第10讲 CMOS反相器
cmos反相器工作原理
cmos反相器工作原理CMOS反相器是一种常用的数字逻辑门电路,由一对互补MOSFET(MOS 场效应晶体管)组成。
它的核心组成部件是P型MOS和N型MOS管,具体工作原理如下:1.P型MOS管(PMOS):PMOS管是一种具有P型沟道的器件。
它的沟道是由N型衬底掺入的P型材料构成的。
当PMOS上的栅极电压低于临界值时,沟道形成,并且电流可以流过沟道。
当PMOS上的栅极电压高于临界值时,沟道被截断,电流无法流过。
2.N型MOS管(NMOS):NMOS管是一种具有N型沟道的器件。
它的沟道是由P型衬底掺入的N型材料构成的。
当NMOS上的栅极电压高于临界值时,沟道形成,并且电流可以流过沟道。
当NMOS上的栅极电压低于临界值时,沟道被截断,电流无法流过。
在CMOS反相器中,一个PMOS管和一个NMOS管被连接在一起,形成一个互补对。
它们的栅极由同一个输入控制,且互补对电源共享。
工作原理如下:1.输入为高电平时:当输入为高电平(逻辑1)时,输入端的电压被传递到NMOS管的栅极。
其结果是NMOS管导通,沟道形成。
同时,输入端的高电平也被送到PMOS管的栅极,但由于PMOS管的特性,栅极电压为高电平时导致PMOS管截断,沟道断开。
因此,在输入为高电平时,NMOS导通,PMOS截断,输出为低电平(逻辑0)。
2.输入为低电平时:当输入为低电平(逻辑0)时,NMOS的栅极电压为低电平,导致NMOS截断,沟道断开。
与此同时,输入低电平也传递到PMOS的栅极。
由于PMOS的特性,低电平导致PMOS导通,沟道形成。
因此,在输入为低电平时,NMOS截断,PMOS导通,输出为高电平(逻辑1)。
通过这种方式,输入的逻辑电平被反转,从而实现了反相器的功能。
CMOS反相器的优点之一是功耗较低。
因为在输入为逻辑1时只有一个NMOS导通,输入为逻辑0时只有一个PMOS导通,其他管子都是截断的,消耗的功率非常小。
此外,CMOS反相器还具有高噪声抑制能力和较高的输入阻抗。
COMS反相器原理
Y
VDD
B
图3-5-14 带缓冲级的与非门
A
上述电路虽然简单;但存在一些严重缺点: 1 输出电阻受输入端状态的影响; 2 当输入端数目增多时;输出低电平也随着相应提高;使低电平噪声容限降低
3 5 CMOS电路
3 5 1 CMOS反相器工作原理
3 5 2 CMOS反相器的主要特性
3 5 3 CMOS传输门
3 5 4 CMOS逻辑门电路
3 5 5 CMOS电路的锁定效应及 正确使用方法
图351 CMOS反相器
D
G
S
S
G
D
vO
VDD
TL
T0
vI
3 5 1 CMOS反相器工作原理
CMOS反相器由一个P沟道增强型MOS管和一个N沟道增强型MOS管串联组成 通常P沟道管作为负载管;N沟道管作为输入管
第一种形式: 在反相器基础上增加一对P沟道T'P和N沟道T'N MOS管 当控制端为1时;T'P和T'N同时截止;输出呈高阻态;当控制端为0时;T'P和T'N同时导通;反相器正常工作 该电路为低电平有效的三态输出门
EN
图3516 三态输出CMOS门结构之二
A
Y
VDD
≥1
TN
TP
A
Y
&
TN
当输入vI为高电平时;负载管截止;输入管导通;负载电流IOL灌入输入管;如图356 所示 灌入的电流就是N沟道管的iDS;输出特性曲线如图357 所示 输出电阻的大小与vGSNvI有关;vI越大;输出电阻越小;反相器带负载能力越强
cmos反相器的工作原理
cmos反相器的工作原理
CMOS反相器的工作原理是基于CMOS(互补金属氧化物半导体)技术的电路。
CMOS反相器是一种用于取反输入信号的数字电路。
它由一对互补型MOSFET
(金属氧化物半导体场效应晶体管)组成,包括一个P型MOSFET和一个N型MOSFET。
CMOS反相器的输入端连接到P型MOSFET的栅极,同时也连接到N型MOSFET的栅极。
而输出端则连接到两个MOSFET的源极之间。
