求曲线轨迹方程的五种方法
轨迹方程的五种求法
轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,则点P 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x =·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.5b ==∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系. 设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta=+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD = ,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
高中数学解题方法-----求轨迹方程的常用方法
练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
求曲线的轨迹方程的方法
成都市新都香城中学数学组
李发林
2014年2月25日星期二
几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性 质而得出)的动点所满足的几何条件列 出等式,再用坐标代替这等式,化简 得曲线的方程,这种方法叫直接法.
例1:已知一曲线是与两个定 点O(0,0)、A(3,0)距离的比为 1/2 的点的轨迹,求此曲线 的方程。教材P.86例5
3、过点P(2,4)作两条互 相垂直的直线l1,l2, l1交x轴 于A点,l2交y轴于点B,求 线段AB的中点M的轨迹方 程。
4、已知方程
x y 2(m 3) x 2(1 4m ) y 16m 9 0
2 2 2 4
表示一个圆。求圆心的轨迹方程。
结论:到两个定点A、B的距离之比等于常 数的点的轨迹:当=1时,轨迹是线段AB的 垂直平分线;当 1时,轨迹是圆。
练习:设两点A、B的距离 为8,求到A、B两点距离 的平方和是50的动点的轨 迹方程。
2.相关点法
若动点P(x,y)随已知曲线上的点 Q(x0,y0)的变动而变动,且x0、y0可 用x、y表示,则将Q点坐标表达式代 入已知曲线方程,即得点P的轨迹方 程.这种方法称为相关点法(或代换 法).
Y
p
o
A
X
变式2:如图,已知点P是圆x2+ y2=16上的一个动点,点A是x轴上的 定点,坐标为(12,0).若D点是AOP 的平分线与PA的交点,当点P在圆上 运动时,求点D的轨迹方程。Y Nhomakorabeap
o
A
X
练习:三角形ABC的两个顶点A, B的坐标分别是A(0,0),B (6,0)顶点C在曲线y=x2+3上 运动,求三角形ABC的重心G的 轨迹方程。
高中数学选择性必修第一册 专题研究二 求曲线的轨迹方程
探究 2 (1)相关点法求曲线方程时一般有两个动点,一个是主动的,另一个 是被动的.
(2)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方 程:
①某个动点 P 在已知方程的曲线上移动; ②另一个动点 M 随 P 的变化而变化; ③在变化过程中 P 和 M 满足一定的规律.
谢
谢
观
看
2 0 22
专题研究二 求曲线的轨迹方程
专题讲解
例 1 设圆 C:(x-1)2+y2=1,过原点 O 作圆的任意弦,求所作弦的中点的 轨迹方程.
【解析】 方法一(直接法):设 OQ 为过 O 的一条弦,P(x,y)为其中点,则 CP⊥OP,OC 中点为 M12,0,
则|MP|=12|OC|=12,得方程x-122+y2=14,考虑轨迹的范围知 0<x≤1. 方法二(定义法):∵∠OPC=90°, ∴动点 P 在以 M12,0为圆心,OC 为直径的圆上,|OC|=1,再利用圆的方 程得解.
探究 1 本题中的四种方法是求轨迹方程的常用方法,我们已在本章的前几 节中做过较多的讨论,故解析时只做扼要总结即可.
例 2 设动直线 l 垂直于 x 轴,且与椭圆 x2+2y2=4 交于 A,B 两点,P 是 l 上满足P→A·P→B=1 的点,求点 P 的轨迹方程.
【解析】 设 P(x,y),A,B y2=t2,1<t<3 与椭圆 C2:x92+y2 =1 相交于 A,B,C,D 四点,点 A1,A2 分别为 C2 的左、右 顶点.求直线 AA1 与直线 A2B 的交点 M 的轨迹方程.
