数学知识应用竞赛九年级决赛(校拟)试题附答案
初中数学竞赛决赛试题分析及答案
初中数学竞赛决赛试题分析及答案试题一:几何问题题目:在一个直角三角形ABC中,已知∠C=90°,AB为斜边,AC=5cm,BC=12cm,求斜边AB的长度。
分析:此题考查了勾股定理的应用。
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
解答:根据勾股定理,AB² = AC² + BC²。
将已知数值代入公式,得到AB² = 5² + 12² = 25 + 144 = 169。
因此,AB = √169 =13cm。
试题二:代数问题题目:若x² - 5x + 6 = 0,求x的值。
分析:此题考查了解一元二次方程的能力。
可以通过因式分解法求解。
解答:首先对方程进行因式分解,得到(x - 2)(x - 3) = 0。
由此可知,x的值为2或3。
试题三:数列问题题目:一个等差数列的前三项分别为2, 5, 8,求这个数列的第10项。
分析:此题考查了等差数列的通项公式。
已知数列的前三项,可以求出公差,进而求出第10项。
解答:首先求出公差d,d = 5 - 2 = 3。
根据等差数列的通项公式,an = a1 + (n - 1)d,其中a1为首项,an为第n项。
将已知数值代入公式,得到a10 = 2 + (10 - 1) * 3 = 2 + 27 = 29。
试题四:组合问题题目:从5个不同的球中选出3个,有多少种不同的选法?分析:此题考查了组合数的计算。
从n个不同元素中选出m个元素的组合数可以用公式C(n, m) = n! / [m! * (n - m)!]来计算。
解答:根据组合数公式,C(5, 3) = 5! / [3! * (5 - 3)!] = (5 * 4 * 3 * 2 * 1) / [(3 * 2 * 1) * (2 * 1)] = 10。
试题五:概率问题题目:一个袋子里有3个红球和5个蓝球,随机取出2个球,求取出的两个球都是红球的概率。
2018年九年级数学创新与知识应用竞赛试卷(含答案)
2018年九年级数学创新与知识应用竞赛试题一、选择题(每小题5分,共40分)1、已知a是自然数,如果关于x的不等式()2a x->2a-的解集为x<1,那么a的值为()A、1B、1,2C、0,1D、2,320=,则22x y-的值为()A、14B、16C、14或22D、16或223、如图,在△ABC中,AD:DC=1:3,DE:EB=1:1,则BF:FC=()A、1:3B、1:4C、2:5D、2:74、如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α则它们重叠部分四边形ABCD的面积为()A、1sinαB、1cosαC、sinαD、15、若,a b均为质数,且22003a b+=,则a b+的值为()A、1999B、2000C、2001D、20026、已知函数()23f x x x=+,则()()()22232462f-=-+∙-=-=-。
若()1f a=-,则221aa+的值为()A、14B、4C、7D、97、如图,ABC∆中,∠C=90°,点D、P分别在边AC、AB上,且AD BD=,,PE AD PF BD⊥⊥,已知20AB cm=,3tan4α=,则PE PF+= ()A、cmB、cmC、10cmD、8、如图,P是函数12yx=(x>0)图象上一点,直线1y x=-+分别交x轴、y轴于点A、B,作PM⊥x轴于点M,交AB于点E,作PN⊥y轴于点N,交AB于点F。
则A F B E∙FEDCBAaDCBAFEPDCBA的值为( )A 、2 BC 、1D 、12(少图) 二、填空题(每小题5分,共30分)9、已知在锐角ABC ∆中,∠A=50°,AB >BC 。
则∠B 的取值范围是 。
10、已知如图,矩形ABCD 中,E 、F 分别是边BC 、CD 上的点,AB=4,AD=8,若ABE ∆与以E 、C 、F 为顶点的三角形相似,则BE 的长为 。
11、已知a 为自然数,若分式()()10515a a ++的值是整数,则a = 。
初三数学竞赛考试试题及答案
初三数学竞赛考试试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的立方根是2,这个数是多少?A. 2B. 4C. 8D. 164. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 6D. -66. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 07. 如果一个二次方程的解是x1=2和x2=3,那么这个方程可以表示为?A. x^2 - 5x + 6 = 0B. x^2 - 5x + 4 = 0C. x^2 + 5x - 6 = 0D. x^2 + 5x + 4 = 08. 一个数列的前三项是2, 4, 6,这是一个什么数列?A. 等差数列B. 等比数列C. 等比数列D. 既不是等差也不是等比数列9. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是多少?A. 24B. 26C. 28D. 3210. 一个分数的分子是3,分母是6,化简后是多少?A. 1/2B. 2/3C. 3/6D. 1/3二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是_________。
12. 一个数的平方是16,这个数是_________。
13. 一个数的立方是27,这个数是_________。
14. 一个数的倒数是2/3,这个数是_________。
15. 一个数的对数(以10为底)是2,这个数是_________。
三、解答题(每题10分,共50分)16. 解一个一元二次方程:x^2 - 7x + 10 = 0。
17. 证明:对于任意实数a和b,(a + b)^2 ≤ 2(a^2 + b^2)。
成都初三数学竞赛试题及答案
成都初三数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是实数?A. √2B. -3C. πD. i2. 如果一个二次方程的判别式小于0,那么它:A. 有一个实数根B. 有两个实数根C. 没有实数根D. 有无穷多个实数根3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π4. 以下哪个是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 1, 1, 1, 1, ...D. 以上都是5. 如果一个函数f(x) = 2x + 3,那么f(-1)的值是:A. -1B. 1C. 3D. 5二、填空题(每题4分,共20分)6. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长为______。
7. 一个数的平方根是4,那么这个数是______。
8. 如果一个数列的前5项是2, 4, 6, 8, 10,那么这个数列的第6项是______。
9. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是______。
10. 一个圆的周长是44π,那么它的半径是______。
三、解答题(每题10分,共65分)11. 解方程:3x^2 - 5x - 2 = 0。
12. 证明:如果一个三角形的两边长分别是a和b,且a < b,那么这个三角形的第三边c满足|b - a| < c < a + b。
13. 一个工厂每天生产x个产品,每个产品的成本是10元,售价是20元。
如果工厂每天的利润是1000元,求x。
14. 一个圆环的外圆半径是10,内圆半径是5,求圆环的面积。
15. 一个班级有50名学生,其中30名学生参加了数学竞赛。
如果班级平均分是80分,参加竞赛的学生平均分是85分,求未参加竞赛的学生平均分。
答案:一、选择题1. D2. C3. B4. D5. A二、填空题6. 5(根据勾股定理)7. 168. 129. 24(长方体体积公式:V = 长× 宽× 高)10. 11(圆的周长公式:C = 2πr)三、解答题11. 解:(3x + 1)(x - 2) = 0x = -1/3 或 x = 212. 证明:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。
安徽省六安皋城中学初三数学竞赛试题参考答案及评分标准
安徽省六安皋城中学初三数学竞赛试题参考答案及评分标准分,共80分)15、证明:连结AB ,如图, ……3分∴ ∠ECA =∠EBA ,∠EBA +∠ADF =1800, ……8分∴∠EC A +∠ADF =1800. ……10分 ∴ CE ∥DF . ……12分16、解:该商品的进价为元)(1600%50800=,则原售价为1600+800=2400(元) …3分 设每次降价的百分率为x ,概括题意,得:2400(1-x)2-1600=344.…8分 解这个方程,得x =1±0.9 . …10分由于降价的百分率不可能大于1,所以x=1.9不符合题意,因此符合本题要求 的x =0.1=10%.答:每次降价的百分率为10% . …12分17、(1)证明:设点),(00y x P 是2114y x =+上的任意一点,则20104x y =+>,∴10d y =. ………2分 由勾股定理得2d =PF =而20044x y =-,∴201d y d ===.……6分(2)解:①以PQ 为直径的圆与x 轴相切. ……7分如图,取PQ 的中点M ,过点P 、M 、Q 作x 轴的垂线,垂足分别为'P 、C 、'Q , 由(1)知,','PP PF QQ QF ==,∴''PP QQ PF QF PQ +=+=. …………10分 而MC 是梯形''PQQ P 的中位线,∴MC=21(PP’+QQ’)=21(PF+QF)=21PQ. ∴以PQ 为直径的圆与x 轴相切. …………12分18、解:(1) 当x =1时,)2()1(x n x m y ++=)12()11(⨯++=n m n m 22+=)(2n m +=. ………… 4分∵ 1=+n m , ∴ 2=y . …………6分 (2)点P 在此两个函数的生成函数的图象上. …………8分设点P 的坐标为(a , b ), ∵ b b a a =+⨯11, b b a a =+⨯22, …………10分∴ 当x = a 时,)()(2211b x a n b x a m y +++=)()(2211b a a n b a a m +⨯++⨯=nb mb +=b n m b =+=)(,即点P 在此两个函数的生成函数的图象上. ……………14分19、解:⑴∵AC=BC ,CD ⊥AB ,∴AD =BD =21AB . 在Rt △ACD 中,CD =ADtan 600=21A B ·33=63A B .……………4分 (或AB =23CD )⑵依次为243⎪⎭⎫ ⎝⎛a ,343⎪⎭⎫ ⎝⎛a ,n⎪⎭⎫⎝⎛43a . ……………8分⑶∵整个屋架....有18根辅柱, ∴右侧最短一根辅柱为D 8D 9,倒数第二根为D 7D 8. ……………10分D 8D 9=D 7D 8·cos300=443⎪⎭⎫ ⎝⎛a · cos30=443⎪⎭⎫ ⎝⎛·63A B ·cos30=443⎪⎭⎫⎝⎛·63×16×23 =6481(m ). ……………15分20、解:(1) DE BC D AB //,为的中点, 21==∆∆∴AC AE AB AD ABC ADE ,∽. ……………2分 ∴==S SAD AB ADE∆()214S S AE ECADE ∆11==, ∴411=S S . ……………4分(2) ∵ AD =x ,y SS =1, ∴xxa AD DB AE EC S S ADE-===△1. ………………6分 又∵ 222ax AB AD S S ADE ==△⎪⎭⎫ ⎝⎛, ∴ S △ADE =22a x ·S∴ S 1=⎪⎭⎫ ⎝⎛-x x a 22axS∴ 221aax x S S +-=, 即y =-x a 21+x a 1………………8分 自变量x 的取值范围是:0<x <a . ………………9分(3)不存在点D ,使得S S 114>成立. ………………10分 理由:假设存在点D ,使得S S 114>成立,那么S S y 11414>>,即.∴-21ax 2+a 1x >41,∴(a 1x -21)2<0. ………………12分∵(a 1x -21)2≥0,∴x 不存在,即不存在点D ,使得S S 114>成立. ………………15分(或y =-21a x 2+a 1x =-21a(x 2-a x )=-21a(x -21a )2+41≤41,∴y >41不成立,即不存在点D ,使得S S 114>成立.)。
全国数学知识应用竞赛九年级初赛(B)卷(校拟)试题附答案