其中,P型MOSFET的源极连接到正电源(VDD),而N型MOSFET的源极连接到地。
当输入端的电压为高电平(逻辑1)时,P型MOSFET的栅极电压低于P型MOSFET的阈值电压,导致P型MOSFET处于关闭状态,不导通。
与此同时,N
型MOSFET的栅极电压高于N型MOSFET的阈值电压,导致N型MOSFET处于
导通状态。
当输入端的电压为低电平(逻辑0)时,P型MOSFET的栅极电压高于P型MOSFET的阈值电压,导致P型MOSFET处于导通状态。
与此同时,N型MOSFET的栅极电压低于N型MOSFET的阈值电压,导致N型MOSFET处于关
闭状态,不导通。
根据上述工作原理,当输入端为高电平时,输出端会产生低电平(逻辑0)的
信号;当输入端为低电平时,输出端会产生高电平(逻辑1)的信号。
因此,CMOS反相器能够将输入信号取反输出。
CMOS反相器具有低功耗、高噪声容忍度和良好的抗干扰能力等优点,因此被
广泛应用于数字逻辑电路和微处理器中。
它在现代电路设计中起着重要的作用,帮助实现数字电路中的信号处理和逻辑功能。
CMOS反相器的概述
CMOS反相器的概述CMOS反相器是一种非常常用的逻辑门,可以进行数字信号的反相操作。
CMOS反相器由CMOS技术制造而成,具有低功耗、高可靠性和低噪声的特点。
在数字电路中,CMOS反相器被广泛应用于时序电路、计数器、存储器等模块。
CMOS反相器的基本结构包括一个N型MOS管和一个P型MOS管,N型管和P型管的栅极通过逻辑信号控制,当输入信号为高电平时,N型管导通,P型管截断;当输入信号为低电平时,N型管截断,P型管导通。
这样,输出信号就与输入信号相反,实现了信号的反相操作。
CMOS反相器的输入和输出特性非常重要。
在CMOS反相器中,输入和输出电平可以区分为三个状态:高电平、低电平和开路状态。
当输入电平为高电平时,即逻辑1时,N型管导通,输出电平为低电平,即逻辑0;当输入电平为低电平时,即逻辑0时,P型管导通,输出电平为高电平,即逻辑1;当输入电平为开路状态时,即逻辑Z,输出电平保持上一个状态。
CMOS反相器的优点在于其低功耗和高可靠性。
由于CMOS技术将N型和P型管结合在一起,只有当输入信号改变时才会有电流流动。
在不改变输入信号时,CMOS反相器几乎不消耗功耗。
此外,由于N型和P型管分别负责导通和截断,CMOS反相器对噪声和电压干扰的抵抗能力较强,能够提供稳定的输出信号。
另外,CMOS反相器还具有较高的噪声容限和抗串扰能力。
在数字电路中,信号的传输会产生一定的噪声和串扰,这会导致信号的失真和误差。
CMOS反相器在设计上减小了管子之间的互感和电路之间的耦合,使其能够在抗噪声和抗串扰方面有较好的性能。
这使得CMOS反相器能够适应较严苛的工作环境,提供可靠的信号处理能力。
尽管CMOS反相器具有许多优点,但它也存在一些问题。
首先,由于CMOS反相器采用两个互补型MOS管连接而成,因此在制造过程中需要精心控制各项参数,如电流、阈值电压等,这使得制造过程复杂,成本较高。
此外,CMOS反相器在频率较高的应用中,存在一定的延迟和功耗问题,因此在高速和高频率应用中需要进行相应的优化和补偿。
CMOS反相器
B
18
N阱形成的主要步骤是:
1、外延层;2、原氧化生长;3、第一层掩膜(N阱注 入);4、N阱注入(高能);5、退火,如下图。外延层 与衬底有完全相同的晶格结构,只是纯度更高晶格缺陷更 少。氧化层的主要 作用是:1、保护表面的外延层免受沾 污;2、阻止在注入过程中对硅片过度损伤;3、作为氧化 屏蔽层,有助于控制注入过程中杂质的注入深度。光刻胶 图形覆盖了硅片上的特定区域,将起保护起来免于离子注 入。离子注入机离化杂质原子,使其加速获得高能,选出 最恰当的元素注入,并聚焦离子成为极窄的一束,最后扫 描使硅片不受光刻胶保护的区域得到均匀掺杂。杂质离子 穿透硅的晶格结构,对其共价原子结构造成损伤,这种损 伤在以后的扩散以及退火步骤中得到修复。
源/漏(S/D)注入工艺
