高中数学三角函数专题复习(内附类型题以及历年高考真题...

合集下载

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结

高中数学高考三角函数重点题型解析及常见试题、答案+数列常见题型总结高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+ D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型 2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A . 例4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是分析:分段去绝对值后,结合选择支分析判断. 解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支ABCD-和一些特殊点,选择答案D . 点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.例5 (2008高考山东卷理5)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭则7πsin 6α⎛⎫+ ⎪⎝⎭的值是A. BC .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.34cos sin sin cos sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+= ⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭ 例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=sin ϕϕ==,即1tan 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=⎪⎪⎨⎪=-⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin ,cos 55αα=-=-,检验符合已知条件,故选B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin 26θ=,090θ<<)且与点A相距海里的位置C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,402AB =2, 1013AC =26,sin 26BAC θθ∠==由于090θ<<,所以226526cos 1()2626θ=-= 由余弦定理得222cos 10 5.BC AB AC AB AC θ+-=1051553=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有, 112402x y AB ===, 2cos 1013cos(45)30x AC CAD θ=∠=-=, 2sin 1013sin(45)20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l 的距离35714d ==<+,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅=2222402105⨯⨯=31010.从而2910sin 1cos 110ABC ABC ∠=-∠=-= 在ABQ ∆中,由正弦定理得,102sin 1040sin(45)2210AB ABC AQ ABC ∠===-∠⨯. 由于5540AE AQ =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=. 过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,5sin sin sin(45)15357.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=<所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错. 题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x b x x a ωωω==,(0>ω),令b a x f ⋅=)(,且)(x f 的周期为π.(1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可. 解析:(1)x x x b a x f ωωω2cos sin cos 2)(+=⋅=x x ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥.(1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,故226sin 5sin cos 4cos 0a b αααα⋅=+-=,由于cos 0α≠,∴26tan 5tan 40αα+-=, 解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<, 故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα=cos 23απ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 2323αα-=12= . 点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型.例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围. 分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )26A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 26A A C π∴<+≤<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程. 解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2OM a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333PG OG OP a b ma m a b =-=+-=-+, 111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值. 例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立.解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为max tan(2)6y π=⨯=,所以t ≥为所求.点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ϕ=+=+的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤.(1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为12cos 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥. (3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩ , 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩ 利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用. 【专题训练与高考预测】 一、选择题1.若[0,2)απ∈,sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππ C .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

高中三角函数历年高考真题_含答案

高中三角函数历年高考真题_含答案

历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。

高中数学高考三角函数重点题型解析及常见试题答案

高中数学高考三角函数重点题型解析及常见试题答案
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
分析:根据方位角画出图形,如图.第一问实际上就是求 的长,在 中用余弦定理即可解决;第二问本质上求是求点 到直线 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决.
解析:(1)如图, , ,
由于 ,所以
由余弦定理得
所以船的行驶速度为 (海里/小时).
(2)方法一:如上面的图所示,以 为原点建立平面直角坐标系,
设点 的坐标分别是 , 与 轴的交点为 .
由题设有, ,

所以过点 的直线 的斜率 ,直线 的方程为 .
又点 到直线 的距离 ,所以船会进入警戒水域.
解法二:如图所示,设直线 与 的延长线相交于点 .在 中,由余弦定理得,
例13.设二次函数 ,已知不论 , 为何实数,恒有 和 .为 ,求 , 的值.
分析:由三角函数的有界性可以得出 ,再结合有界性探求.
解析:(1)因为 且 恒成立,所以 ,又因为 且 恒成立,所以 ,从而知 , ,即 .
(2)由 且 恒成立得 , 即 ,将 代如得 ,即 .
3.若 , 与 的夹角为 ,则 ()
A. B. C. D.
4.若 为 的内心,且满足 ,则 的形状为
()
A.等腰三角形B.正三角形C.直角三角形D.钝角三角形
5.在 中,若 ,则 是()
A.直角三角形B.等边三角形
C.钝角三角形D.等腰直角三角形
6.已知向量 、 、 ,则直线 与直线 的夹角的取值范围是()
(3) ,
因为 ,所以当 时 ,由 ,解得 , .
点评:本题的关键是 ,由 利用正余弦函数的有界性得出 ,从而 ,使问题解决,这里正余弦函数的有界性在起了重要作用.

(完整)高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案),推荐文档

(完整)高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案),推荐文档

1.已知 tan x =2,求 sin x , cos x 的值. 解:因为tan xsin x cosx2 2 ▲2,又 sin x + cos x =1,sinx 2cosx联立得 22sin x cos x 1si nx2.55 L 5sin xcos x5 cos x解这个方程组得2 5 5 ..5 5+ tan( 120 ) cos(210 ) sin( 480 ) “2.求的值.tan( 690 ) sin( 150 ) cos(330 ) 解:原式 tan( 120 180 )cos(180 30 )sin( 360 120 ) tan( 720 30o )sin( 150 )cos(36030 )tan 60 ( cos30 )( sin 120 )tan30 ( sin 150 )cos30 3.3. sin x cosx 3.右 2,,求 sin x cos x 的值. sin x cosx 解:法一:因为 Ecosx2, si nx cosx所以 sin x — cos x =2(sin x + cos x ),2 2得到sin x =— 3cos x ,又sin x + cos x =1,联立方程组,解得sin x 3 .10 sinx 3i10 1010 cosx 辺cosx、10 10 10所以sinxcosx31法 因为sin x cosx sin x cosx2,所以 sin x — cos x =2(sin x + cos x ), 2 2所以(sin x — cos x ) =4(sin x + cos x ), 所以 1 — 2sin x cos x =4 + 8sin x cos x ,所以有sinxcosx 10 4. 求证:tan x • sin x =tan x — sin x . 证明: 法一:右边= tan 2x — sin 2x =tan 2x — (tan2x •cos x )=tan2x (1 — cos 2x )=tan 2x • sif x ,法二:左边=tan 2x • sin 2x =tan 2x (1 — cos 2x )=tan 2x — tan 2x • cos x =tan 2x — sin 2x ,问题得问题得证.x n5.求函数y 2sin( )在区间[0 , 22 6解:因为O W x < 2 n,所以 号n 7n ,由正弦函数的图象,得到丽哥n )[21], 所以 y € [ — 1, 2]. 6.求下列函数的值域.2(1) y = sin x — cos x +2;(2) y = 2sin x cos x — (sin x + cos x ).222解: (1) y =sin x — cos x + 2 = 1 — cos x — cos x + 2=— (cos x + cos x ) + 3,利用二次函数的图象得到 y [1,13]. 42人(2) y = 2sin x cos x — (sin x + cos x )=(sin x + cos x ) — 1 — (sin x + cos x ),令sin(x 丄),则t [ J2,J2]则,y t 2t 1,利用二次函数的图象得到y [ 5,1 J2].447.若函数y =A si n( ®x +0 )( 0, 0> 0)的图象的一个最高点为 (2, J2),它到其相邻的最低点之间的图象与x 轴交于(6 , 0),求这个函数的一个解析式.解:由最高点为(2, .2),得到A .、2,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是14Tn个周期,这样求得一4 ,T =16,所以丄 48又由,2, 2 sin( 2),得到可以取 .y . 2 sin(—x ).8484448. 已知函数 f (x )=cos x — 2sin x cos x — sin x . n(i )求f (x )的最小正周期; (n )若x [0,—],求f (x )的最大值、最小值.2叱 1 sinx “数y的值域.3 cosx42222解: ( I )因为 f (x )=cos x — 2si n x cos x — si n4 x = (cos x — sin x )(cos x + sin x ) — si n2 x22厂 n厂n (cos x sin x) sin 2x cos2x sin 2x 、2 sin( 2x)2 sin(2x) 44所以最小正周期为 n.(n )若x [0,n,则(2xnn,写,所以当x =0时,f(x )取最大值为Qsin( -) 1;当x 士时,]上的值域.令 t =cos x ,则 t [ 1,1], y (t 2 t) 3t =sin x + cos x•、2 ,cos2 4 4 4 4 8f (x)取最小值为、2si^ ;(2) sin2 sin .cos 2cos2sin1.已知tan 2,求(1)的值.3.已知函数f(x) 24sin x 2sin 2x(1 )求f (x)的最小正周期、f (x)的最大值及此时x的集合;n(2)证明:函数f (x)的图像关于直线x 对称。

2024年高考真题汇总三角函数(学生版)

2024年高考真题汇总三角函数(学生版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.83(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1B.23-1C.32D.1-35(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.46(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.327(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x8(新课标全国Ⅱ卷)对于函数f (x )=sin2x 和g (x )=sin 2x -π4,下列说法正确的有()A.f (x )与g (x )有相同的零点B.f (x )与g (x )有相同的最大值C.f (x )与g (x )有相同的最小正周期D.f (x )与g (x )的图像有相同的对称轴9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan α+tan β=4,tan αtan β=2+1,则sin (α+β)=.10(全国甲卷数学(文))函数f x =sin x -3cos x 在0,π 上的最大值是.2024年高考真题汇总一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.22(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.783(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.4(2024·山东济宁·三模)已知函数f (x )=(3sin x +cos x )cos x -12,若f (x )在区间-π4,m 上的值域为-32,1,则实数m 的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π125(2024·江西景德镇·三模)函数f x =cos ωx x ∈R 在0,π 内恰有两个对称中心,f π =1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若f α +g α =35,则cos 4α+π3=()A.725B.1625C.-925D.-19256(2024·安徽马鞍山·三模)已知函数f (x )=sin2ωx +cos2ωx (ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54 B.74C.94D.1147(2024·山东临沂·二模)已知函数f x =sin 2x +φ ϕ <π2图象的一个对称中心为π6,0 ,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π29(2024·四川雅安·三模)已知函数f x =sinωx+3cosωx(ω>0),则下列说法中正确的个数是()①当ω=2时,函数y=f x -2logπx有且只有一个零点;②当ω=2时,函数y=f x+φ为奇函数,则正数φ的最小值为π3;③若函数y=f x 在0,π3上单调递增,则ω的最小值为12;④若函数y=f x 在0,π上恰有两个极值点,则ω的取值范围为136,256 .A.1B.2C.3D.410(2024·河北保定·二模)已知tanα=3cosαsinα+11,则cos2α=()A.-78B.78C.79D.-7911(2024·河北衡水·三模)已知sin(3α-β)=m sin(α-β),tan(2α-β)=n tanα,则m,n的关系为()A.m=2nB.n=m+1m C.n=mm-1D.n=m+1m-112(2024·辽宁沈阳·三模)已知tan α2=2,则sin2α2+sinα的值是()A.25B.45C.65D.8513(2024·贵州黔东南·二模)已知0<α<β<π,且sinα+β=2cosα+β,sinαsinβ-3cosαcosβ=0,则tanα-β=()A.-1B.-32C.-12D.12二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-30815(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-1219(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数D.h x 在区间0,2π 上的图象过3个定点21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为1222(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.25(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.。

高中数学三角函数专题复习(内附类型题以及历年高考真题含答案)

高中数学三角函数专题复习(内附类型题以及历年高考真题含答案)