全国数学知识应用竞赛九年级初赛(B)卷(校拟)试题一、选择题(每小题6分,共30分)1.北京奥运会金牌创造性地将白玉圆环嵌在其中(如图1),这一设计不仅是对获胜者的礼赞,也形象地诠释了中华民族自古以来以“玉”比“德”的价值观.若白玉圆环面积与整个金牌面积的比值为k,则下列各数与k最接近的是()A.13B.12C.23D.342.图2是由线和小棒吊挂4个小球,其中3个小球质量相同,1个是特殊的;图中的数字表示小棒的端点到支点的长度(即物理学中的力臂);假若小棒和线的重量均忽略不计;现在整个装置处于平衡,那么此特殊球应是()3.用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色的,其它地方铺白色的(如图3).铺满这块地面一共用了白色瓷砖484块,那么黑色瓷砖共用()A.45块B.48块C.22块D.23块4.在“仓库世家”游戏中,游戏规则为“只要将所有木箱归位,便可过关,♀可以左右上下转身,♀推动木箱只可前进,无法后拉,按8、2、4、6可上、下、左、右移动.(△代表木箱,☆代表木箱应到的目的地,□代表空地,■代表墙壁,移动一次只动一个格)其中某一关是如图4(1),设计移动方案可以为:♀→4→8→2→6→6→6.图4(2)为又一关,则移动方案可以为:♀→()A.482666886884222 B.482884666884222C.482884884666222 D.2226668848844825.同学们都见过并玩过呼拉圈吧!我们把呼拉圈看作一个圆,现在某人在正常运动中,呼拉圈总是在一个水平面内沿人的腰部滚动(人的腰部近似看成一个圆,如图5).现设某人的腰围是70cm(转呼拉圈处),呼拉圈的直径为140cm.那么,当呼拉圈沿此人的腰部滚动100周时,呼拉圈自转的圈数约为()A.48 B.72 C.84 D.98二、填空题(每小题6分,共30分)6.如图6,四边形ABCD为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划在住宅区周围5m内(虚线以内,四边形ABCD之外)作为绿化带,则绿化带的面积为.7.芳芳和明明要玩一个游戏:两人轮流在一个正方形硬纸上放同样大小的硬币,规则是:每人每次只能放一枚,让硬币平躺在桌面上,任何两枚硬币不能重合.谁放完最后一枚,使得对方再也找不到空地放下一枚硬币的时候,谁就赢了.如果芳芳走第一步,她应该放在哪里才可能稳操胜券?请说明你的理由..8.在计算机屏幕上,相继出现了类似无锡“大阿福”式样(一种玩具,古时候就很有名气)的6副面孔.图7是它们依次出现的先后顺序.这些面孔的出现是按照一种简单而确定的逻辑得来的.那么,根据这6副面孔可以推测第7副面孔应是.(画出草图)9.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算减少棵黄瓜收获最多,最多收获千克.10.西清公园的喷水池边上有半圆形的石头(半径为1.68m)作为装饰(如图8),其中一块石头正对前方6m处的彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为56πcm.如果同一时刻,一直立70cm的杆子的影长为1.8m,则灯柱的高为(精确到0.01m).三、解答题(第11、12、13题各15分,第14题20分,第15题25分,共90分)11.实践应用:台风“圣帕”所带来的强降水造成了许多地方洪水泛滥成灾,田地被冲毁十分严重,几户承包者的田地都被冲成了一片,灾后他们必须按原来的面积进行重新勘测划分,其中有张老汉家的一块,他已不知道原来那一块的面积是多少,几经回忆才想起原来那块地的形状是一个直角梯形,直角腰的两端恰好又各有一块大石头,另一腰的中点处有一棵大树.大家一看,两块大石头A、B及大树P还在(如图9所示),请问,如何知道张老汉原来那块地的面积?写出你的测量方案,并用字母表示相关的数据后计算出面积.12.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.13.信息处理:某市在全面建设小康社会的25项指标中,有16项完成了序时进度,其中10项已达到小康指标值.根据所给的数据和图表,完成下列各题:(1)该市居民家庭年收入以及人均住房建筑面积的一项调查情况如图10(1)和图10(2),从图10(1)中可以得出:家庭收入的众数为美元;家庭收入的平均数为美元.小康指标规定:城镇、农村居民人均住房建筑面积应分别在35m2和40m2以上.观察图10(2),从2002年到2004年城镇、农村人均住房建筑面积的年平均增长率分别为.(2)若人均住房建筑面积的年平均增长率不变,那么到2007年城镇居民人均住房建筑面积能否达到小康指标值?请说明理由.14.猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(1)如图11①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;(2)如图11②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(3)如图11③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(4)猜想:如图11④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?(已知:AC=40,BC=30,∠C=90°)15.方案设计:“春江花月”生活区有一块长36米、宽26米的矩形场地,欲建成一个供居民休闲的小花园.计划在正中央建一个半径为3米的喷水池,其余部分面积的一半进行绿化,现生活区向居民征集设计方案,如果你是小区的居民,请你至少给出两种设计方案(要求美观大方,标出有关数据,并解释其可行性).九年级初赛(B )卷试参考答案一、1.B 2.D 3.A 4.A 5.C二、6.25π+4 000(m 2)7.芳芳的第一步应放正方形硬纸板的中心位置.这时,明明放一枚硬币,芳芳总可以在硬纸板上放一枚硬币,使它与明明的硬币关于中心对称,直到明明无处可放,芳芳就赢了.8.如图1.9.40,36010.4.11m三、11.解:量出AB 的长,记为a 米,过点P 作AB 的垂线PQ ,并量出它的长,记为b 米,则张老汉原来那块地的面积为ab 平方米.理由是:设原来那块地为直角梯形ABCD (如图2),其中AD ∥BC ,P 是DC 的中点,因为PQ ⊥AB ,AD 、BC 也都垂直于AB ,所以AD ∥PQ ∥BC ,作DE ⊥PQ 于E ,PF ⊥BC 于F . 则四边形AQED 、BFPQ 都是矩形,所以AQ =DE ,BQ =PF .又PD =PC ,所以易知△DEP ≌△PFC ,所以DE =PF ,从而AQ =BQ ,所以PQ 是梯形ABCD 的中位线,所以梯形ABCD 的面积为ab .12.解:(1)若并列摆放,如图3①,因为烟的直径为8mm ,所以AD 方向上能并排放5678(根)烟,而在AB 方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图3②,连接12O O 、23O O 、31O O ,则2331OO OO ==8mm ,△123OOO 为等腰三角形,过3O 作312O E O O ⊥,则E 是12O O 的中点.12122822O O O E -===7(mm ). 所以在Rt △13O O E 中,322223118715O E O O O E =-=-=(mm ). 故排列后中排所需空间长度2156856=+⨯<(mm ),三排所需宽度为AB =22mm ,故此摆放符合要求.13.解:(1)2 400;2 080;0.2和0.4;(2)能达到小康指标.理由如下:因为城镇人均住房建筑面积的年增长率为0.2,所以有321.6(10.2)37.3248+= 35>,故到2007年城镇人均住房建筑面积能达到小康指标.14.解:(1)在图4①中作△ABC 的高CN 交GF 于M ,在Rt △ABC 中,∵AC =40,BC =30,∴AB =50,CN =24.由GF ∥AB ,得△CGF ∽△CAB , ∴CM GFCN AB=. 设正方形的边长为x ,则242450x x -=, 解得60037x =. 即正方形的边长为60037. (2)方法同(1),如图4②. △CGF ∽△CAB ,则CM GF CN AB =.设小正方形的边长为x , 则2422450x x -=, 解得60049x =. 即小正方形的边长为60049. (3)同(1)、(2)可得小正方形的边长为60061. (4)每个小正方形的边长为6001225n +. 15.本题答案不惟一,现给出两种方案.方案一:如图5①,设计一个矩形绿化带,使绿化带四周的小路宽度都相等.设小路宽度为x 米,则矩形的长为(36-2x )米,宽为(26-2x )米,从而有:(36-2x )(26-2x )-9π=12(36×26-9π), 整理得,4x 2-124x +468-4.5π=0,解得,x 1≈26.7>26米(不合题意,舍去),x 2≈4.2米.所以图中小路宽4.2米.方案二:如图5②,在矩形场地的四个角分别设计四个相同的四分之一圆形绿化区. 设四分之一圆形绿化区的半径为r 米,则πr 2=12(36×26-9π),r ≈12(米). 12+12<26,所以符合题意.注:本题为开放题,答案不惟一,只要合理、正确即可得分,给出一种方案得一半分,每多一种方案可加5分.。
初三数学竟赛试题及答案
初三数学竟赛试题及答案初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 22/7B. πC. 0.33333...D. √4答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 无法确定答案:B3. 已知方程x² - 5x + 6 = 0的两个根为x₁和x₂,则x₁ + x₂的值为:A. 1B. 2C. 3D. 5答案:D4. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 如果一个数的立方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 以上都是答案:D7. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?A. 24B. 36C. 48D. 52答案:A8. 一个正五边形的内角和是多少度?A. 540B. 720C. 900D. 1080答案:B9. 已知a、b、c是△ABC的三边,且满足a² + b² = c²,那么△ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B10. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 无法确定答案:A二、填空题(每题4分,共20分)11. 一个数的绝对值是5,那么这个数可以是________。
答案:±512. 如果一个角的补角是120°,那么这个角的度数是________。
答案:60°13. 一个直角三角形的两条直角边长分别为6和8,那么它的斜边长是________。
答案:1014. 函数y = -2x + 1与x轴的交点坐标是________。
答案:(1/2, 0)15. 一个数的平方是25,那么这个数是________。
初三数学竟赛试题及答案
初三数学竟赛试题及答案初三数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 如果x² + 4x - 5 = 0,那么x的值是?A. -5B. 1C. -1D. 54. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 23B. 21C. 19D. 175. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是________。
7. 一个数的立方根是2,那么这个数是________。
8. 如果一个数的相反数是-7,那么这个数是________。
9. 一个分数的分子是7,分母是14,化简后是________。
10. 一个数的绝对值是5,那么这个数可以是________。
三、解答题(每题5分,共20分)11. 证明:对于任意实数a和b,(a+b)² = a² + 2ab + b²。
12. 解方程:2x + 5 = 3x - 2。
13. 一个等比数列的首项是2,公比是3,求前5项的和。
14. 一个长方体的长、宽、高分别是2,3,4,求它的体积。
四、综合题(每题10分,共20分)15. 一个圆内接于一个等边三角形,求这个圆的半径。
16. 在一个平面直角坐标系中,点A(-1,2)和点B(3,-1),求直线AB 的方程。
五、附加题(每题5分,共5分)17. 一个数列的前5项是1, 1, 2, 3, 5,求第6项。
答案:1. D2. B3. B4. A5. A6. 167. 88. 79. 1/210. ±511. 证明:(a+b)² = (a+b)(a+b) = a² + ab + ab + b² = a² + 2ab + b²。
九上数学竞赛试题及答案
九上数学竞赛试题及答案九年级上学期数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. π2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 83. 一个数的立方根等于它本身,这个数可能是?A. 0B. 1C. -1D. 以上都是4. 一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式是?A. b² - 4acB. b² + 4acC. a² + b² + c²D. a² - b² - c²5. 以下哪个代数式不是同类项?A. x³ + 2xB. 5x² - 3xC. 2x² - 3xD. x² + 5x二、填空题(每题3分,共15分)6. 如果一个数的平方等于81,那么这个数是________。
