第一节灌溉渠道流量确定和设计4
灌溉渠道设计
1、干渠长度及控制灌溉面积渠道支1支2支3支4合计干渠长度 1.88km 4.25km 4.38km 3.75km 14.26km长度 4.5km 4.2km 4.6km 5.3km 18.6km毛面积 1.6万亩 2.9万亩 3.1万亩3.4万亩11万亩灌溉面积 1.28万亩 2.32万亩 2.48万亩 2.72万亩8.8万亩2、渠道工作制度渠道工作制度采用轮灌方式,并采用集中编组,12条斗渠每6条一组,18条农渠每9条一组。
(见图)3、典型支渠设计流量推算取支3为典型支渠道。
由修正后的灌水率图得q设=0.75m3/(s·万亩) (1)计算农渠的设计流量支3渠田间净流量Q支3田净=A3×q设=2.48×0.75=1.860m3/s因为斗农分两组轮灌,同时工作的斗渠有6条,同时工作的农渠有9条所以农渠的田间净流量为:Q农田净=Q农田净/(n×k)=1.860/54=0.0344m3/s取田间水利用系数ηf=0.95,则农渠净流量为:Q农净=Q农田净/ηf=0.0363m3/s灌区土壤为中粘壤土,查表得土壤透水性参数:A=1.9、m=0.4。
据此可计算农渠每公里输水损失系数为:σ农=A/(100×Q农净m)=1.9/(100×0.03630.4)=0.0716 农渠毛流量Q农毛=Q农净(1+σ农×L农)=0.0363×(1+0.0716×0.463)=0.0375 m3/s (2)计算斗渠的设计流量因为一条斗渠内同时工作的农渠有9条,所以斗渠的净流量为:Q 斗净=9×Q 农毛=9×0.0375=0.3375 m 3/s农渠分两组轮灌,各组要求斗渠供给的净流量相等。
斗渠平均工作长度取L 斗=1.34km斗渠每公里输水损失系数为:σ斗=A/(100×Q 斗净m )=1.9/(100×0.33750.4)=0.0293斗渠毛流量为:Q 斗毛=Q 斗净(1+σ斗×L 斗)=0.3375×(1+0.0293×1.34)=0.3508 m 3/s (3)计算支3渠的设计流量 斗渠也分两组轮灌。
灌溉渠道系统规划设计说明书
明渠均匀流:指渠道断面形状、尺寸、渠底坡降、糙率都沿水流 方种向水不流变流,态则称任明一渠断均面匀的流水。深一h般0,渠流道速为v人,工流开速挖分,布水都流不流变态,为此 明渠均匀流。
明渠均匀流计算公式:
Q C
R
i
1
21
R3i2
n
(米 3/秒)
(Q V L V ) tt
进行试算(三次确定后,可在坐标纸上绘图 Q~f(h),根据 Q 确定 h)
求得 h=1.19
流速校核
V 不淤=0.25m/s<V Q =0.726m/s<V 不冲=0.8m/s (满足要求)
渠深=设计水深+安全高=1.19+0.41=1.6 米 (一般要求安全高大于 0.2 米)
加大流量校核 经计算水深不超堤顶高<1.6 米
进口段
导水墙—也称上游翼墙,有八字形、圆弧形、矩形等进口形式,起导入水 流作用。(浆砌石、砼等材料)
铺盖—即闸前护底(浆砌石、砼材料) 闸底板 (砼、浆砌石等材料)
闸墩 ——闸室分孔和安置闸门用
闸室
闸门——挡水和控制水量和水位用(木、砼、铸铁、钢闸门)
边墩——挡土和支承闸门
工作桥——提升和关闭闸门工作以及栓修闸门用(一般为砼排架结构)
求:b,h
假定:b=1m,设 h=1m
W (b mh)h =2.5 m2
X b 2h 1 =4.8 m
R
W
=0.52,将有关参数代入 C
1
1
R6
或查表得
X
n
15
C
1
R
1 6
=35.82
《市场渠道管理》.灌溉渠道设计流量计算
附录C项目设计有关公式C1灌溉渠道设计流量计算正常流量——设计典型年内的灌水高峰时期渠道需要通过的流量。
该项为渠道纵横断面和渠系建筑物设计的依据。
加大流量——为满足特殊情况(如改变灌溉作物种植比例,扩大灌溉面积,或遇到特大旱情等),短时内加大输水的要求,而予以增大的渠道设计流量。
通常是根据正常流量,适当选择加大百分数来确定,该项指标为设计渠顶高程的依据。
最小流量——在河流水源不足,种植面积减小,或给灌水定额较小的作物供水时,出现渠道最小流量。
该项指标主要用于校核下一级渠道水位的控制条件和奎水建筑物位置以及校核渠道中的淤积。
C1.1选择灌溉制度,确定灌溉方式及由支渠同时供水的下级渠道(斗、农)数目。
C1.2确定支渠及农渠应送至田间的净流量:Q bfn=ωb·q n………………………(C1)式中:Q bnt——支渠配给田间的净流量,m3/s;ωb_支渠控制的灌溉面积,万亩;q n——灌水模数(m3/s/万亩)。
Q ln==Q bfn/n·k·n f……………………(C2)式中:Q ln——农渠净流量,m3/s;n——支渠以下同时灌水的斗渠数;k——斗渠以下同时灌水的农渠数;n f——田间水利用系数。
