试验用电热法测量热功当量

合集下载

102 电热法测量热功当量

102 电热法测量热功当量

图1 THQRG-2型热功当量测量实验仪
三、实验原理
1.散热修正
由于量热装置温度与环境温度存在温差,那么在实验过程中系统就会向环境散热,因此温度计测量出的终止温度2T 会比真正的终止温度'
2T 低,实验过程中系统温度变化曲线如图2所示。

图2中AB 段表示通电以前系统与环境达到热平衡后的稳定阶段,其稳定温度为系统的初始T BC t
图2 温度随时间的变化曲线
图3 实验接线图
中的数据,通过公式(4)计算求出系统的真正终温
' 2 T。

)计算求出热功当量的数值,并与公认值进行比较,计算相对误差。

在实验前使用干燥毛巾擦净量热器,从而避免量热器表面由于水滴附着,。

电热法测热功当量实验数据处理方法

电热法测热功当量实验数据处理方法

电热法测热功当量实验数据处理方法
何建勋;唐芳
【期刊名称】《物理实验》
【年(卷),期】2018(038)010
【摘要】基于温度补偿原理和牛顿冷却定律,对电热法测量热功当量实验提出了2种散热修正方法,即温度补偿法和线性回归法.温度补偿法采用作图法,数据处理操作简单;而线性回归方法计算相对复杂,实验过程散热系数保持不变的假设也会给结果带来误差,但可以对实验结果的不确定度给出定量评估.基于此,针对不同的实验数据量和不同的数据采样间隔对实验结果进行了比较,给出了最佳方案.
【总页数】5页(P54-58)
【作者】何建勋;唐芳
【作者单位】北京航空航天大学能源与动力工程学院 ,北京100191;北京航空航天大学物理科学与核能工程学院 ,北京100191
【正文语种】中文
【中图分类】O551.1
【相关文献】
1.电热法测量热功当量实验的新探究 [J], 蔡晨;李朝荣;李英姿;王选
2.电热法测热功当量实验的改进 [J], 代伟;李骏;陈太红;兰小刚
3.用冷热补偿法做电热法测热功当量实验 [J], 岂云开
4.用电热法测定热功当量的实验探讨 [J], 李建英
5.用电热法测定热功当量的实验探讨 [J], 李建英
因版权原因,仅展示原文概要,查看原文内容请购买。

用电热法测定热功当量实验报告doc

用电热法测定热功当量实验报告doc

用电热法测定热功当量实验报告篇一:T.热功当量的测量.05实验名称热功当量的测量一、前言热量和功这两个物理量,实质上是以不同形式传递的能量,它们具有相同的单位,即能量的单位焦耳(J)。

然而,在没有认识热的本质以前,历史上曾经对热量的计量另有规定。

热量的单位用卡路里,简称卡,1克纯水在1大气压下温度升高10C所吸收的热量为1卡。

焦耳认为热量和功之间应当有一定的当量关系,即热量的单位卡和功的单位焦耳间有一定的数量关系。

从1840年到1879年近40年的时间内,焦耳利用电热量热法和机械量热法进行了大量的实验,最终精确地求得了功和热量互相转换的数值关系—热功当量。

如果用W表示电功或机械功,用Q表示这一切所对应的热量,则功和热量之间的关系可写成W=JQ,J即为热功当量。

目前国际上对卡和焦耳的关系有两种规定:1热工程卡=4.1868焦耳;1热化学卡=4.1840焦耳。

国际上把“卡”仅作为能量的一种辅助单位,并建议一般不使用“卡”。

国际单位制规定,功、能和热量一律使用焦耳为单位。

虽然热功当量的数值现已逐渐为人们所少用,但是,热功当量的实验及其在物理学发展史上所起的作用是不可磨灭的。

焦耳的热功当量实验为能量转化与守恒定律奠定了坚实的实验基础。

本实验采用焦耳曾经做过的电热法来测定热功当量。

二、教学目标1、了解电流作功与热量的关系,用电热法测定热功当量。

2、了解热量损失的修正方法。

三、教学重点1、了解电流作功与热量的关系。

四、教学难点1、正确读取温度的方法和时机。

五、实验原理1、用电热法来测定热功当量如果加在加热器两端的电压为U, 通过加热器的电流为I, 电流通过时间为t, 则电流作功为:W?IUt (1)如果这些功全部转化为热量,此热量用量热器测出,则可求出热功当量。