20. ( 08 江苏卷 1) f x cos x
象与 x 轴交于 (6, 0),求这个函数的一个解析式.
8. 已知函数 f(x)=cos4x- 2sinxcosx- sin4x.
(Ⅰ )求 f(x)的最小正周期;
π (Ⅱ )若 x [0, ], 求 f (x)的最大值、最小值.
2
1. 已知 tan
2 ,求( 1) cos cos
sin ;(2) sin 2 sin
sin . cos 2cos2 的值 .
2. 求函数 y 1 sin x cos x (sin x cos x)2 的值域。
3.已知函数 f ( x) 4sin 2 x 2sin 2x 2, x R 。
( 1)求 f ( x) 的最小正周期、 f ( x) 的最大值及此时 x 的集合;
( 2)证明:函数 f ( x) 的图像关于直线 x
()
17. ( 08 浙江卷 2)函数 y (sin x cos x)2 1的最小正周期是
()
A.
2
B.
C.
3
D.
2
2
18. ( 08 浙江卷 7)在同一平面直角坐标系中,函数
y
x cos(
3 )( x [0,2 ]) 的图象和直线 y
1

22
2
交点个数是


A.0
B.1
C.2
D.4
二,填空题
19. ( 08 北京卷 9)若角 的终边经过点 P(1, 2) ,则 tan 2 的值为
π
对称。
8
4. 已知函数 y= 1 cos 2x+ 3 sinx · cosx+1 ( x∈ R) ,

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。

考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。

考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。

考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。

此外,该函数的图像还可以通过一定的变换得到。

一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。

cosθ)(θ∈(π/2,π)),则sin=-cosθ。

3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。

练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。

4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。

练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

(完整版)高考大题-三角函数题型汇总精华(含答案解释)

【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。

近三年三角函数的图像和性质高考真题和答案

近三年三角函数的图像和性质高考真题和答案

近三年三角函数的图像和性质高考真题和答案一、填空题1.(2020·全国卷Ⅲ)关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的最小值为2.其中所有真命题的序号是________.2.(2019·全国卷Ⅰ)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________. 3.(2019·北京高考)函数f (x )=sin 22x 的最小正周期是________.二、选择题1.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2 B.32 C .1 D.122.(2019·全国卷Ⅰ)关于函数f (x )=sin|x |+|sin x |有下述四个结论:①f (x )是偶函数;②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增;③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( )A .①②④B .②④C .①④D .①③3.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( )A .f (x )的最小正周期为π,最大值为3B .f (x )的最小正周期为π,最大值为4C .f (x )的最小正周期为2π,最大值为3D .f (x )的最小正周期为2π,最大值为44.(2018·全国卷Ⅲ)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C .π D .2π三、大题 1.(2019·浙江高考)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.2.(2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值.3.(2017·浙江高考)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎝ ⎛⎭⎪⎫2π3的值; (2)求f (x )的最小正周期及单调递增区间.参考答案填空1.②③2.-43. π2选择BACBC大题1.解:(1)因为f (x +θ)=sin(x +θ)是偶函数,所以对任意实数x 都有sin(x +θ)=sin(-x +θ), 即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=π2或θ=3π2.(2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42 =sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝ ⎛⎭⎪⎫x +π4 =1-cos ⎝ ⎛⎭⎪⎫2x +π62+1-cos ⎝ ⎛⎭⎪⎫2x +π22=1-12⎝ ⎛⎭⎪⎫32cos2x -32sin2x =1-32cos ⎝ ⎛⎭⎪⎫2x +π3. 因此所求函数的值域是⎣⎢⎡⎦⎥⎤1-32,1+32. 2.解:(1)f (x )=12-12cos2x +32sin2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12.由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,即需sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1.所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3. 3.解:(1)由sin 2π3=32,cos 2π3=-12,得f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12=2. (2)由cos2x =cos 2x -sin 2x 与sin2x =2sin x cos x 得f (x )=-cos2x -3sin2x =-2sin ⎝ ⎛⎭⎪⎫2x +π6. 所以f (x )的最小正周期是π.由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).。

高考数学专题复习四-4.3三角函数的图象与性质-高考真题练习(附答案)

高考数学专题复习四-4.3三角函数的图象与性质-高考真题练习(附答案)

