向量空间的基与维数
7.4 向量空间的基和维数
p.151 习题7.4 (向量空间的基和维数)1, 2 ,3, 4 四题为同类型题. 要做两件事:① 证明是向量空间;② 求基和维数. ① 证明是向量空间,有两种方法:第一是定义法,验证运算,并验证八条性质;第二是子空间法,证明V 是某个已知的向量空间的子空间.② 求基和维数:找出V 中一个向量集,证明线性无关,且V 中每个向量都可由该向量集线性表示,从而该向量集是基,再写出维数.以第4题为例,给出解答. 其余题类似方法解决.4. 设F 是数域, {|Tr()0}n n V A F A ⨯=∈=是F 上向量空间. 证明V 是F 上的向量空间,并求V 的一个基和维数.解:(1) 首先证明V 是F 上的向量空间. 显然,V 是n n F ⨯的非空子集(因为零矩阵的迹为零,故零矩阵0V ∈),我们已经知道,n n F ⨯是F 上的向量空间. 因此,要证明V 是F 上的向量空间,只需证明V 是n n F ⨯的子空间. 对任意,A B V ∈,任意k F ∈,有Tr()Tr()Tr()000A B A B +=+=+=,Tr()Tr()00kA k A k =⋅=⋅=故,A B V kA V +∈ ∈. 因此,V 是n n F ⨯的子空间,当然V 是F 上的向量空间.(2) 求V 的一个基和维数.记1122113311{,,,,|,1,2,,,}nn ij S E E E E E E E i j n i j =- - - = ≠,其中kl E (,1,2,,k l n =)为n 阶基本矩阵,即(,)k l 元为1,其余元素均为0的n 阶方阵. 易知S 中有21n -个n 阶方阵,且这些矩阵的迹都是0,故S V ⊂. 下证向量组S 是V 的一个基:① 设 22112233113311,1,2,,()()(nn nn ij ij i j n i jk E E k E E k E E k E = ≠-+ -+ +-)+=0∑. 注意到等式左边为221212122212nnn n n n nn k k k k k k k k k k ++⎛⎫⎪- ⎪⎪⎪-⎝⎭,故22330,nn k k k = = == 0,,1,2,,,ij k i j n i j = = ≠,所以向量组S 线性无关.② 设()ij A a =是V 中任意给定的向量,则由Tr()0A =知,1122nn a a a =---,这样,22121212221222112233113311,1,2,,()()(nn n n n n nn nn nn ij ij i j n i ja a a a a a a A a a a a E E a E E a E E a E = ≠---⎛⎫⎪ ⎪= ⎪⎪-⎝⎭=-------)+∑表明A 可由向量组S 线性表出.因此,向量组S 是一个基,2dim 1V n =-.6. 设123123(1,0,1,0),(2,1,3,7),(3,1,0,3),(4,3,1,3),(1,0,1,3),αααβββ= =-- =- =-- =- =4(0,1,1,0)F ∈. 令1123,,W ααα=<>, 2123,,W βββ=<>. 求12W W +和12W W 的基与维数.这种题型上学期在第四章中已经做过.解:由1123,,W ααα=<>, 2123,,W βββ=<>,可知,12123123,,,,,W W αααβββ= +<>.()T T T T T T 123123123410100802011301010300,,,,,130111001601073330000011αααβββ--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭(#)由此看出,1232,,,αααβ是123123,,,,,αααβββ的一个极大无关组,且1123368,βααα=-++31322βααβ =-+. 因此,1232,,,αααβ是12W W +的一个基,12dim()4W W +=. 又由(#)看出,12dim 3,dim 3W W = =,所以由维数公式,12dim()3342W W =+-=. 注意到,11231231123836,2W W W W βαααββαα=-∈ -=-∈++从(#)可看出,1β与23ββ-线性无关,因此,132,βββ -为12W W 的一个基.所以,12dim()4W W +=,1232,,,αααβ是12W W +的一个基;12dim()2W W =,132,βββ -是12W W 的一个基.第7题中的S <>表示向量集S 生成的子空间. 如果12,,{},n S ααα=为有限集,则12,,,n S ααα<> = <>;如果S 为无限集,则S <> 表示由S 中任意有限个向量的任意线性组合的全体构成的子空间(本题要求证明这是一个子空间,请自行完成).8. 设F 是数域,m s A F ⨯∈. 证明: 在s n F ⨯中所有满足0AB =的矩阵B 构成s n F ⨯的子空间, 并求该子空间的基与维数.解:(1) 证明{}|0s n F AB W B ⨯=∈ =是s n F ⨯的子空间. (略) (2) 记B 的列向量组为12,,},{n βββ, 当然0AB =⇔0,1,2,,i A i n β= =.考虑齐次线性方程组0AX =. 若rank()A s =,即A 列满秩,则0AX =只有零解,那么满足0AB =的矩阵B 只能是零矩阵,故此时dim 0.W = 若rank()A r s =<,则0AX =有非零解,根据齐次线性方程组解的结构定理,设1,,s r ηη- 是0AX =的一个基础解系. 令()()()11112111,0,,0,0,,,0,,0,,n s n s n s n B B B ηηη⨯⨯⨯= = 0, = ,0,()()()21222222,0,,0,0,,,0,,0,,n s n s n s n B B B ηηη⨯⨯⨯= = 0, = ,0,()()(),1,2,,0,,0,0,,,0,,0,s r s r s r s r s r n s r s n s n s n B B B ηηη------⨯⨯⨯= = 0,= ,0,则以上()s r n -个矩阵构成W 的一个基(请大家自行证明),(dim )W s r n -=.9. 