部。
这是光纤通信中光信号能够长距离传输的关键原理。
2. 描述单模光纤和多模光纤的区别。
高等光学教程-第3章-参考答案
高等光学教程--第三章参考答案第三章光学薄膜的基本知识3.1 证明在TM 波入射的情况下单层膜的特征矩阵为=22sin cos sin cos j q jq ββββ⎛⎫- ⎪⎪⎪-⎝⎭M式中=2q 220cos /θμεn,其它参数及图示参考§3.1节中图3-2。
图p3-1解答: 模仿教材§3-1中推导TE 波入射情况下求特征矩阵所用的方法。
在界面I 处: 2II 2I 1I 1I I cos cos cos cos θθθθrt r i E E E E E '-=-= (p3.1-1) II I I I I rt r i H H H H H '+=+= (p3.1-2) 由非磁性介质中E 和的关系式H E s H ⨯=n 0με (p3.1-2)式化为 )()(II I 20I I 100I rt r i E E n E E n H '+=-=μεμε (p3.1-3) 在界面II 处: 3II 2II 2II II cos cos cos θθθt r i E E E E =-= (p3.1-4)II II II II t r i H H H H =+= (p3.1-5)由(p3.1-3)式,(p3.1-5)式化为II 30II II 200II )(t r i E n E E n H μεμε=+=(p3.1-6) 两个界面上的电矢量有关系式II tI II II j i j r r E E eE E eββ-⎧=⎪⎨'=⎪⎩ (p3.1-7)(p3.1-8)由(p3.1-7)和(p3.1-8)两式,(p3.1-4)、(p3.1-6)两式化为II tI 2I 2II2tI I cos cos (p3.1-9)(p3.1-10)()j j r j j r E E e E e H E e E e ββββθθ--'⎧=-⎪⎨'=+⎪⎩由(p3.1-9)和(p3.1-10)两式解出tI 2II 2II cos E E θ⎫=⎪⎪⎭H + (p3.1-11) 和 βθμεμεθj re n E n H E --='220II 20II 2II cos 2cos (p3.1-12)将(p3.1-11)、(p3.1-12)式代入(p3.1-1)式,并令有 II 2II 1sin cos H q j E E ββ-=(p3.1-13) 22q =用同样的方法得到II II 2I cos sin H E jq H ββ+-= (p3.1-14)由(p3.1-13)和(p3.1-14)式⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡II II 22I I cos sin sin cos H E jq q jH E ββββ ⎥⎥⎦⎤⎢⎢⎣⎡--=ββββcos sin sin cos 22I jq q j M∴式中 2202cos θμεn q =3.2 如图p3-2所示,有一单层介质膜,入射光由折射率为的介质经过界面I 、单层膜及界面II 后进入折射率为 的衬底,入射光在界面I 和界面II 一次反射的振幅反射率分别为和,一次透射的振幅透射率分别为和。
光学信息技术第三章习题
第三章 习题解答3.1 参看图3。
5,在推导相干成像系统点扩散函数(3。
35)式时,对于积分号前的相位因子⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+≈⎥⎦⎤⎢⎣⎡+2220202002exp )(2exp M y x d k j y x d k j i i 试问(1)物平面上半径多大时,相位因子⎥⎦⎤⎢⎣⎡+)(2exp 20200y x d k j相对于它在原点之值正好改变π弧度?(2)设光瞳函数是一个半径为a 的圆,那么在物平面上相应h 的第一个零点的半径是多少?(3)由这些结果,设观察是在透镜光轴附近进行,那么a ,λ和d o 之间存在什么关系时可以弃去相位因子⎥⎦⎤⎢⎣⎡+)(2exp 20200y x d k j解:(1)由于原点的相位为零,于是与原点位相位差为π的条件是22200000()22kr k x y d d π+==,0r =(2)根据(3。
