初中数学中考青岛试题解析

合集下载

青岛中考数学试卷真题讲解

青岛中考数学试卷真题讲解

青岛中考数学试卷真题讲解前言:青岛中考数学试卷是中学生求学过程中非常重要的一次考试,对学生的数学水平和应试能力进行综合评价。

本文将对青岛中考数学试卷真题进行详细讲解,帮助同学们更好地理解和掌握数学知识,提高应试能力。

一、选择题1. 题目描述在笛卡儿坐标平面内,曲线C的方程为y=x^2+4x+3,P为曲线C上一点,且点P关于坐标原点O对称。

若点P在第一象限内,则坐标P的值是()A. (2,7)B. (-2,7)C. (2,-7)D. (-2,-7)解析:根据题意,点P关于原点O对称,即P的横坐标与纵坐标分别取相反数。

由于P在第一象限内,所以横坐标应该为正数,纵坐标应该为正数。

根据曲线C的方程y=x^2+4x+3,可以求得P的横坐标为2,代入方程得到纵坐标为7。

所以,答案为A. (2,7)。

2. 题目描述已知集合A={x|x^2-3x>10},集合B={x|2x-5<4-x},则A∩B的元素个数为多少?A. 0B. 1C. 2D. 3解析:首先,我们要先求出集合A和集合B的解析式。

对于集合A,x^2-3x>10,整理得到x^2-3x-10>0,即(x-5)(x+2)>0。

解得x< -2或x>5,所以集合A为负无穷到-2的开区间和5到正无穷的开区间。

对于集合B,2x-5<4-x,整理得到3x<9,即x<3。

所以集合B为负无穷到3的开区间。

然后,求A∩B的元素个数。

由于集合A和集合B的交集元素应同时满足集合A和集合B的条件,所以交集元素应满足x< -2或x>5且x<3。

综合这两个条件,我们可以确定交集元素的取值范围为负无穷到-2的开区间。

由于这个开区间不存在实数解,所以A∩B的元素个数为0。

因此,答案为A. 0。

二、填空题1. 题目描述如图所示,ΔABC中,AB=AC,∠ABC=80°,AD是BC边上的高,则∠DAB=______°。

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷-(解析版)

2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a <10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD =90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b 的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a ﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a ﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图⑦这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,∠ACB =90°,AB =10cm ,BC =8cm ,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.过点P 作PE ⊥AB ,交BC 于点E ,过点Q 作QF ∥AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为t (s )(0<t <5),解答下列问题:(1)当t 为何值时,点E 在∠BAC 的平分线上?(2)设四边形PEGO 的面积为S (cm 2),求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使四边形PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE =EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE ﹣S △OEC )构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

山东省青岛市2019年中考数学真题试题(含解析)

山东省青岛市2019年中考数学真题试题(含解析)

山东省青岛市2019年中考数学真题试题(含解析)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m55.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c (a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5 化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE =∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b 的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b 为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.。

青岛中考数学试题

青岛中考数学试题

青岛中考数学试题每年的中考数学试题都是学生和家长们的焦点,也是各学校选拔人才的依据。

今天,我们就来一起探讨一下青岛中考数学试题的特色和难点。

一、题型结构青岛中考数学试题一般分为选择题、填空题和解答题三种类型。

选择题和填空题主要考察学生的基础知识和基本技能,而解答题则更注重考察学生的数学思维和解题能力。

二、考点分布青岛中考数学试题的考点覆盖了初中数学的所有内容,包括数与式、方程与不等式、函数与图像、三角形与四边形、圆等。

其中,函数与图像是考察的重点,也是难点。

三、难度分析青岛中考数学试题的难度一般分为三个等级,容易题、中等难度题和难题。

容易题一般占70%左右,中等难度题占20%左右,难题占10%左右。

对于大多数学生来说,能够把容易题和中等难度题做好就已经很不容易了,因此需要注重基础知识的学习和基本技能的训练。

四、考试技巧在考试中,学生需要掌握一些基本的考试技巧,比如如何合理安排时间、如何避免粗心大意等。

同时,学生还需要学会如何分析题目背景、理解题目要求、寻找解题思路等。

在考试中,只有掌握了正确的技巧和方法,才能更好地应对各种类型的题目。

五、备考建议针对青岛中考数学试题的特点和难点,我们提出以下备考建议:1、注重基础知识的学习和基本技能的训练。

只有掌握了坚实的基础知识,才能更好地应对各种类型的题目。

2、加强数学思维的培养和解题能力的提高。

只有具备了较强的数学思维和解题能力,才能更好地应对难题和复杂的问题。

3、多做真题和模拟题,熟悉考试形式和题型结构。

只有通过大量的练习,才能更好地掌握考试技巧和方法。

4、注重复习和巩固。

只有不断地复习和巩固学过的知识,才能更好地应对考试。

青岛中考数学试题具有自己的特色和难点,学生需要认真备考,掌握正确的学习方法和技巧,才能更好地应对考试。

北京中考数学试题作为衡量学生数学能力和思维的重要工具,一直以来都备受。

这些试题不仅要求学生具备扎实的数学基础,还要求学生能够灵活运用所学知识,解决实际问题。

2024年山东省青岛市中考数学试卷正式版含答案解析

2024年山东省青岛市中考数学试卷正式版含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共9小题,每小题3分,共27分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为( )A. 6×103B. 60×103C. 0.6×105D. 6×1042.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是( )A. aB. bC. cD. d4.如图所示的正六棱柱,其俯视图是( )A. B. C. D.5.下列计算正确的是( )A. a+2a=3a2B. a5÷a2=a3C. (−a)2⋅a3=−a5D. (2a3)2=2a66.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转90°,得到四边形A′B′C′D′,则点A的对应点A′的坐标是( )A. (−1,−2)B. (−2,−1)C. (2,1)D. (1,2)7.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE 和正方形CDFG 中,CF ,DG 的延长线分别交AE ,AB 于点M ,N ,则∠FME 的度数是( ) A. 90° B. 99° C. 108° D. 135°8.如图,A ,B ,C ,D 是⊙O 上的点,半径OA =3,AB ⏜=CD ⏜,∠DBC =25°,连接AD ,则扇形AOB 的面积为( ) A. 54π B. 58π C. 52π D.512π9.二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =−1,则过点M(c,2a −b)和点N(b 2−4ac,a −b +c)的直线一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限二、填空题:本题共6小题,每小题3分,共18分。

青岛中考数学试题与答案(初中数学)

青岛中考数学试题与答案(初中数学)

青岛市中考数学真题一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006B .2007C .2008D .20095.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23-- B .13--C .23-+D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩32左视图4俯视图(第5题图)CA O B(第6题图)标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是() A .73cmB .74cmC .75cmD .76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .①②(第12题图)A DCPB(第10题图)60°x x x x x14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)化简:0293618(32)(12)23+--+-+-.20.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.序号 1 2 3 …图形…(第15题图)A E DB FC (第18题图) (第20题图)21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).4天 3天 2天 7天 6天 5天 30% 15% 10% 5%15% a 60 50 4030 20 102天 3天 4天 5天 6天 7天 (第21题图)时间人数DCB A②①(第22题图)23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG.. 求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.(第24题图) A D GE C B (第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分.一、选择题(本题共12个小题,每小题4分,满分48分)二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++. ····························································2分111 =.·································································4分1 =····································································································6分20.(本题满分8分)解:(1)12···································································································1分(2)13········································································································3分(3)根据题意,画树状图: ·············································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·····································································8分或根据题意,画表格: ····················································································6分1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始P (4的倍数)41164==. ·············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ···································· 1分 初一学生总数:2010%200÷=(人). ····························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ················································ 3分 频数分布直方图(如图)···················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ··························· 5分 (4)众数是4天,中位数是4天. ···································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································· 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ························· 3分 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==°, ··············· 4分5cos 5cos3032CE AC ACE =∠==° ·············5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分DB BA(第22题图)C(第21题图)551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.····································································· 4分 解这个方程,得12100200x x ==,. ································································ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°.······················· 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································· 6分BED BME ∴∠=∠. ····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······························ 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F .(第24题图)AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································· 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ····································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ······················································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ······································· 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································ 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,··············2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ··············································································· 6分 A D G E C B (第25题图)FP(第26题图)第 11 页 共 11 页 在223y x x =--中,令3y =-,得1202x x ==,. 2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ······································································ 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······················· 14分。