设12,,,s W W W 是数域F (或无限域)上的向量空间V 的s 个非平凡子空间, 证明:存在向量V α∈使得1.si i W α=∈ /进一步证明:如果dim V n =, 则存在V 的基12,,,n ααα使得每一个1.sj i i W α=∈ /证明: (1) 先证明第一个结论.(对s 作数学归纳法)1° 当1s =时,1W 为非平凡子空间,当然向量V α∈使得1W α∉,结论成立.2° 假设结论对1s -个非平凡子空间成立. 现考虑s 个非平凡子空间情形,设12,,,s W W W 是V 的s 个非平凡子空间,由归纳假设,存在向量V β∈,但是11.s i i W β-=∈ /接下来对β分两种情形讨论:如果s W β∉,则1si i W β=∈/,结论得证;如果s W β∈,由于s W 是非平凡子空间,必存在V γ∈,但s W γ∉,现考虑以下s 个不同的向量,,,s βγβγβγ+ 2+ +这s 个向量一定都不在s W 中(因为s W β∈,s W γ∉),另一方面,这s 个向量至少有一个不在11s i i W -= 中,因为如果这s 个向量都在11s i i W -= 中,则必有某两个向量(不妨设,k l βγβγ+ +)会同属于某个子空间j W (11j s ≤≤-),这样()()()j k l k l W ββγβγ-=+- +∈,而0k l -≠,故得到j W β∈,则11s i i W β-=∈,矛盾,因此,至少有某个,比如11s i i m W βγ-=+∈/,这样,向量1si i W m βγ=∈/+,结论得证.综上,本题第一个结论成立.(2) 现证明第二个结论. 由第一个结论,存在1V α∈,但11.si i W α=∈ /又由第一个结论,存在2V α∈,但211s i i W αα=⎛⎫∈>/ ⎪⎭<⎝,这样,12,αα 线性无关. 再由第一个结论,存在3V α∈,但3121,s i i W ααα=⎛⎫∈ >/ <⎪⎝⎭,这样,123,,ααα 线性无关. 如此进行下去,,最后得到n V α∈,但1211,,,s n i n i W αααα-=⎛⎫∈ >/ ⎪⎭<⎝,这样,12,,,n ααα 线性无关,由于dim V n =,所以12,,,n ααα 是V 的一个基,且每个1.sj i i W α=∈ /。
线性代数53向量空间的基和维
例 设A a1(2 2 1)T a2(2 1 2)T a3(1 2 2)T B b1(1 0 4)T b2(4 3 2)T 验证a1 a2 a3是R3的一 个基 并求b1 b2在这个基中的坐标
解 要说明a1, a2, a3是R3的一个基,只要证a1, a2, a3线性无关, 即A E
设b1 x11a1 x21a2 x31a3, b2 x12a1x22a2 x32a3, 则
r1 r2
由基的定义知两组向量组都线性无关,即
r1 s, r2 t 从而 s t
定义 向量空间V 的任一基向量的个数, 称为空间V 的维 (dimension), 记这个数为 dimV
由于Rn有一组明显的自然基,
1 0
0
e1
0,
e2
1,
en
0
0
0
1
故有 dim Rn = n , 即Rn是n维向量空间.
Ax O
的解集 N(A) 是向量空间,现在进一步指出:它的通解中 元素的一般式中所含有任意常数的个数 n- r(A) 就是 N(A) 的维数 dimN(A), 即
dim N( A) n r( A)
dim N( A) dim R( A) n
基础解系就是N(A)的一组基,它们线性无关,并生成N(A).
即
A
y1 y2 y3
B
z1 z2 z3
于是
z1 z2 z3
B1A
y1 y2 y3
这就是从旧坐标到新坐标的坐标变换公式
定理 设b1、…、bs 及 f1、…、ft 是向量空间的任两 组基,则必有 s=t. 证 利用等价向量组 根据向量空间基的定义可知两组基等价的,从而其秩相等:
注 (1)只有零向量的向量空间没有基 规定其维数为0 (2)若把向量空间V看作向量组 则向量空间V的基就是
向量空间的基与维数
向量空间的基与维数结论1 设,当下述三个条件有两条满足时,{}就是V的一个基.(i)零向量可由唯一地线性表示;(ii)V中每个向量都可由唯一地线性表示;(iii).结论 2 设,都是F上向量空间V的子空间. 若,,则,且.例 1 设和都是数域,且,则是上的向量空间.域F是F上向量空间,基是{1},.C是R向量空间,{ 1 , i} 是基,.R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里.令,则F是一个数域,F是Q上的向量空间.1)1,线性无关:设,. 则(否则,,矛盾),因此.2) 1,,线性无关:设,,i=1,2,3 . ( 1 ),两端平方得,由于1,线性无关,故假如,则,且,即. 矛盾.因而故假如,则得,这与是无理数相矛盾. 因而将代入(1),便得这说明1,,线性无关.3) 1,,,线性无关:设,,i=1,2,3,4 . 则有. ( 2 )假如不全为零,则得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得又由1,线性无关得. 这样,我们证得了1,,,线性无关.故{1,,,}是F的一个基..例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间.对任意的正整数n,可证得线性无关:设,使( 3 )取n+1个实数,使a b.由(3)知.即其中而. 用左乘(4)两端,得这说明线性无关.故C[a,b]是R上无限维向量空间.