1.5)式,相干成像系统的点扩散函数是透镜光瞳函数的夫琅禾费衍射图样,其中心位于理想像点00(,)x y2200002012(,;,)(,)exp [()()]i i i i ii h x y x y P x y j x x y y dxdy d d d πλλ∞-∞⎧⎫=--+-⎨⎬⎩⎭⎰⎰ 12200(2)11i iaJ a r circ d d a d d πρλλρ⎧⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭B式中r =,而2200)()i x y y d d ρλ--==+ (1) 在点扩散函数的第一个零点处,1(2)0J a πρ=,此时应有2 3.83a πρ=,即 00.61aρ=(2) 将(2)式代入(1)式,并注意观察点在原点(0)i i x y ==,于是得 000.61d r aλ= (3)(3)根据线性系统理论,像面上原点处的场分布,必须是物面上所有点在像面上的点扩散函数对于原点的贡献00(,;0,0)h x y 。
按照上面的分析,如果略去h 第一个零点以外的影响,即只考虑h 的中央亮斑对原点的贡献,那么这个贡献仅仅来自于物平面原点附近000.61/r d a λ≤范围内的小区域。
光学教程第3章_参考答案
3.1 证明反射定律符合费马原理。
证明:设两个均匀介质的分界面是平面,它们的折射率为n 1和n 2。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,'OO 是它们的交线,则实际光线在界面上的反射点C 就可由费马原理来确定,如下图所示。
(1)反证法:如果有一点'C 位于线外,则对应于'C ,必可在'OO 线上找到它的垂足''C .由于''AC 'AC >,''BC 'BC >,故光线B AC'总是大于光程B ''AC 而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。
(2)在图中建立坐XOY 坐标系,则指定点A,B 的坐标分别为(x1,y1)和(x2,y2),未知点C 的坐标为(x ,0)。
C 点是在'A 、'B 之间的,光程必小于C 点在''B A 以外的相应光程,即21v x x <<,于是光程ACB 为y x x n y x x n CB n AC n ACB n 2211221221111)()(+-++-=+=根据费马原理,它应取极小值,即0)(1=n dxd0)sin (sin )()()()()()(21112222211212111=-='-'=+---+--=i i n B C C A n y x x x x n y x x x x n ACB n dx d 所以当11'i i =,取的是极值,符合费马原理。
3.2 根据费马原理可以导出在近轴条件下,从物点发出并会聚倒像点的所有光线的光程都相等。
由此导出薄透镜的物象公式。
解:略3.3 眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm 。
光学第三章习题解答
f r
f 2r, n 1 代入上式得
n
f n
2rn
或
2n 2
n n n n
s s
f r 2r r
3.11 有一折射率为1.5,半径为4cm的玻璃球, 物体在距球表面6cm处,求:(1)物所成的像到球 心之间的距离;(2)像的横向放大率。
解:将r 50 cm ,s 50 cm ,n 1, n 1.33 代入 球面折射的物象公式 得
n n n n s s r
s
n
n n
n
1 1 1.33
1.33
50cm
r s 50 50
(鱼的表观位置仍在原处)
由横向放大率公式得
n s 1.33 (50) 1.33
i10 arcsin(1.6 sin 2119 arcsin(0.5816) 3534
3.5 下图所示的是一种恒偏向棱镜,它相当于一
个30°- 60°- 90°棱镜和一个45°- 45°- 90°
棱镜按图示方式组合在一起。白光沿i方向入射,旋
转棱镜改变θ1,从而使任意一种波长的光可以依次
重合,故眼睛距玻璃片的距离x为
s s 24 cm
2
3.10 欲使由无穷远发出的近轴光线通过透明 球体并成像在右半球面的顶点处,问此透明体的 折射率为多少?
解: 由球面折射成象可知
当P 时 象方焦距为
n n´
f n n r n n
f´
n f n
s1( 21s)
1 f
1s 6s
1160154 5s303115.5(c11m5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章习题解答3.1参看图3.5,在推导相干成像系统点扩散函数( 3.35 )式时,对于积分号前的相位因子相对于它在原点之值正好改变n 弧度?设光瞳函数是一个半径为 a 的圆,那么在物平面上相应 h 的第一个零点的半径是多少?时可以弃去相位因子由于原点的相位为零,于是与原点位相位差为 的条件是式中rx 2 y 2,而试问exp j#(x ; y o )2d o2 2 x y iM 2(1) 物平面上半径多大时,相位因子expj£(x 0 y 0)d o(2) (3) 由这些结果,设观察是在透镜光轴附近进行,那么a ,入和d o 之间存在什么关系expk 2 2(x 。