为了完成倒掺杂技术,用中等剂量的掺杂稍稍超过LDD的结
深,但是比最初的双阱掺杂的结深浅,上一步形成的侧墙阻止
了注入杂质侵入狭窄的沟道。N+S/D注入的主要步骤是:1、第
七层掩膜(N+S/D注入);2、 N+S/D注入(中等能量)P+S/D
注入的步骤:1、第八层( P+S/D 注入);2、 P+S/D(中等能
B
SUM
≥1
COUT
B
13
---用RTL描述的一位半加器
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY HADDER IS
PORT (A,B:IN STD_LOGIC;
SO,CO:OUT STD_LOGIC);
END ENTITY HADDER;
ARCHITECTURE FH1 OF HADDER IS
10CMOS反相器
延时定义
传播延时
上升下降时间 Transition time 或叫Slew
电子与通信工程系
环振荡器
Ring Oscillator
电子与通信工Leabharlann 系电子与通信工程系延时计算
t transition=
这一模型可以用来模拟反相器延时
电子与通信工程系
(7)逻辑门的功耗
瞬时功耗: p(t) =v(t)i(t) =Vsupplyi(t)
上节回顾
• 逻辑门性能表征
– VTC – 噪声容限 – 抗噪声能力 – 单向性 – 扇入/扇出
电子与通信工程系
(6)理想逻辑门
电子与通信工程系
70年代的NMOS工艺反相器VTC
电子与通信工程系
性能
动态性能(由动态或瞬态响应来决定) 上升时间、下降时间(tr ,tf ) 传播时间(tPHL ,tPLH ,tP) 一个门的传播时间与扇出和扇入数有关 测量门的延时可以用环振电路(一般至少五级反相器) 实际电路的最高工作频率比环振测得的低50-100倍
峰值功耗: Ppeak =Vsupplyipeak
平均功耗:
P
ave
1 T
tT t
p(t)dt V
supply
T
tT t
isuppl(y t)dt
功率延时积(PDP) =E=每操作消耗的能量=Pav×tp
能量延时积(EDP) =门的品质(度量)因子= E×tp
电子与通信工程系
功耗对设计的影响: • 功耗影响设计:封装、冷却、电源线尺寸、
4.输入阻抗高 -输入电路为零,增加扇出只影响延时
5.稳态情况无静态电流。 (忽略漏电流) -理论上无静态功耗
高二物理竞赛课件CMOS反相器的静态输入和输出特性
1. 与非门
2.或非门
带缓冲极的CMOS门
1、与非门
存在的缺点: (1) : 输 1则RO RON 2 RON 4 2RON
A
0, B
0则RO
RON1
//
RON 3
1 2
RON
A 0, B 1则RO RON1 RON
A 1, B 0则RO RON3 RON
1( T
t2
t1 iT dt
t4
t3 iT dt )
静态功耗极小,与动态功耗相比,可以忽略
三、动态功耗
3.总的动态功耗 PD PT PC
2.负载电容充放电功耗PC 当VI ,VDD经T 1向CL充电,有iP 当VI , CL经T 2放电,有iN 可得平均功耗
PC CL fVD2D
3.3.5 其他类型的CMOS门电路 一、其他逻辑功能的门电路
一、传输延迟时间 1.原因:CI和CL充放电,因为RON 较大所以CL充放电影响也较大 ; 2.tPHL , tPLH 受CL、VDD影响 ; 3.tPHL tPLH,74HC系列为10ns,74AHC系列为5ns。
二、交流噪声容限 三、动态功耗
1.导通功耗
PT
VDD ITAV , 其中ITAV
CMOS 反相器的静态输入 和输出特性
CMOS 反相器的静态输入和输出特性 一、输入特性
二、输出特性
1.低电平输出特性VOL f (IOL ) 同样的IOL下,VGS VOL
二、输出特性
1.高电平输出特性VOH f (IOH ) 同样的IOH下,VGS VOH 越少
3.3.4 CMOS反相器的动态特性
(2)输出的高低电平受输入端数目的影响