引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明证对s作数学归纳.当s=1 时,结论显然成立.设,且对个V的不等于V的子空间结论成立.下考虑V的子空间,,. 由归纳假设知故存在1) 当时,,故;2) 当时,由于,因此显然,,…,.且存在,使(否则,如果,,…,,, ,,使,,所以,即有,这与矛盾).这样,故例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基.证取V的一个基,令. 对任意从中删去后剩下的个向量生成的V的子空间记为,则由引理知, 故存在令, 中任n个不同的向量线性无关,是V的基.设,有,且中任意n个不同的向量构成V的一个基.对任意,有.这样的子空间共有个. 由引理知存在令. 则||=k+1,且中任意n个不同的向量是V的基.这个过程进行下去,满足条件的无限集S即可找到.另证:设是V的一个基,令令让,,…,F互不相同,则由于其行列式是Vandermonde行列式,即故线性无关,是V的一个基. S中含无穷多个向量.例4设是F上n(>0)维向量空间V的子空间,且i=1,2,3,…,s. 则存在V的一个基,使得该基中每一个向量都不在中.证:对s作数学归纳.当时,取的一个基,,将其扩充为V的一个基. 可证明出线性无关,是V的基,且, i=1,2,…,r,设,且对个V的子空间结论成立. 现考虑V的s个子空间,由归纳假设知存在V的一个基,使1)如果,那么即满足要求;2)如果. 不妨设∈, , 由最多有一个F中的数,使, (否则,如果有两个不同的数, , 使,则,故,矛盾),所以除可能的之外,F 中有非零数,使同理有 F 中非零数,使显然易证线性无关,是V的基,且满足要求.例 5 设W是的由全体形如的向量所生成的子空间, 证明证令(j)是第i行第j列位置元素是1,而其余的个元素全是零的n阶方阵.对, i≠t,对, (j) ∈W.(j)容易验证}是线性无关的(共个向量)故而W中每个矩阵其迹为0. 因此,故引理 设是向量空间V 的子空间,则(i)(ii)例 6 设是F 上向量空间V 的子空间.(i) 证明:(ii)举一个例子,使上述严格不等式成立. 证(i)===(ii) 在中,令1w +2w +3w=(1,0,0),(-1,0,1)),而1w ⋂2w =2w ⋂3w =1w ⋂3w ={0}, 1w ⋂2w ⋂3w =={0},此时∑=31dim i i w =2<3=∑=31dim i i w -()∑≤≤≤⋂nj i jiw w 1dim +dim(1w⋂2w ⋂3w ).例7 设A )(F M m s ⨯∈,B )(F M n m ⨯∈.令0w ={α∈n F ∣AB α=10⨯s },1w = {B α∣α∈0w }, 求证1w 是m F 的子空间,且dim 1w =秩B-秩(AB).证 显然10⨯n ∈0w ,故B 10⨯n =10⨯m ∈1w ,即1w ≠∅, ∀1α,2α∈ 0w ,B 1α,B 2α是1w 的任意向量,∀1α,2α∈F,AB(2211ααa a +)= 2211AB AB ααa a +=0,∴2211ααa a +∈ 0w ,∴B(2211ααa a +)∈1w ⇒2211B B ααa a +∈1w ,因而1w 是m F 的子空间 .01当秩B=秩(AB)时,齐次线性方程组AB 1⨯n X =10⨯s 与B 1⨯n X =10⨯m 同解.因此1w ={0},故dim 1w =0=秩B -秩(AB).02以下我们假设秩B>秩(AB).ABX=0与BX=0不是同解的. 0w ≠{0},1w ≠{0}.)1秩B=n.此时0w ≠{0},设{1β,2β,…t β}为0w 的一个基,其中 t=n- 秩(AB) .则有1w =(B 1β,B 2β,…B t β). 设1b B 1β+2b B 2β+…+t b B t β=0,i b ∈F,i=1,2,…t. 则B(1b 1β+2b 2β+…+t b t β)=0,而BY=0只有零解,故1b 1β+2b 2β+…+t b t β=0, 又1β,2β,…t β线性无关.所以i b =0,i=1,2,…n. 这说明{B 1β,B 2β,…B t β}是1w 的一个基.dim 1w =t=n-秩(AB)=秩B-秩(AB).)2秩B<n.令'0w ={γ∈n F B γ=10⨯m },'0w 是B 1⨯n Y =10⨯m 的解空间,dim '0w =n- 秩B>0.显然'0w ⊆0w .由于我们事先假设了秩B ≠秩(AB),所以'0w ≠0w .设{1β,2β,…P β}是'0w 的一个基. P=n-秩B>0.扩充成0w 的一个基,1β,2β,…P β,1+p β,…,t β, t=n-秩(AB). 而1w =(B 1β,B 2β,…B P β,B 1+p β,…,B t β)= (B 1+p β,…,B t β). 设j j tp j B b β∑+=1=0, j b ∈F, j=p+1,…,t.则B(j j tp j b β∑+=1)=0.即j j tp j b β∑+=1∈'w 故存在1b ,p b b ,...,2∈F ,使j j tp j b β∑+=1=i i pi b β∑=1.i i pi b β∑=1+jjtp j b β)(1∑+=-=0.而1β,2β,…P β,1+p β,…,t β线性无关,所以k b =0,k=1,2,,…,t; 这说明B 1+p β,B 2+p β,…,B t β线性无关,是1w 的一个基. 因此 dim 1w =t-p=[n-秩(AB)]-【n-秩B]= 秩B-秩(AB).例8 设1w ,2w 是向量空间v 的子空间,且dim(1w +2w )=dim(1w ⋂2w )+1 证明,下述两条必有一条成立: (ⅰ) 1w +2w =1w ,1w ⋂2w =2w ; (ⅱ) 1w +2w =2w ,1w ⋂2w =1w .。
4.4向量空间的基和维数
一、向量空间的基与维数 定义4.1 设V为向量空间,若存在1, 2, …, r V.