设m1表示量热器内圆筒质量,C1表示其比热。

m2表示铜电极和铜搅拌器的质量,C2表示其比热。

m3表示量热器内圆筒中水的质量,C3表示水的比热,T1和T2表示量热器内圆筒及圆筒中水的初始温度和终末温度,那么量热器内圆筒及圆筒中的水等所吸收的热量Q为Q??mC11?m2C2?m3C3??T2?T1? (2)如果过程中没有热量散失,电功W用焦耳(J)作单位,热量Q 的单位用卡(cal)时,则有W?JQ (3)式中,J为热功当量,由上式可得测量J的理论公式:J?WIUt?(J/cal) Q(m1c1?m2c2?m3c3)(T2?T1)(4)2、散热修正上述讨论是假定量热器与外界无热量交换时的结论,实际上只要有温度的差异就必然要有热交换存在。

热功当量的测定

热功当量的测定

热功当量的测定(电热法)实验原理如图3.11,设量热器内筒和搅拌器的总质量为m筒(由同种材料制成),内盛质量为M液的液体,初温为t1。

当对电阻丝通电t秒后,液体末温为t2。

设通电时电流表、电压表示数分别为I和U,则通电时间内电流做的功为W=IUt(1)量热器内筒(含搅拌器)及液体的吸热为Q=(C筒m筒+C液M液)(t2-t1)(2)I、U、t、m筒、M液、t1、t2均可由实验测得,则热功当量J=W/Q资料分类> 理学论文> 物理论文> 的测定及散热修正资料星级:资料格式:Word 文档上传者:ai349744877出售次数:0上传时间:2009-01-06关键词:热功当量功热量温度牛顿冷却定律10元未知发信告诉好友收藏举报论文( 3页1894字) 图纸量守恒定律,能量既不会凭空产生,也不会自然消灭,只能从一个物体传给另一个物体,从一种形式转化为另一种形式。

功和热量之间可发生相互转化,t秒内通过电热丝,电热丝两端的电势差为U,则电场力做功为W=UIt,若这些功全部转化为热量,通过量热器测量出该热量,从而得出功与热量之间量值。

得出产生1cal热量所需做的功。

当量功热量温度牛顿冷却定律实验是证明能量守恒和转化定律的基础性实验。

焦耳从1840年起,花费了几十年的时间做了大量的实验,论证了传热和做功一样,是能量传递的一种形常数,与做功方式无关,从而为能量守恒和转换定律的确立奠定了坚实的实验基础。

当电阻R两断加上电压U,通过的电流为I时,在通电t秒时间内电些功全部转化为热量,使一个盛水的量热器系统由初温T 升高至T ,系统吸收的热量为Q,则热功当量J=W/Q。

按照能量守恒定律,若采用国际单位制,比值J=1;若Q用卡(cal)作单位,J=4.1868J/cal,该数值表示产生1cal热量所需做的功。

据能量守恒定律,通过测量热功当量,研究功与热量的转化关系,进一步了解功与热量之间转化的特点。

目录:论理实验】陈玉林李传起主编科学出版社理实验】梁家惠李朝荣唐芳编著北京航空航天大学出版社筒中的水时,应用搅拌器均匀轻轻地搅拌,避免搅拌器碰及电热丝和电极。

电热法测热功当量my

电热法测热功当量my

Q = (c1m1 + c2 m2 + c3 m3 + 0.857V )(T f − T0 )
所以,热功当量
W IUt J= = Q (m1C1 + m2C2 + m3C3 + 0.857V )(T f − T0 )
J的标准值J0=4.1868焦耳/卡。
焦耳/卡
2、散热修正
为了修正终止温度的误差,实验时在相等的时间间 隔内,记下相对应的温度,然后以时间为横坐标,温 度为纵坐标作图。
T (℃)
图中AB段表示通电以前系 统与环境达到热平衡后的稳定 阶段,其稳定温度(即室温) 也就是系统的初温T0,BC段表 示在通电时间t内,系统温度 的变化情况。由于温度的变化 存在滞后的现象,因而断电后 系统的温度还将略为上升,如 CD段所示,DE段表示系统的自 然冷却过程。
Tf T2
∆T
F D C
自然冷却降温数据(每隔60s)
时间t(s) 温度T(°C) 0 60 120 …
实验过程中的电压、电流值(记录变化时)
电压值U(V) 电流I(A) 平均电流 I=_(A) 平均电压U=_(V)
1、计算电流所做的功W; 2、做自然冷却段ln|T-θ|-t图,求出冷却常数k; 3 3、利用逐点修正公式并结合升温段数据,修正得理 想终温,并画出实测温度和理想温度曲线; 4、利用修正后理想终温,计算热量Q,求得热功当量 J,并与理论值比较,计算不确定度。
最终产生的误差 系统的真正终温
v = ∆T t2
t1 ∆T T f = T2 + δTi = T2 + 2 t2
t1 ∆T δTi = vt1 = 2 t2
实验仪器
HLD-IH-II型智能热学综合实验仪 型智能热学综合实验仪