7. 一个数的相反数是-5,那么这个数是________。
8. 一个数的绝对值是5,那么这个数可能是________或________。
9. 一个多项式P(x) = x³ - 6x² + 11x - 6,P(1)的值是________。
10. 如果一个圆的半径是r,那么它的面积是________。
三、解答题(每题10分,共20分)11. 已知一个长方体的长、宽、高分别是a、b、c,求它的体积。
解:长方体的体积公式是V = abc,所以体积为abc。
12. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
证明:设直角三角形的直角边分别为a和b,斜边为c。
根据勾股定理,a² + b² = c²。
可以通过构造一个边长为a+b的正方形,将其分割成两个直角三角形和一个边长为c的正方形,从而证明a² +b² = c²。
全国数学知识应用竞赛九年级初赛(校拟)试题卷附答案b
全国数学知识应用竞赛九年级初赛(校拟)试题卷(本卷满分150分,考试时间120分钟)一、填空题(每小题6分,共36分) 1.如图1的A 和B 是抗日战争时期敌人要塞阵地的两个“母子碉堡”,被称为“母碉堡”A 的半径是6米,“子碉堡”B 的半径是3米,两个碉堡中心的距离80AB =米.我侦察兵在安全地带P 的视线恰好与敌人的“母子碉堡”都相切,为了打击敌人,必须准确地计算出点P 到敌人两座碉堡中心的距离PA 和PB 的大小,请你利用圆的知识计算出____PA =,____PB =.2.小丽将一个边长为2a 的正方形纸片ABCD 折叠,顶点A 落到CD 边上的点M 的位置,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图2).在折叠过程中,小丽发现当点M 在CD 边上的任意位置时,(点C D ,除外),CMG △的周长总是相等的,那么CMG △的周长为.3.国际蔬菜科技博览会开幕,学校将组织360名师生乘车参观.某客车出租公司有两种客车可供选择:甲种客车每辆40个座位,租金400元;乙种客车每辆50个座位,租金480元,则租用该公司客车最小需付租金 元. 4.光明路新华书店为了提倡人们“多读书,读好书”,每年都要开展分年级免费赠书活动,今年获得免费赠书的前提是:顺利通过书店前的A B C ,,三个房间(在每个房间内都有一道题,若能在规定的时间内顺利答对这三道题,就可免费得到赠书),同学们你们想参加吗?快快行动吧!(请把答案写在每间房所提供的答题卡上A图1ABCD E F GM图2B 房间答题卡: ;C 房间答题卡: .5.某校数学课外活动探究小组,在教师的引导下,对“函数(00)ky x x k x=+>>,的性质”作了如下探究:因为222k y x x =+=-+=+,所以当0x >,0k >时,函数ky x x=+有最小值=x =借助上述性质:我们可以解决下面的问题:某工厂要建造一个长方体无盖污水处理池,其容积为34800m ,深为3m ,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,问怎样设计水池能使总造价最低,最低总造价为 元. 6.某公司员工分别住在A B C ,,三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一条直线上,位置如图3所示.公司的接送车打算在A 区,B 区,C 区中只设一个停靠点,要使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应在 .7.如图是一个圆形的街心花园,A B C ,,是圆周上的三个娱乐点,且A B C ,,三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的沿 AOB , BOC ,AOC 三条道路,一天早晨,有甲、乙两位晨练者同时从A 点出发,其中甲沿着圆走回原处A ,乙沿着 AOB , BOC , COA也走回原处,假设他们行走的速度相同,则下列结论正确的是( ) A.甲先回到A B.乙先回到A C.同时回到A D.无法确定8.小明很喜欢打篮球,他是班里篮球队的主力队员,恰好这个星期他所在的九年级十个班要进行篮球比赛,比赛是每五个队进行单循环比赛,得分规则如下表,小组赛后总积分最高的两个队可以参加半决赛,若总积分相同还要按下一步的规则排序.现在小明若想直接进入半决赛,问小明所在的队至少要积( ) A.9分 B.10分 C.11分 D.12分A 区 区图3ABCOm图49.如图5,A B C ,,是固定在桌子上的三根立柱,其中A 柱上穿有三个大小不同的圆片,下面的直径总比上面的大,现想将这三个圆片移动到B 柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A B C ,,三个柱之一,且较大的圆片不能叠在小圆片的上面,那么完成这件事至少要移动圆片的次数是( )A.6 B.7 C.8 D.910.有红、黄、绿三块面积均为220cm 的正方形纸片,放在一个底面是正方形的盒子内,它们之间互相叠合(如图6),已知露在外面的部分中,红色纸片面积是220cm ,黄色纸片面积是214cm ,绿色纸片面积是210cm ,那么正方形盒子的底面积是( ) A.2256cm 5B.254cmC.248cmD.2246cm 511.小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分,小明共套10次,每次都套中了,每个小玩具都至少套中一次,小明套10次得61分,则小鸡被套中( ) A.2次 B.3次 C.4次 D.5次12.如图7,在边长是20m 的正方形池塘周围是草地,池塘边A B C D ,,,处各有一棵树,且4AB BC CD ===m ,现用长5m 的绳子将一头牛拴在一棵树上,为了使牛在草地上活动区域的面积最大,应将绳子拴在( )B 处或D 处D.D 处三、解答题(本大题共3个小题,满分38分) 13.(本题12分)阳光中学全体学生都办理了一种“学生团体住院医疗保险”,保险公司按(注:在被保险期间,被保险人按上述标准累计自付金额超过6 000元的部分,保险公司按A B 图5 图6图7100%的标准给付)现在,该中学的学生李明因病住院,除去保险公司给付的“住院医疗保险金”外,李明的家人又支付了医疗费用3 000元.请问保险公司为李明支付了多少保险金?14.(本题12分)轻纺城服装批发市场经营季节性服装,当季节即将来临时,服装价格呈上升趋势.设某种服装开始时预定价为每件10元,从第一周上市开始每周(7天)涨价2元,从第5周开始保持20元的价格平稳销售;在季节即将过去时,从第11周开始,服装批发市场开始削价,平均每周削价2元,直到16周周末后,该服装已不再销售.(1)试建立价格y与周次x之间的函数关系;(2)若此服装每件进价Q与周次x之间的关系为:2=--+且是整数≤≤,,试问该服装第几周每件销售利润M最Q x x x0.125(8)12(016)大?∠的内部有一15.(本题14分)如图8,某房地产开发公司购得一块三角形地块,在靠近B千年的古樟树要加以保护,市政府规定要过P点划一三角形的保护区,你怎样划这条线才△的面积最小?为什么?能使被划去的BDEC图8四、开放题(本大题满分40分) 16.(本题20分)在生活中不难发现这样的例子:三个量a b ,和c 之间存在着数量关系a bc =.例如:长方形面积=长×宽,匀速运动的路程=速度×时间. (1)如果三个量ab ,和c 之间有着数量关系a bc =,那么: ①当0a =时,必须且只须 ;②当b (或c )为非零定值时,a 与c (或b )之间成 函数关系;③当(0)a a ≠为定值时,b 与c 之间成 函数关系.(2)请你编一道有实际意义的应用性问题,解题所列的方程符合数量关系:ab x x c=-,(其中x 为未知数,a b c ,,为已知数,不必解方程). 17.(本题20分)金字塔是古代世界著名的奇迹之一,矗立在尼罗河西岸的70多座金字塔,每年都吸引着来自世界各地的游客,流连在金字塔下,抬眼望去,几十层楼高的塔像柄巨剑直刺云天,显得气势非凡.此刻,游人心里很自然地会想:金字塔究竟有多高呢?假设你是一位游人,如何测量金字塔的高度呢?写出你的测量方案,并说明理由(注意:至少提供两种测量方案,并且,你的方案一定要切实可行).九年级初赛试题卷参考答案一、填空题(每小题6分,共36分)1.160米,80米 2.4a 3.3 520元 4.A :105︒或15︒;B :C :15︒或75︒ 5.297 600 6.A 区二、选择题(每小题6分,共36分) 7~12.CBBAD B三、解答题(13题12分,14题12分,15题14分,满分38分) 13.解:当住院医疗费为7 000元时,被保险人应支付:1000(155)3000(160)3000(170)2550⨯-+⨯-+⨯-= % % % (元).由于李明家支付费用30002550>元元 ,所以李明住院的医疗费用在7 000元至10 000元之间(即第4级别). ···················· 5分 所以超过7 000元部分的医疗费为:(30002550)(180)2250-÷-= % 元. 所以保险公司为李明给付的保险费应为:7000225030006250+-= 元. ···· 11分 答:保险公司要再为李明给付保险金6 250元(付给医院). ···································· 12分 14.解:(1)根据价格的“上升”、“平稳”、“削价”,建立分段函数.102(05)120(510)3402(1016)5x x x y x x x x x +⎧⎪=⎨⎪-⎩且是整数且是整数且是整数分分分≤≤,…………≤≤,………≤≤,………(2)每件利润=每件售价-每件进价,即M y Q =-,所以当05x ≤≤时,221020.125(8)120.1256M x x x ⎡⎤=+---+=+⎣⎦. 所以当5x =时,M 取最大值9.125元. ···································································· 7分 当510x ≤≤时,20.125216M x x =-+.所以当5x =时,M 取最大值9.125元. ···································································· 9分 当1016x ≤≤时,20.125436M x x =-+.所以当10x =时,M 取最大值8.5元. ······································································ 11分以上x 的取值均为整数,因此,该服装第5周每件销售利润M 最大. ···················· 12分 15.过P 作直线DE AB ∥,交BC 于D ,交AC 于E ,在BC 上取点F ,使DF BD =,延长FP 交AB 于点G ,则BFG △的面积最小.······················································ 6分 证明:若过P 任作一直线,交BC 于M ,交AB 于N , 过G 作GK BC ∥,交MN 于K . ············································································· 8分 由DP AB ∥,BD DF =知:DP 是BFG △的中位线,得PG PF =. 进而可得MPF KPG △△≌. ···················································································· 12分NPG MPF S S >△△,所以BMN BFG S S >△△. ··································································· 14分四、开放题(每小题20分,共40分) 16.(1)①b 或c 中有一个为零;②正比例;③反比例.(每空2分,共6分) (2)答案不惟一. 评分标准:(满分共计14分) ①编写题目符合实际(5分);②解题所列方程符合所要求的数量关系(7分);C③题目新颖、有创新意义(2分). 17.方案一:应用相似三角形知识如图1所示:在距离金字塔一定距离的D F ,两点,分别竖立两个竿CD 和EF (长度都为h ),当人分别站在M N ,两点时能保证A C A E ,,,分别在一条直线上测出MN F N MD ,,的距离,则塔高即可得到(其中人的高度忽略不计). 理由如下: ····················································································································· 6分从图中易知:MCD MAB △△Rt ∽Rt ,NEF NAB △△Rt ∽Rt . ······················ 7分 可得AB MBCD MD =,即AB MD MB CD = .①···························································· 8分 AB NBEF FN=,即AB FN NB EF = .② ····································································· 9分 ②-①得()()AB FN MD NB MB CD -=- . 又知MN NB MB =-,可得MN CDAB FN MD=- .因为CD 已知,MN FN MD ,,均可测出,所以AB 的高度可以计算得出. ········································································ 10分方案二:应用解直角三角形知识 如图2所示,在平面内取C D ,两点,使B C D ,,三点在同一条直线上,用测角器在C D ,两点分别测得塔顶A 的仰角为αβ,,再测量出CD 间的距离,则塔高可求得(测角器的高度忽略不计). ··············································································································· 6分 理由如下:在ACB △Rt 和ADB △Rt 中,cot CB AB α= ,cot DB AB β= . ········································································· 7分 因为CB DB CD -=,所以cot cot AB AB CD αβ-= . ············································································· 8分 所以cot cot CDAB αβ=-.因为CD ,αβ,都可以测出,所以塔高AB 可求得. ·············································· 10分 (方案设计合理,正确可酌情给分)ABC D EM 图1AD 图2αβ。