4.3三角函数的图象与性质考点一三角函数的图象及其变换1.(多选题)(2020新高考Ⅰ,10,5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A.sin-2xC.cos2-2x答案BC由题图可知,2=2π3-π6=π2,∴T=π,由T=2π|U可知,2π|U=π,∴|ω|=2,不妨取ω=2,则f(x)=sin(2x+φ),又∵,0φ=0,又∵π6是f(x)的下降零点,∴π3+φ=π+2kπ,k∈Z,∴φ=2π3+2kπ,k∈Z,不妨取φ=2π3,则f(x)=sin22=cos22π--2x-2x,故选BC.2.(2016课标Ⅰ文,6,5分)将函数y=2sin2+的图象向右平移14个周期后,所得图象对应的函数为()A.y=2sin2B.y=2sin2C.y=2sin2tD.y=2sin2t答案D该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin2t2t故选D.易错警示三角函数图象的平移变换中,“左加右减”是对x而言的,将x变为x-π4,而不是将2x变为2x-π4.评析本题主要考查三角函数图象的平移变换,注意“左加右减”仅针对x.3.(2016四川理,3,5分)为了得到函数y=sin2t,只需把函数y=sin2x的图象上所有的点()A.向左平行移动π3个单位长度B.向右平行移动π3个单位长度C.向左平行移动π6个单位长度D.向右平行移动π6个单位长度答案D将y=sin2x的图象向右平行移动π6个单位长度得到y=sin2=sin2t,故选D.评析将y=sin2t y=sin2t.4.(2016北京理,7,5分)将函数y=sin,t向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin2x的图象上,则()A.t=12,s的最小值为π6的最小值为π6C.t=12,s的最小值为π3的最小值为π3答案A点,t在函数y=sin2t,∴t=sin2×π4=12.函数y=sin的图象向左平移π6个单位长度即可得到函数y=sin2x的图象,故s的最小值为π6.5.(2015陕西理,3,5分)如图,某港口一天6时到18时的水深变化曲线近似满足函数+φ+k,据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案C因为函数+φ+k的最小值为2,所以-3+k=2,得k=5,故这段时间水深的最大值为3+5=8(m),选C.评析在解答应用题时,正确理解函数模型中各变量的实际意义是解题的关键.在形如y=Asin(ωx+φ)+k 的函数模型中,往往是由函数图象的最高点和最低点的纵坐标来确定A,k的值.6.(2014课标Ⅰ理,6,5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图象大致为()答案C由题图可知:当x=π2时,OP⊥OA,此时f(x)=0,排除A、D;当x∈π2,OM=cosx,设点M到直线OP 的距离为d,则O=sinx,即d=OMsinx=sinxcosx,∴f(x)=sinxcosx=12sin2x≤12,排除B,故选C.7.(2012课标文,9,5分)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4答案A由题意得2π=254π4,∴ω=1,∴f(x)=sin(x+φ),∴π4+φ=kπ+π2(k∈Z),φ=kπ+π4(k∈Z),又0<φ<π,∴φ=π4,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.8.(2016课标Ⅱ,7,5分)若将函数y=2sin2x的图象向左平移π12个单位长度,则平移后图象的对称轴为()A.x=χ2-π6(k∈Z)B.x=χ2+π6(k∈Z)C.x=χ2-π12(k∈Z)D.x=χ2+π12(k∈Z)答案B将函数y=2sin2x的图象向左平移π12个单位长度得到函数y=2sin2π122π6象,由2x+π6=kπ+π2(k∈Z),可得x=χ2+π6(k∈Z).则平移后图象的对称轴为x=χ2+π6(k∈Z),故选B.易错警示将y=2sin2x的图象向左平移π12个单位长度,应该得到y=2sin2π12,而不是y=2sin2π12.9.(2022浙江,6,4分)为了得到函数y=2sin3x的图象,只要把函数y=2sin3π5)A.向左平移π5个单位长度B.向右平移π5个单位长度C.向左平移π15个单位长度D.向右平移π15个单位长度答案D因为y=2sin3=2sin3y=2sin3π15个单位长度,可以得到y=2sin3x的图象,故选D.10.(2022全国甲文,5,5分)将函数f(x)=sin Bω>0)的图象向左平移π2个单位长度后得到曲线C,若C 关于y轴对称,则ω的最小值是() A.16 B.14 C.13 D.12答案C设平移后的曲线C对应的函数为y=g(x),则g(x)=sin=sin B+π2又曲线C关于y轴对称,∴π2+π3=π2+kπ(k∈Z),∴ω=2k+13(k∈Z).又ω>0,∴ωmin=13.故选C.11.(多选)(2020新高考Ⅰ,10,5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A.sinB.sin2C.cos2D.cos−22π3−π6=π2,∴T=π,由Tπ,∴|ω|=2,不妨取ω=2,则f(x)=sin(2x+φ),答案BC由题图可知,0,∴=0,又∵π6是f(x)的下降零点,∴π3+φ=π+2kπ,k∈Z,∴φ=2π3+2kπ,k∈Z,不妨取φ=2π3,则f(x)=sin2=sin2=cos2f(x)=sin2=sinπ−2=2,故选BC.12.(2021全国甲文,15,5分)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则=.2析式即可求出解析02在f(x)的图象上,∴34=13π12−π3=3π4,则T=π,所以|ω|=2π=2,不妨取ω=2,则函数f(x)=2cos(2x+φ2代入得,2×13π12+φ=2kπ,k∈Z,解得φ=-13π6+2kπ,k∈Z,∴=2cos2×π2−13π6+2χ=−3,k∈Z.13.(2016课标Ⅲ,14,5分)函数y=sinx-3cosx的图象可由函数y=sinx+3cosx的图象至少向右平移个单位长度得到.答案2π3解析设f(x)=sinx-3cosx=2sin+53π,g(x)=sinx+3cosx=2sin将g(x)的图象向右平移φ(φ>0)个单位长度后得到函数g(x-φ)=2sin t=2sin的图象,所以x-φ+π3=2kπ+x+5π3,k∈Z,此时φ=-2kπ-4π3,k∈Z,当k=-1时,φ有最小值,为2π3.14.(2015湖南文,15,5分)已知ω>0,在函数y=2sinωx与y=2cosωx的图象的交点中,距离最短的两个交点的距离为23,则ω=.答案π2解析由=2sinB,消去y,得sinωx-cosωx=0,即2sin B-解得x=χ+π4,k∈Z.取k=0,1,,2,-2,又两交点的距离为23,+(2+2)2=(23)2,解得ω=π2.15.(2014重庆文,13,5分)将函数f(x)=sin(ωx+φ)>0,-π2≤φ<的一半,纵坐标不变,再向右平移π6个单位长度得到y=sinx的图象,则=.答案解析y=sinx y=sin2析式即可求出解析02在f(x)的图象上,∴34=13π12−π3=3π4,则T=π,所以|ω|=2π=2,不妨取ω=2,则函数f(x)=2cos(2x+φ2代入得,2×13π12+φ=2kπ,k∈Z,解得φ=-13π6+2kπ,k∈Z,∴=2cos2×π2−13π6+2χ=−3,k∈Z.13.(2016课标Ⅲ,14,5分)函数y=sinx-3cosx的图象可由函数y=sinx+3cosx的图象至少向右平移个单位长度得到.答案2π3解析设f(x)=sinx-3cosx=2sin+53π,g(x)=sinx+3cosx=2sin将g(x)的图象向右平移φ(φ>0)个单位长度后得到函数g(x-φ)=2sin t=2sin的图象,所以x-φ+π3=2kπ+x+5π3,k∈Z,此时φ=-2kπ-4π3,k∈Z,当k=-1时,φ有最小值,为2π3.14.(2015湖南文,15,5分)已知ω>0,在函数y=2sinωx与y=2cosωx的图象的交点中,距离最短的两个交点的距离为23,则ω=.答案π2解析由=2sinB,消去y,得sinωx-cosωx=0,即2sin B-解得x=χ+π4,k∈Z.取k=0,1,,2,-2,又两交点的距离为23,+(2+2)2=(23)2,解得ω=π2.15.(2014重庆文,13,5分)将函数f(x)=sin(ωx+φ)>0,-π2≤φ<的一半,纵坐标不变,再向右平移π6个单位长度得到y=sinx的图象,则=.答案解析y=sinx y=sin即=sinπ4=16.(2013课标Ⅱ文,16,5分)函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin2,则φ=.答案56π解析令y=f(x)=cos(2x+φ),将其图象向右平移π2个单位后得f=cos2t2+φ=cos(2x+φ-π)=sin(2x+φ-π)+π2=sin2x+φ-π2,因为与y=sin2+图象重合,所以φ-π2=π3+2kπ(k∈Z),所以φ=2kπ+56π(k∈Z),又-π≤φ<π,所以φ=56π.17.(2011浙江文,18,14分)已知函数+φ,x∈R,A>0,0<φ<π2.y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(1)求f(x)的最小正周期及φ的值;(2)若点R的坐标为(1,0),∠PRQ=2π3,求A的值.解析(1)由题意得,T=2ππ3=6.因为P(1,A)在+φ的图象上,所以φ=1.又因为0<φ<π2,所以φ=π6.,-A).(2)设点Q的坐标为(x由题意可知π3x0+π6=3π2,得x0=4,所以Q(4,-A).连接PQ,在△PRQ中,∠PRQ=2π3,由余弦定理得cos∠PRQ=B2+R2-P22B·B=-12,解得A2=3.又A>0,所以A=3.评析本题主要考查三角函数的图象与性质、三角运算等基础知识.在(2)中,求出点Q 坐标,根据△PRQ 的边角关系,列出关于A 的方程是求解关键.考点二三角函数的性质及其应用1.(2018课标Ⅲ文,6,5分)函数f(x)=tan1+tan 2x的最小正周期为()A.π4B.π2C.πD.2π答案C 本题考查三角函数的周期.解法一:f(x)的定义域为Ux ≠kπ+2,k ∈Z .f(x)=sincos 1+sin cos2=sinx·cosx=12sin2x,∴f(x)的最小正周期T=2π2=π.解法二:f(x+π)=tan(rπ)1+tan 2(x+π)=tan 1+tan 2x =f(x),∴π是f(x)的周期.f π2=tan r π21+tan 2r π2,tan +π2=sin r π2cos r π2=cos -sin =-1tan ,∴f π2=-tan1+tan 2x ≠f(x),∴π2不是f(x)的周期,∴π4也不是f(x)的周期.故选C.方法总结函数周期的求法:(1)定义法:若f(x+T)=f(x),T≠0,则T 是f(x)的一个周期.(2)若T 是函数y=f(x)的周期,则kT(k∈Z 且k≠0)也是y=f(x)的周期.(3)若定义域内都有f(x+a)=-f(x)或f(x+a)=1op (f(x)≠0)或f(x+a)=-1op (a 是常数且a≠0,f(x)≠0),则f(x)是以2|a|为周期的周期函数.(4)若f(x)的图象关于直线x=a 和x=b 对称,则2|a-b|是f(x)的一个周期;若f(x)的图象关于点(a,0),(b,0)对称,则2|a-b|是f(x)的一个周期;若f(x)关于点(a,0)和直线x=b 对称,则4|a-b|是f(x)的一个周期.2.(2018课标Ⅰ文,8,5分)已知函数f(x)=2cos 2x-sin 2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4答案B本题主要考查三角恒等变换及三角函数的性质.f(x)=2cos2x-sin2x+2=2(1-sin2x)-sin2x+2=4-3sin2x=4-3×1−cos22=52+3cos22,∴f(x)的最小正周期T=π,当cos2x=1时,f(x)取最大值,为4.故选B.解题关键解题关键是通过三角恒等变换化简函数解析式3.(2017课标Ⅱ文,3,5分)函数f(x)=sin2+3()A.4πB.2πC.πD.π2答案C本题考查三角函数的性质.由题意得ω=2,所以函数f(x)=sin2T=2π=π.故选C.4.(2017天津,理7,文7,5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若且f(x)的最小正周期大于2π,则()A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24答案A的最小正周期大于2π,∴4=11π8-5π8=3π4,得T=3π,则ω=2π=23,又5π8+φφ=1.∴5π12+φ=2kπ+π2,k∈Z,∴φ=2kπ+π12,k∈Z.∵|φ|<π,∴φ=π12,故选A.易错警示根据f(x)的最小正周期T>2π,可知14T=11π8-5π8=3π4,得T=3π.若不注意已知条件,则容易出现34T=3π4,得T=π,从而造成错误.思路分析由三角函数的图象(图略)可知4=11π8-5π8=3π4,得T=3π,ω=23,,2代入y=f(x)中解出φ的值即可.5.