【解析】 由椭圆 C2:x92+y2=1,知 A1(-3,0),A2(3,0). 设点 A 的坐标为(x0,y0),由圆和椭圆的对称性,得点 B 的坐标为(x0,-y0). 设点 M 的坐标为(x,y),
轨迹方程的求法
轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。
◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。
◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
求轨迹方程的常用方法
轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。
曲线的轨迹方程的求法
曲线的轨迹方程的求法求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,不深刻,发现不了问题的实质,很难解决此题技巧与方法 的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a 由OM ⊥AB ,得m =-yx由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p =所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒=故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p ,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得 M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上,又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外), ①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力 知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键 技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则 |PA |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线 解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆曲线轨迹方程1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x yC 14922=-y xD 14922=-x y3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值曲线轨迹方程参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A 2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=- 答案 )4(1316162222a x ay a x >=- 4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0 答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上, ∴b 2x 02-a2y 02=a 2b 2 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x m x y ++ ①A 2Q 的方程为 y =-)(11m x mx y -- ②①³②得 y 2=-)(2222121m x mx y -- ③又因点P 在双曲线上,故).(,12212221221221m x mn y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆 (ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222n m m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0) |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0 ∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC |=21|2|kak +在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
求曲线轨迹方程的方法
四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
求轨迹方程的常用方法及例题
求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。
隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。
极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。
通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。
下面是一个例题:
例题:求解椭圆的轨迹方程。
解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。
我们可以使用参数方程法来求解椭圆的轨迹方程。
假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。
取参数θ,定义点P在椭圆上的坐标为(x, y)。
那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。
通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。
进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。
以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。
根据具体的问题和曲线类型,选择合适的方法进行求解和推导。
轨迹方程的五种求法
轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
求曲线方程的常用方法
曲线的方程摘要:通过曲线方程常见题型的分析,归纳总结曲线的方程的解题巧,对于常见的一些问题,给出规律性的解答.关键词:曲线的方程 轨迹曲线的方程是高考中常出现的问题,要熟练掌握求曲线方程的基本步骤,能利用图像将题目中所给的条件转化为数学表达式. 下面介绍五种求解曲线方程的方法.求轨迹方程的常用方法有:直接法、定义法、待定系数法、转移法(或称代入法)、参数法.一、直接法建立适当的坐标系后,设动点为),(y x P ,根据几何条件直接寻求y x ,之间的关系,其一般步骤为:(1)建立坐标系(选取原点位置及坐标轴的方位);(2)设动点坐标为),(y x P ;(3)依据题意找出等量关系,列出方程;(4)化简方程,并讨论取值范围,说明轨迹曲线特征.【例1】已知两点)0,3(-A ,)0,3(B ,动点M 与A 、B 的连线的斜率之积是32,则点M 的轨迹方程为 .讲解:设点M 的坐标为),(y x ,点M 属于集合⎭⎬⎫⎩⎨⎧=⋅=32|MB MA k k M P . 由经过两点的直线的斜率公式,得3233=-⋅+x y x y ,化简,整理得)3(0183222±≠=--x y x . 此即为所求的轨迹方程.练习1:已知两定点)0,1(-A ,)0,2(B ,动点P 满足21||||=PB PA ,求P 点的轨迹方程. 答案:4)2(22=++y x .二、定义法如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的定义,建立动点的方程,化简整理即得轨迹方程.【例2】一动圆过定点)0,2(-A 且与定圆12)2(22=+-y x 相切. 求动圆圆心C 的轨迹M 的方程.解:设动圆与定圆的切点为T ,定圆的圆心为B ,由题意知动圆内切于定圆,则22||32||||||||||=>==+=+AB BT CT CB CB CA ,∴点C 的轨迹方程是以A 、B 为焦点的椭圆, 则322=a ,222=c . 3=∴a ,2=c . 12=∴b .∴动圆圆心C 的轨迹M 的方程为1322=+y x . 练习2:ABC ∆中,已知的方程)0,4(-A ,)0,4(B ,且C B A sin 21sin sin =-,则点C 的轨迹方程是( ) 1124.22=+y x A )0(1124.22<=-x y x B )0(1124.22<=+x y x C )0(14_12.22<=x y x D 答案:B .三、待定系数法当已知动点的轨迹方程是所学过的曲线,如:直线、圆、圆锥曲线等,则可先设出含有待定系数的方程,再根据动点满足的条件,确定待定系数,从而求得动点的轨迹方程,其基本思路是:先定性,再定型,最后定量.【例3】已知二次函数)(x f 同时满足条件:(1))1()1(x f x f -=+;(2))(x f 的最大值为15;(3)0)(=x f 的两根的立方和等于17,求)(x f 的解析式.解:由已知,可设)0(15)1()(2<+-=a x a x f ,即152)(2++-=a ax ax x f ,设方程01522=++-a ax ax 的两根分别为21,x x ,由韦达定理得221=+x x ,ax x 15121+=⋅.而aa x x x x x x x x 902151232)(3)(321213213231-=⎪⎭⎫ ⎝⎛+⨯⨯-=+-+=+, 17902=-∴a,6-=∴a . 9126)(2++-=∴x x x f .练习3:已知函数)(x f 是二次函数,不等式0)(<x f 的解集是)5,0(且)(x f 在区间]4,1[-上的最大值是12. 求)(x f 的解析式.答案:)(102)(2R x x x x f ∈-=.四、转移法(或称代入法)若已知动点),(1βαP 在曲线0),(:11=y x f C 上移动,动点),(y x P 依动点1P 而动,它满足关系:(1)⎩⎨⎧==),(),(βαβαy y x x 则关于βα,反解方程组(1)得 (2)⎩⎨⎧==),(),(y x h y x g βα 代入曲线方程0),(1=y x f ,即可得动点P 的轨迹方程0),(:=y x f C .【例4】已知直线134:=+y x l ,M 是直线l 上的一个动点,过点M 作x 轴和y 轴的垂线,垂足分别为A 、B ,求把有向线段AB 分成的比2=λ的动点P 的轨迹方程.解:设),(00y x M ,),(y x P ,则)0,(0x A ,),0(0y B ,点P 分有向线段AB 分成的比2=λ, ∴⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=++=.233,2120,2100000y y x x y y x x 又 )23,3(y x M 在直线134:=+y x l 上, ∴132343=+y x ,即0423=-+y x .练习4:求曲线x y 42=关于点)3,1(M 对称的曲线方程.答案:)2(4)6(2x y -=-.五、参数法当动点),(y x P 中坐标y x ,之间的关系直接找不出时,可设动点),(y x P 满足关于参数t 的方程组⎩⎨⎧==)()(t y y t x x (t 是参数),则由方程消去参数t ,即求得动点),(y x P 的普通方程:0),(=y x f .【例5】设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于A 、B 两点,O 是坐标原点,点P 满足)(21+=,点N 坐标为)21,21(,当l 绕点M 旋转时,求:动点P 的轨迹方程.解:线l 过点)1,0(M ,设其斜率为k ,则l 的方程为1+=kx y .设),(11y x A ,),(22y x B , 由⎪⎩⎪⎨⎧=++=14122y x kx y ,得:032)4(22=-++kx x k , 由韦达定理得:22142k k x x +-=+ ∴22148k y y +=+ 于是,)44,4()2,2()(21222121kk k y y x x OB OA OP ++-=++=+=. 设点P 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+-=2244,4k y k k x消去参数k 得0422=-+y y x .当斜率不存在时,A 、B 中点为坐标原点)0,0(,也满足上式,所以点P 的轨迹方程为0422=-+y y x .练习5:已知抛物线x y C 4:2=,O 为原点,动直线)1(:+=x k y l 与抛物线C 交于A 、B 两点,求满足+=的点M 的轨迹方程.答案:)2(842>+=x x y .参考文献:[1] 任志鸿《十年高考分类解析与应试策略》南方出版社2006年7月第2版[2] 曲一线《高中习题化知识清单数学》首都师范大学出版社2007年5月第3版[3] 曲一线《5年高考3年模拟》(2009B版)首都师范大学出版社2007年7月第1版[4] 贾鸿玉《高考绿色通道数学》中国致公出版社2007年3月第6版[5] 全日制普通高级中学教科书《数学》第二册(必修)人民教育出版2006年11月第2版。