C1.3推算各级渠道的设计流量(毛流量):农渠毛流量:Q LG=Q ln+S1·L1……………(C3)式中:Q LG——农渠毛流量,m3/s;Q ln——农渠净流量,m3/s;S1——农渠每公里的渗水量,L/s/km;L1——农渠平均灌水长度取1/2的农渠长度,km。
斗渠的毛流量:Q dG=k·Q LG+S a·L a…………(C4)式中:Q dG——斗渠毛流量,m3/s;k——斗渠以下同时灌水的农渠数;S a——斗渠每公里的渗水量,L/s/km;L a——斗渠最大平均工作渠段长度,km支渠的毛流量:O bG=n·Q dG+S b·L b…………(C5)式中:O bG——支渠的毛流量,m3/sn——支渠以下同时灌水的斗渠数;S b——支渠每公里的渗水量,L/s/km;L b——支渠的工作长度,km。
农业综合开发土地治理项目灌溉渠道规划设计指南
续灌渠道应按设计流量、加大流量和最小流量进行水力计算。
轮灌渠道可只按设计流量进行水力计算。
(1)正常工作条件下的各级渠道水力要素应按设计流量计算确定,其平均流速应满足渠道不冲不淤的要求。
(2)续灌渠道的岸顶高程和高度应按最小流量计算确定,并按最小流量验算渠道的不冲流速。
(3)续灌渠道的最低控制水位应按最小流量计算确定,并按最小流量验算渠道的不淤流速。
前已介绍了作物灌溉制度设计、灌溉定额计算方法和依据。
目前我省普遍采用“浅、晒、湿”节水型灌溉制度,根据统计分析,全省30 个计算点一年三熟和一年两熟灌水量时段分配(占灌水总量百分数)见附表6、附表7,供参考使用。
有了灌溉定额及年内分配,可计算出项目区灌水率。
不同地区、不同土质一年三熟净灌水率、一年二熟净灌水率可 依据附表 2、附表 3、附表 6、附表 7 计算。
附表 6、附表 7 已考虑灌水的均匀、连续、延续时间等因素,因此,计算出 净灌水率后,可取年内旬最大值作为设计净灌水率。
设计净 灌水率除以田间水利用系数即得到对应项目区范围的设计 毛灌水率。
如若计算到对应水源点的设计毛灌水率,把田间 水利用系数相应改为灌溉水利用系数。
以梅州 10000 亩一年三熟为例:粘壤土、 一年三熟、 灌溉保证率 90%全年净定额 564 立 方米/亩,年内分配见附表 6,计算的年内净灌水定额分配见 表 5- 1,年内净灌水率见表 5-2、图 5- 1。
表 5- 1 梅州一年三熟年内净灌水定额分配表(粘壤土)立方米/亩10月42.921.426.594. 11月7.97.9 5月21.921.4月 26.513.520.360. 8月21.421.411.862. 1月20.911.216.452. 9月33.827.657.511 7月20.962.82. 2月16.411.832. 12月11.311. 3月14.714.项目上 旬中旬下 旬月6月表 5-2 梅州一年三熟年内净灌水率表(粘壤土)方米/ (s 万亩)立图 5- 1 梅州一年三熟净灌水率图(粘壤土、 90%)0.7000.6000.5000.4000.3000.2000.1000.0004月 5月 6月 7月 8月 9月 10月 11月 12月 1月 2月 3月上旬 中旬 下旬3水灌亩) 万 10月0.4960.2940.279 11月0.0911月0.2420.1760.1894月 0.3070.1570.2358月0.2940.2480.166 9月0.3920.3200.666 7月0.2420.653 项目上旬中 旬下 旬5月0.3002月0.1890.183 3月0.17012月0.131 6月 9 6 9.0 8 3 5 1 7计 3 9设计净灌水率取年内旬最大值, q =0.666 立方米/ (秒 万亩),若管理后项目区范围水利用系数 0.8,则设计毛灌 水率 q =0.666/0.8=0.833 立方米/ (秒万亩)。
灌溉渠道系统
– 机耕要求,以400-800米为宜 – 管理要求:一般需要在1-2d灌完
• 规格:宽度100-200米,长度400-800米。
田间渠系布置
• 纵向布置
– 灌水方向垂直农渠 – 水流方向:农渠-毛渠-输水垄沟-沟(畦田) – 适于微地形起伏、平整较差的地区
3、交叉建筑物
• 1〕隧洞:遇到山岗或绕行费用过大时; • 2〕渡槽:渠道穿过沟道、道路时,若渠 道底部高于沟道洪水位和满足交通要求 时采用,
– 若不满足,可利用倒虹吸。
3〕倒虹吸
• 利用压力沟道代替渠道从沟或路下穿过。 • 使用条件
• 渠道水位高于路面或沟、河水位,但渠道底部低 于路面或沟、河洪水位时; • 渠底高于路面,但是净空无法满足交通要求
• 田间工程是合理灌溉、提高灌排效率、发挥工 程效益的基础。
田间工程规划要求
• 1、规划要求:
– A 灌、排系统完善;
– 避免串灌串排 – 控制地下水位,防止渍害、盐碱化