(2017山东文,7,5分)函数y=3sin2x+cos2x的最小正周期为()A.π2B.2π3C.πD.2π答案C本题考查三角函数辅助角公式及三角函数的性质.y=3sin2x+cos2x=2sin2从而最小正周期T=2π2=π.6.(2017课标Ⅲ文,6,5分)函数f(x)=15sin+cos()A.65B.1C.35D.15答案A∵f(x)=15sin+cos tcos cosx+12sinx=35sinx+5=35×2sin=65sin∴f(x)的最大值为65.故选A.一题多解∵cos t-x-x x,∴f(x)=65sin max=65.故选A.7.(2016课标Ⅱ文,11,5分)函数-x的最大值为()A.4B.5C.6D.7答案B f(x)=1-2sin2x+6sinx=-2sint+112,当sinx=1时,f(x)取得最大值5,故选B.思路分析利用二倍角的余弦公式及诱导公式将-x转化为关于sinx的二次函数,通过配方来求最值,注意不要忘记sinx∈[-1,1].8.(2016山东理,7,5分)函数f(x)=(3sinx+cosx)(3cosx-sinx)的最小正周期是()A.π2B.πC.3π2D.2π答案B∵f(x)=(3sinx+cosx)(3cosx-sinx)=4sin2,∴T=2π2=π,故选B.评析本题主要考查辅助角公式及三角恒等变换,属中档题.9.(2016浙江,5,5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关答案B f(x)=sin2x+bsinx+c,若b=0,则f(x)=sin2x+c=12(1-cos2x)+c,此时f(x)的周期为π;若b≠0,则f(x)的周期为2π,所以选B.10.(2015安徽理,10,5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)答案A∵ω>0,∴T=2π=π,∴ω=2.又即φ=-1,得φ+4π3=2kπ+3π2,k∈Z,即φ=2kπ+π6,k∈Z,又∵φ>0,∴可取f(x)=Asin2,∴f(2)=Asin4-4+,f(0)=Asinπ6.∵π<4+π6<3π2,∴f(2)<0.∵-7π6<-4+π6<-π,且y=sinx在-7π6,-π上为减函数,∴sin-4+-=sinπ6,且sin-4+从而有0<f(-2)<f(0).故有f(2)<f(-2)<f(0).评析本题考查三角函数的周期性、单调性、最值和三角函数值的大小比较.准确判断4+π6与-4+π6的范围是解题的关键.11.(2015课标Ⅰ理,8,5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.χ-14B.2χ-14C.t14,kD.2t14,2k答案D由题图可知2=54-14=1,所以T=2.结合题图可知,在-34的一个周期)内,函数f(x)的单调递减区间为-14由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为2t14,2k故选D.12.(2014课标Ⅰ文,7,5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos2,④y=tan,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③答案A ①y=cos|2x|=cos2x,最小正周期为π;②由图象知y=|cosx|的最小正周期为π;③y=cos 2T=2π2=π;④y=tan 2t T=π2.因此选A.评析本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图象判断其最小正周期.13.(2012课标理,9,5分)已知ω>0,函数f(x)=sin B ,π单调递减,则ω的取值范围是()2C. D.(0,2]答案A 由π2<x<π得χ2+π4<ωx+π4<ωπ+π4,又y=sinα32π上递减,π4≥π2,+π4≤32π,解得12≤ω≤54,故选A.评析本题考查了三角函数的单调性,考查了运用正弦函数的减区间求参数的问题.14.(2011课标理,11,5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)>π,且f(-x)=f(x),则()A.f(x)在0,B.f(x)C.f(x)在0,D.f(x)答案A f(x)=sin(ωx+φ)+cos(ωx+φ)=2sin ωx+φ+π4,∵周期T=2π=π,∴ω=2.又f(-x)=f(x),即f(x)为偶函数,∴φ+π4=kπ+π2,φ=kπ+π4,k∈Z.又|φ|<π2,∴φ=π4,∴f(x)=2sin 2=2cos2x,易得f(x)在,故选A.评析本题考查三角公式和三角变换,考查三角函数y=Asin(ωx+φ)的单调性、奇偶性的判定,属中等难度试题.15.(2011课标文,11,5分)设函数f(x)=sin 2+cos 2+则()A.y=f(x)在,其图象关于直线x=π4对称B.y=f(x)在,其图象关于直线x=π2对称C.y=f(x)在,其图象关于直线x=π4对称D.y=f(x)在,其图象关于直线x=π2对称答案D f(x)=sin2+cos2=2·sin2=2cos2x,其部分图象如图.故选D.评析本题考查三角恒等变换、诱导公式及三角函数的图象等知识,考查学生综合应用三角知识分析和解决问题的能力,属中等难度试题.16.(2016课标Ⅰ,12,5分)已知函数f(x)=sin(ωx+φ)>0,|U,x=-π4为f(x)的零点,x=π4为y=f(x)图象的对称轴,且f(x),则ω的最大值为()A.11B.9C.7D.5答案B依题意,有·-+φ=mπ,·π4+φ=nπ+π2(m、n∈Z),∴=2(tp+1, =2(rp+14又|φ|≤π2,∴m+n=0或m+n=-1.当m+n=0时,ω=4n+1,φ=π4,由f(x),得π≥5π36-π18,∴ω≤12,取n=2,得ω=9,f(x)=sin9.当m+n=-1时,φ=-π4,ω=4n+3,取n=2,得ω=11,f(x)=sin此时,当536π时,11x-π4∈2318π,f(x)不单调,不合题意.故选B.17.(2021北京,7,4分)已知函数f(x)=cos x-cos2x,则该函数为()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为98答案D f(x)的定义域为R,关于原点对称,且f(-x)=cos(-x)-cos(-2x)=cos x-cos2x=f(x),所以f(x)为偶函数.f(x)=cos x-cos2x=cos x-(2cos2x-1)=-2cos2x+cos x+1=-2cos+98,当cos x=14时,f(x)max=98.故选D.解题指导:先判断函数的奇偶性,再借助二倍角的余弦公式将f(x)=cos x-cos2x转化为关于cos x的二次函数,进而在[-1,1]范围内求二次函数的最值.18.(2021全国乙文,4,5分)函数f(x)=sin3+cos3的最小正周期和最大值分别是() A.3π和2 B.3π和2 C.6π和2 D.6π和2答案C解题指导:先对函数f(x)进行三角恒等变换,再利用三角函数的周期公式、求值域的方法进行求解.解析由题意知:f(x)=sin3+cos3=3cos=2sin T=2π13=6π;当,即x=34π+6kπ,k∈Z时,f(x)取最大值2,故选C.易错警示对三角恒等变换公式不熟练,不能将函数化成y=A sin(ωx+φ)(A>0,ω>0)的形式,导致后面无法求解.19.(2021新高考Ⅰ,4,5分)下列区间中,函数f(x)=7sin()A.0,B.πC.π,D.2π答案A解题指导:由三角函数的单调递增区间表示出f(x)=7sin x 的取值范围,结合选项分析即可.解析f(x)=7sin令2kπ-π2≤−π6≤2kπ+π2,k∈Z,解得2kπ-π3≤x≤2kπ+2π3,k∈Z,令k=0,得-π3≤≤2π3.故选A.20.(2022北京,5,4分)已知函数f(x)=cos2x-sin2x,则()A.f(x)在−π2B.f(x)在−π4C.f(x)在D.f(x答案C f(x)=cos2x-sin2x=cos2x,令2kπ<2x<2kπ+π,k∈Z,解得kπ<x<kπ+π2,k∈Z,则f(x)的单调递减区间为χ,χ+k∈Z;令2kπ-π<2x<2kπ,k∈Z,解得kπ-π2<x<kπ,k∈Z,则f(x)的单调递增区间为χ−π2,χ,k∈Z.对于A,f(x)在−π2,−A错误;对于B,f(x)在−π0上单调递增,在B错误;对于C,f(x)在0,C正确;对于D,f(x D错误.故选C.21.(2022新高考Ⅰ,6,5分)记函数f(x)=sin B b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象2中心对称,则() A.1 B.32 C.52 D.3答案A∵2π3<T<π,ω>0,∴2π3<2π<π,∴2<ω<3①.又y=f(x2中心对称,∴=2,b3π2+π4=χ(∈Z),从而ω=2316(k∈Z)②,由①②知ω=52(取k=4),∴f(x),∴f=sin32π+2=1.22.(2021全国乙理,7,5分)把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π个单位长度,得到函数y=sin f(x)=()B.+C.sin2D.2答案B将函数y=sinπ3个单位长度可得函数y=sin=sin+象,再将该函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,可得函数y=f(x)的图象,则f(x)B.易错警示(1)忽略图象的平移规律:“左加右减”,从而错选A;(2)对横坐标伸长到原来的2倍理解不清,误认为是x的系数乘2,从而错选D.23.(多选)(2022新高考Ⅱ,9,5分)已知函数f(x)=sin(2x+φ)(0<φ<0中心对称,则()A.f(x)在区间0,12B.f(x)在区间−π12C.直线x=7π6是曲线y=f(x)的对称轴D.直线y x是曲线y=f(x)的切线答案AD 因为f (x 0对称,所以=0,即4π3+φ=k π,k ∈Z,故φ=k π-4π3,k ∈Z .结合0<φ<π,得φ=2π3,所以f (x )=sin 2对于A ,令π2+2k π≤2x +2π3≤3π2+2k π,k ∈Z,解得-π12+k π≤x ≤5π12+k π,k ∈Z,故f (x )的单调递减区间为-π12+k π,5π12+k π,k ∈Z .显然0,⫋−π12+χ,5π12+χ,k ∈Z,故.对于B ,f '(x )=2cos 2令f '(x )=0,得2x +2π3=k π+π2,k ∈Z,即x =χ2−π12,k ∈Z .又因为x ∈−π12x =5π12,故f (x )在区间−π12k ∈Z,故B 错误.对于C ,令2x +2π3=π2+k π,k ∈Z,解得x =-π12+χ2,k ∈Z,故C 错误.对于D ,结合B ,令2cos 2,得2x +2π3=2π3+2k π,k ∈Z 或2x +2π3=4π3+2k π,k ∈Z,解得x =k π,k ∈Z 或x =π3+k π,k ∈Z,故其中一个切点为0,y =f (x )在该点处的切线方程为y x ,即y x ,故D 正确.故选AD .24.(2022全国甲理,11,5分)设函数f (x )=sin B 0,π)恰有三个极值点、两个零点,则ω的取值范围是()答案C 由x ∈(0,π)得ωx +π3∈χf (x )=sin B 0,π)内恰有三个极值点、两个零点,则ωx +π3的取值应包括π2,π,3π2,2π,5π2,所以5π2<ωπ+π3≤3π,解得136<≤83,即ω故选C .25.(2022北京,13,5分)若函数f (x )=A sin x -3cos x 的一个零点为π3,则A =;=.答案1;-2解析由题意知,即A sin π3−3cos π3=0,解得A =1,所以f (x )=sin x -3cos =2sin=2sin=−2sinπ4=−2=−2.26.(2022全国乙理,15,5分)记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T.若f (T )x =π9为f (x )的零点,则ω的最小值为.答案3解析∵T =2π,ω>0,f (T )∴cos×2π+=cosφ∵0<φ<π,∴φ=π6,∴f(x)=cos B又,∴,∴π9+π6=kπ+π2(k∈Z),∴9=+13(k∈Z),∴ω=9k+3(k∈Z).∵ω>0,∴k=0时,ω取得最小值3.27.(2021全国甲理,16,5分)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则满足条件f(x)-f-7π4f(x)-f4π3>0的最小正整数x为.答案2解题指导:首先通过函数图象,确定ω和φ的取值,然后分别求出f−调性确定最小正整数x的值.解析设函数f(x)的最小正周期为T,则3413π12−π3=3π4,解得T=π,π,解得|ω|=2,不妨取ω=2,此时f(x)=2cos(2x+φ).0代入上式,得2π3+=π2+2kπ,k∈Z,∴φ=-π6+2kπ,k∈Z,取φ=-π6,∴f(x)=2cos26∴f−=−7π2=2cosπ3=1,==2cosπ2=0,∴不等式可化为(f(x)-1)f(x)>0,解得f(x)>1或f(x)<0.