电热法测热功当量

电热法测热功当量

电热法测热功当量摘要:热量以卡为单位时与功的单位之间的数量关系,相当于单位热量的功的数量,叫做热功当量。

本篇文章主要围绕电热法测量热功当量的方法及其误差分析和修正展开研究。

关键词:电热法、热功当量、散热修正、误差分析1前言热量以卡为单位时与功的单位之间的数量关系,相当于单位热量的功的数量,叫做热功当量。

由焦耳通过大量实验确定。

在人们尚未认清热的本质以前,热量和功分别用不同的单位表示。

焦耳是功的单位,卡路里是热能的单位。

值得注意的是,功和热之间的转换只有通过系统内能的变化才能完成,脱离系统而去谈论功与热量的直接转换是不恰当的。

热功当量的发现,使当时的人们更好地理解了热的本质,也说明了卡路里与焦耳为相当量而非相等。

自国际单位统一热量单位为焦耳后,热功当量也就不复存在。

但其实验测定及数据对于物理学的发展的意义永远存在。

测量热功当量的方法有很多,最传统的方法是热功当量提出者焦耳采用的利用液体摩擦生热,后世人们也逐渐发明出了各种测量方法,如利用固体摩擦等,而目前操作最简便、测量误差小的方法也是我们将要采用的电热法。

2实验方法本实验所要用到的实验器材有:直流电源,导线,电压表,电流表,金属内筒,温度计,开关,玻璃搅拌器等。

图1实验装置图如图即为电热法测量热功当量的实验装置图,该实验方法是通过量热桶中的电阻丝加热液体,使其升高一定温度后通过Q=cm(t-t0)得到液体获得的热能,再通过W=UIt得到以焦耳为单位的电阻丝加热的能量,二者相比得:(1)由(1)式可得测量的热功当量数值。

具体实验步骤如下:1.用托盘天平测量量热桶内壁质量。

2.装入一定量水。

③放入量热桶内盖上盖子,注意温度计不要碰到底部。

1.用环形玻璃搅拌器搅拌,使水温度均匀。

2.读出水的初温T0。

3.组装电路。

4.调节电源电压,读出此时电压表及电流表读数。

5.等待升温。

6.升温后,断开开关并再次搅拌使温度不再变化。

7.读出此时水的温度。

⑪用W=UIt得出总共获得的热量(单位J)。

实验2—16a 热功当量的测定(用电热法).

实验2—16a 热功当量的测定(用电热法).

实验2—16a 热功当量的测定(用电热法)【实验目的】 1.用电热法测量热功当量。

2.学会一种热量散失的修正方法—修正终止温度。

【实验仪器】量热器(附电热丝),温度计(0℃~50℃、0.1℃),电流表,电压表,直流稳压电源,秒表,物理天平,开关等。

【实验原理】仪器装置如图2-16a -1所示,M 与B 分别为量热器的内外两个圆筒,C 为绝缘垫圈,D 为绝缘盖,J 为两个铜金属棒,用以引入加热电流,F 是绕在绝缘材料上的加热电阻丝,G 是搅拌器,H 为温度计,E 为稳压电源。

1.电热法测热功当量强度为I 安培的电流在t 秒内通过电热丝,电热丝两端的电位差为U 伏特。

则电场力做功为W =IUt (2-16a -1) 这些功全部转化为热量,此热量可以用量热器来测量。

设m 1表示量热器内圆筒和搅拌器以及装有缠绕线的胶木支架(一般质料相同,否则应分别考虑)的质量,C 1表示其比热。

m 2表示缠绕线的胶木(或玻璃)的质量,C 2表示其比热。

m 3表示量热器内圆筒中水的质量,C 3表示水的比热,V 表示温度计沉入水中的体积,T 0和T f 表示量热器内圆筒及圆筒中水的初始温度和终止温度,那么量热器内圆筒及圆筒中的水等由导体发热所得的热量Q 为Q =(m 1C 1+m 2C 2+m 3C 3+0.46V )(T f -T 0) (2-16a -2) 所以,热功当量))(46.0(0332211T T V C m C m C m IUt Q W J f -+++==焦耳/卡 (2-16a -3) J 的标准值J 0=4.1868焦耳/卡。

2.散热修正如果实验是在系统(量热器内筒及筒中的水等)的温度与环境的温度平衡时,对电阻通电,那么系统加热后的温度就高于室温θ。

实验过程中将同时伴随散热作用,这样,由温度计读出的终止温度的数值T 2必须比真正的终止温度的数值T f 低。

(即假设没有散热所应达到的终温为T f )。

为了修正这个温度的误差,实验时在相等的时间间隔内,记下相对应的温度,然后以时间为横坐标,温度为纵坐标作图,如图2-16a -2所示。

电热法测热功当量[新版]