常见轨迹方程的求法
动点轨迹方程的常见求法一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22by = 1,双曲线的方程为22mx -22n y = 1。
Θ2c = 213 , ∴c = 13 .Θa – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . Θ b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2αΘ3-x y = K PB = tg(π-2α) = - tg2α =αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
圆锥曲线中求轨迹方程的五种策略
圆锥曲线中求轨迹方程的五种策略
圆锥曲线是一种由球体部分曲面形成的曲线,在三维空间和立体几何中经常使用,它的外表形状完全以圆锥形或椎体形式呈现,具有很高的应用价值。
求轨迹方程是圆锥曲线中常见的问题,解决这个问题需要大家去深入研究并提出合理的策略。
首先,求轡迹方程的最简单方法是利用圆锥曲线的完整公式,即V=((x-
a)^2+(y-b)^2)/R^2=z,在该公式中,x和y分别是x和y的坐标,a和b是圆锥的圆心坐标,R是圆锥曲线的半径,z是圆锥轨道的高度。
通过这个公式,我们就可
以求出圆锥曲线的的轨迹方程。
其次,在求轨迹方程时,还可以采用图解法来进行求解。
首先,确定圆锥曲线
的参数,然后绘制出圆锥曲线的图形,最后在图形中找到轨迹直线,计算这条轨迹直线和圆锥曲线之间的关系,就可以确定出轨迹方程。
第三,利用牛顿迭代法来求解轨迹方程。
这一方法运用牛顿迭代算法,以求出
满足条件的圆锥曲线轨迹方程。
该策略涉及变成原理、微积分和数学递归的知识,因此比较复杂。
第四,对于相对简单的圆锥曲线,可以从无数平面线段进行拼接,求出轨迹方程。
拼接的原则是:点的坐标吸引轨迹直线,这样就得到了轨迹方程,因此也是一种有效的策略。
最后,如果圆锥曲线轨迹不是相对简单,可以利用圆锥参数方程,在xz平面
和yz平面做投影,对投影后的坐标进行直线拼接,得到轨迹方程。
总之,求解圆锥曲线的轨迹方程有五种常见的策略,分别是完全公式法、图解法、牛顿迭代法、无数平面线段拼接法以及圆锥参数方程法,这些策略各有特色,其中一些需要一定数学基础,一些则可以简单高效求解,大家可以根据实际情况来选择合适的方法。
求轨迹方程的常用方法
求轨迹方程的常用方法轨迹方程是描述物体运动轨迹的数学表达式。
常用的方法包括几何法、解析法和向量法。
一、几何法通过几何分析,可以利用直观的图形来确定轨迹方程。
1.1圆轨迹对于物体在平面上以一些固定点为中心做等速圆周运动的情况,其轨迹是一个圆。
圆轨迹可以通过半径和圆心坐标来表示。
1.2椭圆轨迹对于物体在空间中以一些固定点为焦点的椭圆轨迹,可以利用焦点坐标和半径长度来确定椭圆方程。
1.3抛物线轨迹物体在重力作用下自由落体的运动可以近似为一个抛物线运动。
其轨迹方程可以通过焦点坐标和准线方程来确定。
1.4双曲线轨迹一些情况下,物体运动的轨迹是一个双曲线。
双曲线轨迹可以通过焦点坐标和半轴长度来描述。
二、解析法解析法是通过分析物体在坐标系下的运动方程来确定轨迹方程。
2.1直角坐标系下的解析法在直角坐标系下,物体的运动可以由水平方向和垂直方向上的运动方程确定。
利用运动方程,可以消除时间因素,得到轨迹方程。
2.2极坐标系下的解析法在极坐标系下,物体的运动可以由径向运动方程和角度方程确定。
通过解析极坐标下的方程,可以得到轨迹方程。
2.3参数方程下的解析法在参数方程下,物体的运动可以由参数方程表示。
通过参数方程分别给出$x$和$y$坐标与参数$t$之间的关系,可以得到轨迹方程。
三、向量法向量法是通过运用向量的概念和运算来分析物体的运动轨迹。
3.1数量积表示轨迹方程通过设定一个合适的道路向量,可以用向量内积的形式表示运动方程,从而得到轨迹方程。
3.2向量积表示轨迹方程通过设定一个合适的平面向量,可以用向量叉积的形式表示运动方程,进而得到轨迹方程。
综上所述,求轨迹方程的常用方法包括几何法、解析法和向量法。
在实际应用中,根据具体问题的特点和要求选择合适的方法来求解轨迹方程。
求轨迹方程的几种常用方法
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。
2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。
解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。
评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。
求曲线轨迹方程
=
=
此即点 M 的轨迹方程.
2
+
,
2
消去
-,
k,得 y2=p(x-2p),
2 2
,
2
,
对点训练3过圆O:x2+y2=4外一点A(4,0),作圆的割线,求割线被圆截得的弦
BC的中点M的轨迹方程.
解:设点M(x,y),B(x1,y1),C(x2,y2),直线AB的方程为y=k(x-4),
求轨迹方程的常用方法
代入法
参数法
交轨法
点差法
一、定义法
如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、
抛物线)的定义,则可先设出轨迹方程,再根据已知条件,确定方程中的常数,
即可得到轨迹方程.
例1.已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C为动点,且满足sin A
A.圆
B.椭圆
C.双曲线
D.抛物线
答案:D
解析:=(-2-x,-y),=(3-x,-y),∴ ·=(-2-x)(3-x)+y2=x2-x-6+y2.
由条件,x2-x-6+y2=x2,整理得y2=x+6,此即点P的轨迹方程,
∴点P的轨迹为抛物线,故选D.