由f(x)>1,得2cos2,即cos2>12,①由f(x)<0,得cos2,②由①得-π3+2kπ<2x-π6<π3+2kπ,k∈Z,解得-π12+kπ<x<π4+kπ,k∈Z,欲使x为最小正整数,则k=1,此时,11π12<<5π4;由②得π2+2kπ<2x-π6<3π2+2kπ,k∈Z,解得π3+kπ<x<5π6+kπ,k∈Z,欲使x为最小正整数,则k=0,此时,π3<<5π6.综上,最小正整数x为2.方法点拨解本题的关键是能够正确求解f(x)的解析式,然后能结合三角函数的单调性求出x的取值范围.28.(2017课标Ⅱ文,13,5分)函数f(x)=2cosx+sinx的最大值为.答案5解析本题主要考查三角函数的最值.由题意可知f(x)=2cosx+sinx=5sin(x+φ)(tanφ=2),∴f(x)的最大值为5.29.(2015天津文,14,5分)已知函数f(x)=sinωx+cosωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.答案解析由已知得f(x)=2sin B令2kπ-π2≤ωx+π4≤2kπ+π2,k∈Z,由ω>0,得2χ-34π≤x≤2χ+π4, k∈Z,当k=0时,得f(x)的单调递增区间为-3π4所以(-ω,ω)⊆-3π4≤−ω,又y=f(x)的图象关于直线x=ω对称,所以ω2+π4=kπ+π2,k∈Z,解得ω2=kπ+π4,k∈Z,又所以30.(2013课标Ⅰ,理15,文16,5分)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=.答案解析由辅助角公式得cos=5sin(x-φ),其中由x=θ时,f(x)取得最大值得:sin(θ-φ)=1,∴θ-φ=2kπ+π2,k∈Z,即θ=φ+π2+2kπ,∴cosθ=cos评析本题考查了辅助角公式的应用,准确掌握辅助角的含义是解题关键.31.(2018北京文,16,13分)已知函数f(x)=sin2x+3sinxcosx.(1)求f(x)的最小正周期;(2)若f(x)在区间-π3,m上的最大值为32,求m的最小值.解析(1)f(x)=12-12cos2x+=sin2t+12.所以f(x)的最小正周期为T=2π2=π.(2)由(1)知f(x)=sin2t+12.由题意知-π3≤x≤m.所以-5π6≤2x-π6≤2m-π6.要使得f(x)在-π3,m上的最大值为32,即sin2t6-π3,m上的最大值为1.所以2m-π6≥π2,即m≥π3.所以m的最小值为π3.32.(2016山东文,17,12分)设f(x)=23sin(π-x)sinx-(sinx-cosx)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y=g(x)的图象,求.解析(1)f(x)=23sin(π-x)sinx-(sinx-cosx)2=23sin2x-(1-2sinxcosx)=3(1-cos2x)+sin2x-1=sin2x-3cos2x+3-1=2sin+3-1.由2kπ-π2≤2x-π3≤2kπ+π2(k∈Z),得kπ-π12≤x≤kπ+5π12(k∈Z).所以f(x)的单调递增区间是χ-π12,kπ或kt12,k(k∈Z)(2)由(1)知f(x)=2sin+3-1.把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=2sin t+3-1的图象,再把得到的图象向左平移π3个单位,得到y=2sinx+3-1的图象,即g(x)=2sinx+3-1.所以=2sinπ6+3-1=3.方法总结研究三角函数的单调性,首先将函数化为y=Asin(ωx+φ)+h(或y=Acos(ωx+φ)+h)的形式,要视“ωx+φ”为一个整体,另外注意A的正负.评析本题主要考查三角恒等变换及三角函数的性质,考查三角函数图象变换.(1)将函数化为y=Asin(ωx+φ)+h的形式是解题的关键,要视“ωx+φ”为一个整体.(2)三角函数图象变换仅对“x”而言.33.(2016天津理,15,13分)已知函数f(x)=4tanxsinπ2-x·cos x-π3-3.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间-π4.解析(1)f(x)的定义域为Ux≠2+kπ,∈Z.f(x)=4tanxcosxcos-3=4sinxcos-3cos+sin-3=2sinxcosx+23sin2x-3=sin2x+3(1-cos2x)-3=sin2x-3cos2x=2sin2t所以,f(x)的最小正周期T=2π2=π.(2)令z=2x-π3,易知函数y=2sinz的单调递增区间是-π2+2kπ,π2+2kπ,k∈Z.由-π2+2kπ≤2x-π3≤π2+2kπ,得-π12+kπ≤x≤5π12+kπ,k∈Z.设A=-π4,B=U−12+kπ≤≤512∈Z,易知A∩B=-12所以,当x∈-π4,f(x)在区间-π12,在区间-π4.方法总结研究三角函数的各类性质时,首先要将所研究函数利用辅助角公式、降幂扩角公式及两角和差的正弦、余弦公式等价转化为f(x)=Asin(ωx+φ)+b的形式,然后类比y=sinx的性质进行研究.评析本题主要考查两角差的正弦公式和余弦公式、二倍角的正弦公式和余弦公式,三角函数的定义域、最小正周期性、单调性等基础知识.考查运算求解能力.34.(2016北京文,16,13分)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.解析(1)因为f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx=2sin2B分)所以f(x)的最小正周期T=2π2=π.(4分)依题意,π=π,解得ω=1.(6分)(2)由(1)知f(x)=2sin24函数y=sinx的单调递增区间为2χ-π2,2kπ分)由2kπ-π2≤2x+π4≤2kπ+π2(k∈Z),得kπ-3π8≤x≤kπ+π8(k∈Z).(12分)所以f(x)的单调递增区间为χ-3π8,kπ分)易错警示本题函数解析式中含有参数ω,在用倍角公式时要注意转化成“2ωx”,在求单调区间时,也要注意x的系数.评析本题考查了倍角公式、辅助角公式和正弦型函数的单调区间等知识,属中档题.35.(2015天津理,15,13分)已知函数f(x)=sin2x-sin2t(1)求f(x)的最小正周期;(2)求f(x)在区间-π3.解析(1)由已知,有f(x)=1−cos22-sin2-12cos2x=sin2x-14cos2x=12sin2t所以,f(x)的最小正周期T=2π2=π.(2)因为f(x)在区间-π3,在区间-π6,f=-14,f-=-12,f所以,f(x)在区间-π3最小值为-12.36.(2015北京理,15,13分)已知函数f(x)=2sin2cos2-2sin22.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π,0]上的最小值.解析(1)因为=sin所以f(x)的最小正周期为2π.(2)因为-π≤x≤0,所以-3π4≤x+π4≤π4.当x+π4=-π2,即x=-3π4时,f(x)取得最小值.所以f(x)在区间[-π,0]上的最小值为f-37.(2015安徽文,16,12分)已知函数f(x)=(sinx+cosx)2+cos2x.(1)求f(x)的最小正周期;(2)求f(x)在区间0,.解析(1)因为f(x)=sin2x+cos2x+2sinxcosx+cos2x=1+sin2x+cos2x=2sin2所以函数f(x)的最小正周期为T=2π2=π.(2)由(1)的计算结果知,f(x)=2sin2当x∈0,,2x+π4∈由正弦函数y=sinx,当2x+π4=π2,即x=π8时,f(x)取最大值2+1;当2x+π4=5π4,即x=π2时,f(x)取最小值0.综上,f(x)在上的最大值为2+1,最小值为0.评析本题考查三角恒等变换,三角函数的周期性及最值.38.(2015湖北理,17,11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)>的图象时,列表并填入了部分数据,如下表:ωx+φ02π322πx356Asin(ωx+φ)05-50(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对,0,求θ的最小值.解析(1)根据表中已知数据,解得A=5,ω=2,φ=-π6.数据补全如下表:ωx+φ02π322πx123712561312πAsin(ωx+φ)050-50且函数表达式为f(x)=5sin(2)由(1)知f(x)=5sin得g(x)=5sin2+因为y=sinx图象的对称中心为(kπ,0),k∈Z,令2x+2θ-π6=kπ,解得x=χ2+π12-θ,k∈Z.由于函数y=g(x),0中心对称,令χ2+π12-θ=5π12,解得θ=χ2-π3,k∈Z.由θ>0可知,当k=1时,θ取得最小值π6.39.(2014山东理,16,12分)已知向量a=(m,cos2x),b=(sin2x,n),函数f(x)=a·b,且y=f(x)的图象过点,3.(1)求m,n的值;(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.解析(1)由题意知f(x)=a·b=msin2x+ncos2x.因为y=f(x),3,-2,所以3=msinπ6+ncosπ6,-2=Lin4π3ncos4π3,即312+-2=-3212n,解得m=3,n=1.(2)由(1)知f(x)=3sin2x+cos2x=2sin2由题意知g(x)=f(x+φ)=2sin2+2设y=g(x)的图象上符合题意的最高点为(x0,2),由题意知02+1=1,所以x0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y=g(x)得sin2因为0<φ<π,所以φ=π6.因此g(x)=2sin2由2kπ-π≤2x≤2kπ,k∈Z,得kπ-π2≤x≤kπ,k∈Z,所以函数y=g(x)的单调递增区间为χ-π2,kπ,k∈Z.40.(2014重庆理,17,13分)已知函数f(x)=3sin(ωx+φ)>0,-π2≤φ<x=π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若α<求cos+.解析(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω=2π=2.又因为f(x)的图象关于直线x=π3对称,所以2·π3+φ=kπ+π2,k=0,±1,±2,….由-π2≤φ<π2得k=0,所以φ=π2-2π3=-π6.(2)由(1)得=3sin2·2所以sin=14.由π6<α<2π3得0<α-π6<π2,所以cos t6因此cos t=sin t cosπ6+cos sinπ6=14××12=41.(2014四川理,16,12分)已知函数f(x)=sin3(1)求f(x)的单调递增区间;(2)若α是第二象限角=45cos求cosα-sinα的值.解析(1)因为函数y=sinx的单调递增区间为-π2+2kπ,π2+2kπ,k∈Z.由-π2+2kπ≤3x+π4≤π2+2kπ,k∈Z,得-π4+2χ3≤x≤π12+2χ3,k∈Z.所以,函数f(x)的单调递增区间为-π42χ3,π12(2)由已知,有sin=45cos2α-sin2α),所以sinαcosπ4+cosαsinπ4π42α-sin2α).即sinα+cosα=45(cosα-sinα)2(sinα+cosα).当sinα+cosα=0时,由α是第二象限角,知α=3π4+2kπ,k∈Z.此时,cosα-sinα=-2.当sinα+cosα≠0时,有(cosα-sinα)2=54.由α是第二象限角,知cosα-sinα<0,此时综上所述,cosα-sinα=-2或评析本题主要考查正弦型函数的性质,二倍角与和差角公式,简单的三角恒等变换等基础知识,考查运算求解能力,考查分类与整合、化归与转化等数学思想.42.(2014天津理,15,13分)已知函数f(x)=cosx·sin-3cos2(1)求f(x)的最小正周期;(2)求f(x)在闭区间-π4.解析(1)由已知,有cos-3cos2=12sinx·cosx-2=14sin2x-=14sin2x-=12sin2t所以f(x)的最小正周期T=2π2=π.(2)因为f(x)在区间-π4,在区间-π12,f=-14,f-=-12,fπ4=14,所以函数f(x)在闭区间-π4上的最大值为14,最小值为-12.评析本题主要考查两角和与差的正弦公式,二倍角的正弦与余弦公式,三角函数的最小正周期、单调性等基础知识.考查基本运算能力.43.(2014江西理,16,12分)已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈-π2 (1)当a=2,θ=π4时,求f(x)在区间[0,π]上的最大值与最小值;(2)若求a,θ的值.解析(1)当a=2,θ=π4时,f(x)=sin+2cos(sinx+cosx)-2sinx4-x由x∈[0,π],知π4-x∈-3π4故f(x)在[0,π]最小值为-1.(2)由=0,oπ)=1得2θ-sint=1,由θ∈-π2cosθ≠0,解得=−1,=−π6.44.(2013北京文,15,13分)已知函数f(x)=(2cos2x-1)sin2x+12cos4x.(1)求f(x)的最小正周期及最大值;(2)若,π,且求α的值.解析(1)因为f(x)=(2cos2x-1)sin2x+12cos4x=cos2xsin2x+12cos4x=12(sin4x+cos4x)sin4所以f(x)的最小正周期为π2,(2)因为所以sin4因为,π所以4α+π4∈所以4α+π4=5π2.故α=9π16.。