山东省青岛市2020年中考数学试题(解析版)

山东省青岛市2020年中考数学试题(解析版)

山东省青岛市2020年中考数学试题(解析版)一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体.【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【解答】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.【分析】(1)当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

2022山东青岛中考数学试卷+答案解析

2022山东青岛中考数学试卷+答案解析

2022年山东青岛中考数学一、选择题(本大题共8小题,每小题3分,共24分),它与π的误差小于0.000 1.我国古代数学家祖冲之推算出π的近似值为355113000 3。

将0.000 000 3用科学记数法可以表示为()A.3×10-7B.0.3×10-6C.3×10-6D.3×1072.北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4 506件,其中很多设计方案体现了对称之美。

以下4幅设计方案中,既是轴对称图形又是中心对称图形的是()A B C D的结果是() 3.计算(√27-√12)×√13A.√3B.1C.√5D.334.如图①,用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”。

图②“堑堵”的俯视图是()图①图②A B C D5.如图,正六边形ABCDEF内接于☉O,点M在AB上,则∠CME的度数为()A.30°B.36°C.45°D.60°6.如图,将△ABC先向右平移3个单位,再绕原点O旋转180°,得到△A'B'C',则点A的对应点A'的坐标是()A.(2,0)B.(-2,-3)C.(-1,-3)D.(-3,-1)7.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形。

若AB=2,则OE的长度为()B.√6C.2√2D.2√3A.√628.已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=-1,且经过点(-3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0二、填空题(本大题共6小题,每小题3分,共18分)的绝对值是.9.-1210.小明参加“建团百年·我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项得分分别是9分、8分、8分,若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为分。

2020年山东省青岛中考数学试卷附答案解析版

2020年山东省青岛中考数学试卷附答案解析版

四、解答题(本大题共 9 小题,共 74 分)
16.(本题每小题 4 分,共 8 分)
(1)计算:
1 a
1 b
ab
ba

2x 3≥ 5, (2)解不等式组: 13x 2 x.
17.(本小题满分 6 分)
小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计 了一个“配紫色”游戏:A,B 是两个可以自由转动的转盘,每个转盘都被分成面积相等
长线上,且 DE BF ,连接 AE , CF .
1 求证: △ADE≌△CBF ; 2 连接 AF , CE ,当 BD 平分ABC 时,四边形 AFCE 是什么特殊四边形?请 说明 理由. 22.(本小题满分 10 分)
某公司生产 A 型活动板房成本是每个 425 元.图①表示 A 型活动板房的一面墙,它 由长方形和抛物线构成,长方形的长 AD 4 m ,宽 AB 3 m ,抛物线的最高点 E 到 BC 的距离为4 m .
航行至C 处,此时在 A 处测得C 位于南偏东 67°方向.求此时观测塔 A 与渔船C 之间的
距离(结果精确到 0.1 海里).
sin 22° 3,cos22° 15,tan 22° 2,
(参考数据:
8
16
5)
sin 67° 1,2cos67° ,tan567°
12
13
13
5
数学试卷 第 4 页(共 8 页)
(2)从 3,4,5,…,n 3(n 为整数,且 n≥2 )这 n 1 个整数中任取a1 a n 1
个整数,这 a 个整数之和共有
种不同的结果.
24.(本小题满分 12 分)
已知:如图,在四边形 ABCD 和 Rt△EBF 中, AB CD , CD AB ,点 C 在 EB 上, ABC EBF 90° , AB BE 8 cm , BC BF 6 cm,延长 DC 交 EF 于点 M . 点 P 从点 A 出发,沿 AC 方向匀速运动,速度为 2 cm s ;同时,点 Q 从点 M 出发,沿

山东省青岛市2019年中考数学试题(含解析)和答案

山东省青岛市2019年中考数学试题(含解析)和答案

2019年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m55.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B 位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q 从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B 位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的。

山东省青岛市中考数学试题含答案

山东省青岛市中考数学试题含答案

青岛市二〇一五年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分; 第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.2的相反数是( ).A .2-B .2C .21 D .22.某种计算机完成一次基本运算的时间约为0.000 000 001s ,把0.000 000 001s 用科学计数法可以表示为( ).A .s 8101.0-⨯B .s 9101.0-⨯C .s 8101-⨯D .s 9101-⨯3.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).4.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE =1,则BC =( ).A .3B .2C .3D .23+5.小刚参加射击比赛,成绩统计如下表成绩(环) 6 7 8 9 10 次数13231关于他的射击成绩,下列说法正确的是( ).A .极差是2环B .中位数是8环C .众数是9环D .平均数是9环6.如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB =( ) A .30°B .35°C .45°D .60°7.如图,菱形ABCD 的对角线AC 、BC 相交于点O ,E 、F 分别是AB 、BC 边上的中点,连接EF ,若EF =3,BD =4,则菱形ABCD 的周长为( ).A .4B .64C .74D .288. 如图,正比例函数x k y 11=的图像与反比例函数xk y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ). A .22>或<x x -B .202<<或<x x -C .2002<<或<<x x -D .202>或<<x x - 第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.计算:.________232723=÷-⋅a a a a10.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的31,那么 点A 的对应点A '的坐标是_______.11.把一个长、宽、高分别为3cm 、2cm 、1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (2cm )与高)(cm h 之间的函数关系是为_________________________12.如图,平面直角坐标系的原点O 是正方形ABCD 的中心,顶点A ,B 的坐标分别为(1,1)、(-1,1),把正方形ABCD 绕原点O 逆时针旋转45°得到正方形A 'B'C'D'则正方形ABCD 与正方形A 'B'C'D' 重叠部分形成的正八边形的边长为_____________________°.13.如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E=30°,则∠F= .14.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小正方体,王亮所搭几何体表面积为________________. 三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段c ,直线l l 及外一点A .求作:Rt △ABC ,使直角边为AC (AC ⊥l ,垂足为C )斜边AB =c .四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:nn n n n 1)12(2-÷++;(2)关于x 的一元二次方程 0322=-+m x x 有两个不相等的实数根,求m 的取值范围17.(本小题满分6分)某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?18.(本小题满分6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。

2024年山东省青岛市多校联考中考数学一模试题(解析版)

2024年山东省青岛市多校联考中考数学一模试题(解析版)