且满足: (1) 1, 2, …, r 线性无关;
(2) V 中任一向量都可以由1, 2, …, r 线性表示;
则称1, 2, …, r 为V的一组基底,简称基, r 为V的维数,并称 V 为 r 维向量空间。
1
注1: 若将向量空间V看成无穷个向量组成的向
量组,其基就是其极大线性无关组,其规定其维数为0。
2
例如:对于Rn
(1) 基本单位向量组 1 , 2 ,, n 是一组基,称为标 准基。 (2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …,
n = (1, 1,…, 1) 也是基。
3
二、向量在给定基下的坐标
定义4.2 设1, 2, …, n 是向量空间 V 的一组基,
任取 V, 都有
= x11 + x22 + … + xnn
且组合系数 x1, x2, …, xn 唯一,称为向量 在
基 1, 2, …, n 下的坐标,记为 (x1, x2, …, xn)
4
例如:在 R3 中,
= (2, -3, 1)T = 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
5
例
求向量 ( x1 , x2 ,, xm ) 在基
1 (1,0,..., 0), 2 (1,1,..., 0), , m (1,1,...,1)
下的坐标.
6
线性代数—3.3 向量空间
一、向量空间的概念 二、向量空间的基和维数 三、基变换与过渡矩阵
一、向量空间的概念
例1 设 V 为平面上所有起点在定点 O 的向量的集合.
集合 V 具有如下性质: (1) 若 aV, bV, 则 a + bV;
B
a2 a
(2) 若 aV, kR, 则 kaV, 称 V 为平面向量空间.
a 可唯一地表示为 a k1a1 + L + krar
称 (k1, , kr) 为向量 a 在基 a1, , ar 下的坐标.
例4 验证 a1 (1,-1,0)T, a2 (0,1,3)T, a3 (2,1,8)T 为R3 的 一个基, 并求 b1 (5,0,12)T, b2 (9,-7,8)T, b3 (3,1,11)T 在这
O a1 A
uuur uuur a OA + OB k1a1 + k2a2
设 V 中两向量 a1, a2 线性无关, 即 a1, a2 不共线, 则
V {k1a1 + k2a2 | k1,k2 R} 称 V 为由向量组 a1, a2 生成的向量空间.
例2 设 n 元方程组 Ax 0 的解集为 S, 秩 R(A) r < n.
• L(A) 为向量空间V 的子空间的充要条件是 A V . • L(B) 为 L(A) 的子空间的充要条件是向量组 B 可由组 A 线性表示. • L(A) L(B) 的充要条件是向量组 A 与组 B 等价.
例3 由 a1 (1,1,0,0)T, a2 (1,0,1,1)T 所生成的空间记为V1, 而由 b1 (2,-1,3,3)T, b2 (0,1,-1,-1)T 所生成的空间记为V2.
(-1,-4,3), (13,8,-2), (1,1,1)
线性代数N维向量空间基与维数
§ 4.4 向量空间
12 解: 0 1
1 0
1 1 1
1 1 1
初等 行变换
1 0 0
2 1 0
1 1 0
1 1 0
可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基.
注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1Biblioteka 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
向量空间的基和维数
向量空间的基和维数 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2)V 中的每个向量都可由 1,2 ,K ,r 线性表示;
则向量组 1,2 ,K ,r 就称为向量空间V 的一个基,基中 所含向量的个数 r 称为向量空间的维数.
等价并且线性无关的向量组所含向量个数相同.
0 0
0 0
0 0 0
1
0 0
1,2,4 线性无关;
k11 k2 2 k33 k44 V, V中的每个向量都可由1,2,4 线性表示.
1,2,4 为V的一个基, V的维数是3.
线 性 代 数 11
总结 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2)V 中的每个向量都可由 1,2 ,K ,r 线性表示;
线性代数
向量空间的基和维数 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2) V 中的每个向量都可由 1,2 ,K ,r 线性表示;
则向量组 1,2 ,K ,r 就称为向量空间V 的一个基,基中 所含向量的个数 r 称为向量空间的维数.
等价并且线性无关的向量组所含向量个数相同.
V {0}维数为0.
线性代数
向量空间的基和维数
例 下述向量组是Rn 的一组基.
1
0
0
0
0
1
0
0
1
=
0
,
2
=
0
,
3
=
1
,L
,
n
=
0
M
M
M
向量空间的基与维数
例6
向 量
解析几何
线性代数
既有大小又有方向的量
有次序的实数组成的数组
几何形象: 可随意 平行移动的有向线段
代数形象: 向量的 坐 标 表 示 式
坐标系
四、向量与向量空间
空 间
解析几何
线性代数
点空间:点的集合
向量空间:向量的集合
坐标系
代数形象: 向量空 间 中 的 平 面
说明
2. 维向量的集合是一个向量空间,记作 .
1.集合 对于加法及乘数两种运算封闭指
一、向量空间的概念
定义1 设 为 维向量的集合,如果集合 非空, 且集合 对于加法及乘数两种运算封闭,那么就称 集合 为向量空间.
.
,
3
3
是一个向量空间
维向量的全体
R
例1
例2 判别下列集合是否为向量空间.