2023届全国高考数学真题分类专项(三角函数)汇编解析(附答案)

2023届全国高考数学真题分类专项(三角函数)汇编解析(附答案)

2023届全国高考数学真题分类专项(三角函数)汇编解析第一节 三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1 ”是“sin cos 0 ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【详细分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解. 【过程解析】当2,0 时,有22sin sin 1 ,但sin cos 0 , 即22sin sin 1 推不出sin cos 0 ;当sin cos 0 时, 2222sin sin cos sin 1 ,即sin cos 0 能推出22sin sin 1 .综上可知,22sin sin 1 是sin cos 0 成立的必要不充分条件. 故选B.2.(2023北京卷13)已知命题:p 若, 为第一象限角,且 ,则tan tan .能说明p 为假命题的一组, 的值为 ; .【详细分析】根据正切函数单调性以及任意角的定义详细分析求解.【过程解析】因为 tan f x x 在π0,2上单调递增,若00π02 ,则00tan tan ,取1020122π,2π,,k k k k Z ,则 100200tan tan 2πtan ,tan tan 2πtan k k ,即tan tan , 令12k k ,则 102012002π2π2πk k k k , 因为 1200π2π2π,02k k ,则 12003π2π02k k , 即12k k ,则 . 不妨取1200ππ1,0,,43k k ,即9ππ,43满足题意. 故答案为:9ππ;43.第二节 三角恒等变换1.(2023新高考I 卷6)过点 0,2 与圆22410x y x 相切的两条直线的夹角为 ,则sin ( )A.1B.4C.4D.4【过程解析】 222241025x y x x y ,所以圆心为 2,0B , 记 0,2A ,设切点为,M N ,如图所示.因为AB ,BM,故AMcos cos2AM MAB AB,sin 2,sin 2sincos2224.故选B.2.(2023新高考I 卷8)已知 1sin 3,1cos sin 6,则 cos 22 ( ) A.79B.19C.19D.79【过程解析】 1sin sin cos cos sin 3,1cos sin 6, 所以1sin cos 2,所以 112sin sin cos cos sin 263, 2221cos 22cos 212sin 1239.故选B.3.(2023新高考II 卷7)已知 为锐角,1cos 4,则sin 2 ( )A.38 B.18 C.34 D.14【过程解析】21cos 12sin 24,所以2231sin 284,则1sin24或1sin 24.因为 为锐角,所以sin02,sin2sin 2故选D. 第三节 三角函数的图像与性质1.(2023新高考II 卷16)已知函数 sin f x x ,如图所示,A ,B 是直线12y 与曲线 y f x 的两个交点,若π=6AB ,则 πf _______.【过程解析】sin y x 的图象与直线12y两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36,解得4 ,所以 sin 4f x x . 再将2π,03代入 sin 4f x x 得 的一个值为2π3 ,即 2πsin 43f x x.所以 2ππsin 4π32f. 2.(2023全国甲卷理科10,文科12)已知 f x 为函数cos 26y x向左平移6 个单位所得函数,则 y f x 与1122y x交点个数为( ) A.1 B.2 C.3 D.4【过程解析】因为函数πcos 26y x向左平移π6个单位可得 sin 2.f x x而1122y x 过10,2 与 1,0两点,分别作出 f x 与1122y x 的图像如图所示,考虑3π3π7π2,2,2222x x x,即3π3π7π,,444x x x 处 f x 与1122y x 的大小关系,结合图像可知有3个交点. 故选C.3.(2023全国乙卷理科6,文科10)已知函数 sin f x x 在区间2,63单调递增,直线6x和23x 为函数 y f x 的图像的两条对称轴,则512f( )A. B.12 C.12 【过程解析】2222362T T,所以 sin 2.f x x又222,32k k Z ,则52,6k k Z .所以5555sin 22sin 121263f k故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列 n a 的公差为23,集合*cos n S a n N ,若 ,S a b ,则ab ( )A.1B.12C.0D.12【过程解析】解法一(利用三角函数图像与性质) 因为公差为23,所以只考虑123,,a a a ,即一个周期内的情形即可. 依题意, cos ,n S a a b ,即S 中只有2个元素, 则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a 时,且2123a a, 所以图像上点的位置必为如图1所示,12,A A 关于x 对称,且1223A A , 则1233a,2433a,32a . 所以11122ab.②当13cos cos a a 时,3143a a, 所以图像上点的位置必为如图2所示,13,A A 关于x 对称,且1343A A , 则133a,3533a,2a .图1图2所以 11122ab. 综上所述,12ab .故选B.解法二(代数法) 11113n a a n d a n, 21cos cos 3a a ,31cos cos 3a a, 由于*cos ,n S a n a b N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a,即113cos 22a a , 解得11cos 2a 或11cos 2a .若11cos 2a ,则1sin a ,3111113cos cos cos 132244a a a a,若11cos 2a,则1sin a ,3111113cos cos cos 13244a a a a, 故131cos cos 2a a ab .②若131111cos cos cos cos sin 322a a a a a,得113cos 22a a , 解得11cos 2a 或11cos 2a .当11cos 2a 时,1sin a ,2111113cos cos cos 132244a a a a,当11cos 2a 时,1sin a ,213cos 144a , 故121cos cos 2a a ab .③若23cos cos a a ,与①类似有121cos cos 2a a ab .综上,故选B.5.(2023北京卷17)已知函数 sin cos cos sin ,0,2f x x x .(1)若 0f ,求 的值; (2)若 f x 在区间2,33上单调递增,且213f,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数 f x 存在,求, 的值.条件①:3f;条件②:13f;条件③: f x 在,23上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【详细分析】(1)把0x 代入()f x 的过程解析式求出sin ,再由π||2即可求出 的值; (2)若选条件①不合题意;若选条件②,先把()f x 的过程解析式化简,根据() f x 在π2π,33上的单调性及函数的最值可求出T ,从而求出 的值;把 的值代入()f x 的过程解析式,由π13f和π||2 即可求出 的值;若选条件③:由() f x 的单调性可知() f x 在π3x 处取得最小值1 ,则与条件②所给的条件一样,解法与条件②相同.【过程解析】(1)因为π()sin cos cos sin ,0,||2f x x x所以 (0)sin 0cos cos 0sin sin 2f , 因为π||2,所以π3. (2)因为π()sin cos cos sin ,0,||2f x x x , 所以 π()sin ,0,||2f x x,所以() f x 的最大值为1,最小值为1 .若选条件①:因为 ()sin f x x 最大值为1,最小值为1,所以π3f无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33上单调递增,且2π13f,π13f, 所以2πππ233T ,所以2πT ,2π1T,所以 ()sin f x x , 又因为π13f ,所以πsin 13,所以ππ2π,32k k Z ,所以π2π,6k kZ ,因为||2 ,所以π6 .所以1 ,π6; 若选条件③:因为() f x 在π2π,33 上单调递增,在ππ,23上单调递减,所以() f x 在π3x处取得最小值1 ,即π13f. 以下与条件②相同.的故选B.第四节 解三角形1.(2023全国甲卷理科16)在ABC △中,2AB ,60BAC,BC D 为BC 上一点,AD 平分BAC ,则AD .【过程解析】如图所示,记,,,AB c AC b BC a由余弦定理可得22222cos606b b,解得1b (负值舍去).由ABC ABD ACD S S S △△△可得,1112sin602sin30sin30222b AD AD b ,解得1212AD b . 2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A.(1)求bc . (2)若cos cos 1a Bb A b,求ABC △面积 .3.(2023全国乙卷理科18)在ABC △中,120BAC ,2AB ,1AC. (1)求sin ABC;(2)若D 为BC 上一点,且90BAD ,求ADC △的面积. 【过程解析】(1)利用余弦定理可得2222cos 14212cos120527BCAC AB AC AB BAC.故BC .又由正弦定理可知sin sin BC ACBAC ABC.故sin sin 14AC BAC ABC BC. (2)由(1)可知tan 5ABC, 在Rt BAD △中,tan 2ADAB ABC故11222ABD S AB AD△, 又11sin 21sin120222ABC S AB AC BAC△, 所以ADC ABC ABD S S S△△△. C5.(2023新高考I 卷17)已知在ABC △中,3A B C , 2sin sin A C B . (1)求sin A ;(2)设=5AB ,求AB 边上的高.【过程解析】(1)解法一 因为3A B C ,所以4A B C C ,所以4C , 2sin()sin()A C A C2sin cos 2cos sin sin cos cos sin A C A C A C A Csin cos 3cos sin A C A Ctan 3tan 3sin 10A C A . 解法二 因为3ABC ,所以4A B C C ,所以4C , 所以4A B ,所以4B A , 故2sin()sin()4A C A ,即2sin cos 2cos sin sin cos cos sin 4444A A A A ,得sin 3cos A A .又22sin cos 1A A , 0,A ,得sin 10A. (2) 若||5AB . 如图所示,设AC 边上的高为BG ,AB 边上的高为CH , ||CH h ,由(1)可得cos 10A ,||||cos ||102AG AB A AB ,||||2BG CG ,所以||AC ,||||2||6||5AC BGCHAB.6.(2023新高考II卷17)记ABC△的内角,,A B C的对边分别为,,a b c,已知ABC△的面,D为BC的中点,且1AD .(1)若π3ADC,求tan B;(2)若228b c,求,b c.【过程解析】(1)依题意,122ADC ABCS S△△,1sin242ADCS AD DC ADC DC△,解得2DC ,2BD .如图所示,过点A作AE BC于点E.因为60ADC,所以12DE,2AE ,则15222BE,所以tan5AEBBE.(2)设ABc,ACb,由极化恒等式得2214AB AC AD BC=,即2114b c=b c,化简得22244b c=b c,GHCBA即cos cos 2BAC bc BAC b c =b c ①,又1sin 2ABC S bc BAC △,即sin bc BAC . ②①得tan BAC 0πBAC 得2π3BAC , 代入①得4bc =,与228b c 联立可得2b c .7.(2023北京卷7)在ABC △中, sin sin sin sin a c A C b A B ,则C ( ) A.6 B.3 C.3 D.6【详细分析】利用正弦定理的边角变换与余弦定理即可得解.【过程解析】因为()(sin sin )(sin sin )a c A C b A B ,所以由正弦定理得()()()a c a c b a b ,即222a c ab b ,则222a b c ab ,故2221cos 222a b c ab C ab ab , 又0πC ,所以π3C . 故选B.。

高考真题——三角函数及解三角形真题(加答案)