输入端越多,VOL越高,VOH 也更高 (3)使T2、T4的VGS达到开启电压时, 对应的VI 值不同
cmos反相器
0.5
0 0
0.5
1
1.5
2
2.5
Vin (V)
三CMOS反相器的性能:动态特性
图7
影响一对串联反相器动态特性的寄生电容
四 功耗,能量和能量延时
• 动态功耗 • 静态功耗
• 由冲放电电容引起的动态功耗
图8 由低至高翻转期间的等效电路
翻转期间从电源中取得的能量值EVDD如下所示:
翻转结束时在电容上存储的能量EC如下所示:
静态CMOS反相器的中点增益
求导并求解dVout/dVin得到:
忽略某些二次项并令Vin=VM,得到下面增益表达式:
• 稳定性
器件参数变化
2.5
2
器 件 参 数 变 化 对 静 态 CMOS 好的PMOS 坏的 NMOS
1.5
Vout(V)
Nominal
1
好的NMOS 坏的 PMOS
反 相 器 VCT 的 影 响 图6
计算平均功耗为:
(a)大电容负载
(b)小电容负载
图11 负载电容对短路电流的影 响
图12 CMOS反相器通过NMOS晶体管的短路电 流与负载电容的关系(输入斜率固定为500ps)
• 静态功耗
图13 CMOS反相器中泄漏电流的来源(Vin=0V)
图14 VGS=0时降低阈值会使亚阈值电流增加
小结
• 静态CMOS反相器把一个上拉的PMOS器件和一个下拉的 NMOS器件组合在一起。 • 该门具有几乎理想的电压传输特性。 • 它的传输延时主要由充放电负载电容CL所需要的时间决定。 使负载电容保持较小是实现高性能电路的最有效手段。 • 功耗主要是由在充电和放电负载电容时消耗的动态功耗决 定的。 • 是工艺尺寸变小是减小一个门的面积,传播延时以及功耗 的有效手段。 • 互连线的影响将在总延时和总性能中逐渐占有更大的比例。
CMOS集成电路-反相器PPT课件
2
1.5
Vout(V)
1
0.5
0
0
0.5
1
1.5
2
2.5
V (V)
in
Inverter
器件参数变化对静态CMOS反相 器VTC的影响
2.5
Vout(V)
2 1.5
1 Good NMOS Bad PMOS
0.5
Good PMOS Bad NMOS
Nominal
0
0
0.5
1
1.5
2
2.5
Vin (V)
in
Inverter
CMOS反相器的VTC与电源电压 的关系(0.25um工艺)
Vout(V) Vout (V)
2.5
2
1.5
1
0.5
0
0
0.5
1
1.5
2
2.5
V (V)
in
0.2
0.15
0.1
0.05
Gain=-1
0
0
0.05
0.1
0.15
0.2
V (V)
in
Inverter
仿真 VTC
2.5
二阶分析
VDD
Ron V in = V D D
tpHL = f(R on.CL) = 0 .6 9 R onC L
V out Vout
CL 1 VDD
0.5 0.36
ln ( 0 .5 )
RonCL
t
Inverter
CMOS Inverters
PMOS
In Polysilicon
NMOS
VDD
1.2mm =2l
cmos反相器工作原理
cmos反相器工作原理
CMOS反相器是一种基于混合型CMOS技术开发的一种电路,它由一个
主要的反相器和周围电路组成。
它的工作原理是:输入端口输入电压必须
处于某一范围之内,它的输出端口电压高于输入端口的电压值,即输出一
个反向电压值,这就是CMOS反相器的作用原理。
CMOS反相器通常由几个主要的组件组成,这些组件包括p-型晶体管、n-型晶体管和金属氧化物半导体(MOSFET)。
反相器的输入端口会接受一
种电压值,这是输入电压,而晶体管和MOSFET会根据输入电压值来响应,一些形成周围电路的组件会根据所输入的电压来决定电流,最后将得到一
个反向的输出电压。
CMOS反相器的优点在于它的低功耗使得它可以用在节能类的电路中,并且它的体积小,结构简单以及可靠性高。