二○二四年青岛市初中学业水平模拟考试(一)数学试题愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 在,,,,这个数中,无理数的个数是()A. 个B. 个C. 个D. 个【答案】A【解析】【分析】本题考查无理数的概念,求一个数的算术平方根,根据无理数的概念:无限不循环小数叫做无理数即可判断.【详解】解:,,,,是有理数,是无理数,无理数的个数是1个,故选:A.2. 窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、是轴对称图形,但不是中心对称图形,故此选项不符合题意;B、即不是是轴对称图形,也不是中心对称图形,故此选项不符合题意;C、是中心对称图形,但不是轴对称图形,故此选项不符合题意;D、是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.0.42504π()01π-227 1.121121112712340.4254=0()01π-1=2271.1211211124π【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3. 地球上七大洲的总面积约为平方千米,近似数精确到( )A. 十分位B. 百分位C. 千万位D. 百万位【答案】C【解析】【分析】根据近似数的精确度的定义即可求解.【详解】=150000000,故精确到千万位故选C.【点睛】此题主要考查近似数的精确度,解题的关键是熟知科学记数法的表示方法.4. 在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是()A B. C. D.【答案】C【解析】【分析】根据俯视图的定义(从上面观察物体所得到的视图是俯视图)即可得.【详解】解:卯的俯视图是 ,故选:C .【点睛】本题考查了俯视图,熟记俯视图的概念是解题关键.5. 直尺和三角板如图摆放,若,则的大小为( )A. B. C.D..81.510⨯81.510⨯81.510⨯155∠=︒2∠35︒55︒135︒145︒【答案】D【解析】【分析】本题主要考查了平行线的性质,三角板中角度的计算,熟知两直线平行,内错角相等是解题的关键.根据平行线的性质得到,再由邻补角互补即可得出结果.【详解】解:如图所示:,∵,∴,由题意得,直尺的两边平行,∴,∴,故选D .6. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了积的乘方,同底数幂乘除法和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A 、,原式计算错误,不符合题意;B 、,原式计算错误,不符合题意;C 、,原式计算错误,不符合题意;D 、,原式计算正确,符合题意;故选:D .7. 如图,在矩形中,E ,F 分别在边和边上,于点G ,且G 为的中点.若3435∠∠==︒1+3=90∠∠︒155∠=︒335∠=︒3435∠∠==︒21804145=︒-=︒∠∠224x x x +=236(2)6x x =623422x x x ÷=34x x x ⋅=2222x x x +=()32628x x =462422x x x ÷=34x x x ⋅=ABCD CD AD BE CF ⊥CF,则的长为( )A. 4B. C. D. 【答案】C【解析】【分析】本题考查了矩形的性质,勾股定理,中垂线的性质,作出合适的辅助线,构造直角三角形利用勾股定理是解题的关键.连接,且为的中点,得到,利用勾股定理可求出,进而得到,在中,可求出,进而求出,再运用勾股定理即可求.【详解】解:连接,四边形是矩形,,且为的中点,,,在中,,在中,在中故选:C .8. 在平面直角坐标系内,点O 是坐标原点,A 点坐标为,线段绕原点逆时针旋转,得到线4,5==AB BC BG BF BE CF ⊥G CF 5BF BC ==AF DF Rt CDF △CF FG BG BF ABCD 90BAF CDF ∴∠=∠=︒ BE CF ⊥G CF 5BF BC ∴==90FGB ∠=︒Rt ABF 3AF ===532DF AD AF ∴=-=-=Rt CDF △CF ===12FG CG CF ∴===Rt BGF BG ===()23,OA O 90︒段,则点的坐标为( )A. B. C. D. 【答案】A【解析】【分析】过点A 作轴于点B ,过点作轴于点C ,根据旋转的性质可证,根据全等三角形的性质可得和的长,即可确定点坐标.【详解】解:过点A 作轴于点B ,过点作轴于点C ,如图所示,则,∵A 点坐标为,∴,根据旋转的性质,,∴.∵,∴,在和中,,∴,∴,∴点坐标为,故选:A.OA 'A '()32-,()32,()3-2,()32-,AB x ⊥A 'A C x '⊥()AAS A OC OBA '≌△△A C 'OC A 'AB x ⊥A 'A C x '⊥90ABO A CO '∠=∠=︒()23,23OB AB ==,90AOA OA OA ''︒∠==,90AOB A OC '∠+∠=︒90A OC A ∠+∠=''︒A AOB '∠=∠A OC ' OBA △ABO A CO AOB A AO A O ∠=∠⎧⎪∠='='∠⎨'⎪⎩()AAS A OC OBA '≌△△23A C OB OC AB '====,A '()32-,【点睛】本题考查了旋转的性质,全等三角形的判定和性质,熟练掌握这些性质是解题的关键.9. 如图,是的切线,B 为切点,连接交于点C ,延长交于点D ,连接,若,且,则的长是( )A. 1B. C. D. 【答案】D【解析】【分析】由圆周角定理可得,等量代换可得,进而可得,根据切线的定义得出,利用勾股定理求出.【详解】解:如图,连接.由圆周角定理可得,,,,,.是的切线,,.故选:D .【点睛】本题考查圆周角定理,切线的性质,勾股定理,等腰三角形的判定等,难度不大,解题的关键是AB O AO O AO O BD 2A D∠=∠4AB =AC 4-4BOC 2D ∠=∠A BOC ∠=∠4OB AB ==AB OB ⊥OA =4AC OA OC =-=-OB BOC 2D ∠=∠ 2A D ∠=∠∴A BOC ∠=∠∴OB AB = 4AB =∴4OB OC == AB O ∴AB OB ⊥∴OA ===∴4AC OA OC =-=-先利用圆周角定理得出,进而利用上述知识点逐步求解.10. 如图为二次函数的图象,有下列四个结论:若,分别是抛物线上的两个点,则;;;.其中正确的个数是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查二次函数的图象与系数之间的关系,会利用对称轴的范围求2a 与b 的关系,根的判别式的熟练运用.由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断.【详解】解:∵若,分别是抛物线上的两个点,∵对称轴为,开口向下,∴,故①正确;∵抛物线开口向下,∴,∵抛物线的对称轴为,∴,∴,∵抛物线交y 轴于正半轴,∴;∴;故②正确;∵对称轴为,开口向下,∴当时,为最大值BOC 2D ∠=∠()20y ax bx c a =++≠①()13,y -()22,y 12y y >0abc >②()a b x ax b -≥+③320b c +<④1234()13,y -()22,y =1x -()()1321---<--12y y >a<012b x a=-=-2b a =0b <0c >0abc >=1x -=1x -y a b c =-+∴∴,故③正确;∵抛物线的对称轴为,∴由图象可得,当时,∴∴,故④正确;综上所述,正确的说法是:①②③④.故选D .二、填空题:本题共6小题,每小题3分,共18分.11.________________________.【答案】【解析】【分析】根据算术平方根、立方根、零指数幂、绝对值和负整数指数幂可以解答本题.