高考真题——三角函数及解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。

高考数学专项知识点:三角函数及解三角形(含真题)精选全文完整版

高考数学专项知识点:三角函数及解三角形(含真题)精选全文完整版

专题六三角函数及解三角形知识必备一、任意角、弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=lr (弧长用l 表示)角度与弧度的换算1°=180 rad ;1rad =180°弧长公式弧长l =|α|r 扇形面积公式S =12lr =12|α|r 23.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.若α∈2,0(,则tan α>α>sin α.3.角度制与弧度制可利用180°=πrad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.4.象限角的集合二、同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin cos=tan__α.2.三角函数的诱导公式公式一二三四五六角2k π+α(k ∈Z)π+α-απ-α2-α2+α正弦sin α-sin__α-sin__αsin__αcos__αcos__α余弦cos α-cos__αcos__α-cos__αsin__α-sin__α正切tan αtan__α-tan__α-tan__α口诀函数名不变,符号看象限函数名改变,符号看象限3.常用结论(1)同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.(2)诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指2的奇数倍和偶数倍,变与不变指函数名称的变化.(3)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.三、三角函数的图象及性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),)1,2( ,(π,0),)1,23(,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),)0,2( ,(π,-1),)0,23(,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z)函数y =sin xy =cos xy =tan x图象定义域R R {x |x R x ≠k π+2}值域[-1,1][-1,1]R 周期性2π2ππ奇偶性奇函数偶函数奇函数四、正弦定理余弦定理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a=2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4.在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解5.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等.(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的正切值.[难点正本疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.真题再现1.【2020年高考全国Ⅲ卷文数】已知πsin sin =3 ()1,则πsin =6()A .12B C .23D 【答案】B【解析】由题意可得:13sin sin cos 122,则:3sin cos 122 ,1sin cos 223,从而有:sin coscos sin 663,即sin 63.故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.2.【2020年高考全国Ⅰ卷文数】设函数π()cos()6f x x 在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09,将它代入函数 f x 可得:4cos 096,又4,09是函数 f x 图象与x 轴负半轴的第一个交点,所以4962,解得32 .所以函数 f x 的最小正周期为224332T故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.3.【2020年高考全国Ⅲ卷文数】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =AB .C .D .【答案】C【解析】设,,AB c BC a CA b22222cos 916234933c a b ab C c2221cos sin tan 4299a cb B B B ac 故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.4.【2020年高考全国Ⅲ卷文数】已知函数f (x )=sin x +1sin x,则A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线x 对称D .f (x )的图像关于直线2x对称【答案】D【解析】sin x ∵可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xQ Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x Q 故B 错;()f x 关于直线2x对称,故C 错,D 对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.5.【2020年高考天津】已知函数π()sin(3f x x .给出下列结论:①()f x 的最小正周期为2π;②π(2f 是()f x 的最大值;③把函数sin y x 的图象上所有点向左平移π3个单位长度,可得到函数()y f x 的图象.其中所有正确结论的序号是A .①B .①③C .②③D .①②③【答案】B【解析】因为()sin()3f x x,所以周期22T,故①正确;51()sin(sin 122362f ,故②不正确;将函数sin y x 的图象上所有点向左平移3个单位长度,得到sin(3y x 的图象,故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日( Day ).历史上,求圆周率 的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2 的近似值.按照阿尔·卡西的方法, 的近似值的表达式是A.30303sin tan n n nB.30306sin tan n n nC.60603sin tan n n nD.60606sin tan n n n【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n,每条边长为302sin n,所以,单位圆的内接正6n 边形的周长为3012sin n n,单位圆的外切正6n 边形的每条边长为302tann ,其周长为3012tan n n,303012sin12tan 303026sin tan 2n n n n n n n,则30303sin tan n n n.故选:A.【点睛】本题考查圆周率 的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.7.【2020年新高考全国Ⅰ卷】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x )B .πsin(2)3x C .πcos(26x D .5πcos(2)6x 【答案】BC【解析】由函数图像可知:22362T ,则222T,所以不选A,当2536212x时,1y 5322122k k Z ,解得: 223k k Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x.而5cos 2cos(2)66x x故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2T即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.8.【2020年高考全国Ⅱ卷文数】若2sin 3x ,则cos 2x __________.【答案】19【解析】22281cos 212sin 12()1399x x.故答案为19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.9.【2020年高考江苏】已知2sin ()4 =23,则sin 2 的值是▲.【答案】13【解析】221sin ()cos )sin 2)4222Q 121(1sin 2)sin 2233故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.10.【2020年高考北京】若函数()sin()cos f x x x 的最大值为2,则常数 的一个取值为________.【答案】2(2,2k k Z均可)【解析】因为 cos sin sin 1cos f x x x x,2 ,解得sin 1 ,故可取2.故答案为:2(2,2k k Z均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.11.【2020年高考浙江】已知tan 2 ,则cos 2 _______,πtan(4_______.【答案】35-;13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125,tan 1211tan(41tan 123,故答案为:31,53【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.12.【2020年高考江苏】将函数πsin(32)4y x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是▲.【答案】524x【解析】3sin[2(]3sin(2)6412y x x72()()122242k x k k Z x k Z 当1k 时524x.故答案为:524x【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.13.【2020年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.【答案】542【解析】设 OB OA r ,由题意7AM AN ,12EF ,所以5NF ,因为5AP ,所以45AGP ,因为//BH DG ,所以45AHO ,因为AG 与圆弧AB 相切于A 点,所以OA AG ,即OAH △为等腰直角三角形;在直角OQD △中,52OQ r,72DQ r ,因为3tan 5OQ ODC DQ ,所以212522r r ,解得r等腰直角OAH △的面积为1142S;扇形AOB 的面积 2213324S,所以阴影部分的面积为1215422S S.故答案为:542.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.14.【2020年高考全国Ⅰ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC △的面积;(2)若sin A C =2,求C .【解析】(1)由题设及余弦定理得2222832cos150c c ,解得2c (舍去),2c ,从而a .ABC △的面积为12sin1502.(2)在ABC △中,18030A B C C ,所以sin sin(30)sin(30)A C C C C ,故sin(30)2C.而030C ,所以3045C ,故15C .【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考全国Ⅱ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A .(1)求A ;(2)若3b c a ,证明:△ABC 是直角三角形.【解析】(1)由已知得25sin cos 4A A ,即21cos cos 04A A .所以21(cos 02A ,1cos 2A .由于0A ,故3A .(2)由正弦定理及已知条件可得sin sin B C A.由(1)知23B C ,所以2sin sin()33B B .即11sin 222B B ,1sin()32B .由于03B ,故2B .从而ABC △是直角三角形.【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.16.【2020年高考江苏】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B .(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,45a c B ,由余弦定理2222cos b a c ac B ,得29223455b ,所以b 在ABC △中,由正弦定理sin sin b c B C ,得=sin 45sin C,所以sin C(2)在ADC △中,因为4cos 5ADC ,所以ADC 为钝角,而180ADC C CAD ,所以C 为锐角.故cos C 则sin 1tan cos 2C C C .因为4cos 5ADC,所以3sin 5ADC ,sin 3tan cos 4ADC ADC ADC .从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C .【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.【2020年高考天津】在ABC △中,角,,A B C 所对的边分别为,,a b c.已知5,a b c .(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求πsin(24A 的值.【解析】(Ⅰ)在ABC △中,由余弦定理及5,a b c222cos 22a b c C ab .又因为(0,π)C ,所以π4C .(Ⅱ)在ABC △中,由正弦定理及π,4C a c sin 213sin 13a C A c .(Ⅲ)由a c 及213sin 13A,可得313cos 13A ,进而2125sin 22sin cos ,cos 22cos 11313A A A A A.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A .【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.18.【2020年高考北京】在ABC 中,11a b ,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A;条件②:19cos ,cos 816A B .注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】选择条件①(Ⅰ)17,cos 7c A ∵,11a b 22222212cos (11)72(11)7()7a b c bc A a a a ∵8a(Ⅱ)1cos(0,)sin77A A A∵,由正弦定理得:7sinsin sin sin2437a c CA C C11sin(118)8222S ba C选择条件②(Ⅰ)19cos,cos,(0,)816A B A B∵sin816A B由正弦定理得:6sin sin816a b aA B(Ⅱ)91sin sin()sin cos sin cos8161684C A B A B B A11sin(116)62244S ba C【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.19.【2020年高考浙江】在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知2sin0b A .(Ⅰ)求角B的大小;(Ⅱ)求cos A+cos B+cos C的取值范围.【解析】(Ⅰ)由正弦定理得2sin sinB A A,故sin2B ,由题意得π3B .(Ⅱ)由πA B C得2π3C A,由ABC△是锐角三角形得ππ(,62A .由2π1cos cos()sin322C A A A得11π113cos cos cos sin()(,]2226222A B C A A A.故cos cos cosA B C的取值范围是13(,]22.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.20.【2020年新高考全国Ⅰ卷】在①ac ,②sin 3c A ,③c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C 和余弦定理得22222a b c ab .由sin A B 及正弦定理得a .222b c .由①ac ,解得1a b c .因此,选条件①时问题中的三角形存在,此时1c .方案二:选条件②.由6C 和余弦定理得2222a b c ab .由sin A B 及正弦定理得a .22232 ,由此可得b c ,6B C ,23A .由②sin 3c A ,所以6c b a .因此,选条件②时问题中的三角形存在,此时c 方案三:选条件③.由6C 和余弦定理得22222a b c ab .由sin A B 及正弦定理得a .2222 ,由此可得b c .由③c ,与b c 矛盾.因此,选条件③时问题中的三角形不存在.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

三角函数部分高考题(带答案)

三角函数部分高考题(带答案)

三角函数部分高考题1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1BCD .23.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x4.若02,sin απαα≤≤>,则α的取值范围是:( C )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭5.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是C (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈6.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则D(A )c b a << (B )a c b << (C )a c b << (D )b a c <<7.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π8.已知cos (α-6π)+sin α=的值是则)67sin(,354πα- (A )-532 (B )532 (C)-54 (D) 549.(湖北)将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA.π125 B. π125- C. π1211 D. 1112π-10.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C )A.1B.12+ C.3211.函数f(x)02x π≤≤) 的值域是B(A )] (B)[-1,0] (C )](D )]12.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为AA.2πB.πC.-πD.-2π 13.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )4 14.若,5sin 2cos -=+a a 则a tan =B (A )21 (B )2 (C )21- (D )2- 15.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2C. 1/2D. 1/316.0203sin 702cos 10--=( C )A.12C. 2 17.函数f (x )=3sin x +sin(?2+x )的最大值是 218.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π. 19.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= .10 20.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .π 21.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.14322.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.23.在ABC △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.解:(Ⅰ)由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··········· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ···························· 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =.所以sin 11sin 2AB A BC C ⨯==. ························10分24.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 25.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。