而且它输出电压的高低可以调节,因此它可以提高电路的灵活性和可靠性,也可以提高电路的稳定性。
cmos常用电路中异或门及反相器的功能
cmos常用电路中异或门及反相器的功能[CMOS常用电路中异或门及反相器的功能]CMOS(Complementary Metal-Oxide-Semiconductor)是一种常用的集成电路技术,在数字电路中起着重要的作用。
在CMOS常用电路中,异或门和反相器是常常会使用到的两种基本的逻辑门。
它们在数字电路设计中起着至关重要的作用,本文将探讨它们的功能以及在CMOS电路中的应用。
首先,让我们来了解一下反相器的功能及原理。
反相器是一种基本的逻辑门,它的输出与输入恰好相反。
也就是说,当输入为高电平时,输出为低电平;而当输入为低电平时,输出为高电平。
反相器常用来翻转输入信号的逻辑电平,它的符号通常表示为一个箭头,箭头指向一个小圆圈,表示逻辑反相。
在CMOS电路中,反相器通常是通过两个晶体管和一个负载电阻来实现的。
当输入为高电平时,其中一个晶体管导通,另一个截至,从而让输出变为低电平;而当输入为低电平时,另一个晶体管导通,一个截至,输出变为高电平。
这种反相器的实现方式在CMOS电路中非常常见,因为它能够提供高稳定性和高性能。
接下来我们来了解一下异或门的功能及原理。
异或门是一种逻辑门,它的输出为1的条件是两个输入信号不同。
换句话说,只有在一个输入为1,另一个输入为0的时候,输出才会为1;其他情况下输出为0。
异或门的符号通常表示为一个希腊字母“Σ”,表示逻辑异或。
在CMOS电路中,异或门通常是通过多个晶体管和负载电阻来实现的。
它的结构相对复杂一些,但原理其实和反相器类似。
通过合理地配置晶体管的导通状态,可以实现对两个输入信号进行异或运算,并得到相应的输出。
CMOS异或门通常具有高速、高稳定性和低功耗的特点,因此在数字电路设计中得到了广泛的应用。
总的来说,反相器和异或门是CMOS电路中常用的两种基本逻辑门,它们分别提供了对输入信号进行反相和异或运算的功能。
在数字电路设计中,我们可以借助这两种逻辑门来实现各种复杂的逻辑功能,比如加法、减法、乘法等等。
CMOS反相器介绍及设计实用PPT课件
VIN 高阶项(忽略)
扰动后的电压=额定电压+增益x外部干扰
如果输出电压的增益的数量级小于1,则输入扰动不会被放大,因而造成的 输出扰动较小;否则,输入端的小小干扰将会使输出电压有一很大的扰动。
定义
dVOUT 1 的原因 dVIN
第5页/共67页
第6页/共67页
4、再生能力 regeneration
因此噪声容限很大。 (4)只要在状态转换为b——e段时两管才同时
导通,才有电流通过,因此功耗很小。 (5)CMOS反相器是利用p、n管交替通、断来
获取输出高、低电压的,而不象单管那样为保 证VoL足够低而确定p、n管的尺寸,因此 CMOS反相器是无比(Ratio-Less)电路。
第33页/共67页
二、CMOS反相器的动态特性
1 Wp 2 Lp
pCox
VIN VDD VTp
2
对上式求导
dVOUT 1 VIN=VIH dVIN
kn VIH VTn 2VOUT kp VIH VTp VDD
VIH
VDD
VTp
kR (VTn 1 kR
VOUT )
第22页/共67页
在对称情形中
VTn=-VTp
VIH+VIL=VDD
n p
Vth
V0与Vi无关,如图c——d段。
V0+Vtn<Vi≤Vdd+Vtp时:
n线性 p饱和 由In=-Ip得:
a----b b----c c----d d----e e----f
Vi
V 0 Vi Vtn Vi Vtn 2
如图d——e段。
p n
Vi
Vtp
Vdd
2
第31页/共67页
《CMOS反相器》课件
本课件将介绍CMOS反相器的原理、电路结构、工作特性、应用领域以及其 优缺点,帮助大家更好地了解这一重要电路。
什么是CMOS反相器
CMOS反相器是一种基本的数字电路组件,具有重要的信号处理功能。它可以将输入信号的逻辑值取反,并输 出给后续电路。