)
对点训练 2 动点 P(x,y)到两定点 A(-3,0)和 B(3,0)的距离的比等于 2 即
解:由题意,设 A
2
4
, ,B
2
4
, ,所以
4
4
kOA= ,kOB= ,
由 OA 垂直 OB 得 kOAkOB=-1,得 yAyB=-16p2,
圆锥曲线的轨迹方程的求法
圆锥曲线轨迹方程的求法知识归纳求轨迹方程的常用方法:⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(Xo 、Yo ),然后代入点P 的坐标(Xo 、Yo )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。
(用未知表示已知,带入已知求未知)⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
类型一 直接法求轨迹方程【例1】已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|MN ⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0 ,则动点P(x ,y)的轨迹方程为 。
【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。
【变式训练】1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.2.已知两点M(-1,0),N(1,0),点P 为坐标平面内的动点,且满足|MN ⃑⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0,则动点P 的轨迹方程为3.在平面直角坐标系xOy 中,点P(a ,b)为动点,F 1,F 2分别为椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点,已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.类型二 定义法求轨迹方程【例2】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C,求C的方程.【点评】定义法求轨迹方程1.概念:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.【变式训练】1. 在△ABC中,BC=4,△ABC的内切圆切BC于D点,且BD-CD=22,则顶点A的轨迹方程为______________.2.设定点F(1,0),动圆D过点F且与直线x=−1相切.则动圆圆心D的轨迹方程为3.如图所示:在圆C:(x+1)2+y2=16内有一点A(1,0),点Q为圆C上一动点,线段AQ的垂直平分线与直线CQ 的连线交于点M ,根据椭圆定义可得点M 的轨迹方程为x 24+y 23=1;利用类比推理思想:在圆C :(x +3)2+y 2=16外有一点A(3,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据双曲线定义可得点M 的轨迹方程为______.类型三 相关点法求轨迹方程【例3】 如图所示,抛物线E :y 2=2px(p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P(x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M. (1)求p 的值;(2)求动点M 的轨迹方程.【点评】相关点法的基本步骤(1)设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【变式训练】1.如图,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.2.已知三角形ABC 的顶点A (−3,0)、B (3,0),若顶点C 在抛物线y 2=6x 上移动,则三角形ABC 的重心的轨迹方程为______类型四 参数法求轨迹方程【例4】在平面直角坐标系xOy 中,已知两点M(1,-3),N(5,1),若点C 的坐标满足OC →=tOM →+(1-t)ON →(t ∈R),且点C 的轨迹与抛物线y 2=4x 相交于A ,B 两点. (1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P(m,0)(m≠0),使得过点P 任意作一条抛物线y 2=4x 的弦,并以该弦为直径的圆都经过原点?若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.【点评】利用参数法求轨迹方程:一是选择合适的参数(可以是单参数,也可以是双参数);二是建立参数方程后消掉参数,消参数的方法有代入消参法、加减消参法、平方消参法等.【变式训练】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右侧部分的交点为Q,点P在该直线上,且OP2-1,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.OQ=t t类型五 交轨法法求轨迹方程例5 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.【变式训练】抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。
轨迹方程的求法 (2)
轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程. 若曲线上的动点满足的条件是一些几何量的等量关系,则只需直接把这种关系“翻译”成关于动点的坐标y x 、的方程。
经化简所得同解的最简方程,即为所求轨迹方程。
其一般步骤为:建系——设点——列式——代换——化简——检验。
(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.可适当地选取中间变量t ,并用t 表示动点P 的坐标y x 、,从而得到动点轨迹的参数方程⎩⎨⎧==)()(t g y t f x ,消去参数t ,便可得到动点P 的轨迹普通方程。
其中应注意方程的等价性,即由t 的范围确定出y x 、范围。
(5)交轨法:通过求两个曲线的交点,得出交点的参数方程,消参后可得出普通方程。
也可以不解方程直组消参。
求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.若点M (x,y )满足|3|0x y -+=,则点M 的轨迹是( )1、C ;A.圆B.椭圆C.双曲线 D 抛物线.2点M 为抛物线2y x =上的一个动点,连结原点O 与动点M ,以OM 为边作一个正方形MNPO ,则动点P 的轨迹方程为( ) 2、C ;A.2y x =B. 2y x =-C. 2y x =±D. 2x y =±3.20=化简的结果是( )3、B ;A.22110036x y += B. 22110064x y += C.22136100x y += D. 22164100x y += 4一动圆M 与两定圆14)(x :221=++O y C 9)4-(:222=+O y x C 均外切,则动圆圆心M 的轨迹方程是________.)1(11522-≤=-x y x 解析:应用圆锥曲线的定义,注意只有一支. 变式:一动圆M 与两定圆14)-(x :221=+O y C 100)4(:222=++O y x C 分别外切和内切,则动圆圆心M 的轨迹方程是________.14574121x 22=+y5已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线6 .设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C 7. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________..解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a ,故方程为)4(1316162222a x a y a x >=-答案:)4(1316162222ax a y a x >=- 8 . 