三角函数 高考数学真题分类大全 专题06解析

三角函数  高考数学真题分类大全 专题06解析

专题6三角函数第一部分近3年高考真题一、选择题1.(2021·北京高考真题)函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值()A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98【答案】D【解析】由题意,()()()()cos cos 2cos cos 2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98.故选:D.2.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .65【答案】C【解析】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .3.(2021·全国高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和2【答案】C【解析】由题,()34x f x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为2613T pp ==,最大值为.故选:C .4.(2021·全国高考真题(文))若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .1515B .55C .53D .153【答案】A【解析】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,15cos 4α∴==,sin 15tan cos 15ααα∴==.故选:A.5.(2021·全国高考真题(理))把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x x ⎛⎫-⎪⎝⎭B .sin 212x π⎛⎫+⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+⎪⎝⎭【答案】B【解析】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=-⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=-⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.6.(2021·全国高考真题(文))22π5πcos cos 1212-=()A .12B .3C .2D .2【答案】D【解析】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos26π==.故选:D.7.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A【解析】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.8.(2020·天津高考真题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是()A .①B .①③C .②③D .①②③【答案】B【解析】因为()sin(3f x x π=+,所以周期22T ππω==,故①正确;51()sin(sin 122362f ππππ=+==≠,故②不正确;将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象,故③正确.故选:B.9.(2020·北京高考真题)2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒,所以,单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒,303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选:A.10.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C11.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S取最大值,此时∠BOP =∠AOP =π-β,面积S 的最大值为2222βππ⨯⨯+S △POB +S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅.故选B .12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④【答案】D【解析】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦,∵f (x )在[0,2]π有且仅有5个零点,∴5265πππωπ≤+<,∴1229510ω≤<,故④正确,由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时,令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确;因此由选项可知只需判断③是否正确即可得到答案,当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦,若f (x )在0,10π⎛⎫⎪⎝⎭单调递增,则(2)102ωππ+<,即<3ϖ,∵1229510ω≤<,故③正确.故选D .13.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭()A .2-B.CD .2【答案】C【解析】因为()f x 为奇函数,∴(0)sin 0=,0,f A k k ϕϕπ==∴=,0ϕ=;又12()sin ,2,122g x A x T πωπω=∴==2ω=,2A =,又(4g π=∴()2sin 2f x x =,3()8f π=故选C .14.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为()A.B.C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D .15.(2020·海南高考真题)下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈,解得:()223k k ϕπ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭故选:BC.二、填空题16.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___.【答案】512π(满足5,12k k Z πθπ=+∈即可)【解析】 (cos ,sin )P θθ与cos ,sin 66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称,即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈,则5,12k k Z πθπ=+∈,当0k =时,可取θ的一个值为512π.故答案为:512π(满足5,12k k Z πθπ=+∈即可).17.(2021·全国高考真题(文))已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【答案】【解析】由题意可得:31332,,241234T T Tπππππω=-=∴===,当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈,令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 62266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:.18.(2021·全国高考真题(理))已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【解析】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=-⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.19.(2020·浙江高考真题)已知圆锥的侧面积(单位:2cm )为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:120.(2020·海南高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥,即OAH △为等腰直角三角形;在直角OQD △中,252OQ r =-,272DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以3252212522r r -=-,解得22r =等腰直角OAH △的面积为11222242S =⨯=;扇形AOB 的面积(221322324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.21.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.三、解答题22.(2021·浙江高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)212+.【解析】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝,所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin sin cos cos 22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222sin 22222242x x x x x π-⎛⎫=+=-+=-+⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值212+.23.(2020·浙江高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )313,22⎛⎤ ⎥ ⎝⎦【解析】(I )由2sin b A =结合正弦定理可得:32sin sin ,sin 2B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos sin 222A A A =-++311sin cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin ,132A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,1313sin ,2232A π⎛⎤+⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是313,22⎛⎤+ ⎥⎝⎦.24.(2020·全国高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.第二部分模拟训练1.古希腊的数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分割率,黄金分割率的值也可以用2sin18︒表示.若实数n 满足224sin 184n ︒+=,则221sin188sin 18n ︒︒-=()A .14B .12C.4D.2【答案】A【解析】根据题中的条件可得()22222221sin181sin181sin181sin188sin 188sin 184cos 188sin 368sin 1844sin 18n -︒-︒-︒-︒===︒︒⨯︒︒︒-︒()1sin181sin1811cos 7241cos 72482-︒-==-︒︒︒=-⨯.故选:A .2.已知函数()()2sin f x x ωϕ=+,(0,2πωϕ><的部分图象如图所示,()f x 的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将()f x 的图象向左平移712π个单位得到()g x 的图象,则函数()g x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A.BC.D .1-【答案】A【解析】由图象知,5244T πππ=-=,∴2T π=,则1ω=,∴()()2sin f x x ϕ=+,将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将()f x 的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴()g x 在30,4π⎡⎤⎢⎣⎦上的最小值为32cos 4π=,故选:A3.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则ABCD S 的最大值是()A .233B .CD .23【答案】A【解析】如图,记COP α∠=,在Rt OBC 中,2cos OB α=,2sin BC α=,在Rt OAD 中,3323sin 333OA DA BC α===,所以232cos sin 3AB OB OA αα=-=-,设矩形ABCD 的面积为S,2(2cos )2sin 34323234sin cos 2sin 2cos 2333sin(2)363S AB BC ααααααααπα=⋅=-⋅=-=+-=+-由03πα<<,所以当262ππα+=,即6πα=时,S 取最大值,为432323333-=,故选:A.4.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.图中的ABCD 为矩形,弧CED 为一段圆弧,其尺寸如图所示,则截面(图中阴影部分)的面积为()A.210cm 3π⎛+⎝B.28cm 3π⎛+⎝C.2(4π+D.2(2π+【答案】B 【解析】如图,由图可知,球半径2r cm =,设阴影部分面积为1S ,则截面面积为1ABCD S S S S =+-圆矩形截面,()224S r cm ππ==圆,)21233ABCD S cm =⨯=矩形,3AB CD cm ==,连接CD ,作OF CD ⊥于F 点,2OD OC r cm === ,F ∴为CD 中点,3,2F D D O =∴=,3cos 2DF ODF OD ∴∠==,故30ODF ︒∠=,60DOF ∴∠=︒,∴扇形ODC 的面积()22114242233S r cm ππα==⨯⨯⨯=扇形,)21131322ODC S DC OF cm =⋅=⨯= ,)21433ODC ODC S S S cm π∴=-=扇形)2484333333S cm πππ∴=+-+=+截面,故选:B5.定义在R 上的函数()f x 满足:()()ln 2f x f x =--,函数()()2sin cos xx x f x g π++=,若()()1ln2a g e a =∈R ,则()a g e -=______.【答案】2ln 2【解析】∵()()ln 2f x f x =--,∴()()ln 2f x f x +-=,故()()ln 2aaf e f e +-=;令()2sin cos xh x x π=+,则()()()g x f x h x =+,而()()2sin cos xx h x h x π-=+-=-,即()()0h x h x +-=,该函数是奇函数,故()()0a a h e h e +-=;故()()()()()()()()()a a a a a a aa a g e g e f e h e f e f e f e h e h e ⎡⎤⎡⎤+-=++-=+-++-⎣⎦⎣⎦ln 20ln 2=+=,又∵()1ln ln 22ag e==-,∴()()ln 2ln 22ln 2ag e -=--=.故答案为:2ln 2.6.已知函数()sin sin 2f x x x =⋅,[]0,2πx ∈.下列有关()f x 的说法中,正确的是______(填写你认为正确的序号).①不等式()0f x >的解集为π04x x ⎧<<⎨⎩或3ππ4x ⎫<<⎬⎭;②()f x 在区间[]0,2π上有四个零点;③()f x 的图象关于直线πx =对称;④()f x ;⑤()f x 的最小值为2;【答案】③④【解析】由()2sin sin 22sin cos f x x x x x =⋅=⋅①()0f x >,即cos 0x >,又[]0,2πx ∈,则02x π<<或322x ππ<<,故①不正确.②()0f x =,则sin 0x =或cos 0x =,又[]0,2πx ∈所以30,,,,222x ππππ=,共有5个零点,故②不正确.③()()()()2222sin 2cos 22sin cos f x x x x x f x πππ-=-⋅-=⋅=所以()2f x π-=()f x ,则()f x 的图象关于直线πx =对称,故③正确.④()()222sin cos 2cos 1cos f x x x x x =⋅=⋅-设[]cos 1,1x t =∈-,则322y t t =-+,则262y t '=-+由2620y t '=-+>解得3333t -<<-,由2620y t '=-+<解得313t -<<-或313t <<所以322y t t =-+在313⎡--⎢⎣⎦,上单调递减,在3333⎡-⎢⎣⎦,上单调递增,在313⎤⎥⎣⎦上单调递减.当33t =时,y =,当t 3=-时,y =,当1t =时,0y =,当1t =-时,0y =,所以当33t =时,函数322y t t =-+有最大值9所以当t 3=-时,函数322y t t =-+有最小值439-所以④正确,⑤不正确.故答案为:③④7.已知函数2()cos 222x x x f x =+-.(1)求函数()f x 在区间[]0,π上的值域;(2)若方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,求ω的取值范围.【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)2()cos 2222sin()4x x x f x x x x π=+=++-,令4U x π=+,[]0,x π∈ ,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦由sin y U =的图像知,2sin 2U ⎡⎤∈-⎢⎥⎣⎦,即sin ,142x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数()f x 的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>(f x ωQ2sin()4x πω∴+=,即3sin()=42x πω+[]0,x π∈ ,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,,且=2()43x k k ππωπ++∈Z 或2=2()43x k k ππωπ++∈Z由于方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.。

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案免费)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案免费)

类题:1.已知tanx=2,求sinx ,cosx 的值.解:因为2cos sin tan xx x,又sin 2x +cos 2x=1,联立得,1cos sin cos 2sin 22xxx x 解这个方程组得.55cos 552sin ,55cos 552sin xxxx2.求)330cos()150sin()690tan()480sin()210cos()120tan(的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o.3330cos )150sin (30tan )120sin )(30cos (60tan 3.若,2cos sin cos sin xxx x ,求sinxcosx 的值.解:法一:因为,2cos sin cos sin xxx x所以sinx -cosx=2(sinx +cosx),得到sinx=-3cosx ,又sin 2x +cos 2x=1,联立方程组,解得,,1010cos 10103sin 1010cos 10103sin x xxx 所以103cos sin x x 法二:因为,2cos sin cos sin xxx x 所以sinx -cosx=2(sinx +cosx),所以(sinx -cosx)2=4(sin x +cosx)2,所以1-2sinxcos x=4+8sinxcosx ,所以有103cos sin xx 4.求证:tan 2x ·sin 2x=tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x=tan 2x -(tan 2x ·cos 2x)=tan 2x(1-cos 2x)=tan 2x ·sin 2x ,问题得证.法二:左边=tan 2x ·sin 2x=tan 2x(1-cos 2x)=tan 2x -tan 2x ·cos 2x=tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2x y 在区间[0,2]上的值域.解:因为0≤x ≤2π,所以,6π76π26π,π20x x 由正弦函数的图象,得到],1,21[)6π2sin(x所以y ∈[-1,2].6.求下列函数的值域.(1)y =sin 2x -cosx+2;(2)y =2sinxcosx -(sinx +cosx).解:(1)y=sin 2x -cosx +2=1-cos 2x -cosx +2=-(cos 2x +cosx)+3,令t=cosx ,则,413)21(413)21(3)(],1,1[222ttt ty t利用二次函数的图象得到].413,1[y (2)y =2sinxcosx -(sinx +cos x)=(sin x +cosx)2-1-(sin x +cosx),令t=sinx +cosx2,)4πsin(x,则]2,2[t 则,,12t ty利用二次函数的图象得到].21,45[y 7.若函数y=Asin(ωx+φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44T ,T=16,所以8π又由)28πsin(22,得到可以取).4π8πsin(2.4πxy8.已知函数f(x)=cos 4x -2sinxcosx -sin 4x .(Ⅰ)求f(x)的最小正周期;(Ⅱ)若],2π,0[x求f (x)的最大值、最小值.数xx ycos 3sin 1的值域.解:(Ⅰ)因为f(x)=cos 4x -2sinxcosx -sin4x =(cos 2x -sin 2x)(cos 2x +sin 2x)-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22xx xx x x x 所以最小正周期为π.(Ⅱ)若]2π,0[x ,则]4π3,4π[)4π2(x ,所以当x=0时,f(x)取最大值为;1)4πsin(2当8π3x时,f(x)取最小值为.21.已知2tan,求(1)sincossin cos;(2)22cos2cos .sin sin的值.解:(1)2232121tan1tan 1cossin 1cossin 1sincossin cos ;(2)222222cossincos2cos sin sincos2cossin sin 324122221cossin2cossin cos sin 2222.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数专题复习(内附类型题以及历年高考真题...-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三角函数知识点与常见习题类型解法1. 任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。

(2) 扇形的面积公式:lR S 21= R 为圆弧的半径,l 为弧长。

(3) 同角三角函数关系式:①倒数关系: 1cot tan =a a ②商数关系:a a a cos sin tan =, aaa sin cos cot =③平方关系:1cos sin 22=+a a(4) k 的奇偶性2.两角和与差的三角函数: (1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββsin cos cos sin )sin(a a a ±=±βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a aaaa 2tan 1tan 22tan -=从二倍角的余弦公式里面可得出降幂公式:22cos 1cos 2a a += , 22cos 1sin 2aa -=(3)半角公式(可由降幂公式推导出):2cos 12sinaa -±=,2cos 12cos a a +±= ,aa a a a a a sin cos 1cos 1sin cos 1cos 12tan -=+=+-±= 3.三角函数的图像和性质:(其中z k ∈)4.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。

(4) 关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。

切记每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。

(附上函数平移伸缩变换):函数的平移变换:①)0)(()(>±=→=a a x f y x f y 将)(x f y =图像沿x 轴向左(右)平移a 个单位 (左加右减)②)0()()(>±=→=b b x f y x f y 将)(x f y =图像沿y 轴向上(下)平移b 个单位 (上加下减) 函数的伸缩变换:①)0)(()(>=→=w wx f y x f y 将)(x f y =图像纵坐标不变,横坐标缩到原来的w1倍(1>w 缩短, 10<<w 伸长)②)0)(()(>=→=A x Af y x f y 将)(x f y =图像横坐标不变,纵坐标伸长到原来的A 倍(1>A 伸长,10<<A 缩短) 函数的对称变换:①)()(x f y x f y -=→=) 将)(x f y =图像绕y 轴翻折180°(整体翻折)(对三角函数来说:图像关于x 轴对称)②)()(x f y x f y -=→=将)(x f y =图像绕x 轴翻折180°(整体翻折)(对三角函数来说:图像关于y 轴对称)③)()(x f y x f y =→= 将)(x f y =图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④)()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动)5、方法技巧——三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b的符号确定,ϕ角的值由tan ϕ=ab确定。

1.已知tan x =2,求sin x ,cos x 的值.解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o --+---++-=.3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=xy 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象,得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

2. 求函数21sin cos (sin cos )y x x x x =++++的值域。

相关文档
最新文档