电热法测热功当量[新版]

答:实验条件是系统与外界没有较大的热交换,并且系统(即水)应尽可能处于准静态变化过程。

实验方法是电热法。

系统误差的最主要来源是系统的热量散失,而终温修正往往不能完全弥补热量散失对测量的影响。

其他来源可能有①水的温度不均匀,用局部温度代替整体温度。

②水的温度与环境温度差异较大,从而给终温的修正带来误差。

③温度,质量及电功率等物理量的测量误差。

2. 试定性说明实验中发生以下情况时,实验结果是偏大还是偏小?(1) 搅拌时水被溅出;答:实验结果将会偏小。

水被溅出,即水的质量减少,在计算热功当量时,还以称横水的质量计算,即认为水的质量不变,但是由于水的质量减少,对水加热时,以同样的电功加热,系统上升的温度要比水没有上升时的温度要高,即水没溅出在同样电功加热时,应上升T度,而水溅出后上升的温度应是T+ΔT度。

用J = A / Q,有Q =(c i m i T),J = A / [(T+△T)/ mc],分母变大J变小。

(2) 搅拌不均匀;答:J 偏大、偏小由温度计插入的位置与电阻丝之间的距离而定。

离电阻丝较远时,系统温度示数比,匀均系统温度低,设T为均匀系统温度,温度计示值应为T-ΔT,用J=A/θ计算,分母变小,则J变大;离电阻丝较近时,温度计示值应为T+ΔT,分母变大,因而J变小。

为室温,若测得值偏高Δθ时,测量得到的温度值为(3) 室温测得偏高或偏低。

答:设θθ0+Δθ;偏低Δθ时,测量温度值为θ0-Δθ,在计算温度亏损时,dT i=k(T i-θ),k是与是室温无关的量(k与室温有关),只与降温初温和降温终温以及降温时间有关,测得室温偏高时,dT i =k [T i - (θ0+Δθ)],每秒内的温度亏损dT i 小于实际值,t 秒末的温度亏损δT i =∑k [T i - (θ0+Δθ)]。

此值小于实际值,由于散热造成的温度亏损δT i =T f + T f ″,修正后的温度T f ″为:T f ″= T f -δT i ,δT i 为负值,当测量值低于实际室温时,δT i 的绝对值变小:T f ″=T f +|δT i |,即T f ″变小,ΔT 变小(其中ΔT =T f ″- T f 初,T f 初:升温初始值),∑∆==Tm c AQ A J i i , J 变大,反之J 变小。

电热法测量焦耳热功当量实验

电热法测量焦耳热功当量实验

目的目的:以電熱法測出熱功當量。

實驗方法實驗方法::由於在實際環境下用電功加熱系統使溫度升高的過程中,系統會向外散熱(原因在於系統溫度高於環境溫度)。

因此系統實際上所達到的末溫必低於沒有散熱情況時的末溫,故以牛頓冷卻定律將散熱導致的溫差求出,以求得較精確的結果。

原理原理::早在1798年,德國侖福特以研究摩擦作功所產生的熱量,得知此熱量與供給的功成正比。

由能量守恆定理,當外界對一系統作功 W (單位"焦耳"),若這些功完全由系統轉換成內能(即熱量△H ,單位"卡"),我們能夠找出它們的換算關係W=J ×△H (1)其中的J 即為熱功當量,單位為"焦耳/卡"。

本實驗是要測量J 值。

若一系統是由不同比熱c i 和質量m i 的成分所構成,欲使此系統溫度升高△T ,需要的熱量△H ,可寫為△H =Σm i c i △T =C ×△T (2)其中C 代表整個系統的熱容,可寫成各成分的比熱與質量乘積之和。

若外界對系統作功W ,使系統溫度由T o 升到某一特定溫度T H ,由(2)式代回(1)式中可得其關係如下: W=J ×C ×(T H -T o ) (3)實驗儀器實驗儀器::方法說明:本實驗的設計主要分成兩部分:一是測量系統熱容C ;二是對散熱所造成的誤差做修正,再與供給的電功比較,求出得較準確之熱功當量值J 。

一、測量系統熱容C設水的比熱為S(1卡/o C),卡計系統(包括溫度計、鎳鉻線圈及銅杯等)熱容為C ,此時在卡計內的銅杯中,注入溫度T o 、質量M 克的水(約至半滿),並加熱到接近50℃ 時的溫度T H ,再量取約m 克(約與M 克差不多重),而溫度為T o 的水注入,攪勻後測得混合後的溫度T ave ,求出系統熱容C 。