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 设P (x ,y ),依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=09 . 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)10 已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.解:建立坐标系如图所示,设|AB |=2a ,则A (-a ,0),B (a ,0).设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆.11 .双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程. .解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2.即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).12 .已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.13 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R.(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2| 又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)或者:a Q F OR ==121(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC14 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.15 设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=--⑥①³②,得y 12²y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得py x y y x x y y y y p 442111121--=--=+ 所以211214)(44y px y y p y y p--=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0 (y 1y 2=-4pa ,.x 1x 2=)所以y 1y 2=k pb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以kpk4=-22k b ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法三:设OA 的方程为,代入y 2=4px 得① ② ③ ④ ⑤则OB 的方程为,代入y 2=4px 得∴AB 的方程为,过定点,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法四:设M (x ,y ).(x ≠0),OA 的方程为,代入y 2=4px 得则OB 的方程为,代入y 2=4px 得由OM ⊥AB ,得M 既在以OA 为直径的圆:……①上,又在以OB 为直径的圆:……②上(O 点除外),①+②得.x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. [错解分析]:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.(此题可以让证明AB 过定点,)这是此题的一个副本产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求曲线轨迹方程的五种
方法
TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-
求曲线轨迹方程的五种方法
一、直接法
如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。
例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。
解:设点P的坐标为(x,y),
则A(2x,0),B(0,2y),由|AB|=2a得
2)
2
x-
2(y
+
-=2a
2
0(
)0
化简得x2+y2=a,即为所求轨迹方程
点评:本题中存在几何等式|AB|=2a,故可用直接法解之。
二、定义法
如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。
例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是()
A、直线
B、椭圆
C、双曲线
D、抛物线
解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。
解法二:设P点坐标为(x,y),则
|x+4|-2
2
-=2
x+
(y
)2
当x ≥-4时,x+4-22)2(y x +-=2化简得
当时,y 2=8x
当x <-4时,-x-4-22)2(y x +-=2无解
所以P 点轨迹是抛物线y 2=8x
点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。
三、 代入法
如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。
例3 P 在以F 1、F 2为焦点的双曲线19
1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。
解:设P (x 0,y 0),G (x ,y ),则有
⎪⎪⎩
⎪⎪⎨⎧++=+-=)00(31)4(3100y y x x x 即⎩⎨⎧==y y x x 3300,代入 191622=-y x 得19
91692
2=-y x 即116
922
=-y x 由于G 不在F 1F 2上,所以y ≠0
四、 参数法
如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关的点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法。
例4 已知点M 在圆13x 2+13y 2-15x-36y=0上,点N 在射线OM 上,且满足|OM|·|ON|=12,求动点N 的轨迹方程。
分析:点N 在射线OM 上,而同一条以坐标原点为端点的射线上两点坐标的关系为(x ,y )与(kx ,ky )(k >0),故采用参数法求轨迹方程。
解:设N (x ,y ),则M (kx ,ky ),k >0
由|OM|·|ON|=12得
)(222y x k +·22y x +=12
∴k (x 2+y 2)=12,又点M 在已知圆上,
∴13k 2x 2+13k 2y 2-15kx-36ky=0
由上述两式消去x 2+y 2得
5x+12y-52=0
点评:用参数法求轨迹,设参尽量要少,消参较易。
五、 交轨法
若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,此法称为交轨法。
例5 已知A 1A 是椭圆12222=+b
y a x (a >b >0)的长轴,CD 是垂直于A 1A 的椭圆的弦,求直线A 1C 与AD 的交点P 的轨迹方程。
解:设P (x ,y ),C (x 0,y 0),D (x 0,-y 0),(y 0≠0)
∵A 1(-a ,0),A (a ,0),由A 1、C 、P 共线及A 、D 、P 共线得⎪⎪⎩⎪⎪⎨⎧-=--+=+a
x y a x y a x y a x y 0000 两式相乘并由122
0220
=+b y a x ,消去x 0,y 0,得,所求轨迹方程为122
22=+b
y a x (y ≠0) 点评:交轨法的难点是消参,如何巧妙地消参是我们研究的问题。