y 。
)2d o (2) y 2)賦 2d o,r o ... d o根据(3.1.5 ) 式,相干成像系统的点扩散函数是透镜光瞳函数的夫琅禾费衍射图样,其中心位于理想像点(%, %)h(x °,y °;x, y)1 2d °d i2P (x,y)exp jp (xi %)2 (yi %)2]dxdy r circ 一aJ_aJ,2 a ) 2d o d i(3)根据线性系统理论,像面上原点处的场分布,必须是物面上所有点在像面上的点 扩散函数对于原点的贡献 h(x ),y 0;0,0) o 按照上面的分析,如果略去 h 第一个零点以外的影响,即只考虑h 的中央亮斑对原点的贡献, 那么这个贡献仅仅来自于物平面原点附近r 。
0.61 d 。
/ a 范围内的小区域。
当这个小区域内各点的相位因子2exp[jkr ° /2d °]变化不大,就可认为(3.1.3 )式的近似成立,而将它弃去,假设小区域内相位变化不大于几分之一弧度(例如/16 )就满足以上要求,则 kr ;/2d 0162 r °d °/16,也即a 2.44. d 0(4)例如 600nm , d ° 600nm ,则光瞳半径a 1.46mm ,显然这一条件是极易满足 的。
3.2 一个余弦型振幅光栅,复振幅透过率为放在图3.5所示的成像系统的物面上,用单色平面波倾斜照明,平面波的传播方向在 X 0Z 平面内,与z 轴夹角为Bo 透镜焦距为 f ,孔径为D O(1) 求物体透射光场的频谱;(2) 使像平面出现条纹的最大B 角等于多少?求此时像面强度分布;(3) 若B 采用上述极大值, 使像面上出现条纹的最大光栅频率是多少?与B =0时的截 止频率比较,结论如何?(% y o )2(d i在点扩散函数的第一个零点处,J ,(2 a ) 0 ,此时应有2 a 3.83,即0.61(2)将(2)式代入(1 )式,并注意观察点在原点(X i y 0),于是得r o0.61 d oa(3)t(X 0,y °)cos 2 f °X 02解:(1)斜入射的单色平面波在物平面上产生的场为Aexp (jkx 0sin ),为确定起见设0,则物平面上的透射光场为U o (x o , y o ) Aexp( jkx o sin )t(x °, y °)A2 exp j2sin X o12exp j2sin 1sinx o (f o) 2exp j2 X o (f o)其频谱为A(, )FUo (x o ,y o )A sin1 sin1 sinfofo222由此可见,相对于垂直入射照明,物频谱沿轴整体平移了 sin /距离。
(2)欲使像面有强度变化,至少要有两个频谱分量通过系统,系统的截止频率sinD D ‘ sinDf o4 f4 f4 f由此得D Df osin(1)4f4f角的最大值为Dmaxarcsin4f(2),于是要求此时像面上的复振幅分布和强度分布为D/45(x, yJAexp j2 x-D-2 4 f [1 1 ?exp( j2 xf 。
)]l i (x, y) A 2 5cos2 f o x一倍,也就提高了系统的极限分辨率,但系统的通带宽度不变。
3.3光学传递函数在f x = f y =0处都等于1,这是为什么?光学传递函数的值可能大于 1吗?如果光学系统真的实现了点物成点像,这时的光学传递函数怎样?(1)在(3.4.5 )式中,令h(s) Ms)hXx’yJdxdy i为归一化强度点扩散函数,因此(3.4.5 )式可写成H (,)h(X j ,yJexp[ j2 ( x ,w )]dxdy而H (0,0) 1h(X i ,yJdNdy j即不考虑系统光能损失时,认定物面上单位强度点源的总光通量将全部弥漫在像面上, 这便是归一化点扩散函数的意义(2) 不能大于1(3) 对于理想成像,归一化点扩散函数是函数,其频谱为常数 1,即系统对任何频D 04fD 4fOmax0时,系统的截止频率为D/4f ,因此光栅的最大频率Omax(4)比较(3)和(4)式可知,当采用max 倾角的平面波照明时系统的截止频率提高了率的传递都是无损的。
3.4当非相干成像系统的点扩散函数 h i (X i , yj 成点对称时,则其光学传递函数是实函数。
解:由于h i (X i ,y i )是实函数并且是中心对称的,即有h i (X i , y ) h *(x ,, yj ,h , (X i , y i ) h |( X i , y i ),应用光学传递函数的定义式(3.4.5 )易于证明H (,) H * (,),即H (,)为实函数。
3.5 非相干成像系统的出瞳是由大量随机分布的小圆孔组成。
小圆孔的直径都为 2a ,出瞳到像面的距离为 d i ,光波长为入,这种系统可用来实现非相干低通滤波。
系统的截止频 率近似为多大?解:用公式(3.4.15 )来分析。