(C+S ×M)(T H -T ave )=S ×m(T ave -T o )所以M S -)T -T ()T -T (m S =C ••ave H o ave (4)二、電熱法與散熱修正對於卡計系統,我們在鎳鉻線圈(電阻為R 歐姆)的兩端加電壓V (伏特),則輸入此系統的電功率為)(RV =P 2瓦特 (5)實際上,在用電功加熱系統使溫度升高的過程中,系統會向外散熱(原因在於系統溫度高於環境溫度)。

用杜瓦瓶改进电热法测定热功当量的实验

用杜瓦瓶改进电热法测定热功当量的实验

用杜瓦瓶改进电热法测定热功当量的实验摘要:测量热功当量的方法有很多,最传统的方法是热功当量提出者焦耳采用的利用液体摩擦生热,电热法是现在实验教学中采用较多的测量热功当量的方法。

后世人们逐渐发明出的各种测量方法,也都会出现一些误差,结合各种文献,本篇文章主要围绕用杜瓦瓶改进电热法测量热功当量的实验展开研究和讨论。

关键词:杜瓦瓶;热功当量;测量装置1前言热功当量实验是测定能量守恒和转换规律、培养学生实验设计的能力、训练操作技能和研究数据处理方法的基本实验。

所以测量热功当量的实验对于实验教育和物理学的发展都非常重要。

电热法也是现在实验教学中采用较多的测量热功当量的方法,但实验操作过程中,由于系统会受一边自然冷却的影响,产生有一定的测量误差。

为此本文用杜瓦瓶改进电热法测定热功当量的实验装置,实验设计可操作性强、方法正确、科学,实验误差小,经实验验证完全可行,实验效果非常满意.2焦耳进行过的各种测定热功当量的实验19世纪初,“热质说"特别流行,以至于焦耳认为热质是不存在的,热是一种能形式,所以他进行了很多实验。

先后介绍了四种测定热功当量的方法,其中之一是使用带电金属。

通电金属丝在水中加热。

当量是根据电流做的功和水获得的热量来计算的。

他发现:通电导体产生的热量与电流强度的平方、导体电阻和导通时间的平方成正比。

这就是后来的焦耳定律,以他的名字命名的。

测定热功当量最著名的的实验是1845年发表的关于通过摩擦加热液体的实验,即焦耳热功当量实验。

从1840年起,焦耳用电量热法和机械量热法进行了数十年的许多实验,得出结论:热功当量是一个与工作方式无关的普遍常数。

从而证明了机械能(功)和电能(功)同热量之间的转换关系;论证了传热是能量传递的一种形式。

为证实能量守恒和转换定律的正确性奠定了坚实的实验基础。

1840年焦耳指出,通过直流导体后放出的热量Q与电流l的平方、导线的电阻R、供电时间t成正比,即电流W=JQ。

电热法测热功当量

电热法测热功当量

1. 该实验所必须的实验条件与采用的实验基本方法各是什么?系统误差的来源可能有哪些? 答:实验条件是系统与外界没有较大的热交换,并且系统(即水)应尽可能处于准静态变化过程。

实验方法是电热法。

系统误差的最主要来源是系统的热量散失,而终温修正往往不能完全弥补热量散失对测量的影响。

其他来源可能有①水的温度不均匀,用局部温度代替整体温度。

②水的温度与环境温度差异较大,从而给终温的修正带来误差。

③温度,质量及电功率等物理量的测量误差。

2. 试定性说明实验中发生以下情况时,实验结果是偏大还是偏小?(1) 搅拌时水被溅出;答:实验结果将会偏小。

水被溅出,即水的质量减少,在计算热功当量时,还以称横水的质量计算,即认为水的质量不变,但是由于水的质量减少,对水加热时,以同样的电功加热,系统上升的温度要比水没有上升时的温度要高,即水没溅出在同样电功加热时,应上升T度,而水溅出后上升的温度应是T+ΔT度。

用J = A / Q,有Q =(c i m i T),J = A / [(T+△T)/ mc],分母变大J变小。

(2) 搅拌不均匀;答:J 偏大、偏小由温度计插入的位置与电阻丝之间的距离而定。

离电阻丝较远时,系统温度示数比,匀均系统温度低,设T为均匀系统温度,温度计示值应为T-ΔT,用J=A/θ计算,分母变小,则J变大;离电阻丝较近时,温度计示值应为T+ΔT,分母变大,因而J变小。

为室温,若测得值偏高Δθ时,测量得到的温度值为(3) 室温测得偏高或偏低。

答:设θθ0+Δθ;偏低Δθ时,测量温度值为θ0-Δθ,在计算温度亏损时,dT i=k(T i-θ),k是与是室温无关的量(k与室温有关),只与降温初温和降温终温以及降温时间有关,测得室温偏高时,dT i=k[T i- (θ0+Δθ)],每秒内的温度亏损dT i小于实际值,t秒末的温度亏损δT i=∑k[T i-(θ0+Δθ)]。