– B 土地平整;
– 提高灌水均匀度,减少实际灌水定额
– C 适于机械化作业;
2、规划原则:
• 1〕 水利规划和农业规划相结合;
– 并非严格平行等高线
• 支渠大体和等高线垂直
3、圩区
• 圩区特点:
– 地势低洼,在最高洪水位和最低于洪水位之间; – 排水是主要问题 – 一般中间低,四周高。
• 干、支渠布置
– 干渠多沿圩堤布置 – 灌溉系统级别较少。
四、斗渠和农渠规划
• 斗农渠渠规划要求
– – – – 适于管理和机械耕作要求 便于配水 有利于灌水和耕作措施地配合 土地平整工程量小
4、衔接建筑物
灌溉渠系规划
第一节灌溉渠系规划一、灌溉渠系概述1.灌溉渠系的组成灌溉渠系由各级灌溉渠道和退(泄)水渠道组成。
灌溉渠道按其使用寿命分为固定渠道和临时渠道两种:多年使用的永久性渠道称为固定渠道;使用寿命小于一年的季节性渠道称为临时渠道。
按控制面积大小和水量分配层次又可把灌溉渠道分为若干等级:大、中型灌区的固定渠道一般分为干渠、支渠、斗渠、农渠四级,如图4-1所示;在地形复杂的大型灌区,固定渠道的级数往往多于四级,干渠可分成总干渠和分干渠,支渠可下设分支渠,甚至斗渠也可下设分斗渠;在灌溉面积较小的灌区,固定渠道的级数较少;如灌区呈狭长的带状地形,固定渠道的级数也较少,干渠的下一级渠道很短,可称为斗渠,这种灌区的固定渠道就分为干、斗、农三级。
农渠以下的小渠道一般为季节性的临时渠道。
退、泄水渠道包括渠首排沙渠、中途泄水渠和渠尾退水渠,其主要作用是定期冲刷和排放渠首段的淤沙、排泄入渠洪水、退泄渠道剩余水量及下游出现工程事故时断流排水等,达到调节渠道流量、保证渠道及建筑物安全运行的目的。
中途退水设施一般布置在重要建筑物和险工渠段的上游。
干、支渠道的末端应设退水渠道。
2.灌溉渠道的规划原则1) 干渠应布置在灌区的较高地带,以便自流控制较大的灌溉面积。
其他各级渠道亦应布置在各自控制范围内的较高地带。
对面积很小的局部高地宜采用提水灌溉的方式,不必据此抬高渠道高程。
2) 使工程量和工程费用最小。
一般来说,渠线应尽可能短直,以减少占地和工程量。
但在山区、丘陵地区,岗、冲、溪、谷等地形障碍较多,地质条件比较复杂,若渠道沿等高线绕岗穿谷,可减少建筑物的数量或减小建筑物的规模,但渠线较长,土方量较大,占地较多;如果渠道直穿岗、谷,则渠线短直,工程量和占地较少,但建筑物投资较大。
究竟采用哪种方案,要通过经济比较才能确定。
3) 灌溉渠道的位置应参照行政区划确定,尽可能使各用水单位都有独立的用水渠道,以利管理。
4) 斗、农渠的布置要满足机耕要求。
《节水灌溉工程》课件——第六章 低压管道输水灌溉系统
半固定式
式
固定式
一、低压管道输水灌溉系统组成
4、管道系统分类
低压管道
水
系统
压
力
非低压管 道系统
一、低压管道输水灌溉系统组成
4、管道系统分类
其最大工作压力一般不超过0.4
低
压
MPa,最远出口的水头一般在
管
0.2~0.3 m,该形式对管材承
道
内压要求不高。我国大部分平
系
原井灌区管道输水灌溉系统采
一、低压管道输水灌溉系统组成
3、管道系统组成
水源与取水工程 系
统
输水配水管网
组
成 田间灌水设施
一、低压管道输水灌溉系统组成
3、管道系统组成
水源 与取 水工
程
管道输水灌溉系统的水源有井、 泉、沟、渠道、塘坝、河湖和水 库等。
一、低压管道输水灌溉系统组成
3、管道系统组成
输水 配水 管网
输配水管网包括各级管道、分水设施、 保护装置和其他附属设施。在面积较 大的灌区,管网可由干管、分干管、 支管、分支管等多级管道组成。
步骤:
1. 调查收集规划前所需要的资料,并应进行核实和分析。 2. 进行水量平衡分析,确定管道输水灌溉区规模。 3. 实地勘测并绘制规划区平面图,在图中标明沟、渠、
路、林及水源的位置和高程等。
4. 确定取水工程位置、范围和形式。 5. 进行田间工程布置,确定管网形式和畦田规格。 6. 根据管网类型,给水栓位置,选择适宜的管网线路,
统
用这种形式。
一、低压管道输水灌溉系统组成
4、管道系统分类
工作压力超过0.4 MPa时为非低压管道
非
输水灌溉系统,该形式对管材质量要
农田水利学5-(1)灌溉渠道规划
二、地下水取水建筑物
由于不同地区地质、地貌和水文地质条件不同,地下水开采 利用的方式和取水建筑物的形式也不相同。根据不同的开 采条件,大致可分为垂直取水建筑物、水平取水建筑物和 双向取水建筑物三大类。
(一) 垂直取水建筑物
1.管井
管井既可以开采 承压水,也可以 开采浅层水。 井径多取200300mm,也有 300-500mm 的 管井。 井深为50-200m。
2.环境影响评价(environmental evaluation) 从环境角度论证灌排工程建设的可行性,并对可能产生的不利 影响提出相应的对策及环境保护措施。