首先,由于出瞳上的小圆孔是随机排列的,因此无论沿 哪个方向移动出瞳计算重叠面积,其结果都一样,即系统的截止频率在任何方向上均相同。
其次,作为近似估计,只考虑每个小孔自身的重叠情况,而不计及和其它小孔的重叠,这时N 个小孔的重叠面积除以 N 个小孔的总面积,其结果与单个小孔的重叠情况是一样的,即截 止频率约为2a/ d i ,由于2a 很小,所以系统实现了低通滤波。
(X i , y i )d o图3.6题设i 是透过率函数为t(X o , y o )的物平面, 2是与i 共轭的像平面,即有£ 丄=1d i f3.6 试用场的观点证明在物的共轭面上得到物体的像。
解: 如图t(x ), y 。
)(x, y)d i式中f 为透镜的焦距,设透镜无像差,成像过程分两步进行: (1) 射到物面上的平面波在物体上发生衍射,结果形成入射到透镜上的光场 U 1;(2)这个入射到透镜上的光场经透镜作位相变换后, 在透镜的后表面上形成衍射场 U ],这个场传到像面上形成物体的像。
为了计算光场,我们用菲涅耳近似,透镜前表面的场为 2 2exp(jk xy )2 U i --0— t(x °,y o )exp(jk “ j 入d - 2d 。
2 y。
)exp( jk xx 0 yyo )dx o dy o d o 这里假定t (x o ,y 。
)只在物体孔径之内不为零,所以积分限变为 ,此积分可以看成 是函数 t(x 0, y 0)exp(jk 2 2 X 。
y 。
2d o)的傅立叶变换,记为 F (f x ,f y ),其中 x X d o y d o 在紧靠透镜后表面处 2 , exp( jk- ------ :U i' ------------------------------ 2dj 入d 。
2厶) !— F(f x , f y )exp(jk 2 X 2f2 y -) 这个被透镜孔径所限制的场, 在孔径上发生衍射, 在用菲涅耳近似,便可得到像面 2上的光场 2 x - exp( jk— 2d - U -(x -,y -) - j 入d i 2 x i exp( jk — 2宀2d -j 入d -2 乩)x U | exp(jk - 2 2 y xx i 药 )exp( jk -严)dxdy d - 2 2 exp( jk- —) 2d 0 F(f x , f y ) ——exp( j 入d 。
2 2 2 y x y )exp( jk)2d -exp( jk^也)dxdyd -2exp( jk X L _______ 2d iX 2d o d i再考虑到X o 和X -之间的关系得到d.即得到像平面上倒立的,放大 L倍的像。
2 2X - y i exp( jk --)________ 2d -入2d o d -2 2x y 1 11xx i yy iF(f x , f y )exp[ jk()]exp( jk -- 2d o d i fd i)dxdy 1由题设知,—d o1 d i1 -0并且假定透镜孔径外的场等于零,且忽略透镜孔径的限制,所以将上式中的积分限写成无穷,于是上述积分为 U i (X i , y i ) 2 2x - y -exp( jk - -) 2d - 入2d o d - F( f x , f y )exp(..XX i yy i比―7-)dxdyX i 注意一 d i X o d odx入d o,df y宝,于是得入d oU i (x , y i ) 2exp(jk ' 2d 1d - /d oF (f x , f y )exp(j2n (xf x yf y ))df x df y2 X i2 2d--)t(Xo ,yo)eXp(jk2 2X 。
y 。
2d o齐xp(jk2 2 X iy - 2d -)exp( jk22x oy °2d o)t(x o , y o )yf x , f y )exp( 入d ox iU -d o d -t ( xdd -y -3.7试写出平移模糊系统,大气扰动系统的传递函数。
解:在照相系统的曝光期间,因线性平移使点变成小线段而造成图像模糊,这种系统称为平移模糊系统,它的线扩散函数为一矩形函数对于大气扰动系统,设目标物为一细线,若没有大气扰动,则理想成像为一条细线。
由于大气扰动,使在爆光期间内细线的像作随机晃动,按照概率理论,可以把晃动的线像用高斯函数描述。
设晃动摆幅的均方根值为a,细线的线扩散函数为1 x2L(x) ---------- exp( 2)v'2 n a 2a对上式作傅立叶变换,就得到大气扰动系统的传递函数2 2 2H(f x) exp( 2n a f x)3.8有一光楔(即薄楔形棱镜),其折射率为n,顶角a很小,当一束傍轴平行光入射其上时,出射光仍为平行光,只是光束方向向底边偏转了一角度( n-1)a,试根据这一事实,导出光束的位相变换函数t。