数学知识应用竞赛九年级决赛(校拟)试题附答案
全国数学知识应用竞赛九年级决赛(校拟)试题一、(本题20分)判断与决赛利群商店积压了100件某种商品,为使这批商品尽快脱手,该商店采用了如下的销售方案:先将价格提高到原来售价的2.5倍,再作三次降价处理,第一次降价30%,标出“亏本价”;第二次又降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”.三次降价销售结果如下表所示:(1)如果一名消费者以促销的三种价格各买了一件该商品,请你通过计算说明相对于原售价,该消费者在促销活动中是否得到了实惠?(2)按新销售方案全部售完该商品,与按原价全部售完该商品相比,哪一种方案商场更赢利?(3)请结合(1),(2)的计算结果谈谈你对本销售方式的看法. 二、(本题20分)操作与探究九年级(1)班为即将到来的“五·一”国际劳动节排练节目时需要3个底面圆半径为10厘米,母线长为20厘米的圆锥形小红帽(不计接缝损失).(1)试确定这种圆锥形小红帽侧面展开图(扇形)的圆心角的度数; (2)现有宽为40厘米的矩形布料可供选用,按照题目要求在图1中画出使布料能充分利用(最省料)的示意图,并求出矩形布料的长至少为多少厘米. 三、(本题20分)图象与信息在对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以5.8万元的优惠价转让给了尚有5万元无息贷款还没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计利息).从企业甲提供的相关资料中可知这种消费品的进价是每件14元;月销售量Q (百件)与销售单价P (元)的关系如图2所示;维持企业的正常运转每月需最低生活费外的各种开支2000元. (1)试确定月销售量Q (百件)与销售单价P (元)之间的函数关系式.(2)当商品的销售单价为多少元时,扣除职工最低生活费后的月利润余额最大? (3)企业乙依靠该店,最早可望在几年内脱贫?四、(本题20分)综合实践应用图3是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B C ,之间的距离为2米,顶点O 离水面的高度为图1)图2223米,人握的鱼杆底端D 离水面113米,离拐点C 的水平距离1米,且仰角为45︒,建立如图4所示的平面直角坐标系.(1)试根据上述信息确定抛物线BOC 和CD 所在直线的函数表达式;(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15︒,直线部分的长度变成了1米(即ED 长为1米),顶点向上增高23米,且右移12米(即顶点变为F ),假设钓鱼线与人手(点D )的水平距离为124米,那么钓鱼线的长度为多少米?五、(本题30分)材料作文材料一:亲爱的同学们,你一定见过娱乐明星漫画吧!你能看出右边的歌星是谁吗?张学友!不错!尽管画得很夸张,但我们仍然一眼就能看出.这是因为虽然画像是夸张的、变形的,但画中人物的“特征不变量”在漫画中明显地表现出来了.我们在解决某些数学问题时,也应学会抓不变量,利用不变量解决问题.比如:将9个数字1,2,3,4,5,6,7,8,9任意排列,组成的所有九位数中,质数的个数是多少?显然我们不可能将所有九位数一一列举,再一一验证.如果注意到这九个数字的和是45,能被3整除,因而所有的九位数都是3的倍数,问题就迎刃而解了:所有这些九位数中,质数个数为0.材料一:一年一度的春节联欢晚会不仅仅是老百姓不可缺少的“年夜饭”,也成了企业展示自己的大舞台———前仆后继,只为争得在“春晚”上露个脸.据了解,直接在春节联欢晚会前后播出的套装广告时间为10分钟,加上晚会上两次报时广告,时长各十秒.这样算来“春晚”广告时长总共为620秒.620秒的广告费价值多少呢?请看下面提供的资料:春晚广告四种主要形式报时广告:966万央视春晚在20时和零时分别有时段报时.20点与零点两个报时广告的起价分别为539万元与966万元.贺电广告:1000万 在春晚进行当中,主持人会以刚刚收到贺电的形式告诉观众××单位给观众拜年,祝愿新年快乐.贺电是央视赠送给投放额度在1000万元以上的企业的. 字幕广告:500万图3图4春晚结束之际,电视上会出现一些央视的鸣谢单位,而这些单位就是投放央视广告额超过500万元或购得晚会片尾鸣谢字幕的企业. 冠名广告:4508万“2006年我最喜爱的春节晚会节目评选”独家冠名,被杭州民生药业以4508万元夺取. 阅读以上材料,你有什么体会?是否觉得生活与数学有很强的互融性?请结合你的学习、生活实际,写一篇数学小短文,字数控制在600字以内. 六、(本题40分)数学作文从下列题目中任选其一,联系相关知识及现实生活,写一篇数学作文,字数控制在1000字左右.1.一堂有趣的数学活动课 2.我说统计 3.游戏与数学4.我在生活中用数学 5.我与学用杯竞赛6.数字0是数学中的一个极为重要的角色,它活泼、机灵、神通广大,但又“调皮”、“桀骜不训”.如果能充分理解、把握它的脾气和秉性,它能帮你排忧解难,否则,它也会使你误入歧途,吃尽苦头,甚至碰得“头破血流”.我国著名数学家、数学教育家傅种孙先生说过,要想学好数学,就要“问道于零”.请自拟题目,谈谈你对这段话的理解.九年级决赛试题参考答案一、解:(1)设原价为x 元,则在促销活动中该消费者各买一件商品共花费32.50.7 2.50.70.7 2.50.7 3.8325x x x x ⨯+⨯⨯+⨯=(元). ············································ 3分而按原价购买三件该商品需3x 元. ······················································································ 6分 所以该消费者在此次促销活动中没有得到实惠. ································································· 8分 (2)按原价出售时,销售金额为100x . ·········································································· 10分 按促销价出售时,销售金额为:32.50.710 2.50.70.740 2.50.750109.375x x x x ⨯⨯+⨯⨯⨯+⨯⨯=. ··························· 13分因为109.375100x x >,所以新销售方案商场更赢利. ···················································· 15分 (3)视解答情况给0~5分.二、解:(1)设圆心角的度数为n,则20210180n π⨯=π⨯. ··············································································································· 3分 所以180n =.所以此圆锥形小红帽侧面展开图的圆心角度数为180. ··························· 5分(2)因为扇形的圆心角为180,圆锥母线长为20厘米,所以这个扇形的半径为20厘米的半圆.如图1所示,当三个半圆所在圆两两外切,且半圆的直径与长方形的边垂直时,能使布料得以充分利用. ············································································································· 10分如图2,连接12O O ,23O O ,31O O .因为1O ,2O ,3O 两两外切,12320AO BO CO ===, 所以1223311340OO O O O O O A CO ===+=. 过点3O 作312O E O O ⊥,垂足为E . 因为2313O O O O =, 所以12121202O E O E O O ===. 在13O EO △中,1390O EO = ∠,根据勾股定理3EO === ········································ 15分因为四边形ABCD 是矩形,所以AD BC ∥,AD BC =,90A D ==∠∠. 因为12AO BO =,12AO BO ∥, 所以四边形21ABO O 是矩形.所以1290AOO =∠.所以13O E DO ∥. 又因为13O E DO =,所以四边形13O EO D 是平行四边形. 所以31EO O D =.所以1120AD AO O D =+=+ ··············································································· 20分图1图223因此矩形布料的长至少应为(20+厘米.三、(1)由图象可知,月销售量Q (百件)与销售单价P (元)是一次函数关系, 设Q Px b =+, ······················································································································ 2分 则有1020P b =+,530P b =+. ······················································································ 4分解得1202P b =-=.所以1202Q x =-+. ······································································· 6分 (2)设月利润为W ,则有100(14)(20003600)W Q x =--+ ··················································································· 10分110020(14)(20003600)2x x ⎛⎫=-+--+ ⎪⎝⎭250270033600x x =-+-250(54729)2850x x =--++ 250(27)2850x =--+.所以当销售单价为27元时,月利润最大为2850元. ······················································· 12分 (3)设x 年内可脱贫,由(2)知最大月利润为2850元.·············································· 14分 2850125000058000x ⨯+≥. ························································································· 16分 3.2x ≥年. ························································································································· 18分 所以,企业乙最早在4年内脱贫. ······················································································ 20分 四、解:(1)由已知,得113C ⎛⎫- ⎪⎝⎭,. 设抛物线BOC 的函数表达式为2y ax =. 则13a =-,所以213y x =-. 设直线CD 的函数表达式为y kx b =+,由C D ,点的坐标分别为113⎛⎫- ⎪⎝⎭,,1213⎛⎫- ⎪⎝⎭,得1342.3k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1k =-,23b =. 所以23y x =-+. ················································································································ 10分(2)由已知,得3423E ⎛⎫- ⎪ ⎪⎝⎭,1223F ⎛⎫⎪⎝⎭,. ······························································· 14分 设这时抛物线的函数表达式为21223y m x ⎛⎫=-+ ⎪⎝⎭.则2312422323m ⎛⎫-+=- ⎪⎝⎭.所以2m =-.所以212223y x ⎫⎛⎫=--+⎪ ⎪⎪⎝⎭⎝⎭. ····················································································· 18分又由已知A 点的横坐标为14-,得14A ⎛- ⎝⎭.所以钓鱼线的最小长度为21296米.。