3.经济评价(economic evaluation)
灌排工程的经济评价应包括国民经济评价和财务评价。 国民经济评价应在估算灌区工程投资费用和效益的基础 上,提出经济评价指标计算成果,评价工程的合理性。 财务评价应在估算财务投资、年运行费用和财务效益的 基础上,提出财务评价指标计算成果,测算财务盈利 能力和还贷能力,评价工程项目财务可行性;并根据 国家的农业水费政策,进行水费核算,提出水费计收 的管理办法。
干渠沿灌区内的主要 地面岗脊线布置,走 向大致与等高线垂直, 干渠比降视地面坡度 而定。 支渠从干渠两侧分出, 为双向控制。
沿分水岭布置
2、平原型灌区 特点:多位于河流的中、游,地形平坦开 阔,有大片的耕地,但因地理条件和洪、 涝、旱、渍、碱等不同而有不同的灌排布 置形式。
平行等高线布置
模式: 井渠结合 自流灌排
湿润地区 或水资源丰富地区
喷灌、微灌 各类地区
以旱作为主
以水稻为主 各类作物
75-80
80-95 85-95
2.抗旱天数(days of drought resistance)
农田水利渠道流量设计
农田水利渠道流量设计农田水利渠道流量设计是农田水利工程设计中的重要环节,准确合理地确定渠道流量,对于农田灌溉、排水和农田水土保持具有重要意义。
本文将从渠道流量的确定方法、设计要点和常见问题等方面进行详细介绍,以帮助读者更好地进行农田水利渠道流量设计。
一、渠道流量的确定方法1.经验公式法经验公式法是根据历史数据和实际应用经验得出的流量计算公式。
这种方法简单快捷,适用于初步设计和小型工程的流量估算。
常用的经验公式有曼宁公式、切耳喷水公式等。
2.基于水平线法基于水平线法是通过划分测点矩形面积的方法来确定流量。
通过测定测点之间的水位差和水尺准高点的高度差,再做计算和推导,可以得出渠道的流量。
3.剖面法剖面法是通过测定渠道剖面的底宽和水位高程,再根据流量计算公式计算出流量。
这种方法适用于渠道流量较大的情况,需要较为精确的测量和计算。
4.水型比例法水型比例法是通过基准渠道的实测流量和水型参数,结合设计渠道的水型尺寸,来确定设计渠道的理论流量。
这种方法适用于规模相对较大的渠道工程设计。
以上方法是常见的渠道流量确定方法,可以根据具体情况选择合适的方法进行。
二、渠道流量设计要点在进行渠道流量设计时,需要考虑以下几个要点。
1.确定设计标准根据灌溉或排水的要求,确定设计标准。
例如,灌溉渠道可以根据作物水需求和灌溉制度确定标准流量;排水渠道可以根据土壤渗透系数和排水能力确定标准流量。
2.考虑渠道形状和尺寸根据渠道的形状和尺寸,计算渠道的水力半径和水力坡度,以确定流量。
同时,要考虑渠道的抗风能力和排涝能力等因素,选择适当的形状和尺寸。
3.充分利用水资源在确定渠道流量时,要充分考虑水资源的有效利用,避免水浪费和水资源的过度利用。
可以通过灌溉制度、节水技术和水发电等手段来提高水资源利用效率。
4.考虑渠道特性和环境因素在设计渠道流量时,要考虑渠道特性和环境因素,如土壤类型、坡度、降雨特点等。
根据不同的特性和因素,选择合适的设计方案和流量计算方法。
灌溉渠道系统规划设计
h
dh
h2
dh
将 (b mh)h 代入上式,整理得:
b mh m - 2 1 m 2 0 ,进一步整理, h
得: b 2( 1 m 2 m) h
所以,最优水力断面宽深比: b 2( 1 m 2 m) ,或 b 2h( 1 m 2 m) ,对于矩
13
三、渠道横断面设计
(一)设计类型 1、渠道已建成
已知:b,h,m,i,n,求渠道通过的流量
Q C Ri
2、求渠道通过建筑物时,改变纵坡,减少过 水断面积时,校核纵坡i 如渡槽等
3、已知Q,m,i,n,求b,h ,主要设计类 型
14
(二)采用试算法求渠道的横断面
已知:Q=3m3/s,m=1.5,n=0.025(±渠),i=1/1000
2)输水配水系统:
把渠道分为五个等级:总干渠、干渠、支渠、斗渠、农渠,其中, 总干渠、干渠、支渠输水;斗渠、农渠配水。
3)田间渠道系统:农渠、毛渠、灌水畦
通常是:干、支、斗、农、毛。大的有总干渠,较小的有灌水畦
4)排水泄水系统:干、支、斗、农、毛沟 2、分类:
从结构上分:明渠、暗渠 按建筑材料分:土渠、砖石砌渠、砼渠、水泥管 按开挖方式分:挖方渠道、填方渠道
进口段
导水墙—也称上游翼墙,有八字形、圆弧形、矩形等进口形式,起导入水 流作用。(浆砌石、砼等材料)
铺盖—即闸前护底(浆砌石、砼材料) 闸底板 (砼、浆砌石等材料)
闸墩 ——闸室分孔和安置闸门用
闸室
闸门——挡水和控制水量和水位用(木、砼、铸铁、钢闸门)
边墩——挡土和支承闸门
工作桥——提升和关闭闸门工作以及栓修闸门用(一般为砼排架结构)
灌溉渠道流量推算.