此值小于实际值,由于散热造成的温度亏损δT i =T f + T f ″,修正后的温度T f ″为:T f ″= T f -δT i ,δT i 为负值,当测量值低于实际室温时,δT i 的绝对值变小:T f ″=T f +|δT i |,即T f ″变小,ΔT 变小(其中ΔT =T f ″- T f 初,T f 初:升温初始值), ∑∆==Tm c AQ A J ii, J 变大,反之J 变小。

电热法测热功当量的原理

电热法测热功当量的原理

电热法测热功当量的原理电热法测热功当量的原理是通过电能和热能之间的转化来测量热量。

根据能量守恒定律,电能转化为热能的过程中,所转化的热能量与所消耗的电能量的比值就是热功当量。

电热法测热功当量的实验装置主要包括电源、电流表、电阻丝和水容器等。

首先,将电流表与电源连接,通过调节电流的大小来控制电能供应。

然后,将电流通过电阻丝,电阻丝会因为电流的通过而发热。

通过控制电流的大小和时间,可以控制电阻丝发热的大小和时间。

接下来,将电阻丝浸入水中,并测量水的初始温度。

随着电阻丝发热,热量会传递到水中。

测量热量传递后的水温变化,可以用来计算热功当量。

在实验中,我们需要测量电阻丝的电阻R、电流I、通过电阻丝发热的时间t,以及水的质量m、水的初始温度T1和最终温度T2。

根据热容量的定义,热功当量可以表示为:Q = m * C * ΔT其中,Q表示热量的数量,m表示水的质量,C表示水的比热容量,ΔT表示水的温度变化。

电阻丝发热的热量可以表示为:Q' = I^2 * R * t将上述两个公式联立,可以得到:Q = Q'根据这个等式,我们可以计算热功当量。

在实验中,首先通过电流表测量电流I,然后通过万用表测量电阻丝的电阻R。

在电流通过电阻丝发热的过程中,通过记录时间t和测量水的初始温度T1和最终温度T2,可以计算出水的温度变化ΔT。

将上述数据带入到公式中,即可计算出热功当量Q。

需要注意的是,实际实验过程中需要考虑到实验装置的热损失以及测量误差等因素。

为了尽量减小这些误差,可以采用保温措施,提高实验的精确性。

这就是电热法测热功当量的原理。

通过电能和热能之间的转化,可以测量热量的数量,从而得到热功当量的数值。

这种方法在实验室中广泛应用于热量和温度的测量。

电热法测热功当量实验数据处理方法

电热法测热功当量实验数据处理方法

阻,狋为加热时 间.在 不 考 虑 散 热 的 情 况 下,即 假
设电流做功全部 转 化 为 热 量,使 盛 水 的 量 热 器 系
Hale Waihona Puke 统由初温 犜0 升到 犜,系统吸收的热量为 犙ab=(犮0犿0+犮1犿1+犮2犿2)(犜-犜0)=犆犿(犜-犜0),
(2) 式中犮0,犮1,犮2 分 别 是 水、量 热 器 和 电 阻 加 热 器 的 比热容;犿0,犿1,犿2 分 别 为 其 相 应 的 质 量;犆犿 为 系统的总热容.所以热功当量犑 满足:
(3)和 (4),系 统 温 度 需 满 足
仅发生在0~狋1′、狋1′~狋3 两过程中.在 假 想 加 热 过
犆犿dd犜狋=犚犝犑2 -犽(犜-犜∞ ),
(5) 程中,系 统 和 环 境 的 传 热 可 用 图 1 所 示 面 积 表 示为
∫ 式(5)为按照牛 顿 冷 却 定 律 修 正 的 热 功 当 量 测 量
电热法测热功当量实验数据处理方法
何 建 勋a,唐 芳b
(北京航空航天大学 a.能源与动力工程学院;b.物理科学与核能工程学院,北京 100191)
摘 要:基于温度补偿原理和牛顿冷却定律,对电热法测 量 热 功 当 量 实 验 提 出 了 2 种 散 热 修 正 方 法,即 温 度 补 偿 法 和线性回归法.温度补偿法采用作图法,数据处理操作简 单;而 线 性 回 归 方 法 计 算 相 对 复 杂,实 验 过 程 散 热 系 数 保 持 不 变的假设也会给结果带来误差,但可以对实验结果的不确定度给出定量评估.基于此,针 对 不 同 的 实 验 数 据 量 和 不 同 的 数 据 采 样 间 隔 对 实 验 结 果 进 行 了 比 较 ,给 出 了 最 佳 方 案 .