九年级(上)竞赛数学试卷(word版 含答案解析)
九年级(上)竞赛数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,一元二次方程是()A.x2+=0 B.ax2+bx=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.一元二次方x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根5.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.6.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.67.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%8.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2 B.y=(x﹣3)2+2 C.y=(x﹣3)2﹣2 D.y=(x+3)2+29.已知a、b满足(a2﹣b2)(a2﹣b2+4)+4=0,则代数式a2﹣b2的值为()A.﹣2 B.4 C.﹣2或4 D.210.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分给出下列命题:①a+b+c=0;②b>2a;③3a+c=0;④a﹣b<m(ma+b)(m≠﹣1的实数);其中正确的命题是()A.①②③B.①②④C.②③④D.①③④二、填空题(每小题3分,共24分)11.当m=时,关于x的方程(m﹣3)﹣x=5是一元二次方程.12.抛物线y=ax2经过点(3,5),则a=.13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于.14.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程,能否求出x的值:(能或不能).15.把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.16.如果抛物线y=x2﹣8x+c的顶点在x轴上,则c=.17.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是.18.如图,函数y=﹣(x﹣h)2+k的图象,则其解析式为.三、解答题(本大题共66分)19.解下列方程(1)x2﹣5x+1=0(2)(x+3)2=5(x+3)(3)(x﹣2)2﹣4=0.20.已知关于x的一元二次方程(2m﹣1)x2+3mx+5=0有一根是x=﹣1,求m的值.21.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.22.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,怎样围才能使矩形场地的面积为750m2?23.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?24.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.25.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:0102030405060刹车时车速/km•h﹣1刹车距离/m00.3 1.0 2.1 3.6 5.57.8(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?九年级(上)竞赛数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,一元二次方程是()A.x2+=0 B.ax2+bx=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【考点】A1:一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是分式方程,故A错误;B、a=0时是一元一次方程,故B错误;C、是元二次方程,故C正确;D、是二元二次方程,故D错误;故选:C.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】A6:解一元二次方程﹣配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B3.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点坐标的特点,直接写出顶点坐标,再判断顶点位置.【解答】解:由y=2x2﹣3得:抛物线的顶点坐标为(0,﹣3),∴抛物线y=2x2﹣3的顶点在y轴上,故选D.4.一元二次方x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根【考点】AA:根的判别式.【分析】求出一元二次方程根的判别式;根据根的判别式即可判断根的情况.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×1×3=﹣3<0,∴方程没有实数根,故选:D.5.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.【考点】H2:二次函数的图象.【分析】利用排除法解决:首先由a=﹣1<0,可以判定抛物线开口向下,去掉A、C;再进一步由对称轴x=﹣=1,可知B正确,D错误;由此解决问题.【解答】解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是x=0,∴只有B符合要求.故选:B.6.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.6【考点】HA:抛物线与x轴的交点.【分析】根据抛物线与x轴只有一个交点,△=0,列式求出m的值,再根据对称轴在y轴的左边求出m的取值范围,从而得解.【解答】解:由图可知,抛物线与x轴只有一个交点,所以,△=m2﹣4×2×8=0,解得m=±8,∵对称轴为直线x=﹣<0,∴m>0,∴m的值为8.故选B.7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%【考点】AD:一元二次方程的应用.【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(1+x)2=1.44,x1=0.2=20%,x2=﹣2.2(舍去),答:平均每月的增长率为20%.故选C.8.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2 B.y=(x﹣3)2+2 C.y=(x﹣3)2﹣2 D.y=(x+3)2+2【考点】H6:二次函数图象与几何变换.【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,y=x2向左平移3个单位,再向下平移2个单位得y=(x+3)2﹣2.故选A.9.已知a、b满足(a2﹣b2)(a2﹣b2+4)+4=0,则代数式a2﹣b2的值为()A.﹣2 B.4 C.﹣2或4 D.2【考点】A9:换元法解一元二次方程.【分析】设x=a2+b2,方程化为关于x的一元二次方程,求出方程的解即可得到a2+b2的值.【解答】解:设x=a2﹣b2,方程化为x2+4x+4=0,∴(x+2)2=0,解得:x=﹣2,∴a2﹣b2=﹣2,故选:A.10.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分给出下列命题:①a+b+c=0;②b>2a;③3a+c=0;④a﹣b<m(ma+b)(m≠﹣1的实数);其中正确的命题是()A.①②③B.①②④C.②③④D.①③④【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线经过(1,0),确定a+b+c的符号;根据对称轴方程确定b与2a的关系;由①②的结论判断③;根据a>0,(m+1)2>0,确定a(m+1)2>0,经过整理即可得出a﹣b<m(ma+b).【解答】解:∵x=1时,y=0,∴a+b+c=0,①正确;∵﹣=﹣1,∴b=2a,②错误;由a+b+c=0和b=2a得,3a+c=0,③正确;∵m≠﹣1,∴(m+1)2>0,∵a>0,∴a(m+1)2>0,∴am2+2am+a>0,∵b=2a,∴a﹣b=﹣a∴am2+bm>a﹣b,∴a﹣b<m(am+b),④正确,故选:D.二、填空题(每小题3分,共24分)11.当m=﹣3时,关于x的方程(m﹣3)﹣x=5是一元二次方程.【考点】A1:一元二次方程的定义.【分析】根据一元二次方程的定义进行解答.【解答】解:依题意得:m2﹣7=2,且m﹣3≠0,解得m=﹣3,故答案是:﹣3.12.抛物线y=ax2经过点(3,5),则a=.【考点】H5:二次函数图象上点的坐标特征.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于4.【考点】A9:换元法解一元二次方程;A8:解一元二次方程﹣因式分解法.【分析】首先把x2+y2当作一个整体,设x2+y2=k,方程即可变形为关于k的一元二次方程,解方程即可求得k即x2+y2的值.【解答】解:设x2+y2=k∴(k+1)(k﹣3)=5∴k2﹣2k﹣3=5,即k2﹣2k﹣8=0∴k=4,或k=﹣2又∵x2+y2的值一定是非负数∴x2+y2的值是4.故答案为:4.14.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程(x+100)=20000,能否求出x的值:能(能或不能).【考点】AC:由实际问题抽象出一元二次方程.【分析】如果把游泳池的长增加xm,那么游乐场的长和宽分别为和,然后矩形根据面积公式可列出方程.【解答】解:由于游泳池的长增加xm,那么游乐场的长和宽分别为和,即(x+100)=20000,解得x=100.故填空答案:(x+100)=20000,能.15.把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【考点】A2:一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.16.如果抛物线y=x2﹣8x+c的顶点在x轴上,则c=16.【考点】H3:二次函数的性质.【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【解答】解:根据题意,得=0,解得c=16.故答案为:16.17.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是(2,﹣1).【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【分析】已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【解答】解:设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x﹣1)(x﹣3)把点C(0,3),代入得a=1.则y=(x﹣1)(x﹣3)=x2﹣4x+3.所以图象的顶点坐标是(2,﹣1).18.如图,函数y=﹣(x﹣h)2+k的图象,则其解析式为y=﹣(x+1)2+5.【考点】H8:待定系数法求二次函数解析式.【分析】根据图象得出顶点的坐标,即可求得解析式.【解答】解:由图象可知抛物线的顶点坐标为(﹣1,5)所以函数的解析式为y=﹣(x+1)2+5.故答案为y=﹣(x+1)2+5.三、解答题(本大题共66分)19.解下列方程(1)x2﹣5x+1=0(2)(x+3)2=5(x+3)(3)(x﹣2)2﹣4=0.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法;A7:解一元二次方程﹣公式法.