CMOS反相器的原理
CMOS反相器的原理基于场效应管的工作原理。输入信号通过MOS管的开关 作用,控制输出信号的逻辑值。
CMOS反相器的优缺点
CMOS反相器的优点包括低功耗、高集成度和可靠性强。缺点包括器件尺寸较大、噪声容易干扰和电压摆幅受 限。
总结和展望
CMOS反相器作为数字电路的重要组成部分,发挥着重要作用。未来,随着技术的发展,CMOS反相器将进一 步优化和演进,满足更高的性能需求。
CMOS反相器的电路结构
CMOS反相器由一对互补型场效应管组成,其中一个用逻辑跟随功能,另 一个用于驱动输出信号。
CMOS反相器的工作特性
CMOS反相器具有高的输入阻抗、低的功耗和快速的响应速度。它可以适应不同逻辑电平的输入信号,并输出 相应的反相信号。
CMOS反相器的应用领域
CMOS反相器广泛应用于数字电路设计、数据处理、通信系统和微处理器中。 它在逻辑门电路和时序电路中扮演着重要角色。
第10讲 CMOS反相器资料
驱动门
负载门
理想传输特性
VIH=VIL=1/2VDD,具有最大的噪声容限.
实际传输特性
VSP称为转换点电压或反相器的阈值电压,如何使VSP=1/2VDD?
转换点处反相器中MOS管的工作状态
正常工作条件: 要使输出 电压变化, 必须有 由定义: 所以:
实验结果
高偏斜 无偏斜 低偏斜
反相器的PN比
PN比:一个设计中, 反相器的P管“宽长比”与N管“宽长比” 之比,即(WP/LP)/(WN/LN)。PN比与工艺相关,一般在1.5-3. ”最佳PN比”可采用以下方式两种方式之一确定 (1)根据静态特性:使反相器的转换点电压为1/2VDD。 (2)根据动态特性:使反相器的tplh和tphl相等。 两种方法本应一致,但实际略有区别。 典型情况LN=LP=L(min),PN比等价于P管和N管的宽度比。
要使逻辑电路可靠工作,输入高电平电压必须大于
VIH,输入低电平电压必须小于VIL.
CMOS反相器VIH和VIL的定义
VIL:输入电压由低到高变 化时,输出电压开始下降且 传输特性曲线斜率为-1的 点,即图中A点对应的输入 电压. VIH:输入电压由高到低 变化时,输出电压开始上 升且传输特性曲线斜率 为-1的点,即图中B点对 应的输入电压.
传输延迟的定义: 输入信号变化 50%VDD到输出信 号变化到50%VDD 的时间。
输入
50%
命名:从输出信号 的角度命名。tplh 是输出由低到高的 延迟,tphl是输出 有高到底的延迟。
输出
50%
tplh
tphl
上升时间和下降时间
上升时间:从 10%VDD上升到 90%VDD的时间。 下降时间:从 90%VDD下降到
CMOS反相器原理结构及性能参数
CMOS反相器原理结构及性能参数CMOS反相器是一种基本的数字逻辑电路元件,由两个互补MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)组成。
它可以实现电信号的反相,并起到信号放大的作用。
CMOS反相器不仅在数字电路中使用广泛,还在模拟电路中应用于放大器和振荡器等电路中。
CMOS反相器的基本原理是利用MOSFET的门电压控制特性,当输入信号为高电平时,NMOS(负材料氧化物半导体场效应晶体管)导通,PMOS (正材料氧化物半导体场效应晶体管)截止;当输入信号为低电平时,NMOS截止,PMOS导通。
这样,通过选取适当的参数,输出信号就可以实现输入信号的反相。
CMOS反相器的结构是由一个PMOS和一个NMOS组成,它们的结构和工作原理有所不同。
PMOS是由P型半导体材料构成的,当门电压低于阈值电压时,导电性较好;NMOS是由N型半导体材料构成的,当门电压高于阈值电压时,导电性较好。
输入电压范围指的是输入信号的电压范围,一般为输入高电平(High Level Input)和输入低电平(Low Level Input)两个阈值电压之间的范围。
输出电压范围指的是输出信号的电压范围,一般为输出高电平(High Level Output)和输出低电平(Low Level Output)两个阈值电压之间的范围。