实验2—16a 热功当量的测定(用电热法).

实验2—16a 热功当量的测定(用电热法).

实验2—16a 热功当量的测定(用电热法)【实验目的】 1.用电热法测量热功当量。

2.学会一种热量散失的修正方法—修正终止温度。

【实验仪器】量热器(附电热丝),温度计(0℃~50℃、0.1℃),电流表,电压表,直流稳压电源,秒表,物理天平,开关等。

【实验原理】仪器装置如图2-16a -1所示,M 与B 分别为量热器的内外两个圆筒,C 为绝缘垫圈,D 为绝缘盖,J 为两个铜金属棒,用以引入加热电流,F 是绕在绝缘材料上的加热电阻丝,G 是搅拌器,H 为温度计,E 为稳压电源。

1.电热法测热功当量强度为I 安培的电流在t 秒内通过电热丝,电热丝两端的电位差为U 伏特。

则电场力做功为W =IUt (2-16a -1) 这些功全部转化为热量,此热量可以用量热器来测量。

设m 1表示量热器内圆筒和搅拌器以及装有缠绕线的胶木支架(一般质料相同,否则应分别考虑)的质量,C 1表示其比热。

m 2表示缠绕线的胶木(或玻璃)的质量,C 2表示其比热。

m 3表示量热器内圆筒中水的质量,C 3表示水的比热,V 表示温度计沉入水中的体积,T 0和T f 表示量热器内圆筒及圆筒中水的初始温度和终止温度,那么量热器内圆筒及圆筒中的水等由导体发热所得的热量Q 为Q =(m 1C 1+m 2C 2+m 3C 3+0.46V )(T f -T 0) (2-16a -2) 所以,热功当量))(46.0(0332211T T V C m C m C m IUt Q W J f -+++==焦耳/卡 (2-16a -3) J 的标准值J 0=4.1868焦耳/卡。

2.散热修正如果实验是在系统(量热器内筒及筒中的水等)的温度与环境的温度平衡时,对电阻通电,那么系统加热后的温度就高于室温θ。

实验过程中将同时伴随散热作用,这样,由温度计读出的终止温度的数值T 2必须比真正的终止温度的数值T f 低。

(即假设没有散热所应达到的终温为T f )。

为了修正这个温度的误差,实验时在相等的时间间隔内,记下相对应的温度,然后以时间为横坐标,温度为纵坐标作图,如图2-16a -2所示。

电热当量的测定

电热当量的测定

(3)数据处理要求 用计算法计算终温Tf,热功当量J,与热功当量 的公认值比较,计算定值误差; 作图法:在坐标纸上画出T-t曲线,由图求出Tf, 计算J,计算J的定值误差。
相关参数
水的比热 c1=1.00 卡/(克.度)
铜的比热
J的公认值
c2=0.092 卡/(克.度)
J=4.1868焦耳/卡
数据记录
D C
T2
T0
A
B t t1 t/ 分
由于在通电过程中存在散热,因此,最高温度T2并 不是真正的终温Tf,要得到Tf需进行散热修正。
在自然冷却过程中,散热速率为 T2 TE
t2
通电的初始时刻,由于温度与环境温度相同,没有 散热;
T/ ℃ D
T2
C ΔT=T2 - TE t2 E
T0
A
B
如果开始加热时的温度与室温不一致,则平均 冷却速率应该为
1 ( 0 ) 2
0为开始加热时的冷却速率,记室温为θ,则
T0 0 T2
T f T2 T T2 t1
T0 T2 2 T2 TE T f T2 t1 2(T2 ) t2
室温 水的质量 铜质材料的质量 水的初温 T0= 最高初温 T2= 自然冷却时间 自然冷却后的温度 电流I= A ℃ ℃ θ= m1= m2= 通电时间 t2= TE= 电压U= V t= 分 ℃ 达到T2的时间 t= ℃ g g s s
t t1
t/ 分
随温度升高,散热速率逐渐增大,到最高温度 时,散热达到最大,与自然冷却时相同。因此 加热过程中平均散热速率为自然冷却时散热速 率的一半,即: 1
2
修正后的终温Tf应等于T2加上一个修正项。

实验三电热法热功当量的测量

实验三电热法热功当量的测量

实验二电热法热功当量的测量一、实验目的用电热法测定热功当量二、实验仪器:1.YJ-RZ-4C数字智能化热学综合实验仪、2.量热器、3. 物理天平4.量杯、5.连接线。