【分析】(1)利用求根公式法解方程;(2)先移项得到(x+3)2﹣5(x+3)=0,然后利用因式分解法解方程;(3)利用因式分解法解方程.【解答】解:(1)△=52﹣4×1=21,x=所以x1=,x2=;(2)(x+3)2﹣5(x+3)=0,(x+3)(x+3﹣5)=0,x+3=0或x+3﹣5=0,所以x1=﹣3,x2=2;(3)(x﹣2+2)(x﹣2﹣2)=0,x﹣2+2=0或x﹣2﹣2=0,所以x1=0,x2=4.20.已知关于x的一元二次方程(2m﹣1)x2+3mx+5=0有一根是x=﹣1,求m的值.【考点】A3:一元二次方程的解;A1:一元二次方程的定义.【分析】把方程的根代入方程,可以求出字母系数m值.【解答】解:把x=﹣1代入方程有:2m﹣1﹣3m+5=0,∴m=4.即m的值是4.21.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.【考点】H8:待定系数法求二次函数解析式;H7:二次函数的最值.【分析】(1)把已知点的坐标代入抛物线解析式求出a的值,确定出解析式即可;(2)利用二次函数性质求出y的最小值,以及此时x的值即可.【解答】解:(1)把(0,﹣3)代入抛物线解析式得:9a+6+|a|﹣4=0,当a>0时,方程化简得:10a=﹣2,解得:a=﹣0.2;当a<0时,方程化简得:8a=﹣2,解得:a=﹣0.25,则抛物线解析式为y=﹣0.2x2﹣2x﹣3.8或y=﹣0.25x2﹣2x﹣3.75;(2)抛物线解析式为y=﹣0.2x2﹣2x﹣3.8,当x=5时,y取得最小值,最小值为﹣18.8;抛物线解析式为y=﹣0.25x2﹣2x﹣3.75,当x=4时,y取得最小值,最小值为15.75.22.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,怎样围才能使矩形场地的面积为750m2?【考点】AD:一元二次方程的应用.【分析】根据题意可以设平行于墙的一边长为xm,从而可以列出相应的方程,从而可以解答本题.【解答】解:平行于墙的一边长为xm,则x()=750,解得x1=30,x2=50,∵墙的长度不超过45m,∴x=50不符合题意,舍去,∴x=30,∴=25,即矩形的平行于墙的一边长为30m,垂直于墙的一边长为25m时,矩形场地的面积为750m2.23.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【考点】HE:二次函数的应用;H7:二次函数的最值.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解:(1)设每千克应涨价x元,则(10+x)=6 000解得x=5或x=10,为了使顾客得到实惠,所以x=5.(2)设涨价z元时总利润为y,则y=(10+z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.24.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】2C:实数的运算.【分析】(1)根据题意可得代数式42﹣32,再计算即可;(2)根据题意可得方程:(x+2)2﹣25=0,再利用直接开平方法解方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.25.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:0102030405060刹车时车速/km•h﹣1刹车距离/m00.3 1.0 2.1 3.6 5.57.8(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?【考点】HE:二次函数的应用.【分析】(1)依题意描点连线即可.(2)设抛物线为y=ax2+bx+c,再根据表格中所给数据可得方程,解出a,b,c即可.(3)当y=46.5时,代入函数关系式解出x的值,根据题意进行取舍即可.【解答】解:(1)如图所示:(2)根据图象可估计为抛物线.∴设y=ax2+bx+c.把表内前三对数代入函数,可得,解得:,∴y=0.002x2+0.01x.经检验,其他各数均满足函数(或均在函数图象上);(3)当y=46.5时,46.5=0.002x2+0.01x.整理可得x2+5x﹣23250=0.解之得x1=150,x2=﹣155(不合题意,舍去).所以可以推测刹车时的速度为150千米/时.∵150>140,∴汽车发生事故时超速行驶.。
浙江初三初中数学竞赛测试带答案解析
浙江初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列等式一定成立的是()A.B.C.D.2.下列式子成立的是()A.a a=a B.(a b)= a bC.0.0081=8.1×10D.3.以下列各组数为边长,能构成直角三角形的是 ( )A.,,B.,,C.32,42,52D.1,2,34.使式子有意义的x的取值范围是()A.x≤1B.x≤1且x≠-2C.x≠-2D.x<1且x≠-25.解关于x的方程时产生增根,则m的值等于()A.-2B.-1C.1D.26.二次函数的图象可能是()7.如图几何体的俯视图是()8.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.10C.11D.129.如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP,RP的中点,当P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定二、填空题1.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是 .2.规定"*"为一种运算,它满足a*b=,那么1992*(1992*1992)=____。
3.已知直角三角形的两条边x、y的长满足,则第三边长为4.有五根木条,分别为12cm,10cm,8cm,6cm,4cm,则从中任取三根能组成三角形的概率为5.如图所示,二次函数的图象经过点,且与x轴交点的横坐标为、,其中、下列结论:①;②;③;④;正确的结论是 .三、解答题1.解方程:2.某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?3.如图,在△ABC中,点O是AC边上的一动点,过点O作直线MN//BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
第六届“学用杯”全国数学知识应用竞赛九年级决赛试题及答案
第六届“学用杯”全国数学知识应用竞赛九年级决赛试题及答案第六届“学用杯”全国数学知识应用竞赛九年级决赛试题一、判断决策(本题20分)光华中学要选派一名学生去参加区级电脑知识竞赛,王峰和朱倩两位同学平时电脑都学的不错,为了确定谁去参赛,老师对他们的电脑知识进行了10次模拟测验,测验成绩情况如下面的折线统计图(图1):利用此图表信息,根据你学过的统计知识,分析王峰和朱倩的成绩.你认为谁去参赛更好些?二、实践应用(本题20分)某生活小区为了改善居民的居住环境,把一部分平房拆除后准备建几栋楼房,由于某种原因,最北边的一排平房暂时没拆.如图2,建筑工人准备在距离平房55米的地方(平房的南边)打地基建甲楼,已知甲楼预计34米高,平房的窗台高1.2米,该地区冬天中午12时阳光从正南方照射时,光线与水平线的最小夹角为30 .(1)甲楼是否会挡住平房的采光?为什么?(2)假设在甲楼南边再建一栋同样高度的楼房乙楼,那么甲、乙两楼之间的距离最少为多少米才不影响甲楼采光?(已知甲楼1楼的窗台高1.6米,结果精确到0.01米)三、方案设计(本题20分)亲爱的同学,你准备好了吗?让我们一起进行一次研究性学习:研究用一条直线等分几何图形的面积.我们很容易发现这样一个事实:,两点画一条直线,即可把如图3①,对于三角形ABC,取BC边的中点D,过A D△分为面积相等的两部分.ABC(1)如图3②,对于平行四边形ABCD,如何画一条直线把平行四边形ABCD分为面积相等的两部分.答:__________________(写出一种方案即可).理由是:_________________.(2)受上面的启发,请你研究以下两个问题:①如图3③,一块平行四边形的稻田里有一个圆形的蓄水池,现要从蓄水池引一条笔直的水渠,并使蓄水池两侧的稻田面积相等,请你画出你的设计方案,保留作图痕迹,不必说明理由.②某农业研究所有一块梯形形状的实验田如图3④,准备把这块实验田种上面积相同的西红柿和青椒(都是新品种),应该如何分割,请你分别在图3④、图3⑤中设计两种不同的分割方案,并说明理由.四、综合应用(本题20分)某旅游开发公司为了方便旅客,购置50套卧具(供旅客上山休息使用),当每套卧具每晚租金为30元时,卧具就会全部租完;如果每套卧具租金每晚增加1元,就会有一套卧具租不出去.综合考虑各种因素,每租出一套卧具需交付管理部门及其它费用4元.设每套卧具每晚租金为x(元),旅游开发公司每晚的收益为y(元).(1)当每套卧具每晚租金为35元、49元时,计算此时的收益.(2)求出y与x的函数关系式.(不要求写出x的取值范围)(3)旅游开发公司要获得每晚的最大的收益,每套卧具每晚的租金应定为多少元?每晚的最大收益是多少元?五、(本题30分)材料作文据说美国著名的数学家波利亚曾对学生作过这样一次测试:他先在黑板上挂了一幅“画”———一张上面仅有一个黑色圆点的白纸,然后问学生:“同学们,你们看到了什么?”“一个黑点.”全体同学一起回答.然后,学生们便沉静下来,等待老师的讲解.波利亚摇了摇头,语重心长地说:“很遗憾,你们只说对了极少的一部分,画中更大的部分是空白.只见小,不见大;只见微观,不见宏观,就会束缚自己的思考力和想象力.”同学们,读了这篇耐人寻味的故事,你作何感想?请结合你平时的数学学习写一篇500字左右的短文(题目自拟).六、(本题40分)数学作文从下列题目中任选一个,联系相关知识及现实生活,写一篇数学短文,字数控制在1 000字以内.1.至善至美的圆2.特殊四边形的魅力3.几何变换与美4.从概率我想到了…… 5.数学中的和谐6.我的“学用杯”情怀第六届“学用杯”全国数学知识应用竞赛九年级决赛试题参考答案一、解:王峰和朱倩成绩的平均数都约是85(分别是84.6和84.9),中位数分别是85和85.5.王峰成绩的众数是85,朱倩成绩的众数是90,从85分以上的频率看,王峰的成绩要好些,从众数来看,朱倩的成绩要好些;而从方差来看,王峰成绩的方差是21.84,朱倩成绩的方差是37.49.因此建议王峰参加竞赛(本题满分20分,注:由于读图有误差,只要通过求平均数、中位数、众数、方差等数据后,分析合理,即可酌情给分).二、解:如图:(1)过C 作CE ⊥BD 于E ,CE =AB =55米.∵阳光入射角为30°,∴∠DCE =30°.··········································································································· 3分在Rt △DCE 中,tan DEDCE CE=∠.∴DE =CE ·tan ∠DCE =55·tan30°≈31.75(米).··················································· 8分∵34>31.75+1.2=32.95,∴甲楼挡住了平房的采光.·························································································· 10分(2)作FQ ⊥HG 于Q ,∵阳光入射角为30°,∴∠HFQ =30°.········································································································· 13分在Rt △HFQ 中,tan HQHFQ FQ=∠,∴34 1.656.12tan tan 30HQ FQ HFQ -==≈∠(米)························································ 18分∴甲、乙两楼之间的楼距至少应为56.12米.···························································· 20分三、(1)连接两对角线AC 、BD 交于点O ,过O 点任作一直线MN 即可(如图).(不妨设该直线与AD 、BC 分别交于点M 、N )·························································· 2分理由:∵四边形ABCD 是平行四边形,∴AO =CO ,AD ∥BC ,∴∠MAO =∠NCO ,又∵∠AOM =∠CON ,∴△AOM ≌△CON .∴S △AMO =S △CNO .··········································································································· 4分同理得S △MOD =S △NOB .又易得S △AOB =S △COD ,所以S 四边形MNCD =S 四边形ABNM .