几何形象: 空间 直线、曲线、空间 平面或曲面
一 一 对 应
叫做 维向量空间.
时, 维向量没有直观的几何形象.
叫做 维向量空间 中的 维超平面.
确定飞机的状态,需 要以下6个参数:
飞机重心在空间的位置参数P(x,y,z)
机身的水平转角
机身的仰角
机翼的转角
所以,确定飞机的状态,需用6维向量
m
m
m
m
m
m
l
l
l
l
l
l
L
L
L
L
L
L
例5
定义2 设有向量空间 及 ,若向量空间 , 就说 是 的子空间.
实例
设 是由 维向量所组成的向量空间,
二、子空间
那末,向量组 就称为向量 的一个
向量空间
§5
向量空间
定义:设V是向量空间,如果r个向量a1 ,a2 ,…,ar∈V,且满足
(ⅰ) a1 ,a2 ,…,ar线性无关;
(ⅱ) V中任一向量都可由a1 ,a2 ,…,ar线性表示, 那么,向量组a1 ,a2 ,…,ar就称为向量空间V的一个基, r称 为向量空间V的维数,并称V为r维向量空间.
§5
定义:
向量空间
由向量组a1 , a2 , , am所生成的向量空间为 L x 1a1 2 a2 m am 1 , 2 , , m R.
§5
向量空间
定义:设有向量空间V1及V2,若V1 V2 ,就说V1 是V2的子空 间. 例 齐次线性方程组的解集 S={x| Ax=O}是一个向量空间, 集合S1={ x1, x2 | Ax1=O,Ax2=O }也是一个向量空间. 则 S1 S 即S1是S 的子空间.
若 a V , b V , 则 a b V ;
若 a V , R, 则 a V .
§5
例
向量空间
S={x| Ax=O}
齐次线性方程组的解集
是一个向量空间(称为齐次线性方程组的解空间).
证明(1)x1∈S,即Ax1=O; x2∈S,即Ax2=O, 有A(x1+x2) =O, x1+x2∈S, (2) x1∈S,λ x1 =O , λ x1∈S.
x11 b1,b2 a1,a2,a3 x21 x 31
2 2 1 1 4 A , B 2 1 2 0 3 1 2 2 4 2
§5
b1,b2
向量空间
2 3 2 a1,a2,a3 3 1 4 3 1 , 2 3
向量空间的基与维数
向量空间的基与维数在线性代数中,向量空间是一个具有特定性质的数学结构,它由一组向量组成,并满足一些线性运算规则。
在向量空间中,我们经常讨论两个重要的概念,即基和维数。
一、基的定义和性质向量空间的基是指一组线性无关的向量,它们能够生成该向量空间中的所有向量。
具体而言,设V是一个向量空间,S={v1,v2,...,vn}为V 中的向量组,如果满足以下两个条件:1. 向量组S中的向量线性无关;2. 向量空间V中的每一个向量都可以由向量组S线性表示,则称S 为向量空间V的基。
基的性质包括:1. 基的向量个数是确定的。
如果两个基包含的向量个数不同,那么它们所在的向量空间也是不同的。
2. 基的向量组中的向量个数是向量空间的维数。
二、维数的定义和性质在向量空间中,维数是指该向量空间的基中所含向量的个数。
通常用符号dim(V)表示,其中V是一个向量空间。
维数的性质包括:1. 如果V是一个向量空间,那么V的两个基所含向量的个数相同。
也就是说,向量空间的维数是唯一确定的。
2. 一个向量空间的维数是非负整数。
3. 如果向量空间的维数是有限的,则称该向量空间为有限维向量空间。
否则,称该向量空间为无限维向量空间。
三、例子和应用1. 二维平面上的向量空间R^2,其基可以选择为{(1,0),(0,1)},其中(1,0)和(0,1)分别是R^2的两个标准单位向量。
因此,R^2的维数为2。
2. 三维空间中的向量空间R^3,其基可以选择为{(1,0,0),(0,1,0),(0,0,1)},其中(1,0,0)、(0,1,0)和(0,0,1)分别是R^3的三个标准单位向量。
因此,R^3的维数为3。
基和维数的概念不仅在线性代数中有着重要的应用,也在其他数学领域和物理学、工程学等各个领域得到广泛应用。
它们帮助我们更好地理解和描述向量空间的结构和性质,为解决实际问题提供了强有力的工具和方法。
总结起来,向量空间的基是一组线性无关的向量,它们能够生成该向量空间中的所有向量;维数是该向量空间基所含向量的个数。
线性代数中的向量空间的基与维数计算与应用
添加标题
添加标题
添加标题
添加标题
特征值分解(EVD):用于主成分 分析和图像处理
矩阵分解在推荐系统中的应用:通 过分解用户-物品交互矩阵,推荐 相关物品
数据降维案例
数据降维的背景:高维数据难以处理,需要降低维度以便分析
基与维数的概念:基是向量空间的一组线性无关的向量,维数是向量空 间的秩,即基向量的个数
响,例如小波变换、中值滤波等。
THANKS
汇报人:XX
向量空间在解析几何、线性代数等领域中有着广泛的应用。
向量空间的基的定义
基是向量空间中线性无关的 向量组
向量空间是由同维线性组合 生成的向量集合
基的个数是向量空间的维数
基可以用来描述向量空间中 的任意向量
基的个数与向量空间的维数的关系
基的个数必须 等于向量空间
的维数
基的个数不能 超过向量空间
的维数
06 基 与 维 数 的 计 算 注 意事项
Part One
单击添加章节标题
Part Two
向量空间与基的定 义
向量空间的定义
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、加法的结合律和交换律、数乘的 结合律和分配律。
向量空间中的向量可以进行加法、数乘等运算,且满足一定的性质。
向量空间中的向量可以表示为坐标系中的点或矢量,具有方向和大小。
迭代法:利用迭 代算法求解基
维数的计算方法
定义:基与维数是线性代数中描述向量空间的重要概念,维数等于向量空间的基中向量的个数。 计算方法:通过求解线性方程组,可以得到向量空间的基,从而计算出维数。 应用:维数的计算在解决实际问题中具有广泛的应用,如机器学习、图像处理等领域。 注意事项:在计算维数时,需要注意线性相关性的问题,避免出现计算错误。
线性代数 第五章 向量空间
称为n元向量空间。
,an P
向量空间---基和维数
向量空间V中若向量组 1 ,2 , ,k 为极大
向 线性无关组,则称其为向量空间V的一组基
量 维数:基中所含向量的个数,dimV k.