(一)梯形渠道设计参数确定
1、渠道比降i
尽量使i与地面坡度一致 满足渠床稳定要求 小于不冲流速 大于不淤流速:多泥沙河流不许考虑。 随着渠道设计流量的减少,底坡逐渐增加 干渠、支渠较缓,斗渠、农渠陡 抽水灌区和平原灌区,渠道底坡宜缓 扩大灌溉面积 减少提水成本 南水北调平坡渠道、河套灌区
2。 典型支渠净流量和毛流量
设计净流量 计算长度
3、典型支渠的灌溉水利用系数
n支,水=Q支田净流/Q支毛 n支,水= n支× nd斗× n农,水× n田 4、计算其他支渠的设计流量 5、计算干渠的设计流量
各渠段设计流量不同,断面亦应有变化
五、渠道最小流量和加大流量
内容:五条线、建筑物、水头损失。 步骤:
1、地面高程线 2、建筑物位置和符号 3、设计水位线 4、渠底线(平行设计水位线减去设计水深) 5、最小水位线(渠底+最小水深) 6、堤顶线(渠底线+加大水深+超高) 7、桩号和高程
3、水位衔接
(1)同级渠道不同渠段水位衔接
渠道的净流量等于其控制的同时灌溉的下级渠道的
毛流量之和 该渠道的设计流量=净流量+渠道损失水量 损失水量可用经验公式计算,亦可利用经验系数估 算,得到各级渠道的渠道水利用系数。
D:对于支渠较多的灌区,可选 典型支渠进行计算其支渠水利用 系数,作为扩大指标,求其他支 渠的设计流量
Q支渠=A×q/n支水
A 上下段渠道流量差别不大时,调整渠道宽深比,使其 水深一致。 可以同时调整,或调整下级渠道; 减小底宽、底坡均可增加下游水深。 B 上段渠道水位足够时,以下游渠段确定上级渠道渠底。 确定下段渠道渠底和水深,下段渠道与上段渠底平齐(较少) C上游渠道水位较低无法抬高时,需要抬高下游渠底 (不超过15-20cm)
灌溉渠道设计
灌溉渠道设计摘要:在灌区工程中,灌溉渠道担负着全灌区的输配水任务。
布局合理、配套完善、设计合理、行水通畅的灌溉渠道系统,是灌区工程发挥正常效益的前提条件。
1949年新中国成立以来,我国灌溉事业得到了迅速发展,全国共建成万亩以上灌区5600多处,拥有各类输水渠道310多处万公里,其中干、支级渠道占39.7%,斗、农渠占60.3%,灌溉渠道工程在抵御自然灾害、保障农业生产发展方面发挥了重要作用。
本文针对灌溉渠道设计的内容、步骤、方法、进行了系统的阐述。
关键词:灌溉渠道设计;国内外成果;设计理论1.灌溉渠道设计流量的计算渠道的工作制度不同,设计流量的推算方法也不同,下面以轮灌渠道为例予以介绍。
因为轮灌渠道的输水时间小于灌水延续时间,所以,不能直接根据设计灌水模数和灌溉面积自下而上的推算渠道设计流量。
常用的方法是:根据轮灌组划分情况自上而下逐级分配末级续灌渠道(一般为支渠)的田间净流量,再自下而上逐级计入输水损失水量,推算各级渠道的设计流量。
2.渠道最小流量和加大流量的计算(1)渠道最小流量的计算对于同一条渠道,其设计流量(q设)与最小流量(q最小)相差不要过大,否则在用水过程中,有可能因水位不够而造成引水困难。
为了保证对下级渠道正常供水,目前有些灌区规定渠道最小流量以不低于渠道设计流量的40%为宜;也有的灌区规定渠道最低水位等于或大于70%的设计水位,在实际灌水中,如某次灌水定额过小,可适当缩短供水时间,集中供水,使流量大于最小流量。
3.灌溉渠道纵横断面的设计灌溉渠道的设计流量、最小流量和加大流量确定以后,就可据此设计渠道的纵横断面。
设计流量是进行水力计算、确定渠道过水断面尺寸的主要依据。
最小流量主要用来校核对下级渠道的水位控制条件,判断当上级渠道输送最小流量时,下级渠道能否引足相应的最少流量。
如果不能满足某条下级渠道的进水要求,就要在该分水口下游设节制闸,壅高水位,满足其取水要求。
加大流量是确定渠道断面深度和堤顶高程的依据。
灌溉渠道系统规划设计ppt课件
已知:b,h,m,i,n,求渠道通过的流量
Q C Ri
2、求渠道通过建筑物时,改变纵坡,减少过 水断面积时,校核纵坡i 如渡槽等
3、已知Q,m,i,n,求b,h ,主要设计类 型
14
(二)采用试算法求渠道的横断面
已知:Q=3m3/s,m=1.5,n=0.025(±渠),i=1/1000
其中当 R<1 米时,Y=1.5 n ;当 R>1 米时,Y=1.3 n 。
n——粗糙系数,反映渠道护面材料粗糙程度 R——水力半径
RW X
X——湿周
矩形: X b 2h
梯形: X b 2h 1 m2 式中:b、h表示渠底净宽和渠道过水深度(米)。
n 和 R 均反映渠道过水能力的大小
11
3、最优水力断面
2)输水配水系统:
把渠道分为五个等级:总干渠、干渠、支渠、斗渠、农渠,其中, 总干渠、干渠、支渠输水;斗渠、农渠配水。
3)田间渠道系统:农渠、毛渠、灌水畦
通常是:干、支、斗、农、毛。大的有总干渠,较小的有灌水畦
4)排水泄水系统:干、支、斗、农、毛沟 2、分类:
从结构上分:明渠、暗渠 按建筑材料分:土渠、砖石砌渠、砼渠、水泥管 按开挖方式分:挖方渠道、填方渠道
第四章
灌溉渠道系统规划设计
1
第一节 灌溉渠道系统规划布置
一、任务
1、供水、引水、配水
要求:对水源供水状况进行调节
对水位、水量有控制,调节能力
控制流速,使渠道达到防冲,防淤
2
二、系统分类
1、组成: 1)水源和引水部分:
水源:水库、湖泊、河流、井、泵 建筑物:要求有调节、控制能力(闸、坝、抽水站)
21
灌溉渠道流量计算方法的农田水利与灌溉技术
灌溉渠道流量计算方法的农田水利与灌溉技术一、引言灌溉是农田水利与灌溉技术中的重要方面,而灌溉渠道流量计算方法则是灌溉系统设计和管理中必不可少的一环。
本文将介绍一些常用的灌溉渠道流量计算方法,帮助农田水利工作者更好地进行灌溉渠道的设计和管理。
二、比降法比降法是一种常用的灌溉渠道流量计算方法。
它基于水流在渠道中不受阻碍的假设,通过计算单位长度的水头落差和单位长度的水流速度来确定流量。
其计算公式如下:Q = A * V其中,Q表示流量,A表示渠道横截面积,V表示平均流速。
比降法的优点在于简单易懂,计算过程直观,适用于直线渠道和均匀截面渠道。
但是,比降法没有考虑到渠道形状和摩擦阻力等因素,因此在实际应用中,需要根据实际情况进行修正。
三、曼宁公式曼宁公式是一种基于渠道形状和摩擦阻力的流量计算方法。
曼宁公式的计算公式如下:Q = (1.49/n) * A * R^(2/3) * S^(1/2)其中,Q表示流量,A表示渠道横截面积,R表示湿周,S表示水面比降,n表示曼宁粗糙系数。
曼宁公式考虑了渠道的形状和摩擦阻力,在实际应用中更加准确。
但是,需要注意的是,曼宁公式的精度较低,误差较大。
因此,在进行灌溉渠道流量计算时,需要结合实际情况进行修正,以提高计算结果的准确性。
四、流速积分法流速积分法是一种基于流速测量的流量计算方法。
通过在渠道中测量多个点的流速,并将其积分,可以得到渠道的总流量。
流速积分法的计算公式如下:Q = ∫(A * V)dt其中,Q表示流量,A表示渠道横截面积,V表示流速,t表示时间。
流速积分法的优点在于通过实测数据来计算流量,更加准确。
但是在实际应用中需要采用适当的仪器来进行流速测量,同时需要注意采样点的选择和测量误差的修正。
五、结论灌溉渠道流量计算是农田水利与灌溉技术中的重要内容。
本文介绍了比降法、曼宁公式和流速积分法三种常用的流量计算方法。
比降法简单易懂,适用于直线渠道和均匀截面渠道;曼宁公式考虑了渠道形状和摩擦阻力,计算结果更准确;流速积分法通过实测数据计算流量,准确性更高。
2019年第一节灌溉渠道流量确定和设计2.ppt
渠道的工作制度不同,设计流量推算方法不同,渠 道设计流量推算中首先推算支渠以下轮灌渠道设计流 量,再推算续灌渠道设计流量。推算步骤为: (1) 支渠以下轮灌渠道设计流量的推算:轮灌渠道设 计流量取决于上级渠道的供水流量及轮灌组(渠道) 的划分。轮灌渠道设计流量的推算常用方法是:根据 轮灌组划分情况自上而下逐级分配末级续灌渠道(一般 为支渠)的田间净流量,再自下而上逐级计入输水损失 水量,推算各级渠道的设计流量。
(5)计算斗渠的毛流量
Q斗毛 Q斗净 ( 1 +
斗 L斗
100
)
(6)计算支渠的净流量 a:计算支渠的田间净流量 Q支田净=A支×qd b:计算支渠同时供水的农渠数 N= Q支田净/ Q农田净 C:从支渠最下游开始推算支渠同时供水的斗渠 数,然后计算支渠的净流量
Q支净= Q斗毛
i 1 n
式中: Qg渠道的毛流量 (m3 /s); Qn 为渠道的净流量 (m3 / s);; 为每千米渠道输水损失以渠道净流量的百分数计;L为最下游一 个轮灌组灌水时渠道的平均工作长度(km)。农渠工作长度可取 农渠长度的一半。
b.用经验系数估算输水损失: 根据渠道的净流量和渠道水 利用系数用下面公式计算渠道的毛流量: Q毛 = Q净/η渠道
②由支渠分配到每条农渠的田间净流量:
式中:Q农田净为农渠的田间净流量(m3/s)。
2)自下而上推算各级渠道的设计流量:
①计算农渠的净流量。先由农渠的田间净流量计入田间 损失水量,求得田间毛流量,即农渠的净流量。
式中:η f为田间水利用系数;其余符号意义同前。
②推算各级渠道的设计流量(毛流量): a.用经验公式估算输水损失。根据渠道净流量、渠床土质和 渠道长度用下式计算。
第四章-灌溉渠道系统(1)
渠道的净流量:需要渠道提供的灌溉流量。 渠道的毛流量:计入水量损失后的流量。 设计流量是渠道的毛流量,它是设计渠道断面和渠系建筑 物尺寸的主要依据。
五、渠系建筑物的规划布置
渠系建筑物:各级渠道上的建筑物 1.引水建筑物
引水方式 引水建筑物
作用
无坝引水 渠首进水闸
调节引入干渠的流量
有坝引水