(2)①如图····························································· 8分②方案一:分别取AD 、BC 的中点E 、F ,连接EF ,线段EF 就是所求作的分割线.理由:∵AE =ED ,BF =FC ,∴11()()22ABFE EFCD S AE BF h ED FC h S =+=+= 四边形四边形方案二:连接BD ,取BD 的中点O ,连接AO 、CO ,折线AOC 可以把梯形分割为两个面积相等的图形.理由:∵BO =OD ,∴S △AOB =S △AOD ,S △BOC =S △DOC ,∴S △AOB +S △BOC =S △AOD +S △DOC .同理,连接AC ,取中点O ,连接BO 、OD ,折线BOD 可以把梯形分割为两个面积相等的图形(图略).方案三:取CD 的中点G ,过G 作FH ∥AB ,与BC 交于F ,与AD 的延长线交于点H .可证:S △DHG =S △CFG ,则过AF 中点O 且不穿越△DHG 或△GFC 或G 点的直线均可把梯形面积等分(如下图中的MN ).理由略.(只要写出两种即可,每个方案正确时加6分,其中作图2分,理由4分.)四、(1)每晚租金为35元时,收益为1 395元;每晚租金为49元时,收益为 1 395元.·········································································· 8分(2)284320y x x =-+-.······················································································· 12分(3)∵284320y x x =-+- 2(42)1444x=--+ ∴每套卧具每晚的租金应定为42元,此时有最大收益为1 444元.······················ 20分五、说明:本题旨在让学生根据材料归纳出全面看问题的思路,由此展开议论或说明,若得出其他结论,只要说的有道理,可酌情给分.六、略.。
初三竞赛数学试题及答案
初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333(无限循环)B. πC. √2D. 1/32. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 如果一个数的平方等于81,那么这个数是多少?A. 9B. ±9C. 3D. ±34. 一个数列的前四项为1, 1, 2, 3,第5项是多少?A. 5B. 4C. 6D. 75. 下列哪个选项不是二次方程的解法?A. 配方法B. 因式分解法C. 直接开平方法D. 换元法6. 一个圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π7. 如果一个函数的图象是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 指数函数8. 一个数的立方根与这个数的平方根相等,这个数是:A. 0B. 1C. -1D. 49. 一个等差数列的前三项分别为2, 5, 8,求第10项。
A. 21B. 23C. 27D. 3110. 一个多项式P(x) = x^3 - 6x^2 + 11x - 6,求P(2)的值。
A. 0B. 2C. 4D. 6二、填空题(每题5分,共30分)11. 一个数的相反数是-5,这个数是_________。
12. 一个直角三角形的两条直角边分别为6和8,斜边的长度是_________。
13. 一个数的平方根是4,这个数是_________。
14. 一个数的立方是-8,这个数是_________。
15. 一个二次方程x^2 - 5x + 6 = 0的解是_________和_________。
三、解答题(每题15分,共30分)16. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
17. 求函数y = 2x^2 - 3x + 1在x = 2时的值。
答案一、选择题1. C2. A3. B4. A5. D6. B7. A8. A9. C10. C二、填空题11. 512. 1013. 1614. -215. 2, 3三、解答题16. 证明:由于n^5 - n = n(n^4 - 1) = n(n^2 + 1)(n^2 - 1) =n(n^2 + 1)(n + 1)(n - 1),可以看出n^5 - n可以分解为四个连续的整数的乘积,而这四个连续的整数中至少有一个是5的倍数,一个是2的倍数,一个是3的倍数,所以n^5 - n能被30整除。
初三竞赛数学试题及答案
初三竞赛数学试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知x^2 - 5x + 6 = 0,求x的值:A. 2, 3B. -2, 3C. -3, 2D. 1, 43. 一个圆的半径为r,若圆的周长为2πr,则圆的面积是:A. πr^2B. 2πrC. πrD. r^24. 函数y = 3x - 2的图象与x轴交点的坐标是:A. (0, -2)B. (2/3, 0)C. (0, 0)D. (2, -3)5. 若一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或16. 已知一个长方体的长、宽、高分别是a、b、c,那么它的对角线的长度是:A. √(a^2 + b^2)B. √(a^2 + b^2 + c^2)C. √(a^2 + b^2 + c)D. √(a + b + c)二、填空题(每题5分,共20分)1. 一个数的立方根是它本身,这个数可以是______。
2. 一个数的绝对值是它本身,这个数是______。
3. 一个数的相反数是它本身,这个数是______。
4. 一个数的倒数是它本身,这个数是______。
三、解答题(每题10分,共50分)1. 已知一个等差数列的首项a1=2,公差d=3,求这个数列的前10项的和。
2. 解不等式:2x - 5 > 3x - 1。
3. 证明:对于任意正整数n,n^3 - n^2 - n + 1能被6整除。
4. 已知一个直角三角形的两条直角边长分别是6和8,求斜边的长度。
5. 一个圆的半径为5,求圆的内接正六边形的边长。
答案:一、选择题1. B2. A3. A4. B5. A6. B二、填空题1. 0, 1, -12. 非负数3. 04. ±1三、解答题1. 等差数列前n项和公式为S_n = n/2 * (a1 + an),其中an = a1 + (n-1)d。
初中数学九年级数学竞赛试题及答案
初中数学九年级数学竞赛试题及答案九年级数学竞赛试卷一、填空(每小题3分,共30分)1、已知m 是方程210x x --=的一个根,则代数式2m m -=2、一名同学在掷骰子,连续抛了9次都没有点数为6的面朝上,当他掷第10次时,点数为6的面朝上是事件。
3、已知231,3,a b ab -=-=则(1)(1)a b +-=4、如图,⊙O 是ABC ?的外接圆,030C ∠=,2AB cm =,则⊙O 的半径为 cm 。
5、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 6、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_______cm 。
7、如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB 上,那么此三角板向右平移的距离是 cm .8、如图,A 是第一象限里的点,点B 是点A 关于原点的对称点,点C 是点A 关于x 轴的对称点,则以点A ,B ,C 为顶点的三角形是三角形。
9、如图是44?正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.10、已知:关于x 的一元二次方程221()04x R r x d -++=没有实数根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系为。
二、选择题(每小题3分,共18分)11、下列图形中既是轴对称图形又是中心对称图形的是()A B C D12、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于().A 、2 B 、1 C 、1 D 、1ABA '()C C 'B 'AB13、已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数14、如图,⊙O 内切于ABC ?,切点分别为D ,E ,F ,已知050B ∠=,060C ∠=,连接OE 、OF 、DE 、DF ,那么EDF ∠等于()A 、055B 、040C 、065D 、07015、为执行“一免一补”政策,我市2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是()A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=16、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为()A.2cm B.3cm C.23cm D.25cm三、解答题(第17题6分,18、19题7分共20分) 17、计算:127122(2)23-?+-18、如图,ABC ?中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .19、小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;OAB(1)若小玲先摸,问小玲摸到C棋的概率是多少?(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?四、每小题8分,共16分。
九年级年级数学知识应用竞赛决赛考题(带答案)
九年级年级数学知识应用竞赛决赛考题(带答案)一、(本题20分)在一次象棋比赛中,由于不慎把一个棋子○车掉在地上.如图1,已知○马所在位置的坐标是,○炮所在位置的坐标是,○车所在位置的坐标是,请在图中标出○车所在位置.二、(本题20分)现代社会对保密要求越来越高,许多情况下都要采用密码,下面是一则密码:L dp d vwxghqw请联想英语字母表中字母的顺序,找到一把破译它的“钥匙”,叙述你找到的“钥匙”,并用这把“钥匙”将它解密成一句和同学们身份相关的英语句子.三、(本题20分)在一次趣味运动会上,小明发现:他用绳子捆紧的四根接力棒,用手按压其中的一根,四根接力棒还是可以松动,请你跟小明一起探究原因:首先,作四根接力棒的横截面,得到四个等圆(设每个圆的半径为).然后分别计算下述三种情形下接力棒绳子的长.1.如图2,当其中三个圆两两相切,第四个圆和其中两个也相切时.2.如图3,当组成正方形时.3.如图4,当组成一般的菱形(不存在三个圆两两相切)时.比较上述三种计算结果,你会得出什么结论?并据此结论说明为什么捆紧的接力棒还是会松动的.四、(本题20分)在市政府实施容貌工程期间,启新中学在教学楼前铺设小广场地面.其图案设计如图5(1),正方形小广场地面的边长是40cm,中心建一直径为20m的圆形花坛,四角各留一个边长为10m的小正方形花坛,种植高大树木.图中其余部分铺设广场砖.1.请同学们帮助计算铺设广场砖部分的面积(取3);2.某施工队承包铺设广场砖的任务,计划在一定时间内完成,按计划工作一天后,由于改进了铺设工艺,每天比原计划多铺结果提前3天完成了任务,原计划每天铺设多少?3.如图5(2)表示广场中心花坛的平面图,准备在圆形花坛内种植6种不同颜色的花卉,为了美观要使同色花卉集中在一起,并且各花卉的种植面积相等.请你帮助设计至少一种方案,作在图5(2)上.(不必说明方案,不写作法,保留作图痕迹)五、(本题30分)材料作文在建筑学上有一个“横梁极限”的原理,说的是对于一根横梁,假设它的长度为,宽度为,密度均匀.根据力学上的原理可以证明,这根横梁的负重会受到比值:(其中)的限制.如果比值超过这个限制值,横梁就要断裂.动物的躯体是由骨骼、肌肉和韧带等组成的一种复杂系统,与上面所讲的横梁是有许多相似之处的,比如我们看到最多的四足动物,它的身体的长度也是有一定限制的.因此,动物学家们通常借用“横梁极限”原理,来粗略地表示四足动物在长度上所受到的限制.瑞士苏黎世动物园曾经运用“横梁极限”原理对一组动物进行过测算,并从大量的数据得到一个结果:一般四足动物的这项比值小于,这样它们的躯体被重力压垮的危险就极小.说明:在计算时,规定使用的长度单位都是厘米.如果长度单位不同,比如取米所得的数据是不同的.横梁和四足动物似乎是风马牛不相及的,然而动物学家却发现了他们之中的某种相似的性质.聪明的同学们,通过上面的阅读你能得到什么启示吗?请写一篇500字左右的数学短文(题目自拟).六、(本题40分)从下列题目中任选其一,联系相关知识及现实生活,写一篇数学作文,字数控制在1000字以内.1.生活中的“一元二次方程”;2.好一个美丽的抛物线;3.无处不在的“圆”;4.感受数学之美;5.“对称王国”游记;6.我与“学用杯”竞赛.九年级决赛试题参考答案一、解:根据马和炮的坐标建立直角坐标系,如下图,由此可确定○车的位置如图.二、钥匙:.若用文字叙述意思正确也可. 10分I am a student 20分三、1.. 5分2.. 10分3.设,则有.绳子的长度:. 15分三种情况下绳子的长度都相等.由于是四边形,而四边形具有不稳定性,所以,捆紧的接力棒还是会松动的. 