增益是指输出电压随输入电压的变化率,一般为输出电压变化量与输入电压变化量的比值。
在CMOS反相器中,增益一般很高,可以达到几十倍甚至更高。
功耗是指CMOS反相器消耗的电功率,一般与输入电压和输出电流有关。
CMOS反相器的功耗一般比较低,因为在输入端只需要很小的电流就能控制输出的大电流。
速度是指CMOS反相器的响应时间,即输入信号变化到输出信号变化的时间。
CMOS反相器的速度一般较快,可以达到几纳秒的量级。
除了以上的性能参数,CMOS反相器还有一些其他的性能指标,如输入电容、输出电容、输出阻抗和输入阻抗等。
第三周学习总结-CMOS反相器
CMOS反相器静态CMOS(Complementary Metal Oxide Semiconductor)反相器是目前最普遍的反相器,其电路图如图1所示,当V in为高并等于V DD时,NMOS管导通而PMOS管截止,此时在Vout 的接地节点之间存在直接通路,形成一个稳态值0V。
相反,当输入电压为低(0V)时,NMOS 关断而PMOS管导通,V DD和V out之间存在一条通路,产生一个高电平输出电压。
由此实现反相器的功能。
图1.静态CMOS反相器电路静态CMOS反相器具有以下许多特性:(1)输出高电平和低电平分别为V DD和GND,摆幅为电源电压,噪声容限大;(2)逻辑电平与器件的相对尺寸无关;(3)具有低的输出阻抗,使它对噪声和干扰不敏感;(4)输入阻抗极高,缘于MOS管的栅实际上是一个绝缘体;(5)稳态工作下的电源线和地线之间没有直接的通路,在忽略漏电流的情况下意味着该门不消耗任何静态功率。
反相器的电压传输特性(VTC)可以通过图解法迭加NMOS管和PMOS管的电流特性来得到,最终如图2所示。
图2.CMOS反相器的VTC门的输出电容C L事实上包括NMOS和PMOS管的漏扩散电容、连线电容以及扇出门的输入电容。
门的响应时间由通过管子的导通电阻Rp(或者Rn)充放电容CL所需要的时间决定,传播延迟正比于RC。
这意味着可以通过减少输出电容或者减小晶体管的导通电阻实现快速响应。
应当注意,NMOS和PMOS晶体管的导通电阻不是常数,而是晶体管的两端电压的非线性函数,确切决定传播延时较为复杂。
反相器稳定性的评估,静态特性:1.开关阈值V MV M定义为V in=V out的点,在这一区域V DS=V GS,PMOS和NMOS总是饱和,使通过两晶体管的电流相等,得到V M表达式如下(器件处于速度饱和状态即V DSAT<V M-V T且忽略沟长调制效应):,得到当V DD较大时(大于阈值电压及饱和电压),上式简化为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验结果
高偏斜 无偏斜 低偏斜
反相器的PN比
PN比:一个设计中, 反相器的P管“宽长比”与N管“宽长比” 之比,即(WP/LP)/(WN/LN)。PN比与工艺相关,一般在1.5-3. ”最佳PN比”可采用以下方式两种方式之一确定 (1)根据静态特性:使反相器的转换点电压为1/2VDD。 (2)根据动态特性:使反相器的tplh和tphl相等。 两种方法本应一致,但实际略有区别。 典型情况LN=LP=L(min),PN比等价于P管和N管的宽度比。
第10讲 CMOS反相器
电路结构和逻辑功能
反相器是CMOS数字电路性能设计的基准。其它 逻辑门的性能要按等价为反相器时的性能来考虑.
直流特性
1.传输特性曲线 输出电压随输入电压变化的曲线
直流参数VIH和VIL的物理意义
VIH 最小可靠输入高电平电压.完整的名称应为VIH(min). VIL 最大可靠输入低电平电压.完整的名称应为VIl(max).
管宽度较大,会导致面积和功耗增加. 实际设计中,普通反相器的PN比小于“最佳PN比”, 一般约等于最佳PN比的平方根. 驱动时钟信号的反相器的PN比按保证上升、下降 延迟相等的“最佳PN比”设计.