====故答案为:【点睛】本题考查算术平方根、立方根、零指数幂、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法.12. 一组数据有个数,它们的平方和是,平均数是,则这组数据的方差是______ .【答案】2a b c ax bx c-+≥++()a b x ax b -≥+③12b x a =-=-12a b =1x =0y a b c =++<102b bc ++<320b c +<④113-⎫=⎪⎭113-⎫-⎪⎭21+--)213+---213++-105021【解析】【分析】此题主要考查了方差的求法,解决问题的关键是对方差公式的正确应用.根据已知条件个数据的平方和是,平均数是,可知应该应用求方差公式推导出代入求出即可.【详解】解:根据求方差公式:,故答案为:.13. 师傅和徒弟两人每小时共做40个零件,在相同时间内,师傅做了300个零件,徒弟做了100个零件.师傅每小时做了多少个零件?若设师傅每小时做了个零件,则可列方程为______.【答案】【解析】【分析】本题考查分式方程的应用;理解工程问题中:工作量工作效率工作时间的基本关系是解题的关键.根据工作量工作效率工作时间,表示两者各自完成零件所用的时间,时间相等构建方程即可.【详解】解:师傅所用时间为,徒弟所用时间为,于是;故答案为:.14. 关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是______.【答案】且【解析】【分析】本题考查了根的判别式,根据方程的根的判别式且计算即可.10502()2222121n S x x x x n =++⋯+-()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎣⎦ ()()2222121212n n x x x x x x x nx n⎡⎤=+++-++++⎣⎦ ()()22221212112n n x x x x x x x x n n=+++-⨯++++ ()222121n x x x x n=+++-2150210=⨯-1=1x 30010040x x =-=⨯=⨯300x 10040x-30010040x x=-30010040x x=-2210kx x +-=1k >-0k ≠()22Δ42410b ac k =-=-⨯-⨯>0k ≠【详解】∵一元二次方程有两个不相等的实数根,∴且,解得且,故答案为:且.15. 一个玻璃球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.已知每块地砖的大小、质地完全相同,则该玻璃球停留在白色区域的概率是______.【答案】##【解析】【分析】本题考查了几何概率,用白色区域的面积整个图形的面积即可求解.【详解】解:如图,设每个小正方形的边长为1,整个图形的面积,白色区域的面积,玻璃球停留在白色区域的概率为,故答案为:.16. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB ,下列结论:①EB ⊥ED ;②点B 到直线AE ;③S △APD +S △APB =④S 正方形ABCD =______.【答案】①②④【解析】2210kx x +-=()22Δ42410b ac k =-=-⨯-⨯>0k ≠1k >-0k ≠1k >-0k ≠340.75÷4312=⨯=16692=+⨯=∴93124=3412+5+【分析】过作于,证明得,从而,可判断①正确;中,,中,,由是等腰直角三角形,得,可判断②正确;由,不正确;中,,得,可判断④正确.【详解】解:,,,,四边形是正方形,,,,在和中,,,,,,,,①正确;中,,中,,过作于,如图:B BF AE ⊥F AEB APD ∆≅∆135AEB APD ∠=∠=︒1354590BEP AEB AEP ∠=∠-∠=︒-︒=︒RtAEP △PE ==Rt BEP △2BE ==∆BEF BF ==AEB APD ∆≅∆ΔΔΔΔΔΔ111222APD APB AEB APB AEP BEP AEBP S S S S S S S AE AP EP BE +=+==+=⋅+⋅=+四边形Rt ABF 222AB AF BF =+222(15AB =++=+AE AP ⊥ 1AEAP ==45AEP APE ∴∠=∠=︒90EAB BAP ∠=︒-∠ ABCD AB AD ∴=90PAD BAP ∠=︒-∠EAB PAD ∴∠=∠AEB ∆APD ∆AE AP EAB PAD AB AD =⎧⎪∠=∠⎨⎪=⎩()AEB APD SAS ∴∆≅∆AEB APD ∴∠=∠180135APD APE ∠=︒-∠=︒ 135AEB ∴∠=︒1354590BEP AEB AEP ∴∠=∠-∠=︒-︒=︒EB ED ∴⊥Rt AEP △PE ==Rt BEP △2BE ==B BF AE ⊥F,是等腰直角三角形,,确;是等腰直角三角形,,中,,,故④正确;故答案为:①②④.【点睛】本题考查正方形性质及应用,涉及全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形面积等知识,解题的关键是证明.三、解答题:本题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. 如图,中,.(1)请用无刻度直尺和圆规作出线段的垂直平分线,与边交于点,在上截取,连接(保留作图痕迹,不写作法);18045BEF BEP AEP ∠=︒-∠-∠=︒ BEF ∴∆BF ∴==AEB APD ∆≅∆ ΔΔΔΔΔΔ111222APD APB AEB APB AEP BEP AEBP S S S S S S S AE AP EP BE ∴+=+==+=⋅+⋅=+四边形BEF ∆ EF BF ∴==1AF AE EF ∴=+=+Rt ABF 222AB AF BF =+222(15AB ∴=+=+5ABCD S ∴=+正方形AEB APD ∆≅∆ABC 2A B ∠=∠AB ABC BC D AB AE AC =DE(2)求证:.【答案】(1)画图见解析(2)证明见解析【解析】【分析】(1)根据尺规作图作垂直平分线的步骤画图即可;(2)由线段垂直平分线的性质得,从而,可证,然后根据即可证明.【小问1详解】如图所示,【小问2详解】连接,是的垂直平分线,..又,.又∵,,..【点睛】本题考查了尺规作图,等腰三角形的性质,线段垂直平分线的性质,全等三角形的判定与性质,熟练掌握线段垂直平分线的性质是解答本题的关键.18. (1)化简:.(2)解一元一次不等式组.【答案】(1);(2).DE DC =DA DB =DAB B ∠=∠∠=∠DAB DAC SAS DAE DAC △≌△AD FG AB DA DB ∴=DAB B ∴∠=∠2BAC B ∠=∠DAB DAC ∴∠=∠AE AC =AD AD =()SAS DAE DAC ∴ ≌DE DC ∴=22111a a a a a -⎛⎫-÷ ⎪+-⎝⎭2138x x x x +>⎧⎨<-+⎩①②1a12x -<<【解析】【分析】本题主要考查分式的加减乘除混合运算,解一元一次不等式组.(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果即可;(2)根据不等式的性质,分别解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:(1);解:,解不等式①,得,解不等式②,得,所以原不等式组的解是.19. 数学兴趣小组成员在观察点A 测得观察点B 在A 的正北方向,古树C 在A 的东北方向;在B 处测得C 在B 的南偏东63.5°的方向上,古树D 在B 的北偏东53°的方向上,已知D 在C 正北方向上,即CD //AB ,AC米,求古树C 、D 之间的距离。