20分四、解:(1)根据题意可知:5分(2)设原计划每天铺设广场砖,由题意可列方程:解此方程得:(舍去)经检验符合题意,所以原计划每天铺设. 15分(3)设计方案如下.(参考)注意:二四题必须给出必要的演算过程或推理过程,若给出其它答案,只要正确、合理,酌情给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国数学知识应用竞赛九年级决赛(校拟)试题一、(本题20分)判断与决赛利群商店积压了100件某种商品,为使这批商品尽快脱手,该商店采用了如下的销售方案:先将价格提高到原来售价的2.5倍,再作三次降价处理,第一次降价30%,标出“亏本价”;第二次又降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”.三次降价销售结果如下表所示:(1)如果一名消费者以促销的三种价格各买了一件该商品,请你通过计算说明相对于原售价,该消费者在促销活动中是否得到了实惠?(2)按新销售方案全部售完该商品,与按原价全部售完该商品相比,哪一种方案商场更赢利?(3)请结合(1),(2)的计算结果谈谈你对本销售方式的看法. 二、(本题20分)操作与探究九年级(1)班为即将到来的“五·一”国际劳动节排练节目时需要3个底面圆半径为10厘米,母线长为20厘米的圆锥形小红帽(不计接缝损失).(1)试确定这种圆锥形小红帽侧面展开图(扇形)的圆心角的度数; (2)现有宽为40厘米的矩形布料可供选用,按照题目要求在图1中画出使布料能充分利用(最省料)的示意图,并求出矩形布料的长至少为多少厘米. 三、(本题20分)图象与信息在对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以5.8万元的优惠价转让给了尚有5万元无息贷款还没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计利息).从企业甲提供的相关资料中可知这种消费品的进价是每件14元;月销售量Q (百件)与销售单价P (元)的关系如图2所示;维持企业的正常运转每月需最低生活费外的各种开支2000元. (1)试确定月销售量Q (百件)与销售单价P (元)之间的函数关系式.(2)当商品的销售单价为多少元时,扣除职工最低生活费后的月利润余额最大? (3)企业乙依靠该店,最早可望在几年内脱贫?四、(本题20分)综合实践应用图3是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B C ,之间的距离为2米,顶点O 离水面的高度为图1)图2223米,人握的鱼杆底端D 离水面113米,离拐点C 的水平距离1米,且仰角为45︒,建立如图4所示的平面直角坐标系.(1)试根据上述信息确定抛物线BOC 和CD 所在直线的函数表达式;(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15︒,直线部分的长度变成了1米(即ED 长为1米),顶点向上增高23米,且右移12米(即顶点变为F ),假设钓鱼线与人手(点D )的水平距离为124米,那么钓鱼线的长度为多少米?五、(本题30分)材料作文材料一:亲爱的同学们,你一定见过娱乐明星漫画吧!你能看出右边的歌星是谁吗?张学友!不错!尽管画得很夸张,但我们仍然一眼就能看出.这是因为虽然画像是夸张的、变形的,但画中人物的“特征不变量”在漫画中明显地表现出来了.我们在解决某些数学问题时,也应学会抓不变量,利用不变量解决问题.比如:将9个数字1,2,3,4,5,6,7,8,9任意排列,组成的所有九位数中,质数的个数是多少?显然我们不可能将所有九位数一一列举,再一一验证.如果注意到这九个数字的和是45,能被3整除,因而所有的九位数都是3的倍数,问题就迎刃而解了:所有这些九位数中,质数个数为0.材料一:一年一度的春节联欢晚会不仅仅是老百姓不可缺少的“年夜饭”,也成了企业展示自己的大舞台———前仆后继,只为争得在“春晚”上露个脸.据了解,直接在春节联欢晚会前后播出的套装广告时间为10分钟,加上晚会上两次报时广告,时长各十秒.这样算来“春晚”广告时长总共为620秒.620秒的广告费价值多少呢?请看下面提供的资料:春晚广告四种主要形式报时广告:966万央视春晚在20时和零时分别有时段报时.20点与零点两个报时广告的起价分别为539万元与966万元.贺电广告:1000万 在春晚进行当中,主持人会以刚刚收到贺电的形式告诉观众××单位给观众拜年,祝愿新年快乐.贺电是央视赠送给投放额度在1000万元以上的企业的. 字幕广告:500万图3图4春晚结束之际,电视上会出现一些央视的鸣谢单位,而这些单位就是投放央视广告额超过500万元或购得晚会片尾鸣谢字幕的企业. 冠名广告:4508万“2006年我最喜爱的春节晚会节目评选”独家冠名,被杭州民生药业以4508万元夺取. 阅读以上材料,你有什么体会?是否觉得生活与数学有很强的互融性?请结合你的学习、生活实际,写一篇数学小短文,字数控制在600字以内. 六、(本题40分)数学作文从下列题目中任选其一,联系相关知识及现实生活,写一篇数学作文,字数控制在1000字左右.1.一堂有趣的数学活动课 2.我说统计 3.游戏与数学4.我在生活中用数学 5.我与学用杯竞赛6.数字0是数学中的一个极为重要的角色,它活泼、机灵、神通广大,但又“调皮”、“桀骜不训”.如果能充分理解、把握它的脾气和秉性,它能帮你排忧解难,否则,它也会使你误入歧途,吃尽苦头,甚至碰得“头破血流”.我国著名数学家、数学教育家傅种孙先生说过,要想学好数学,就要“问道于零”.请自拟题目,谈谈你对这段话的理解.九年级决赛试题参考答案一、解:(1)设原价为x 元,则在促销活动中该消费者各买一件商品共花费32.50.7 2.50.70.7 2.50.7 3.8325x x x x ⨯+⨯⨯+⨯=(元). ············································ 3分而按原价购买三件该商品需3x 元. ······················································································ 6分 所以该消费者在此次促销活动中没有得到实惠. ································································· 8分 (2)按原价出售时,销售金额为100x . ·········································································· 10分 按促销价出售时,销售金额为:32.50.710 2.50.70.740 2.50.750109.375x x x x ⨯⨯+⨯⨯⨯+⨯⨯=. ··························· 13分因为109.375100x x >,所以新销售方案商场更赢利. ···················································· 15分 (3)视解答情况给0~5分.二、解:(1)设圆心角的度数为n ,则20210180n π⨯=π⨯. ··············································································································· 3分 所以180n =.所以此圆锥形小红帽侧面展开图的圆心角度数为180. ··························· 5分(2)因为扇形的圆心角为180,圆锥母线长为20厘米,所以这个扇形的半径为20厘米的半圆.如图1所示,当三个半圆所在圆两两外切,且半圆的直径与长方形的边垂直时,能使布料得以充分利用. ············································································································· 10分如图2,连接12O O ,23O O ,31O O . 因为1O ,2O ,3O 两两外切,12320AO BO CO ===,所以1223311340OO O O O O O A CO ===+=. 过点3O 作312O E O O ⊥,垂足为E . 因为2313O O O O =, 所以12121202O E O E O O ===. 在13O EO △中,1390O EO =∠,根据勾股定理3EO === ········································ 15分因为四边形ABCD 是矩形,所以AD BC ∥,AD BC =,90A D ==∠∠. 因为12AO BO =,12AO BO ∥, 所以四边形21ABO O 是矩形. 所以1290AOO =∠. 所以13O E DO ∥. 又因为13O E DO =,所以四边形13O EO D 是平行四边形. 所以31EO O D =.所以1120AD AO O D =+=+ ··············································································· 20分图1图223因此矩形布料的长至少应为(20+厘米.三、(1)由图象可知,月销售量Q (百件)与销售单价P (元)是一次函数关系, 设Q Px b =+, ······················································································································ 2分 则有1020P b =+,530P b =+. ······················································································ 4分解得1202P b =-=.所以1202Q x =-+. ······································································· 6分 (2)设月利润为W ,则有100(14)(20003600)W Q x =--+ ··················································································· 10分110020(14)(20003600)2x x ⎛⎫=-+--+ ⎪⎝⎭250270033600x x =-+-250(54729)2850x x =--++ 250(27)2850x =--+.所以当销售单价为27元时,月利润最大为2850元. ······················································· 12分 (3)设x 年内可脱贫,由(2)知最大月利润为2850元.·············································· 14分 2850125000058000x ⨯+≥. ························································································· 16分 3.2x ≥年. ························································································································· 18分 所以,企业乙最早在4年内脱贫. ······················································································ 20分 四、解:(1)由已知,得113C ⎛⎫- ⎪⎝⎭,. 设抛物线BOC 的函数表达式为2y ax =. 则13a =-,所以213y x =-. 设直线CD 的函数表达式为y kx b =+,由C D ,点的坐标分别为113⎛⎫- ⎪⎝⎭,,1213⎛⎫- ⎪⎝⎭,得1342.3k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1k =-,23b =. 所以23y x =-+. ················································································································ 10分(2)由已知,得3423E ⎛⎫- ⎪ ⎪⎝⎭,1223F ⎛⎫⎪⎝⎭,. ······························································· 14分 设这时抛物线的函数表达式为21223y m x ⎛⎫=-+ ⎪⎝⎭.则2312422323m ⎛⎫-+=- ⎪⎝⎭.所以2m =-.所以212223y x ⎫⎛⎫=--+⎪ ⎪⎪⎝⎭⎝⎭. ····················································································· 18分又由已知A 点的横坐标为14-,得14A ⎛- ⎝⎭.所以钓鱼线的最小长度为21296米.。