空 Pn 的基和维数:由n个n元向量组成的极大
间
线性无关组。故基不唯一。
1,2, ,n , i 0,0, ,1, ,0T
m2 n 2
mn1n , mn2n ,
m11
M=
m21
mnnn .
mn1
m12 m22
mn2
m1n
m2
n
mnn
1 2
n 1 2
n M
M称为基(I)到基(II)的过渡矩阵。(M可逆?)
向量空间---过渡矩阵
(I ) 1,2, ,n; (II) 1, 2, , n 是 Pn
间
Байду номын сангаас
k31 3 , 1 / 1, 1 ; k32 3 , 2 / 2 , 2 ;
3 3
3 , 2 2 , 2
2
3, 1 1, 1
1.
向量空间---作业
向 P139 6 量 P142 3(1), 3(2) 空 P147 6,7
, , , ;
, 0, 且 , 0 O.
, , 是 Rn 中任意向量,k为任意实数。
向量空间---内积和标准正交基
向量的长度:|| || ,
向
单位向量: || || 1
向 的两组基,向量 在基(I)、(II)的坐标分
向量空间的基与维数定理
向量空间的基与维数定理一、基的定义与性质在向量空间中,基是指能够通过线性组合生成整个向量空间的一组向量。
具体来说,若向量空间V中的向量组{v1, v2, ..., vn}:1. 线性无关:任意一个向量vi都不能由其他向量的线性组合表示出来。
2. 生成性:任意一个向量v都可以表示成向量组{v1, v2, ..., vn}的线性组合。
二、基的存在性与维数定理对于任意一个向量空间V,都存在一组基。
而且,不同的基所含有的向量个数是相同的,称为这个向量空间的维数,记作dim(V)。
三、基的个数与维数之间的关系设V是一个有限维向量空间,则:1. 若V中存在有限个向量,它们组成了V的一组基,则称V是有限生成的;2. 若V是有限生成的,则V中的任何一组基所含有的向量个数都相同。
四、维数定理相关的证明与推论1. 维数定理的证明:设V为一个有限维向量空间,存在两个有限的基:{v1, v2, ..., vm} 和 {u1, u2, ..., un}。
首先,我们需要证明向量组{v1, v2, ..., vm}线性无关。
即对于任意一个向量的线性组合:a1v1 + a2v2 + ... + amvm = 0,若存在不全为零的系数a1, a2, ..., am,则上述方程成立,从而基{u1, u2, ..., un}中的向量也可以表示成{v1, v2, ..., vm}的线性组合,与其构成基的定义相矛盾,所以{v1, v2, ..., vm}是线性无关的。
其次,我们需要证明向量组{v1, v2, ..., vm}能生成整个向量空间V。
任意一个向量u都可以表示为基{u1, u2, ..., un}的线性组合:u = b1u1 + b2u2 + ... + bun,并且可以将基{u1, u2, ..., un}中的向量表示成基{v1, v2, ..., vm}的线性组合:ui = a1i v1 + a2i v2 + ... + ami vm,因此,u也可以表示成基{v1, v2, ..., vm}的线性组合:u = (b1a11 + b2a21 + ... + banan) v1 + (b1a12 + b2a22 + ... + banan) v2 + ... + (b1a1m + b2a2m + ... + banan) vm,即向量组{v1, v2, ..., vm}能够生成整个向量空间V。
向量空间的基和维数
8
例如:在 R3 中,
= (2, -3, 1)T
= 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
9
例 求向量 (x1, x2在,如下x基n下) 的坐标 1 (1, 0,K 0),2 (1,1,K 0),K n (1,1,K 1)
10
5
注1:若将向量空间V看成无穷个向量组成的向量组,其基就是其极大
线性无关组,其维数就是其秩。
注2:零空间 { } 没有基,规定其维数为0。
6
例如:对于Rn
(1) 基本单位向量组
是一1 ,组 2基,K,称, 为n 标准基。
(2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …,n = (1, 1,…, 1) 也是 基。
x1 y1 (x2 y2 ) x3 y3 0, V1
k (kx1, kx2 , kx3 )T , kx1 kx2 kx3 k(x1 x2 x3 ) 0, k V1
4
二、向量空间的基与维数
定义
设V为向量空间,若存在1, 2, …, r V.