2018年山东省青岛市中考数学试卷(含答案与解析)

2018年山东省青岛市中考数学试卷(含答案与解析)

数学试卷 第1页(共36页) 数学试卷 第2页(共36页) 绝密★启用前山东省青岛市2018年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列四个图形,中心对称图形是( )A B C D2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5克.将0.000 000 5用科学记数法表示为( ) A .7510⨯B .7510-⨯C .60.510-⨯D .6510-⨯ 3.如图,点A 所表示的数的绝对值是( )A .3B .3-C .13D .13-4.计算()32335a a a -⋅的结果是( ) A .565a a - B .695a a - C .64a - D .64a 5.如图,点A B C D 、、、在O 上,140AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( )A .70︒B .55︒C .35.5︒D .35︒6.如图,三角形纸片ABC ,,90AB AC BAC =∠=︒,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F .已知32EF =,则BC 的长是( )A.2B.C .3D.7.如图,将线段AB 绕点P 按顺时针方向旋转90︒,得到线段A B '',其中点A B 、的对应点分别是点A B '',,则点A '的坐标是( )A .()1,3-B .()4,0C .()3,3-D .()5,1-8.已知一次函数b y x c a=+的图象如图,则二次函数2y ax bx c =++在平面直角坐标系中的图象可能是( )(第8题)ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共96分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)9.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22S S 甲乙、, 则2S 甲 2S 乙(填“>”、“=”、“<”)10.计算:122cos30-︒= .11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .12.已知正方形ABCD 的边长为5,点E F 、分别在AD DC 、上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .13.如图,Rt ABC ∆,90,30B C ∠=︒∠=︒,O 为AC 上一点,2OA =,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE OF 、,则图中阴影部分的面积是 .14.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.三、画图题(本大题共1小题,共4分.请用直尺、圆规作图,不写作法,但要呆留作图痕迹)15.(本小题满分4分)已知:如图,ABC ∠,射线BC 上一点D .求作:等腰PBD △,使线段BD 为等腰PBD △的底边,点P 在ABC ∠内部,且点P 到ABC ∠两边的距离相等.四、解答题(本大题共9小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分8分)(1)解不等式组:21,321614.x x -⎧<⎪⎨⎪+>⎩(2)化简:22121x xx x ⎛⎫+-⋅ ⎪-⎝⎭. 17.(本小题满分6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.数学试卷 第5页(共36页) 数学试卷 第6页(共36页)18.(本小题满分6分)八(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了如图所示的统计图.请根据图中信息,解答下列问题: (1)共有 名同学参与问卷调查. (2)补全条形统计图和扇形统计图.(3)全校共有学生1500名学生,请估计该校学生一个月阅读2本课外书的人数约为多少.19.(本小题满分6分)某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45︒,乙勘测员在B 处测得点O 位于南偏西73.7︒,测得840,500AC m BC m ==.请求出点O 到BC 的距离.(参考数据:2473.7s 25in ︒≈,773.7c s 25o ︒≈,2473.7ta 7n ︒≈)20.(本小题满分8分)已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >. (1)当124y y -=时,求m 的值;(2)如图,过点B C ,分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若PBD △的面积是8,请写出点P 坐标(不需要写解答过程).21.(本小题满分8分)已知:如图,ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD . (1)求证:AB AF =.(2)若,120AG AB BCD =∠=︒,判断四边形ACDF 的形状,并证明你的结论.22.(本小题满分10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式. (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.23.(本小题满分10分)问题提出:用若干相同的1个单位长度的细直木棒,按照图1方式搭建一个长方体框架,探究所用木棒条数的规律.图1问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共36页) 数学试卷 第8页(共36页)探究一用若干木棒来搭建横长是m ,纵长是n 的矩形框架(m n 、是正整数),需要木棒的条数. 如图2,当1,1m n ==时,横放木棒为()111⨯+条,纵放木棒为()111+⨯条,共需4条; 如图3,当2,1m n ==时,横放木棒为()211⨯+条,纵放木棒为()211+⨯条,共需7条; 如图4,当2,2m n ==时,横放木棒为()221⨯+)条,纵放木棒为()212+⨯条,共需12条;如图5,当3,1m n ==时,横放木棒为()311⨯+条,纵放木棒为()311+⨯条,共需10条; 如图6,当3,2m n ==时,横放木棒为()321⨯+条,纵放木棒为()312+⨯条,共需17条.图2图3图4图5图6问题(一):当4,2m n ==时,共需木棒 条.问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为 条, 纵放的木棒为 条.探究二用若干木棒来搭建横长是m ,纵长是n ,高是s 的长方体框架(m n s 、、是正整数),需要木 棒的条数.如图7,当3,2,1m n s ===时,横放与纵放木棒之和为()()()32131211=34⎡⨯+++⨯⎤⨯+⎣⎦条,竖放木棒为()()3121112+⨯+⨯=条,共需46条; 如图8,当3,2,2m n s ===时,横放与纵放木棒之和为()()()3213122151⎡⨯+++⨯⎤⨯+=⎣⎦条,竖放木棒为()()3121224+⨯+⨯=条,共需75条; 如图9,当3,2,3m n s ===时,横放与纵放木棒之和为()()()32131231=68⎡⨯+++⨯⎤⨯+⎣⎦条,竖放木棒为()()3121336+⨯+⨯=条,共需104条.图7图8图9问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和 为 条,竖放木棒条数为 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .拓展应用:若按照如图10方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.图1024.(本小题满分10分)已知:如图,在四边形ABCD 中,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP ,为边作AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP .(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式. (3)当QP BD ⊥时,求t 的值.(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.5 / 18山东省青岛市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】解:A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.故选:C . 【考点】中心对称图形的概念 2.【答案】B【解析】解:将0.0000005用科学记数法表示为7510⨯﹣.故选:B 【考点】科学记数法 3.【答案】A【解析】解:|33|=-,故选:A . 【考点】绝对值问题 4.【答案】C【解析】解:23335a a a -⋅()665a a =-64a =-.故选:C .【考点】幂的乘方运算、单项式乘以单项式 5.【答案】D【解析】解:连接OB , ∵点B 是C A 的中点,∴1702AOB AOC ∠==︒∠,由圆周角定理得,1352D AOB ∠==︒∠,故选:D .6【考点】圆心角、弧、弦的关系定理、圆周角定理 6.【答案】B 【解析】解:∵沿过点E 的直线折叠,使点B 与点A 重合, ∴45B EAF ∠=∠=︒, ∴90AFB ∠=︒, ∵点E 为AB 中点, ∴12EF AB =,32EF =,∴3AB AC ==, ∵90BAC ∠=︒,∴BC =故选:B .【考点】折叠的性质、等腰直角三角形的判断和性质、勾股定理的运用 7.【答案】D【解析】解:画图如下:则'5,1A (-), 故选:D .【考点】旋转的性质7 / 188.【答案】A【解析】解:观察函数图象可知:0ba<,0c >,∴二次函数2y ax bx c =++的图象对称轴02bx a=->,且0c >,即抛物线的对称轴在y 轴右侧,且交y 轴于正半轴. 故选:A .【考点】一次函数的图象、二次函数的图象第Ⅱ卷二、填空题 9.【答案】>【解析】解:从图看出:甲组数据比乙组数据波动大,故乙的方差较小,即22S S >乙甲. 故答案为:>. 【考点】方差的意义 10.【答案】【解析】解:212cos30︒-1=2⨯,故答案为:【考点】实数的运算、负整数指数幂、特殊角的三角函数值 11.