三、实验原理量热器如图1所示,如果加在电阻丝两端的电压为V, 通过电阻的电流为I, 通过时间为t, 则电流作功为:A=UIt (1) 如果这些功全部转化为热能,使量热器系统的温度从T0℃升高至T f℃,则系统所吸收的热量为:Q=C s(T f-T0) (2)其中C s是系统的热容量.如果过程中没有热量散失,则A=JQ (3)即热功当量为J=A/Q(J/cal) (4)孤立的热学系统在温度从T 0升到了T f 时的热量Q 与系统内各物质的质量m 1,m 2…和比热容c 1,c 2…以及温度增量(T f -T 0)有如下关系Q ﹦(m 1c 1+m 2c 2+…)(T f -T 0) (5) 式中,m 1c 1,m 2c 2…是各物质的热容量.在进行热功当量的测量中,除了用到的水外,还会有其他诸如量热器、搅拌器、温度传感器等物质参加热交换.即:Q ﹦(c 水m 水+c 内m 内+c x m x )(T f -T 0) (6) 式中,c 水m 水为水的热容量, c 内m 内为量热器内筒的热容量、c x m x 为搅拌器、加热电阻、温度传感器等的热容量.如果量热器、搅拌器和温度传感器等的质量用水当量ω表示,则热功当量为J =UIt /〔(c 水m 水+c 水ω)(T f -T 0)〕(J /cal ) (7) ω可以由实验室给出,也可以通过实验测出.实验测得:本量热器的水当量ω=kg 31090.39-⨯。

四、实验内容及步骤1.用天平称出约140克左右的水,倒入量热器中,将测温电缆和搅拌电机电缆与YJ-RZ-4C 数字智能化热学综合实验仪面板上对应电缆座连接好,安装好搅拌电机。

2.打开电源开关.3.记下初始温度值T 0℃.4.打开搅拌开关.5.打开加热开关(同时按触计时器“启动”按钮),系统开始加热、计时.6.当加热一段时间(如6分钟)后,关掉“加热开关”,停止加热,同时,记下加热的时间,待温度不再上升时,记下系统的温度T f ℃.7.关掉“搅拌开关”,倒掉量热器中的水.8.根据J =UIt /〔(c 水m 水+ c 水ω)(T f -T 0)〕(J /cal )求出热功当量.其中 c 水=1 cal •℃-1•g -1本实验仪的水当量ω=kg 31090.39-⨯ (由实验室给出). 五、数据记录及处理 1.自拟数据表格记录数据;六、思考题1. 如果实验过程中加热电流发生了微小波动,是否会影响测量的结果?为什么?2.实验过程中量热器不断向外界传导和辐射热量.这两种形式的热量损失是否会引起系统误差?为什么?七、注意事项1.供电电源插座必须良好接地;2.在整个电路连接好之后才能打开电源开关;3.严禁带电插拔电缆插头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用电热法测量热功当量
教学目标:
1. 用电热法测热功当量。

2. 学习用牛顿冷却定律,进行散热修正。

教学方法:
采用研究式、答辩式教学方法。

实验内容
1. 测量质量,填表1
2. 连接电路、选量程、电压。

3. 测外围温度θ1
4. 连接电源,记T 0 ,没隔1分钟,填表2
5. 断电,接着测降温温度,每隔1分钟,填表3,以求k
6. 测环境温度θ
2 取θ=21(θ1+θ2) 7. 求δν
重点及难点:
重点:自然冷却定律修正温度(终)及操作严谨 难点:牛顿自然冷却定律
教学过程设计
1. 电场力作功
W = V I t (1)
单位:焦耳、伏特、安培、秒
系统吸收全部热量
Q=(C 0M 0+C 1M 1+ C 2M 2+0.46δV )(T f –T 0) (2) 由(1)、(2)式可得:
QJ=W ,则J=Q
W 焦耳/卡 称为热功当量 2. 终温修正
散热后实际终温为T f ” (测的温度),不散热达到终温为T f (理想温度) 由散热导致温度下降δT
测T f = T f ” +δT (4)
3. 求δT 的方法:
根据牛顿自然冷却定律 dt
dT =K (T —θ) 自然冷却:''
0f
T T - t=0→t k=θθ--'0'ln 1T T t f (1/min)
δT=k(θ-T )t 其中)(2
1"0f T T T += T f = T f ” +δT
数据处理:
计算法
作图法,采用作图法较为直观。

例:
1. C 0=1.000卡/克•度 C 1=0.092卡/克•度 C 2=0.094卡/克•度
2. 电压U=8.2伏 电流I=0.975安
3. 环境温度 θ
环=20.0C 0 m 0=167.0克 m 1=203.0克 m 2=49.9克
由图 =0.9℃ θf =θb +=28.0+0.9=28.9℃ 由计算机数据处理结果 J=4.30焦耳/卡 误差 E=%10018.430
.418.4⨯-=2.9% J=4.18焦耳/卡为公认值。

θ℃--t(分)图
t (分)。

相关文档
最新文档