且满足: (1) 1, 2, …, r 线性无关; (2) V 中任一向量都可以由1, 2, …, r 线性表示; 则称1, 2, …, r 为V的一组基底,简称基, r 为V的维数,并称 V 为 r 维向量空间。
向量空间、基和维数
1
Hale Waihona Puke 一、向量空间概念定义 设V是非空的n维向量的集合,如果
(1)V对加法运算具有封闭性,
即
,有
(2) V对数乘运算具有封闭性,
即
, V
V
R, V ,有 V
向量空间的基、维数
维数的计算方法
线性组合
通过向量的线性组合来计算维数。如果一组向量线性相关, 则可以通过减少向量的个数来得到线性独立的向量组,从而 确定维数。
矩阵秩
对于一个给定的基底,可以将其构成的矩阵的秩视为该向量 空间的维数。矩阵的秩等于其行向量组的秩,而行向量组的 秩等于其列向量组的秩。因此,可以通过计算矩阵的秩来确 定向量空间的维数。
向量空间的应用场景
01
02
03
线性代数
向量空间是线性代数的基 本概念之一,是研究线性 方程组、矩阵、线性变换 等问题的理论基础。
物理学
向量空间在物理学中有广 泛的应用,如矢量场论、 量子力学等。
工程学
向量空间在工程学中也有 广泛应用,如信号处理、 图像处理、控制系统等。
02
向量的线性相关性
线性相关的定义
向量空间的基与维数
目录 Contents
• 向量空间的基础概念 • 向量的线性相关性 • 向量空间的维数 • 向量空间基与维数的关系
01
向量空间的基础概念
向量空间的定义
01
向量空间是一个由向量构成的集 合,这些向量具有加法和标量乘 法的代数结构。
02
向量空间中的向量满足加法的结 合律、交换律和向量的数乘满足 分配律。
向量空间的性质
向量空间的零元素是唯一的,即对于 任意向量$mathbf{v}$,都存在一个 零向量$mathbf{0}$,使得 $mathbf{v}+mathbf{0}=mathbf{v}$。
向量空间的零元素满足标量乘法的封闭 性,即对于任意标量$k$和任意向量 $mathbf{v}$,有 $kmathbf{0}=mathbf{0}$。
线性相关是指一组向量中,如果存在 不全为零的标量,使得这组向量中的 向量能被这组标量线性表示,则称这 组向量线性相关。
向量空间的概念基维数
(由定义6易验证)。
上页 下页 返回
例12
集合V
{x
(0,
x2 ,, xn )T
|
xi
R, i
1,2,, n}
是一个向量空间. 因为若a (0,a2
,,
an
)T
V
,
b
(0,
b2
,,
bn
)T
V
§4 向量空间
★向量空间的概念、基、维数
本节是站在“空间”的高度研究“向量组”,同学们 须对“向量空间”的概念有初步认识。
下页 关闭
向量空间的定义 定义6 设V为n维向量的集合,如果集合V非空, 且 集V合,则V对 于 加法V ;及若数乘V运, 算封闭R,,则即若 VV.那, 么 就称V为向量空间.
验证a1
,
a2
,
a3是R 3的1
2
一个
2
基, 并
把b1
,
b2用这
4
个基
2
线性
表a1示, a. 2解, a3要 线验 性证 无a关1,,a即2 只, a要3是证RA3~的E一。个基,只要证
上页 下页 返回
设b1
x11a1
x21a2
x31a3 , b2
x12a1
x22a2
x32a3 ,
2
3 3
3
上页 下页 返回
因A
~
E
,
故a1
,
a2
,
a3是
R3
的一个基。且
2 4
b1 ,
b2
a1,
a2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量空间的基与维数
结论1 设,当下述三个条件有两条满足时,{}就是V的一个基.
(i)零向量可由唯一地线性表示;
(ii)V中每个向量都可由唯一地线性表示;
(iii).
结论 2 设,都是F上向量空间V的子空间. 若,,则
,且.
例 1 设和都是数域,且,则是上的向量空间.
域F是F上向量空间,基是{1},.
C是R向量空间,{ 1 , i} 是基,.
R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里.
令,则F是一个数域,F是Q上的向量空间.
1)1,线性无关:
设,. 则(否则,,矛盾),因此.
2) 1,,线性无关:
设,,i=1,2,3 . ( 1 )
,
两端平方得
,
由于1,线性无关,故
假如,则,且,即. 矛盾.
因而故假如,则得,这与是无理数相矛盾. 因而
将代入(1),便得这说明1,,线性无关.
3) 1,,,线性无关:
设,,i=1,2,3,4 . 则有
. ( 2 )
假如不全为零,则
得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得
又由1,线性无关得. 这样,我们证得了1,,,线性无关.
故{1,,,}是F的一个基..
例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间.
对任意的正整数n,可证得线性无关:
设,使( 3 )
取n+1个实数,使
a b.
由(3)知
.
即
其中
而
. 用左乘(4)两端,得
这说明线性无关.
故C[a,b]是R上无限维向量空间.
引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明
证对s作数学归纳.
当s=1 时,结论显然成立.
设,且对个V的不等于V的子空间结论成立.
下考虑V的子空间,,. 由归纳假设知故存在
1) 当时,,故;
2) 当时,由于,因此显然,,…,.且存在,
使(否则,如果,,…,,, ,
,使,,所以,即有,这与矛盾).这样
,故
例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基.
证取V的一个基,令. 对任意从中删
去后剩下的个向量生成的V的子空间记为,则
由引理知, 故存在
令, 中任n个不同的向量线性无关,是V的基.
设,有,且中任意n个不同的向量构成V的一个基.
对任意,有
.