【答案】200(115%)(110%)174x y x y +=⎧⎨-+-=⎩【解析】解:设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意得:200(115%)(110%)174x y x y +=⎧⎨-+-=⎩故答案为:200(115%)(110%)174x y x y +=⎧⎨-+-=⎩【考点】二元一次方程组 12.8【解析】解:∵四边形ABCD 为正方形, ∴90BAE D ∠=∠=︒,AB AD =, 在ABE 和DAF 中,∵AB AD BAE D AE DF =⎧⎪=⎨⎪=⎩∠∠, ∴ABE DAF SAS ≌(), ∴ABE DAF ∠=∠, ∵90ABE BEA ∠+∠=︒, ∴90DAF BEA ∠+∠=︒, ∴90AGE BGF ∠=∠=︒, ∵点H 为BF 的中点, ∴12GH BF =, ∵5BC =、523CF CD DF ===--,∴BF =,∴122GH BF ==,【考点】正方形的性质、全等三角形的判定与性质、直角三角形两锐角互余13.43π 【解答】解:∵90B ∠=︒,30C ∠=︒, ∴60A ∠=︒, ∵OA OF =,∴AOF 是等边三角形, ∴120COF ∠=︒, ∵2OA =,∴扇形OGF 的面积为:12044=3603π⨯π ∵OA 为半径的圆与CB 相切于点E ,9 / 18∴90OEC ∠=︒, ∴24OC OE ==, ∴6AC OC OA =+=, ∴132AB AC ==,∴由勾股定理可知:BC =∴△ABC的面积为:312⨯⨯∵△OAF的面积为:122⨯4433ππ-43π【考点】扇形面积公式 14.【答案】10【解析】解:这个几何体的搭法共有4种:如下图所示:故答案为:4.【考点】几何体的三视图 三、作图题1015.【答案】【解析】解:∵点P 在ABC ∠的平分线上,∴点P 到ABC ∠两边的距离相等(角平分线上的点到角的两边距离相等), ∵点P 在线段BD 的垂直平分线上,∴PB PD =(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【考点】复杂作图、角平分线的性质、线段的垂直平分线的性质 四、解答题16.【答案】解:(1)解不等式213x -<,得:5x <, 解不等式21614x +>,得:1x >-, 则不等式组的解集为15x -<<;(2)原式212()(1)(1)x x xx x x x +=-+- 2(x 1)=(x 1)(x 1)xx -+-11 / 18 1=1x x -+. 【考点】本题主要考查分式的混合运算和解一元一次不等式组【解析】(1)先求出各不等式的解集,再求出其公共解集即可.(2)根据分式的混合运算顺序和运算法则计算可得.17.【答案】解:不公平,列表如下:4 5 6 48 9 10 59 10 11 6 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果, 所以按照小明的想法参加敬老服务活动的概率为59,按照小亮的想法参加文明礼仪宣传活动的概率为49, 由5499≠知这个游戏不公平; 【解析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【考点】列表法求概率18.【答案】(1)解:参与问卷调查的学生人数为8210%100+÷=()人,故答案为:100;(2)解:读4本的女生人数为10015%105⨯-=人,读2本人数所占百分比为20+18100%38%100⨯=, 补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为150038%570⨯=人.【解析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【考点】条形统计图和扇形统计图的综合运用19.【答案】解:作OM BC ⊥于M ,ON AC ⊥于N ,则四边形ONCM 为矩形,∴ON MC =,OM NC =,设OM x =,则NC x =,840AN x =-,在Rt ANO 中,45OAN ∠=︒,∴840ON AN x ==-,则840MC ON x ==-,在Rt BOM 中,7tan 24OM BM x OBM ==∠, 由题意得,784050024x x +=-, 解得,480x =, 答:点O 到BC 的距离为480 m .【解析】作OM BC ⊥于M ,ON AC ⊥于N ,设OM x =,根据矩形的性质用x 表示出OM 、MC ,根据正13 / 18切的定义用x 表示出BM ,根据题意列式计算即可.【考点】解直角三角形的应用20.【答案】解:(1)设反比例函数的解析式为k y x=, ∵反比例函数的图象经过点4,3A -(-),∴4(3)12k =-⨯=-, ∴反比例函数的解析式为12y x=, ∵反比例函数的图象经过点1(2)B m y ,,2(6,)C m y , ∴11262y m m==,2122=6m m y =, ∵124y y =-, ∴624m m-=, ∴1m =;(2)设BD 与x 轴交于点E . ∵点6(2,)B m m ,2(6,)C m m ,过点B 、C 分别作x 轴、y 轴的垂线,两垂线相交于点D , ∴2(2,)D m m ,624BD m m m=-=. ∵三角形PBD 的面积是8, ∴1•82BD PE =, ∴14•82PE m =, ∴4PE m =,∵(2,0)E m ,点P 在x 轴上,∴点P 坐标为(2,0)m -或(6,0)m .【解析】(1)先根据反比例函数的图象经过点(4,3)A --,利用待定系数法求出反比例函数的解析式为12y x=,再由反比例函数图象上点的坐标特征得出11262y m m ==,21226y m m==,然后根据124y y =-列出方程624m m-=,解方程即可求出m 的值; (2)设BD 与x 轴交于点E .根据三角形PBD 的面积是8列出方程1482PE m=,求出4PE m =,再由(2,0)E m ,点P 在x 轴上,即可求出点P 的坐标.【考点】待定系数法求反比例函数的解析式21.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴BE CD ∥,AB CD =,∴AFC DCG ∠=∠,∵GA GD =,AGF CGD ∠=∠,∴AGF DGC ≌,∴AF CD =,∴AB CF =.(2)解:结论:四边形ACDF 是矩形.理由:∵AF CD =,AF CD ∥,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴120BAD BCD ∠=∠=︒,∴60FAG ∠=︒,∵AB AG AF ==,∴AFG 是等边三角形,∴AG GF =,15 / 18∵AGF DGC ≌,∴FG CG =,∵AG GD =,∴AD CF =,∴四边形ACDF 是矩形.【解析】(1)只要证明AB CD =,AF CD =即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【考点】平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质22.【答案】解:(1)21(6)(26)8032236W x x x x =--+-=-+-.(2)由题意:22032236x x =+--.解得:16x =,答:该产品第一年的售价是16元.(3)由题意:716x ≤≤,22(5)(26)2031150W x x x x =--+-=-+-,∵716x ≤≤,∴7x =时,2W 有最小值,最小值18=(万元),答:该公司第二年的利润2W 至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题;【考点】二次函数的应用、一元二次方程的应用23.【答案】22(n 1)m +(1)n m +[](1)(1)(1)m n n m s ++++(1)(1)m n s ++41320【解析】解:问题(一):当4m =,2n =时,横放木棒为421⨯+()条,纵放木棒为412+⨯()条,共需22条;问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为(n 1)m +条,纵放的木棒为(1)n m +条; 问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和为[](1)(1)(1)m n n m s ++++条,竖放木棒条数为(1)(1)m n s ++条.实际应用:这个长方体框架的横长是 s ,则:[]32(1)5(1)34170m m m ++⨯++⨯⨯=,解得4m =,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为1656990⨯=条,竖放木棒条数为605330⨯=条需要木棒1320条.故答案为22,(n 1)m +,(1)n m +,[](1)(1)(1)m n n m s ++++,(1)(1)m n s ++,4,1320;【考点】规律型—图形变化类问题24.【答案】解:(1)如图作DH AB ⊥于H ,则四边形DHBC 是矩形,∴8CD BH ==,6DH BC ==,∴8AH AB BH ==-,10AD ==,10BD ==,由题意102AP AD DP t ==--.(2)作PN AB ⊥于N .连接PB .在Rt APN 中,102PA t =-, ∴3•sin (102t)5PN PA DAH =∠=-,4•cos (102)5AN PA DAH t =∠=-, ∴41616(102)5BN AN t ==--﹣, 21313654(162t)(102t)616(102t)72252555PQB BCP S S S t t ⎡⎤=+=--+⨯⨯--=-+⎢⎥⎣⎦ (3)当PQ BD ⊥时,90PQN DBA ∠+∠=︒,∵90QPN PQN ∠+∠=︒,∴QPN DBA ∠=∠,∴3tan 5QN QPN PN ∠==, ∴4(102t)2t 3535(102t)5--=-, 解得3527t =, 经检验:3527t =是分式方程的解,17 / 18∴当35s 27t =时,PQ BD ⊥. (4)存在.理由:连接BE 交DH 于K ,作KM BD ⊥于M .当BE 平分ABD ∠时,KBH KBM ≌,∴KH KM =,8BH BM ==,设KH KM x ==,在Rt DKM 中,222()62x x =+-, 解得83x =, 作EF AB ⊥于F ,则AEF QPN ≌, ∴3(102t)5EF PN ==-,4(102t)2t 5AF QN ==--, ∴4[(102)2t]516B t F --=-, ∵KH EF ∥, ∴KH BH EF BF=, ∴88334102)16[(102]55t t t =---()-2 解得:25s 18t =, 经检验:25s 18t =是分式方程的解, ∴当25s 18t =时,点E 在ABD ∠的平分线.【解析】(1)如图作DH AB ⊥于H 则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)作PN AB ⊥于N .连接PB ,根据PQB BCP S S S =+,计算即可;(3)当PQ BD ⊥时,90PQN DBA ∠+∠=︒,90QPN PQN ∠+∠=︒,推出QPN DBA ∠=∠,推出3tan 5QN QPN PN ∠==,由此构建方程即可解解题问题; (4)存在.连接BE 交DH 于K ,作KM BD ⊥于M .当BE 平分ABD ∠时,KBH KBM ≌,推出,8KH KM BH BM ===,设KH KM x ==,在Rt DKM 中,22(6)22x x =+-,解得83x =,作EF AB ⊥于F ,则AEF QPN ≌,推出3(102t)5EF PN ==-,4(102t)2t 5AF QN ==--,推出416(102t)2t 5BF ⎡⎤=---⎢⎥⎣⎦,由KH EF ∥,可得KH BH EF BF =,由此构建方程即可解决问题; 【考点】解直角三角形、锐角三角函数、全等三角形的判定和性质、平行线分线段成比例定理。