由拦河坝、冲沙闸、 雍高水位,冲刷进水闸前的淤
进水闸等组成的灌 沙,调节干渠的进水流量,满
溉引水枢纽
足灌溉对水位及流量的要求
水库取水 抽水取水
大坝、进水闸等 水泵站
斗 渠 的 间 距 主 要 根 据 机 耕 要求确定,和农渠的长度相 适应。
三、斗、农渠的规划布置
3. 农渠的规划布置
农渠是末级固定渠道,控制范围 为一个耕作单元。农渠长度根据 机耕要求确定,在平原地区通常 为500~100m,间距为200~ 400m,控制面积为200~600亩。 丘陵地区农渠的长度和控制面积 较小。在有控制地下水位要求的 地区,农渠间距根据农沟间距确 定。
五、渠系建筑物的规划布置
3.交叉建筑物 倒虹吸
渡槽
4.衔接建筑物
当渠道通过坡度较大的地段时,为了防止渠道冲 刷,保持渠道的设计比降,就把渠道分成上、下 两段,中间用衔接建筑物联结,这种建筑物常见 的有跌水和陡坡, – 跌水:用于跌差较小的陡坎(<3m) – 陡坡:用于跌差较大、地形变化均匀(>3m )
二、干、支渠的规划布置形式
1)山区、丘陵区灌区的干、支渠布置
山丘、丘陵区的干渠一般沿灌区上部边缘布置,大体 上和等高线平行,支渠沿两溪间的分水岭布置。 在丘陵地区,如灌区内有主要岗岭横贯中部,干渠可 布置在岗脊上,大体和等高线垂直,干渠比降视地面坡 度而定,支渠自干渠两侧分出,控制岗岭两侧的坡地。
第一节灌溉渠道流量确定和设计(4)
H进 = A0 +h + ∑Li + ∑φ 式中: H 进 为渠道进水口处的设计水位 (m) ; A0 为渠道灌溉范围内较高、较 难灌到水的地面高程 (m) ,可保证 85 %以上的面积可自流灌溉; h 为控制 点地面与附近末级固定渠道设计水位的高差,一般取0.1-0.2m; L为各级 渠道的长度 (m) ; i 为渠道的比降; φ 为水流通过渠系建筑物的水头损失 (m)。
地面坡度较陡的灌区渠道水位推算 当灌区坡度较陡(陡于1/1000),渠首 水位已确定时,可根据渠首水位,参照 各渠道纵断面图,自上而下逐级确定水 面线即可。
一般能满足自流灌溉要求的各级渠道水位高出地 面的最小高度 (1)农渠水位高出地面一般不应小于0.2- 0.25m,对局部高地允许与地面相等或稍低; (2)支斗渠水位高出地面一般不应小于0.250.3米,在无分出下级渠道的渠段,允许低于 地面 (3)干渠一般按平行于等高线布置,只要下级 渠道出口处水位高于地面0.3-0.5米,即能满 足自流灌溉要求,其他渠段允许低于地面。
2
1.1 7 1
1.0 1 1.0 2
1.1 9 3
1.2 2
1.2 2 2
1.2 6
1.2 2 9
1.2 7
1.2 3 5
1.2 8
1.2 3 8 1.2
1.2 4 1
1.2 9
1.0
表3 实用经济断面的b/H
α 边坡系数m 0.5 1 1.25 1.5 1.75 2
1 1.01
1.02 1.03 1.04
1.789 2.782
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)渠道纵断面设计中的水位衔接: 2)建筑物前后的水位衔接。渠道上的交叉建筑物(渡槽、隧洞、 倒虹吸等)一般都有阻水作用,会产生水头损失,在渠道纵断 面设计时,必须予以充分考虑。如建筑物较短,可将进、出口 的局部水头损失和沿程水头损失累加起来(通常采用经验数值), 在建筑物的中心位置集中扣除。如建筑物较长,则应按建筑物 位置和长度分别扣除其进、出口的局部水头损失和沿程水头损 失。 跌水上、下游水位相差较大,由下落的弧形水舌光滑联接。 但在纵断面图上可以简化,只画出上、下游渠段的渠底和水位, 在跌水所在位置处用垂线联接。
地面坡度较陡的灌区渠道水位推算 当灌区坡度较陡(陡于1/1000),渠首 水位已确定时,可根据渠首水位,参照 各渠道纵断面图,自上而下逐级确定水 面线即可。
一般能满足自流灌溉要求的各级渠道水位高出地 面的最小高度 (1)农渠水位高出地面一般不应小于0.2- 0.25m,对局部高地允许与地面相等或稍低; (2)支斗渠水位高出地面一般不应小于0.250.3米,在无分出下级渠道的渠段,允许低于 地面 (3)干渠一般按平行于等高线布置,只要下级 渠道出口处水位高于地面0.3-0.5米,即能满 足自流灌溉要求,其他渠段允许低于地面。
(2)可根据表1-表4计算不同α值对应的水力参数
表1 实用经济断面Kr值
边坡系数m α 0.5 1 1.25 1.5 1.75 2
1.01
1.555
1.904
2.146
2.436
2.776
3.166
1.02
1.832
2.365
2.734
3.176
3.693
4.287
1.03
2.063
2.757
3.235