这样的子空间共有个. 由引理知
存在
令. 则||=k+1,且中任意n个不同的向量是V的基.
这个过程进行下去,满足条件的无限集S即可找到.
另证:设是V的一个基,令
令
让,,…,F互不相同,则
由于
其行列式是Vandermonde行列式,即
故线性无关,是V的一个基. S中含无穷多个向量.
例4设是F上n(>0)维向量空间V的子空间,且i=1,2,3,…,s. 则存在V的一个基,使得该基中每一个向量都不在中.
证:对s作数学归纳.
当时,取的一个基,,将其扩充为V的一个基. 可证明出线性无关,是V的基,且, i=1,2,…,r,
设,且对个V的子空间结论成立. 现考虑V的s个子空间,
由归纳假设知存在V的一个基,使
1)如果,那么即满足要求;
2)如果. 不妨设∈, , 由
最多有一个F中的数,使, (否则,如果有两个不同的数, , 使,则,故,矛盾),所以除可能的
之外,F 中有非零数,使同理有 F 中非零数,使
显然易证线
性无关,是V的基,且满足要求.
例 5 设W是的由全体形如的向量所生成的子空间, 证明
证
令
(j)
是第i行第j列位置元素是1,而其余的个元素全是零的n阶方阵.
对, i≠t,
对, (j) ∈W.
(j)
容易验证}是线性无关的(共个向量)
故而W中每个矩阵其迹为0. 因此,故
引理 设是向量空间V 的子空间,则
(i)
(ii)
例 6 设是F 上向量空间V 的子空间.
(i) 证明:
(ii)举一个例子,使上述严格不等式成立. 证
(i)
=
=
=
(ii) 在
中,令
1w +2w +3w
=(1,0,0),(-1,0,1)),而1w ⋂2w =2w ⋂3w =1w ⋂3w ={0}, 1w ⋂2w ⋂3w =={0},此时
∑=31
dim i i w =2<3=∑=3
1
dim i i w -()∑≤≤≤⋂n
j i j
i
w w 1dim +dim(1
w ⋂2
w
⋂3w ).
例7 设A )(F M m s ⨯∈,B )(F M n m ⨯∈.令0w ={α∈n F ∣AB α=10⨯s },1w = {B α∣α∈0w }, 求证1w 是m F 的子空间,且dim 1w =秩B-秩(AB).
证 显然10⨯n ∈0w ,故B 10⨯n =10⨯m ∈1w ,即1w ≠∅, ∀1α,2α∈ 0w ,B 1α,B 2α是1w 的任意向量,
∀1α,2α∈F,
AB(2211ααa a +)= 2211AB AB ααa a +=0,
∴2211ααa a +∈ 0w ,
∴B(2211ααa a +)∈1w ⇒2211B B ααa a +∈1w , 因而1w 是m F 的子空间 .
01当秩B=秩(AB)时,齐次线性方程组AB 1⨯n X =10⨯s 与B 1⨯n X =10⨯m 同解.因此1w ={0},故dim 1w =0=秩
B -秩(AB).
02以下我们假设秩B>秩(AB).ABX=0与BX=0不是同解的. 0w ≠{0},1w ≠{0}.
)1秩B=n.
此时0w ≠{0},设{1β,2β,…t β}为0w 的一个基,
其中 t=n- 秩(AB) .则有
1w =(B 1β,B 2β,…B t β). 设1b B 1β+2b B 2β+…+t b B t β=0,i b ∈F,i=1,2,…t. 则B(1b 1β+2b 2β+…+t b t β)=0,而BY=0只有零解,
故1b 1β+2b 2β+…+t b t β=0, 又1β,2β,…t β线性无关.所以i b =0,i=1,2,…n. 这说明{B 1β,B 2β,…B t β}是1w 的一个基.
dim 1w =t=n-秩(AB)=秩B-秩(AB).
)2秩B<n.
令'
0w ={γ∈n F B γ=10⨯m },'0w 是B 1⨯n Y =10⨯m 的解空间,dim '
0w =n- 秩B>0.
显然'0w ⊆0w .
由于我们事先假设了秩B ≠秩(AB),所以'0w ≠0w .设{1β,2β,…P β}是'0
w 的一个基. P=n-秩B>0. 扩充成0w 的一个基,1β,2β,…P β,1+p β,…,t β, t=n-秩(AB). 而
1w =(B 1β,B 2β,…B P β,B 1+p β,…,B t β)= (B 1+p β,…,B t β). 设
j j t
p j B b β∑
+=1
=0, j b ∈F, j=p+1,…,t.
则B(
j
j
t
p j b β
∑+=1
)=0.
即
j
j t
p j b β
∑+=1
∈'0
w 故存在1b ,p b b ,...,2∈F ,使
j
j
t
p j b β∑+=1
=i
i
p
i b β
∑=1
.
i
i p
i b β∑=1
+j
j
t
p j b β
)(1
∑+=-=0.
而1β,2β,…P β,1+p β,…,t β线性无关,所以k b =0,k=1,2,,…,t; 这说明B 1+p β,B 2+p β,…,B t β线性无关,是1w 的一个基. 因此 dim 1w =t-p=[n-秩(AB)]-【n-秩B]= 秩B-秩(AB).
例8 设1w ,2w 是向量空间v 的子空间,且dim(1w +2w )=dim(1w ⋂2w )+1 证明,下述两条必有一条成立: (ⅰ) 1w +2w =1w ,1w ⋂2w =2w ; (ⅱ) 1w +2w =2w ,1w ⋂2w =1w .。