2019年山东省青岛市中考数学试题(word版,含答案)

2019年山东省青岛市中考数学试题(word版,含答案)

青岛市初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.7-的绝对值是( ).A .7-B .7C .17-D .172.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .3.据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为( ).A .66.0910⨯B .46.0910⨯C .460910⨯D .560.910⨯4.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻. 据此,估计该镇看中央电视台早间新闻的约有( ). A .2.5万人B .2万人C .1.5万人D .1万人5.已知⊙O 1与⊙O 2的半径分别是2和4,O 1O 2=5,则⊙O 1与⊙O 2的位置关系是( ).A .内含B .内切C .相交D .外切6.某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m ,则根据题意可列方程为( ).A .120012002(120%)x x -=-B .120012002(120%)x x -=+C .120012002(120%)x x-=- D .120012002(120%)x x-=+′7.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的 中点C ′上,若AB =6,BC =9,则BF 的长为( ). A .4 B. C .4.5D .58.函数ky x =与2=-+y kx k (0k ≠)在同一直角坐标系中的图象可能是( ).A .B .C .D .第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.= .10.某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g ).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:则这两台分装机中,分装的茶叶质量更稳定的是 (填“甲”或“乙”).11.如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B ′的坐标是.12.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A的度数是 °.13.如图,在等腰梯形ABCD 中,AD =2,∠BCD =60°,对角线AC 平分∠BCD , E ,F 分别是底边AD ,BC 的中点,连接EF .点P 是EF 上的任意一点,连接PA ,PB ,则PA +PB 的最小值为 . 14.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要 个小立方块.主视图 左视图 俯视图三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段a ,∠α.求作:△ABC ,使AB =AC =a ,∠B =∠α.a(第13题)(第12题)(第11题)四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)计算:2211x x y y -+÷; (2)解不等式组:35021x x ->⎧⎨->-⎩17.(本小题满分6分)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数统计图 某市2013年每月空气质量良好以上天数分布统计图根据以上信息解答下列问题: (1)该市2013年每月空气质量达到良好以上天数的中位数是_____天,众数是_____天; (2)求扇形统计图中扇形A 的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(本小题满分6分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(本小题满分6分), ① . ② (第18题)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y (m)与甲跑步的时间x (s)之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?20.(本小题满分8分)如图,小明想测山高和索道的长度.他在B 处仰望山顶A ,测得仰角∠B =31°,再往山的方向(水平方向)前进80m 至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC 的长(结果精确到0.1m ).(参考数据:tan31° ≈35,sin31° ≈12,tan39° ≈911,sin39° ≈711)21.(本小题满分8分)已知:如图,□ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB = °时,四边形ACED 是正方形?请说明理由.22.(本小题满分10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(第21题)y (第19题)(第20题)(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(本小题满分10分) 数学问题:计算231111nm m mm ++++(其中m ,n 都是正整数,且m ≥2,n ≥1). 探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算2311112222n++++. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为21122+;第3次分割,把上次分割图中空白部分的面积继续二等分,……;……第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为2311112222n ++++,最后空白部分的面积是12n. 根据第n 次分割图可得等式:2311112222n ++++=112n -. 探究二:计算2311113333n++++. 第1次分割,把正方形的面积三等分,其中阴影部分的面积为23; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为22233+; 第3次分割,把上次分割图中空白部分的面积继续三等分,……; ……第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为2322223333n ++++,最后空白部分的面积是13n. 2n2n…第1次分割第2次分割第3次分割 第n 次分割第1次分割第2次分割第3次分割第n 次分割根据第n 次分割图可得等式:2322223333n ++++=113n -, 两边同除以2, 得2311113333n ++++=11223n-⨯.探究三:计算2311114444n ++++. (仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算231111nm m mm ++++. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式: , 所以,231111nm m mm ++++= .拓广应用:计算 2323515151515555n n ----++++ .24.(本小题满分12分)已知:如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12cm ,BD =16cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,直线EF 从点D 出发,沿DB 方向匀速运动,速度为1cm/s ,EF ⊥BD ,且与AD ,BD ,CD 分别交于点E ,Q ,F;当直线EF 停止运动时,点P 也停止运动.连接PF ,设运动第n 次分割第n 次分割时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此时P,E 两点间的距离;若不存在,请说明理由.B D(第24题)青岛市二○一四年初中学生学业考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分 )9.1 10.乙 11.(1,0) 12.35 13.14.54三、作图题(本题满分4分)15.正确作图;········································· 3分 正确写出结论.········································· 4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分)(1)解:原式=2211x yy x -⋅+=2(1)(1)1x x yy x +-⋅+ =1x y- . ·········································· 4分(2)35021x x ->⎧⎨->-⎩解:解不等式①,得x >53.①②解不等式②,得x <3. 所以,原不等式组的解集是53<x <3. ·········································· 4分17. (本小题满分6分) 解:(1)14,13.·········································· 2分(2)360°×212=60°, 答:扇形A 的圆心角的度数是60°. ·········································· 4分 (3)合理即可.·········································· 6分18. (本小题满分6分)解:(1)P (转动一次转盘获得购物券)=1020=12. ·········································· 2分(2)1362001005040202020⨯+⨯+⨯=(元) ∵40元>30元,∴选择转转盘对顾客更合算. ·········································· 6分19. (本小题满分6分) 解:设y 2=kx +b (k ≠0),根据题意,可得方程组解这个方程组,得所以y 2=6x +10. 当y 1=y 2时,8x =6x +10, 解这个方程,得x =5. 答:甲追上乙用了5s .·········································· 6分20. (本小题满分8分) 解:(1)过点A 作A D ⊥BE 于D , 设山AD 的高度为x m ,在Rt △ABD 中,∠ADB =90°, tan31°=ADBD, ∴5=3tan3135AD x BD x =≈º.在Rt △ACD 中,∠ADC =90°, tan39°=ADCD, 10=22=2+bk b⎧⎨⎩610k b =⎧⎨=⎩(第20题)∴11=9tan39911AD x CD x =≈º.∵BC BD CD =- ∴ 5118039x x -=,解这个方程,得180x =.即山的高度为180米. ········································· 6分(2)在Rt △ACD 中,∠ADC =90°,sin39°=ADAC, ∴180282.97sin3911AD AC =≈≈º(米). 答:索道AC 长约为282.9米. . ········································· 8分21. (本小题满分8分)证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠D =∠OCE ,∠DAO =∠E . 又∵OC =OD , ∴△AOD ≌△EOC .········································· 4分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形.∵△AOD ≌△EOC , ∴OA =OE . 又∵OC =OD ,∴四边形ACED 是平行四边形. ∵∠B =∠AEB =45°, ∴AB =AE ,∠BAE =90°. ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∴∠COE =∠BAE =90°. ∴□ACED 是菱形. ∵AB =AE ,AB =CD , ∴AE =CD .∴菱形ACED 是正方形.········································· 8分22. (本小题满分10分)(第21题)(第21题)解:(1)y =(x -50)[50+5(100-x )]=(x -50)(-5x +550)=-5x 2+800x -27500 ∴y =-5x 2+800x -27500.········································· 4分(2)y =-5x 2+800x -27500=-5(x -80)2+4500 ∵a =-5<0, ∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x =80, ∴当x =80时,y 最大值=4500.·········································· 6分(3)当y =4000时,-5(x -80)2+4500=4000,解这个方程,得x 1=70,x 2=90.∴当70≤x ≤90时,每天的销售利润不低于4000元. 由每天的总成本不超过7000元,得50(-5x +550)≤7000, 解这个不等式,得x ≥82.∴82≤x ≤90,∵50≤x ≤100,∴销售单价应该控制在82元至90元之间. ··································· 10分 23.(本小题满分10分)探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为34; 第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为23344+; 第3……第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为2333334444n ++++,最后的空白部分的面积是14n, 根据第n次分割图可得等式:2333334444n ++++=114n -,两边同除以3, 得2311114444n ++++=11334n-⨯.········································· 4分解决问题: 231111n m m m m m m m m ----++++=11nm-,111(1)nm m m---⨯. 第n 次分割第n 次分割········································· 8分拓广应用:原式······································· 10分24.(本小题满分12分) 解:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8. 在Rt △AOB 中,AB=10. ∵EF ⊥BD ,∴∠FQD =∠COD =90°. 又∵∠FDQ =∠CDO , ∴△DFQ ∽△DCO . ∴DF DC =QDOD . 即10DF =8t, ∴DF =54t . ∵四边形APFD 是平行四边形, ∴AP =DF . 即10-t =54t , 解这个方程,得t =409. 答:当t =409s 时,四边形APFD 是平行四边形. ········································· 4分(2)过点C 作C G ⊥AB 于点G ,∵S 菱形ABCD =AB ·CG =12AC ·BD , 即10·CG =12×12×16, 2323111111115555111155551144511411()445445nn n n nn n n n =-+-+-++-⎛⎫=-++++ ⎪⎝⎭⎛⎫=-- ⎪⨯⎝⎭-=-++⨯⨯或 BEPD(第24题)∴CG =485. ∴S 梯形APFD =12(AP +DF )·CG =12(10-t +54t )·485=65t +48. ∵△DFQ ∽△DCO ,∴QD OD =QFOC. 即8t =6QF , ∴QF =34t . 同理,EQ =34t . ∴EF =QF +EQ =32t . ∴S △EFD =12EF ·QD = 12×32t ×t =34t 2. ∴y =(65t +48)-34t 2=-34t 2+65t +48. ········································· 8分(3)若S 四边形APFE ∶S 菱形A BCD =17∶40,则-34t 2+65t +48=1740×96, 即5t 2-8t -48=0,解这个方程,得t 1=4,t 2=-125(舍去) 过点P 作PM ⊥EF 于点M ,PN ⊥BD 于点N , 当t =4时, ∵△PBN ∽△ABO , ∴PN AO =PB AB =BN BO ,即6PN =410=8BN. ∴PN =125,BN =165. ∴EM =EQ -MQ =1235-=35. PM =BD -BN -DQ =161645--=445. 在Rt △PME 中,PE. ······································· 12分BD(第24题)。