反相器的动态电流
输出电平 变化时才 有电流。
注意:测 功耗要看 电源的电 流,不是 输入信号 源电流。
反相器的动态功耗
充电平均电流 平均功耗
I avg
Qc VDD Ctot T T
2 Ctot VDD 2 Ctot VDD f clk T
Pavg VDD I avg
数字电路功耗的一般表达式
2 Pd k VDD f CL
由于一个复杂数字电路中只有一部分逻辑门在 时钟作用下发生状态变化,因此用平均开关行 为因子k修正。 数字电路的功耗与电源电压平方成正比,与频 率和负载电容成正比,减少k或CL是低功耗设计 手段。
VOL NML VIL NML=VIL-VOL 内部 NML=VIL
驱动门
负载门
理想传输特性
VIH=VIL=1/2VDD,具有最大的噪声容限.
实际传输特性
VSP称为转换点电压或反相器的阈值电压,如何使VSP=1/2VDD?
转换点处反相器中MOS管的工作状态
正常工作条件: 要使输出 电压变化, 必须有 由定义: 所以:
90%
10%
10%VDD的时间。
tr
tf
上升下降时间统称迁移时间(Transition time).另 有定义为20%到80%.
反相实验
*----------反相器静态特性-------------.option post=2 .option search ="d:/hspice2011/libs" .lib "st02.lib" tt *-------------------------------------.param WX=1.5u m1 y a vdd vdd mp w=WX l=0.5u m2 y a gnd gnd mn w=1.05u l=0.5u v1 vdd gnd 5 v2 a gnd 0 .dc v2 0 5 0.01 sweep WX poi 3 1.05u 2.65u 6.05u .end
要使逻辑电路可靠工作,输入高电平电压必须大于
VIH,输入低电平电压必须小于VIL.
CMOS反相器VIH和VIL的定义
VIL:输入电压由低到高变 化时,输出电压开始下降且 传输特性曲线斜率为-1的 点,即图中A点对应的输入 电压. VIH:输入电压由高到低 变化时,输出电压开始上 升且传输特性曲线斜率 为-1的点,即图中B点对 应的输入电压.
集成电路内部一般没有阻性负载(没有输出电流),设计
者应始终保持VOH=VDD(对CMOS电路容易实现),即使 VOH=0.99VDD也是不好的设计.
噪声容限(Noise Margins)
反映可靠性的 参数.
VOH NMH VIH NMH=VOH-VIH 内部 NMH=VDD-VIH
NMH称为高
电平噪声容限 NML称为低电 平噪声容限.
无偏斜PN比的计算
典型工艺中 VTHN VTHP
IDN=IDP
由定义转换点处Vin=Vout=VSP
要使VSP=1/2VDD,则
Wp Wn 即 n Cox p Cox Ln Lp
n p
由于L一般都 取最小,所以
n W n p
Wp
实际电路的PN比
“最佳PN比”是根据速度确定的,使用该PN比时,P
VDD VTHN VTNP
VGS1 Vin VTHN
VSG 2 VDD Vin VTHP
Vout Vin VDS 1
VDS1 VTHN VDS ,sat
VSD 2 VDD Vin VTHP VSD ,sat
故 两个管子都在饱和区.
转换点电压计算公式
VOH和VOL
VOH的一般定义是,最小合格高电平电压,VOL的一般定义是最大合
格低电平电压. CMOS集成电路内部总是规定VOH=VDD, VOL=0V.
在外部引脚有电流负载时,允许VOH略有下降,也允许VOL略有上升,
例如VOH(min)=0.9VDD, VOL(max)=0.1VDD
传输延迟的定义: 输入信号变化 50%VDD到输出信 号变化到50%VDD 的时间。
输入
50%
命名:从输出信号 的角度命名。tplh 是输出由低到高的 延迟,tphl是输出 有高到底的延迟。
输出
50%
tplh
tphl
上升时间和下降时间
上升时间:从 10%VDD上升到 90%VDD的时间。 下降时间:从 90%VDD下降到
由于两个管子都在饱和区,且电流相等,所以有
VSP计算公式为
无偏斜反相器
无偏斜反相器(unskewed)
p n
p n
p n
1 Vsp VDD 2
高偏斜(high-skewed)
1 VSP VDD 2
1 VSP VDD 2
低偏斜(low-skewed)
反相器的传输延迟tphl和tplh