分水口处都应具有足够的水位高程。这个水位是根据灌溉面积上控制点的 高程加上各种水头损失,自下而上逐级推算出来的。水位公式为:
H进 = A0 +h + ∑Li + ∑φ 式中: H 进 为渠道进水口处的设计水位 (m) ; A0 为渠道灌溉范围内较高、较 难灌到水的地面高程 (m) ,可保证 85 %以上的面积可自流灌溉; h 为控制 点地面与附近末级固定渠道设计水位的高差,一般取0.1-0.2m; L为各级 渠道的长度 (m) ; i 为渠道的比降; φ 为水流通过渠系建筑物的水头损失 (m)。
(3)用下式计算不同α值的各项实用经济断面指标
H
(2m ) 5 / 2 (2m 2 1 m ) Kr 2 1 m
2 2
H0
r KrH
b 2r / 1 m2
A A0
5 / 2 0
(4)对不同α值的实用经济断面进行综合 比较确定选用方案2.渠道 Nhomakorabea纵断面设计:
灌溉渠道不仅要满足输送设计流量的要求,还要满足水位控制的要求。横 断面设计通过水力计算确定了能通过设计流量的断面尺寸,满足了前一个 要求。纵断面设计的任务是根据灌溉水位要求确定渠道的空间位置,先确 定不同桩号处的设计水位高程,再根据设计水位确定渠底高程、堤顶高程、 最小水位等。 (1) 灌溉渠道的水位推算:为了满足自流灌溉的要求,各级渠道取水口或
第五节 灌溉渠道系统设计
(2)渠道纵断面设计中的水位衔接:渠道纵断面的水位 衔接是处理渠道与建筑物、渠道上下段和上下级之间 的水位关系问题。 1)不同渠段间的水位衔接。由于渠段沿途分水,渠 道流量逐渐减小,渠道过水断面亦随之减小,为了使 水位衔接,可以改变水深或底宽。衔接位置一般结合 配水枢纽或交叉建筑物布置,并修建足够的渐变段, 保证水流平顺过渡。当水源水位较低,既不能降低下 游的设计水位高程,也不能抬高上游的设计水位高程 时,不得不抬高下游渠底高程,为了减少不利影响, 下游渠底升高的高度不应大于15—20cm。
3.416 4.042 4.615
1.109 2.703
3.523 4.225 4.868
0.992 2.754
3.665 4.444 5.16
0.894 2.832
3.834 4.694 5.488
表4 实用经济断面与水力最佳断面湿周比值χ /χ 0 α χ /χ 0 1 1 1.01 1.025 1.02 1.05 1.03 1.077 1.04 1.103
分水闸上游水位的升高可用两种方式来实现: ①拾高渠道水位,不变渠道比降;
②不变渠道水位,减缓上级渠道比 降。①线表示按原拟定的干渠比降 所定出的干渠设计水位线。但当水 源引水高程不能满足由各支渠分水 口水位推出的干渠设计水位时,就 要设法调整干渠设计水位线。一般 可采用以下两种办法:一是保持 原干渠比降放弃分水口水位较高的支渠内部分高地的自流灌溉,干渠设计水位 线改为上图中的③线。二是将干渠比降放缓,使干渠设计水位线如上图中②线, 既能满足各支渠不同要求,又不超过水源引水高程。这种做法的优点是能保证 全灌区自流灌溉,但将干渠比降改缓后,要重新校核干渠流速。
α 1.01 1.02 1.03 1.04
表3 实用经济断面的b/H
α 边坡系数m 0.5 1 1.25 1.5 1.75 2
1 1.01
1.02 1.03 1.04
1.789 2.782
3.277 3.691 4.063
1.414 2.693
3.345 3.899 4.404
1.249 2.681
3.809
4.479
5.248
1.04
2.271
3.114
3.694
4.388
5.2
6.132
表2 水力最佳断面与实用经济断面水深比H0/H 边坡系数m 0.5 1.14 1.193 1.229 1.257 1 1.159 1.222 1.268 1.305 1.25 1.164 1.229 1.278 1.318 1.5 1.167 1.235 1.285 1.326 1.75 1.169 1.238 1.29 1.332 2 1.171 1.241 1.293 1.336
3)上、下级渠道的水位衔接。在渠道分水口处,上、下级渠道的水位应有 一定的落差,以满足分水闸的局部水头损失。即以设计水位为标准,上级 渠道的设计水位高于下级渠道的设计水位,以此确定下级渠道的渠底高程。 若当上级渠道输送最小流量时,相应的水位可能不满足下级渠道引取最小 流量的要求,就需要在上级渠道该分水口的下游修建节制闸,把上级渠道 的最小水位从原来的Hmin升高到H‘min,使上、下级渠道的水位差等于分水 闸的水头损失,以满足下级渠道引取最小流量的要求,如下图(a)所示。 如果水源水位较高或上级渠道比降较大,也可以最小水位为配合标准,抬 高上级渠道的最小水位,使上、下级渠道的最小水位差等于分水闸的水头 损失吁,以此确定上级渠道的渠底高程和设计水位,见图3—39(b)。