2022年中考数学试题汇编:二次函数(解答题)(含解析)

2022年中考数学试题汇编:二次函数(解答题)(含解析)

2022年中考数学试题汇编:二次函数(解答题)1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?2.(2022•盘锦)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:x(天)123 (x)每天的销售量(千克)101214…设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?3.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?4.(2022•贵阳)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.5.(2022•营口)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.(1)求抛物线和直线AB的解析式;(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x 轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.6.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B 两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D 沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.7.(2022•盘锦)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点(A在B的左侧),与y轴交于点C(0,9),点D在y轴正半轴上,OD=4,点P是线段OB上的一点,过点B作BE⊥DP,BE交DP的延长线于点E.(1)求抛物线解析式;(2)若=,求点P的坐标;(3)点F为第一象限抛物线上一点,在(2)的条件下,当∠FPD=∠DPO时,求点F 的坐标.8.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.9.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E 运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图象上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.10.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于 5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?11.(2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:……202224……每千克售价x(元)日销售量y(千……666054……克)(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?12.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M ,使△MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.13.(2022•北京)在平面直角坐标系xOy 中,点(1,m ),(3,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t .(1)当c =2,m =n 时,求抛物线与y 轴交点的坐标及t 的值;(2)点(x 0,m )(x 0≠1)在抛物线上.若m <n <c ,求t 的取值范围及x 0的取值范围.14.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =a (x ﹣h )2+k (a <0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m0 2 5 8 11 14竖直高度y /m20.00 21.40 22.75 23.20 22.75 21.40 根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y =a (x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1d2(填“>”“=”或“<”).15.(2022•呼和浩特)如图,抛物线y=﹣x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,连接AC、BC.(1)求抛物线的解析式及点A的坐标;(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE 是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ∥y轴,分别交BC、x 轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.16.(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b 经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC 于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接P A,PC,△BAF的面积记为S1,△P AC的面积记为S2,当S2=S1时.求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.17.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.18.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.19.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?20.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.21.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x 轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?22.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x 轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.23.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.24.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c 称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.25.(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标.26.(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x 取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?27.(2022•大庆)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是,每增种1棵果树时,每棵果树平均产量减少kg;(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?28.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A 的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.29.(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A (1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以P A为边作等腰直角三角形P AQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.30.(2022•包头)如图,在平面直角坐标系中,抛物线y=ax2+c(a≠0)与x轴交于A,B 两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.(1)求该抛物线的解析式;(2)如图1,N是抛物线上一点,且位于第二象限,连接OM,记△AOG,△MOG的面积分别为S1,S2.当S1=2S2,且直线CN∥AM时,求证:点N与点M关于y轴对称;(3)如图2,直线BM与y轴交于点H,是否存在点M,使得2OH﹣OG=7.若存在,求出点M的坐标;若不存在,请说明理由.31.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.32.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.33.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.34.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?35.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.36.(2022•湖北)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:销售单价x(元/千克)…2022.52537.540…销售量y(千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本).①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售单价.37.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y 轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.38.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?39.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.40.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B 的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.41.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.42.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x (元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?43.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.44.(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?45.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)第x天12...6...11 (15)150150+m…150+5m…150+10m…150+14m 供应量y1(个)220229...245...220 (164)需求量y2(个)(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.46.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.参考答案与试题解析1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?。

2019山东省青岛市中考数学试题(解析版)

2019山东省青岛市中考数学试题(解析版)

2019年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×106km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5 5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的22×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×106km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD =18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走4个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=7,n=1,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF 是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的22×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 013年山东青岛市初级中学学业水平考试
数学试题
一、选择题
1、-6的相反数是( )
A 、—6
B 、6
C 、6
1
D 、61
答案:B
解析:-6的相反数为6,简单题。

2、下列四个图形中,是中心对称图形的是( )
A B C D
答案:D
解析:A 、B 、C 都是轴对称图形,只有D 为中心对称图形。

3、如图所示的几何体的俯视图是( )
A B C D
答案:B
解析:该几何体上面是圆锥,下面为圆柱,圆锥的俯视图是一个圆和圆心,圆锥顶点投影为一个点(圆心)。

4、“十二五”以来,我国积极推进国家创新体系建设,国家统计局《2012年国民经济和社会发展统计公报》指出,截止2012年底,国内有效专利达8750000件,将8750000件用科学计数法表示为()件
A、4
75
.8⨯D、7
.0⨯
875
10
87⨯C、6
10
10
875⨯B、5
10
5.
答案:C
解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8750000=6
.8⨯
75
10
5、一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述
过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有()个
A、45
B、48
C、50
D、55
答案:A
解析:摸到白球的概率为P=101
=,设口袋里共有n个球,则
10010
51
=,得n=50,所以,红球数为:50-5=45,选A。

n
10
6、已知矩形的面积为36cm2,相邻的两条边长为xcm和ycm,则y与x之间的函数图像大致是()
A B C D
答案:A
解析:因为xy=36,即36(0)
y x
=>,是一个反比例函数,故选A。

x
7、直线l与半径r的圆O相交,且点O到直线l的距离为6,则r的取值范围是()
A、6<r
B、6=r
C、6>r
D、6≥r
答案:C
解析:当圆心到直线的距离小于半径时,直线与圆相交,所以选C 。

8、如图,△ABO 缩小后变为O B A ''△,其中A 、B 的对应点分别为''B A 、,''B A 、均在图中格点上,若线段AB 上有一点),(n m P ,则点P 在''B A 上的对应点'P 的坐标为( )
A 、),2
(
n m
B 、),(n m
C 、)2,(n m
D 、)2
,2(n
m
答案:D
解析:因为AB =25,''5A B =,所以,
''1
2
A B AB =,所以点P (m ,n )经过缩小变换后点'P 的坐标为(,)22
m n
学科网,不要转载
二、填空题
9、计算:___________52021=÷+-
答案:
52
解析:原式=1
22
+=52
10、某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:
m x 69.1=甲,m x 69.1=乙,0006.02
=甲s ,0315.02
=乙s ,则这两名运动员中的________
的成绩更稳定。

答案:甲
解析:数据的方差小的运动员比较稳定,因为甲的方差小于乙,所以,甲稳定。

11、某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程___________
答案:40(1+x )2=48.4
解析:2010年为40,在年增长率为x 的情况下,2011年应为40(1+x ),
2012年为40(1+x )2,所以,40(1+x )2=48.4
12、如图,一个正比例函数图像与一次函数1+-=x y 的图像相交于点P ,则这个正比例函数的表达式是____________
答案:y =-2x
解析:交点P 的纵坐标为y =2,代入一次函数解析式:2=-x +1,所以,x =-1
即P (-1,2),代入正比例函数,y =kx ,得k -2,所以,y =-2x
第12题
13、如图,AB 是圆0直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是_____________
答案:4
33
π-
解析:连结OC ,则∠BOC =120°,AB =4,所以,R =2,
扇形BOC 的面积为S 扇形=
12044
3603
ππ⨯= 三角形BOC 的面积为:3
所以,阴影部分面积为:4
33
π-
14、要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面现成的,其它三个面必须用刀切3次才能切出来,那么,要把一个正方体分割成27个小正方体,至少需要要刀切__________次,分割成64个小正方体,至少需要用刀切_________次。

答案:6,9
解析:
27=3*3*3 ,2刀可切3段,从前,上,侧三个方向切每面2刀 所以需要2*3=6刀
第13题。

相关文档
最新文档